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ABSTRACT: Multiple methods have been proposed to provide accurate time since death estimations, 

and recently the discovery of bacterial community turnover during decomposition has shown itself to 

have predictable patterns that may prove useful. In this study, we demonstrate the use of 

metatranscriptomics from the postmortem microbiome to simultaneously obtain community structure 

and functional data across postmortem intervals. We found that bacterial succession patterns reveal 

similar trends as detected through DNA analysis, such as increasing Clostridiaceae as decomposition 

occurs, strengthening the reliability of total RNA community analyses. We also provide one of the first 

analyses of RNA transcripts to characterize bacterial metabolic pathways during decomposition. We 

found distinct pathways, such as amino acid metabolism, to be strongly upregulated with increasing 

postmortem intervals. Elucidating the metabolic activity of postmortem microbial communities provides 

the first steps to discovering postmortem functional biomarkers since functional redundancy across 

bacteria may reduce host individual microbiome variability. 

KEYWORDS: forensic science, postmortem interval, postmortem microbiome, necrobiome, 

decomposition ecology, metatranscriptomics

One of the most important issues facing the legal system is the development of a defendable, 

unbiased, and reproducible process to accurately determine time since death, or postmortem interval 

(PMI). These data are critical for determining if a death is within the bounds of medicolegal relevance. 

This determination, however, is often challenging, as interpretation of data relevant to the case might 
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be subject to confounding factors that could introduce bias or distort PMI estimates (1-5). Investigation 

begins with body examination and evidence collection at the scene and proceeds through history, 

physical examination, laboratory tests, and diagnosis that should be handled in a scientifically defensible 

manner. Such evidence in court is key to convict the guilty, protect the innocent, and unlock 

circumstances surrounding the death and/or crime so that justice may be upheld. Therefore, there is a 

forensically relevant need to implement consistent methodologies resulting in data that yield accurate, 

rapid, and cost-efficient results regardless of potential confounders. 

Due to next-generation sequencing, the use of microbial communities in forensic science is an 

increasingly expanding field. Applications of microbial community sequencing data as is now viewed as a 

next frontier in forensic science with potential to provide objective, reproducible evidence of cause, 

time, and manner of death for adjudication by the criminal justice system (6-8). Furthermore, the use of 

innovative approaches to analyze microbes at the genome, transcript, and protein level has exciting 

potential for accuracy and consistency in data analysis of microbial samples. Research has shown 

applicable microbial community contributions to trace evidence, biocrimes, and manner of death (1, 9-

15). Additionally, a literature review revealed a number of studies detailing predictable microbial 

successional patterns and human tissue gene expression changes associated with stages of human 

decomposition (7, 16-22).

The majority of these forensic studies have included both animal and human models with 

exposure to the outside environment, including natural shifts of multiple biotic and abiotic factors. This 

environmental addition is important since forensic investigations rarely encounter bodies discovered in 

sterile, controlled environments. Although, it is known that changes in environmental factors, such as 

temperature and humidity, can have drastic effects on the progress of decomposition; it may be difficult 

to determine which factor(s) has what effect. For this reason, we created a controlled model system to 

determine the baseline decomposition community turnover solely taking place in and on the body. This 

model allows researchers to add environmental factors and study the subsequent effects on 

decomposition that occur in reference to the baseline conditions. As more models are established, 

researchers and investigators can work in unison to create a database of models that account for varying 

conditions in which a body can be discovered. 

We have established a murine model containing normal, healthy murine microflora within an 

immunocompetent host with the inclusion of two known contributors to the human decomposition 

process (Staphylococcus aureus and Clostridium perfringens) (23-25). These two bacterial species have 

been found in mice and shown to colonize living humans, albeit in separate niches, and have been 
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shown to translocate and produce enzymes that break down tissues during decomposition. Additionally, 

mouse models have shown to contain microbial trends similar in human decomposition and provide an 

opportunity to easily obtain statistically relevant study sizes along with controlled laboratory conditions 

(6, 26, 27).  We describe here the colonization of mice orally with chromosomally tagged red fluorescent 

S. aureus and non-fluorescent plasmid tagged C. perfringens. We sequenced total RNA from multiple 

organs to monitor both the microbial community and functional changes from a single sample. We show 

that both microbial mRNA and rRNA can be successfully extracted and separated computationally from 

total RNA to allow for both structural and functional analyses. These data are comparable to performing 

16S rRNA and RNA-Seq sequencing individually and are more cost effective as only one sequencing run 

is necessary.

Further, we are among the first to utilize postmortem microbial metatranscriptomic analyses, 

determining both community structure and function from single samples. Although, it is important to 

note that multiple studies have shown functional potential is predicted to change with the postmortem 

interval or have focused on select sole-carbon source utilization, even fewer studies have studied the 

full microbial functional profile of RNA transcripts (1, 6, 7, 27). Until recently, postmortem transcriptome 

analyses have focused on the host transcriptome changes instead of the bacterial communities 

associated with the host. Metagenomic data provide valuable insights about microbial community 

structure and can predict functional potential (21, 28). Metatranscriptomic data has the advantage to 

reveal the true functional potential by directly measuring the RNA transcripts produced within the 

microbial community at a specific time and place, along with providing information on which species are 

present. In the context of forensics, metatranscriptomics from a single sample will aid in determining 

postmortem microbiome changes observed during decomposition succession, or the postmortem 

interval, which may mediate individual microbiome plasticity.  Data have shown that generalist microbes 

within a community, though taxonomically distinct, can encode genes for the same metabolic functions, 

which may blur the association between community composition and ecosystem functioning and while 

individual similar ecosystems may contain different communities, the functional profiles will be similar 

(29).  This functional similarity across similar ecosystems raises the question whether functional 

redundancy is found between living hosts who have been shown to carry distinct microbiomes. 

However, functions performed by only a few taxa, may closely follow changes in the abundance of those 

taxa, particularly for more narrow functions, such as with degradation of toxic compounds or of other, 

specific recalcitrant compounds (29, 30).  Additionally, microbes may have dissimilar functional roles 

during decomposition than they had on the living host, that might be obscured while analyzing 
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functional potential from metagenomic data. Though if functional redundancy existing during the 

decomposition processes, measuring the functional profiles at different postmortem intervals may 

provide a way to reduce the impact of personalized human microbiomes. Understanding mechanisms by 

which active members of the community respond to environmental disturbance including shifts in 

community composition, gene expression patterns, or density will benefit studies in decomposition 

ecology and forensic science, and will aid in biomarker discovery for postmortem interval estimation. 

Materials and Methods

S. Aureus KUB7/C. Perfringens+pZMB2 Creation

Detailed description on the construction of Staphylococcus aureus KUB7 can be found in 

Burcham et al. 2016, and an experimental procedure flow chart is included as Figure 1 (1). S. aureus 

KUB7 is a constructed strain that constitutively expresses a red fluorescent protein (RFP). C. perfringens 

type A strain WAL 14572 was obtained from ATCC. The vector pGLOW-C-Bs2 which contains the 

evoglow-Bs2 cyan fluorescent protein gene (CFP) was obtained from Jena Bioscience. To create a 

constitutively expressed vector, C. perfringens DNA was extracted using a modified protocol of that 

discussed in Williamson et al. 2014 (31). The per-fdx promoter was amplified out and EcoR1 and Sac1 

restriction sites were added at the 5’ of the forward and reverse strands, respectively, using the 

following PCR parameters: 3m-95°C, (30s-95°C, 30s-58°C, 30s-72°C)x39, 5m-72°C. The promoter is a 

ferredoxin gene based promoter primer sequences were obtained from Takamizawa et al. (32)2004 

(forward: (5’-CG[GAATTC]TAGGCTAAATATGCTTAAAAGAG-3’) and reverse: (5’-

GG[GAGCTC]ATATTTATATTATCATATTTTTGCTAA-3’)). Both the amplicon and pGLOW-Bs2 were 

sequentially digested with EcoR1 then Sac1, then the digested amplicon and vector were ligated using 

T4 DNA ligase. Digestion and ligation were performed with New England BioLabs® (NEB®) enzymes 

following standard manufacture protocol. The newly created vector was chemically transformed using 

NEB® 5-alpha Competent Escherichia coli (High Efficiency) following manufacture protocol. 

Transformants were confirmed with colony PCR using per-fdx promoter detection and stored at 

-80°C until the pGLOW-Bs2-fdx vector was isolated using the QIAGEN® Plasmid DNA Maxiprep kit. We 

had difficulty transforming pGLOW-Bs2-fdx into C. perfringens; therefore, we amplified the per-fdx 

promoter and CFP gene out of the vector and added a Xho1 cut site on the 5’ forward with the primers 

(forward: (5’-GC[CTCGAG]TACGAATTCTAGGCTAAAT-3’) and reverse: (5’-

GCAGGTCGACTCTAGAGGATCCTTA-3’)). The amplified product and new vector pJIR750 obtained from 

ATCC were double digested with EcoR1-HF and Xba1 enzymes obtained from NEB®, and completed 
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digests were ligated together using T4 DNA ligase. A Kpn1 NEB® enzyme digest was performed on the 

ligation to vector kill any plasmids that did not obtain the PCR product since insertion of the product 

interrupts the Kpn1 cut site only non-ligated vectors will contain the cut site. Afterwards, the newly 

created vector (pZMB2) was cleaned using the QIAGEN® DNeasy PowerClean Pro CleanUp kit and 

resuspended in 30 μL nuclease-free water. 

Exponential decay electroporation was performed using 1 μL vector and 25 μL NEB® 5-alpha 

Electrocompetent E. coli in 1 mM cuvette on the Bio-Rad Gene Pulser Xcell™ using the settings: 1800V, 

25 μF, and 200Ω. Transformants were confirmed with colony PCR using per-fdx promoter detection and 

stored at -80°C. Electrocompetent C. perfringens was created by growing 5 mL anaerobically overnight in 

Luria Broth (LB). The next day, the overnight culture was added to 50 mL fresh LB and incubated at 37°C 

for 2.5h. The culture was spun down at 12,000G for 10m at 4°C, washed with 5 mL of sucrose-

magnesium-phosphate (SMP) buffer, spun down, resuspended in 1 mL SMP buffer, aliquoted into 100 μL 

tubes, and stored at -80°C. C. perfringens exponential decay electroporation was set-up using 1 μG 

pZMB2 and 50 μL of electrocompetent C. perfringens in a 1 mM cuvette in a Bio-Rad Gene Pulser Xcell™ 

using the settings: 625V, 25 μF, and 200Ω. The sample was immediately transferred to 1 mL of 37°C SOC 

medium (Thermo Fisher Scientific) and let recover anaerobically for 3 hours at 37°C. Afterwards, 100 μL 

was plated on LB agar supplemented with Chloramphenicol (20 μG/mL) and left to incubate overnight 

anaerobically at 37°C. Transformants were confirmed for pZMB2 using colony PCR and positive samples 

were stored at -80°C. C. perfringens+pZMB2 transformants were detectable through qPCR, but failed to 

produce detectable fluorescence. 

Inoculum Preparation and Murine Inoculation 

S. aureus KUB7 and C. perfrigens+pZMB2 were grown overnight in 3 mL LB aerobically and 

anaerobically, respectively. The next morning, each 3 mL overnight culture was added to fresh 100 mL 

LB. S. aureus KUB7 was grown aerobically to OD600 of 0.5 and C. perfringens+pZMB2 was grown 

anaerobically to OD600 of 0.35. S. aureus KUB7 and C. perfrigens+pZMB2 were aliquoted to 64 1 mL 

microcentrifuge tubes and pelleted to remove supernatant. The S. aureus KUB7 pellet was resuspended 

in 100 μL phosphate-buffered saline (PBS) then the resuspension was used to resuspend C. 

perfrigens+pZMB2 to create a single co-inoculum. The inoculum was brought up to 600 μL with PBS. The 

inoculum colony forming units per mL (CFU/mL) count was calculated and the inoculum was diluted to 

obtain counts in colonization range. The final inoculums contained 1.1x109 CFU/mL S. aureus KUB7 and 

2.49x108 CFU/mL C. perfrigens+pZMB2. Thirty isoflurane sedated SKH-1 female mice (N=30) obtained 
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from Charles Rivers Laboratories were given 100 μL of the co-inoculum through oral gavage and 15 mice 

were given 100 μL PBS with as controls (N=15) for a total of 45 mice (N=45). Mice were housed based on 

their randomly chosen postmortem timepoint for dissection with no more than 5 mice per housing. All 

animal experiments were conducted in July 2017. This study was carried out in accordance with the 

principles of the Basel Declaration and recommendations of the Mississippi State University Institutional 

Animal Care and Use Committee Protocol 14–102 and Biosafety Committee Protocol 009-14. The study 

was approved by the Mississippi State University Institutional Animal Care and Use Committee.

Murine Sacrifice, Controlled Decomposition, and Organ Harvest 

Twenty-four hours after inoculation, all mice were sacrificed by cervical dislocation, as 

previously described (1). Fifteen of the 30 inoculated mice (N = 15) were randomly chosen to be surface 

sterilized to disrupt the skin microbial communities. The surface sterilized mice were submerged to 

below the mouth in a 10% bleach solution for 45 seconds too avoid sterilization of the mouth, nares, 

and ears and prevent the bleach solution from entering the body. The bleach solution was rinsed with 

distilled water twice. All 45 mice (N = 45) were individually placed in a Nalgene bottle top 0.2 μM filter 

container (Thermo Fisher Scientific) and sealed with Parafilm M to prevent environmental microbial and 

insect contamination. Mouse carcasses were allowed to naturally decompose within a bilaminar flow 

hood at ambient room temperature for up to 170 hours (approx. 7 days) in July 2017 in Starkville, 

Mississippi, USA. 

Three mice per treatment (control, inoculated with no surface sterilization, and inoculated with 

surface sterilization, N=9 total) were analyzed per time point (T = 3h, 9h, 26h, 74h, and 170h 

postmortem). All tissue harvesting, and subsequent analyses were performed in a bilaminar flow hood 

under BSL2 and sterile conditions, as previously described (1).  A sterile scalpel blade was used to cut 

through the right hind leg and femur. The separated leg was used to obtain bone marrow from the 

femur using a sterile syringe containing nuclease free water. A second sterile scalpel blade was used to 

dissect each mouse from the ventral side to remove the stomach, heart, and composite of the intestines 

using sterile forceps, individual for each organ. The bone marrow solution and each organ were 

transferred to individual 2.0 mL screw cap tubes. Each organ was crushed with a sterile cotton swab 

excluding the bone marrow solution. Afterwards, RNAlater (Ambion) was added to each tube and the 

samples were stored in -20°C until nucleic acid extraction.

Total RNA Extraction and Purification
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Total RNA extraction using the TRIzol Reagent (Thermo Fisher Scientific) with standard issued 

protocol was performed on the preserved samples after being spun down and the RNAlater (Ambion) 

removed. Briefly, 100 mg of tissue or the pelleted bone marrow was added to 1 mL of TRIzol Reagent 

(Thermo Fisher Scientific) and a mix of 0.1/0.5 mm glass beads. The samples were homogenized in a 

bead beater with phase separation following chloroform addition.  RNA was precipitated with 

isopropanol, washed with 75% ethanol, and resuspended in 50 μl of nuclease free water, and incubated 

at 60°C for 15 minutes. The samples were purified using the PowerClean Pro RNA Clean-Up Kit (Qiagen), 

quantified fluorometrically using a Qubit 2.0 (Invitrogen), and then stored at -80°C.

Total RNA Library Preparation, Shotgun Sequencing, and Processing

Total RNA libraries were created using the NEBNext Ultra™ RNA Library Prep Kit and NEBNext 

Multiplex Oligos (Dual Index Primers) for Illumina (New England BioLabs) protocols for use with purified 

mRNA or rRNA depleted RNA on the surface sterilized (N = 20), nonsurface sterilized (N = 20) and control 

(N = 20) samples. These protocols were chosen to maintain rRNA and mRNA within the RNA sample in 

order to preserve 16S rRNA transcripts and mRNA transcripts for both structural and differential 

transcript expression analysis. High-throughput total RNA sequencing was performed by St. Jude 

Children’s Research Hospital on an Illumina HiSeq2000 with 2 X 100bp PE (paired end) read lengths. 

Sequences were initially trimmed by the sequencing facility using TrimGlare v0.4.2 (33, 34), but a more 

stringent quality trimming was also performed using Trimmomatic v0.33 (35). Sequences were input in 

the SAMSA2 pipeline (35). SAMSA2 was used to merge the paired-end sequences with PEAR v0.9.10 (36) 

and then trimmed in a four-position sliding window with an average phred33 score less than 20, and 

read lengths less than 99bp with Trimmomatic v0.36 (34). SortMeRNA v2.1 (37) was used to extract 

bacteria 16S rRNA transcripts and limit archaea 16S/23S rRNA transcripts and eukaryotic 

18S/28S/5S/5.8S rRNA transcripts based on the documentation recommended SILVA and Rfam 

databases (38). The remaining 16S rRNA transcripts were used for community structure analyses and the 

rRNA depleted RNA was used for differential expression analyses. Sample identifiers and metadata can 

be found in Table 1.

16S rRNA Community Analysis

Community structure was determined using QIIME 2 2018.4 (https://qiime2.org) (39). The reads 

were truncated to a maximum length of 180 bp and denoised to remove sequencing errors and 

chimeras with DADA2 (40). To generate a phylogenetic tree for diversity analyses, we first performed a 
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multiple sequence alignment using MAFFT then mask the alignment to remove highly variable regions 

(41, 42). An unrooted tree was created from the masked alignment with FastTree 2 (43). We applied 

midpoint rooting at the midpoint of the longest tip-to-tip distance. Taxonomic identification was 

performed using VSEARCH consensus taxonomy classifier using the SILVA 132 QIIME release 99% 

majority 16S rRNA only reads with 7 level taxonomy (38, 44-46). Any classified reads that had a 

frequency less than 10 or classified belonging to mitochondria or chloroplast were discarded. The 

relative abundances of the bacterial families present were determined for each sample with any family 

present less than 3% in a sample being considered rare taxa. Alpha and beta diversity analyses 

performed on the classified OTUs at a sampling depth of 900 reads per sample with metadata included 

in the analyses: treatment, organ, and postmortem time. Shannon alpha diversity was calculated and 

compared against metadata using pairwise Kruskal-Wallis. We calculated both weighted and 

unweighted UniFrac distances (beta diversity) then compared them against the metadata using pairwise 

Permutational Multivariate Analysis of Variance (PERMANOVA) (permutations = 999). The weighted and 

unweighted UniFrac distances were used to create Principal Coordinate Analysis (PCoA) plots. UniFrac 

distances incorporate phylogenetic relationships while weighted distances take into account the 

bacterial abundances and unweighted treats data as presence-absence (47). Analysis of Composition of 

Microbiomes (ANCOM) was performed to identity taxonomic families in each organ that are 

differentially abundant across postmortem time (48). Statistical significance was determined as 

Benjamini-Hochberg corrected p<0.05.

Transcript Annotation and Differential Expression Analysis

Ribosomal RNA depleted RNA transcripts were used in the SAMSA2 pipeline (35). The reads 

were annotated using the DIAMOND sequence aligner to a database created from the March 2018 NCBI 

nr-protein database (49). The best protein hit for each read in the sample was aggregated for 

differential expression analysis using the R statistical packages edgeR v3.22.3 and DESeq2 v1.20.0 (50-

52). Treatments were not differentiated as community analysis showed no difference between 

colonization nor surface sterilization. In edgeR, the counts per million were computed and transcripts 

that were not present more than 1 CPM in at least 2 samples were removed to reduce noise. In DESeq2, 

transcripts that were not present in at least 2 samples with counts above 1 were removed. 

Normalization by library size was performed based on each package’s recommended method. EdgeR 

dispersion estimations were determined individually per organ with bone marrow and stomach using 

spline and heart and intestines using bin-spline. DESeq2 dispersions were estimated based on the 
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default settings from the DESeq command. Timepoint groups were as follows: early (3h and 9h), middle 

(26h and 74h), and late (170h). All models were created with no y-intercept and the postmortem 

timepoint groups as the variable for each organ. EdgeR models were negative binomial generalized log-

linear models (GLM) with quasi-likelihood and DESeq2 models were negative binomial GLMs with 

likelihood ratio tests between the full and reduced model without timepoints. For both methods, 

differential expression was tested to contrast the timepoint groups (early v. middle, middle v. late, early 

v. late) for each organ and significantly differentially expressed transcripts were identified based on 

a Benjamini-Hochberg corrected p-value < 0.10 above 1 log2-fold-change threshold. Only transcripts 

determined to be significant by both methods were considered truly significantly expressed to reduce 

procedural bias. Transcripts were annotated into pathways based on the KEGG and UniProt databases 

(53, 54).

Results

S. Aureus KUB7/C. Perfringens+pZMB2 Detection

Colonization of S. aureus KUB7 and C. perfringens+pZMB2 was only detectable through qPCR 

measurements of the RFP and CFP genes (Figures S1-4). S. aureus KUB7 was essentially absent, apart 

from a few outliers, in the kidneys, spleen, intestines, stomach, and bone marrow with detection 

appearing after 3 days in the lungs and liver, 5 days on the skin, and 7 days in the heart. C. 

perfringens+pZMB2 was essentially absent, apart from a few outliers, in all organs except the intestines 

and one instance of a 14-day heart sample. Introduced species in a previous model were shown to 

significantly die off past 30 days postmortem (1, 27). The low colonization abundances and 

inconsistencies across mice inhibited reliable translocation tracking of S. aureus KUB7 and C. 

perfringens+pZMB2; therefore, further analyses focused on the bacterial community structural and 

functional turnover across postmortem time through high-throughput sequencing. A statistical 

comparison of the bacterial communities of colonized mice against non-colonized mice showed no 

significant difference allowing for colonization and non-colonization data to be combined for increased 

sample size and statistical significance. 

16S rRNA Family Relative Abundance

In total, 41 families were detected across 60 samples for a total of 3,751,013 classifications (min 

= 0, max = 1,482,222, mean = 91,488.12, SD = 301,722.61). Two samples were unclassified and both 

samples belonged to bone marrow early postmortem times (3h and 9h). The two most detected families 
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by over 800,000 classifications were Lactobacillaceae (N = 1,482,222) and Clostridiaceae I (N = 

1,242,443). Twenty-six families (63%) were found in low abundance across all samples and were 

grouped into rare taxa. The stomach (Figure 2A) showed a microbial shift after 26h as Ruminococcaceae, 

Nitrososphaeraceae, and Lachnospiraceae began to decrease in relative abundance with 

Lactobacillaceae dominating at 74h and the introduction of Clostridiaceae I at 170h postmortem. The 

intestines (Figure 2B) showed a similar trend where samples ≤26h were dominated by Ruminococcaceae 

and Lachnospiraceae, followed by a shift to Lactobacillaceae dominance at 74h, and Clostridiaceae I 

competing at 170h. In the heart (Figure 2C), early postmortem times (≤9h) were predominately 

Nitrososphaeraceae. After 26h, Clostridiaceae I increased and was dominated by Clostridiaceae I by 74h, 

along with a small community of Enterobacteriaceae. Bone marrow (Figure 2D) samples ≤26h were 

predominately Nitrososphaeraceae with the exception of MS1730 where only Deferribacteraceae was 

detected. Lactobacillaceae was detected in high abundance at 74h, and Clostridiaceae I and Clostridiales 

Family XI were dominant 170h postmortem.  

16S rRNA Community Diversity

Comparing Shannon diversity indices as grouped by the metadata factors showed that only the 

organ in which the sample originated had an effect, rather than the postmortem time or treatment (H = 

23.46, q = 3.24x10-5). The bone marrow (H = 11.69, q = 1.89x10-3), heart (H = 18.43, q = 1.06x10-4), and 

stomach (H = 8.83, q = 5.93x10-3) all had significantly smaller Shannon diversity indices when compared 

to the intestines (Figure 3). When analyzing the Shannon diversity differences by postmortem time in 

each individual organ tissue, the overall Kruskal-Wallis model determined the heart (H = 11.20, p = 

2.44x10-2) and intestines (H = 9.70, p = 4.48x10-2) to have significant changes, and pairwise comparison 

of the timepoints did not determine any specific postmortem times to be significantly different. Though 

individual tissue assessment is possible, it is important to keep in mind that each timepoint only has at 

most 3 mice which may affect the ability to detect significant effects. Beta diversity comparisons with 

PERMANOVA showed a significant difference in weighted UniFrac distances between organ (pseudo-F = 

4.32, p = 1x10-3, k = 4, N = 50) and postmortem time (pseudo-F = 5.94, p = 1x10-3, k = 5, N = 50) (Figure 

4A&B). 

Pairwise analyses for weighted and unweighted UniFrac organ and postmortem time 

comparisons can be found in Table S1. Weighted UniFrac distance comparison to the intestines (Figure 

4A) showed that the intestines mean beta diversity was different from bone marrow and heart while the 
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stomach microbial diversity was only different from biodiversity in the heart. The stomach and intestines 

tended to score similarly while also the heart and bone marrow tended to score similarly. Comparison of 

weighted UniFrac distance by postmortem times (Figure 4B) showed that the first 26h were similar, with 

separation at 74h from the ≤26h timepoints, and further separation at 170h. 

Beta diversity comparisons showed a significant difference in unweighted UniFrac distances 

between organ (pseudo-F = 4.4, p = 1x10-3, k = 4, N = 50) and postmortem time (pseudo-F = 3.63, p = 

1x10-3, k = 5, N = 50) (Figure 4C&D). Interestingly, performing the same comparisons using the 

unweighted UniFrac distances determined that more significant differences existed between both organ 

and postmortem times. Unweighted UniFrac distance comparisons by organ (Figure 4C) returned 

significant differences between the intestines and all other organs along with differences between the 

stomach and heart as well as stomach and bone marrow. As with the weighted UniFrac distances, the 

bone marrow and heart scored similarly with unweighted distances. Unweighted UniFrac comparison 

between postmortem times (Figure 4D) showed no difference during the first 26h, a separation at 76h, 

and further separation at 170h.  However, in contrast to the weighted analysis, the unweighted analysis 

determined a significant difference between 76h and 170h. It is important to note that treatment 

conditions such as colonization of S. aureus and C. perfringens along with surface sterilization did not 

cause significant differentiation between the microbial communities. Since these treatments were not 

significant in any of the diversity analyses, the treatments were no longer differentiated in community 

analysis, PCoA visualization, or differential expression analysis allowing for the data across treatments to 

be combined for greater sample size and statistical significance. 

Visualization of the weighted and unweighted UniFrac distances with a PCoA (Figure 5) showed 

that the heart and bone marrow, then intestines and stomach tended to group closely, suggesting the 

similarity found in the pairwise comparisons. In the weighted UniFrac PCoA (Figure 5A), the ≤26h heart 

and bone marrow all clustered closely and the ≤26h intestines clustered together but separate from the 

heart and bone marrow. Interestingly, the ≤26h stomach samples had a larger variability between them, 

but continued to stay in the range of the other ≤26h timepoints. As decomposition progressed to 170h 

postmortem, the intestines and stomach became similar, likely due to the samples being dominated by 

Lactobacillaceae and the heart and bone marrow likely became similar with the increase of 

Clostridiaceae I. Samples primarily moved along the axis 1 as decomposition progressed which shows 

that time since death explains up to 49% of the bacterial community variation. The heart and bone 

marrow moved the furthest distance on axis 1 suggesting their communities had the most turnover 

across the PMI. The unweighted UniFrac PCoA (Figure 5B) again showed early (≤26h) communities in the 
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heart and bone marrow to be similar but unique from early intestines and stomach with the exception 

of one 3h stomach sample. As decomposition progressed, both clusters moved across axis 1 (27%) and 2 

(17%) until converging. The intestines and stomach communities transition in a “step-like” pattern while 

the heart and bone marrow transitioned rapidly at 74h. ANCOM determined the differentially abundant 

taxa over the course of decomposition to be Lactobacillaceae (W = 9) and Clostridiaceae I (W = 8) in the 

bone marrow; Lactobacillaceae (W = 42), Clostridiaceae I (W = 42), and Enterobacteriaceae (W = 40) in 

the heart; Lactobacillaceae (W = 47), Enterococcaceae (W = 43), and Clostridiales Family XI (W = 41) in 

the intestines; and Clostridiaceae I (W = 47) in the stomach. 

Transcriptome Differential Expression

The edgeR mean transcript library sizes after filtering for the intestines was 8,760.4 (min = 

1,138, max = 34,656, SD = 8,760.4), heart was 34,171 (min = 5,717, max = 116,326, SD = 36,751.99), 

bone marrow was 7,489.47 (min = 2,347, max = 17,850, SD = 5,048.7), and stomach was 14,198.2 (min = 

1,448, max = 96,625, SD = 26,168.53). The DESeq2 mean transcript library sizes after filtering for the 

intestines was 7,019 (min = 1,045, max = 26,751, SD = 8,792.68), heart was 31,480 (min = 5,492, max = 

104,198, SD = 33,544.22), bone marrow was 6,722 (min = 2,193, max = 14,501, SD = 4,267.12), and 

stomach was 12,828 (min = 1,319, max = 87,270, SD = 23,682.44). Significantly differentially expressed 

transcripts for each method were determined, but only transcripts that were reported as significant by 

both edgeR and DESeq2 were considered significant in the study (Table 2). 

Neither the intestines, bone marrow, nor stomach contained significantly up-regulated or down-

regulated transcripts from both programs. In total, the heart contained 2,051 significantly up-regulated 

transcripts and 6 significantly down-regulated transcripts. The significant differences came from 

comparison expression levels between early and late decomposition and comparing middle and late 

decomposition. The early v. late comparison contained 1,028 up-regulated transcripts with 252 of them 

being annotated as hypothetical, ribosomal, or unknown and 4 down-regulated transcripts all annotated 

as hypothetical. The middle v. late comparison contained 1,023 up-regulated transcripts with 247 of 

them being annotated as hypothetical, ribosomal, or unknown and 2 down-regulated transcripts both 

having a hypothetical annotation. Out of the up-regulated transcripts, 1,022 (99.8%) were shared 

between the two group comparisons. The most up-regulated pathways were amino acid and 

carbohydrate metabolism (Figure 6). Other notable pathways include stress response, membrane 

transport, sporulation, and cell motility. A complete list of the individual significant transcripts with their 
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logFC, FDR, NCBI nr protein annotation, and pathway annotation can be found in Online Supplemental 

(Table S2). 

Discussion

The differences detected between bacterial communities are attributed to the organ and/or 

postmortem time of the sample. The lack of diversity differences between sterilization treatments 

suggests that internal antemortem microbial communities gives rise to the dominating internal 

postmortem communities during decomposition. In a previous model, we detected a similar trend 

where the internal microbial profile was consistent across surface sterilization techniques further 

strengthening the hypothesis that internal microbes are the main contributors to internal host tissue 

breakdown and may serve as reliable PMI biomarkers (27). Additionally, we believe the introduction of 

S. aureus KUB7 and C. perfringens+pZMB2 did not greatly alter the existing community structure due to 

the low detection by highly sensitive DNA techniques. In fact, S. aureus KUB7 had the higher mean 

abundance between the two introduced species during late decomposition and was only detected 

above rare taxa in one 7-day bone marrow sequenced sample which is a timepoint no S. aureus KUB7 

was detected using qPCR. This lack of detection in total RNA sequencing, which is less sensitive to 

individual species, suggests that the majority, if not all, of S. aureus and C. perfringens detected from 

sequencing belong to the natural host microbiota. It is important to note, we are limited in accurately 

assessing the extent of competition that may have occurred between the introduced species and the 

natural microbiota, though our data suggests a minimal impact allowing for full analysis of both the 

community structure and function.

When comparing the family relative abundances, we found that the intestines and stomach 

showed similar communities and turnover as decomposition progressed. In the first 26h PMI the 

intestines and stomachs were dominated by Lachnospiraceae which is a common intestinal tract 

commensal, a strict anaerobe, and has a Gram-positive cell wall helping protect the cells from the low 

pH in the stomach. Ruminococcaceae are another Gram positive taxon found in lower abundance, and 

are strict anaerobes from in the human intestinal tract that break down complex carbohydrates (55). 

After 26h, both of these families decreased in relative abundance and Lactobacillaceae increased. 

Lactobacillaceae are lactic acid producing bacteria, that are generally anaerobic but many are 

aerotolerant. The ability to withstand oxygen is an advantageous attribute during the decomposition 

process as the initially anaerobic intestines increases in oxygen levels after the bloat stage as the body 

purges internal fluids (2, 7, 16). Along with aerotolerance, the creation of lactic acid from fermentation 
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has an inhibitory effect on many microbial species that cannot tolerate the low pH which may allow 

Lactobacillaceae to outcompete other families in the stomach and intestines during early 

decomposition. After 170h, Clostridiaceae I increased in relative abundance in the stomach and 

intestines. Clostridiaceae are common vertebrate decomposers found in late PMIs and ferment amino 

acids and fatty acids that are found in remains (6, 7, 56). Clostridiaceae are Gram positive, anaerobic, 

and spore-forming cells, but many have the ability to withstand small amounts of oxygen (57). 

Clostridiaceae can grow in the anaerobic niches in the intestines until oxygen levels increase above their 

threshold or nutrients deplete, then start forming endospores that allow the cells to go dormant and 

resist unfavorable environmental conditions. The stomach and intestine bacterial communities 

appeared to be stable for at least 26h after death, with a dramatic shift taking place within 74h. 

Interestingly, the heart and the femur bone marrow showed similar communities and turnover 

events as well, despite being in different anatomical locations. This may be due to each site being sterile 

or of extremely low colonization during life leading to the translocation of microorganisms to the area in 

search of nutrients. One of the early colonizers we detected in both the heart and bone marrow was 

Nitrososphaeraceae, an archaeal family of nitrogen oxidizers. As far as we know, Nitrososphaeraceae 

has not been shown to be associated with the internal microbial communities of decomposition, but this 

may be due to the lack of forensic archaea community analyses of decomposing vertebrate remains. 

Nitrogen oxidation, nitrification, occurs when nitrogen levels are high, oxidizing ammonia to nitrite, 

releasing hydrogen protons and creating a decrease of pH. This process has been shown to play a role in 

nitrogen cycling in grave soils potentially by nitrifying Proteobacteria, and is suspected to play a role in 

nitrogen cycling in the carcass as well (6, 58, 59). Similarly, the intestinal fluids pre-rupture have been 

shown to contain high amounts of ammonia (6, 60). This suggests that the high ammonia levels detected 

in the intestinal environment during early decomposition are similar to those of the heart and bone 

marrow, which may be ultimately oxidized by Nitrososphaeraceae during early decomposition. Further 

investigation of abiotic factors such as oxygen, nitrogen, and pH will be an important next step to 

determine these abiotic concentrations in sterile organs.  It is also important to note, some 

Nitrososphaeraceae species have been shown to contain flagella and are motile, which would allow for 

early advantageous translocation into sterile organs. 

Similar to the intestines and stomach, the bone marrow had a microbial shift after 26h to be 

dominated by Clostridiaceae while the heart began to shift after 9h with both Clostridiaceae and 

Enterobacteriaceae increasing in relative abundance. Enterobacteriaceae are Gram negative, anaerobes 

with aerotolerance, and are common inhabitants of the intestinal tract which suggests these 
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communities have translocated from the intestines to the heart and bone marrow as decomposition 

progressed. The microbial shift after 26h detected in internal organs is consistent with human external 

postmortem microbiota data by Pechal et al. (2018) which demonstrated that the external human 

microbiota is relatively stable within 48h after death suggesting that a major microbial turnover event 

takes place between 48-74h (8). Our data suggests this pattern is consistent with the rate of bacterial 

community turnover in some internal organs with the only exception being the heart communities, 

which began to shift after 9h.  The discrepancies between community turnover rates of internal and 

external organs compared to the heart merit further investigation. This post 48h change likely 

corresponds to the transition from fresh remains to the high microbial activity anaerobic bloat stage and 

the subsequent rupture which introduces oxygen to the internal organs selecting for more aerotolerant 

species (2, 16). 

Shannon diversity comparisons only showed a significant difference between organs and not 

with postmortem time or treatment. The variation likely occurs from the consistent high bacterial 

richness and diversity found in the intestines compared to presumed sterile antemortem organs bone 

marrow and heart. The stomach is colonized during life, but the bacterial abundance is far less than the 

intestines and our data suggests there is a larger variation in the bacterial abundance in the stomach 

across individuals than in the intestines. Comparisons of beta diversity through weighted and 

unweighted UniFrac distances showed that the comparisons using unweighted UniFrac tended to 

provide more significant comparisons than weighted. This is likely due the nature of the calculation of 

the distances in which weighted takes in to account the species presence along with abundance while 

unweighted only takes in to account the presence or absence of a species (61, 62). Comparing the two 

weighted and unweighted distance comparisons by organs differ when it comes to the stomach due to 

high variation, but the overarching results suggest that there is a stark difference between the intestines 

and the heart and bone marrow in beta diversity, with the stomach being more similar to the intestines. 

Beta diversity analyses of the postmortem times confirms what we suspected from the relative 

abundances, in that the first 26h is relatively stable and a turnover event takes place by 74h 

postmortem. This separation between the known colonized organs and others was seen in the PCoA 

plots along with the stabilization of the under 26h communities since the early samples were seen 

clustering near each other. Data based solely on the microorganisms detected showed microbial 

convergence in all organs.  However, data weighted by abundance yielded clustering and separation of 

the intestines/stomach and heart/bone marrow cluster at late stages of decomposition. This is likely due 

to the fact the while all organs contained Clostridiaceae and Lactobacillaceae, the ratio between the two 
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differed based on the organ. The importance of these two families was ultimately confirmed with 

ANCOM showing their significantly different abundances across postmortem times in each organ. 

Differences across organs may be due to antemortem colonization of the intestines and stomach 

compared to colonizing sites postmortem, competition between species, or a difference in the nutrients 

available leading to selection of organisms that can better utilize what is present. Similarly, the turnover 

event after 26h is likely due to the same variables. In an effort to better understand how the bacterial 

taxa were reacting to this shift, we turned our focus to the functional pathways being regulated.

The functional capabilities of organisms’ present can help elucidate factors driving the microbial 

turnover by investigating which pathways are being regulated. Commensal and transient microflora co-

evolve and co-exist on and within their host and cover skin and human mucosal surfaces (63). The living 

host supplies resident microbes with adequate surface area, nutrients, oxygen, temperature, and pH, 

and these microflora grow to a maximum growth rate (64, 65). Fluctuations of these parameters affect 

growth and activate microbial stress responses (66, 67). Bacteria respond to stress and dynamic 

environmental conditions by modulating gene expression that controls the cell’s structure and function 

(65, 66), and an extreme stress will force some microbes to dormancy or death (67). Competition and 

dispersal among microbial communities also occurs when resources become limited (64, 68). 

Modulation of gene expression or shifts in microbial populations can be measured to determine 

associations that exist with physical and chemical conditions within micro- and macroenvironments. 

Biomarkers from expression of indicator genes thus have the potential to monitor particular changes at 

early stages or long-term stages of decomposition, where their status reflects and/or predicts the 

conditions of the environment where they are found. However, bacterial mRNA is short-lived, ranging 

only from minutes to hours (69). Therefore, it is necessary for preservation methods to be undertaken, 

such as with RNALater or some other nucleic acid stabilizer, or immediate freezing in order to control 

degradation. However, an understanding of how microbial genes, and ultimately the proteins they 

encode, function during host decomposition, will provide a foundation for development of biochemical 

assays with potential for quantifying evidentiary metrics such as PMI estimates in a forensic 

investigation.  

In this study, we are the first to our knowledge to extract total RNA to be able to identify the 

microbial communities present along with the functional pathways they are actively utilized at different 

stages of decomposition. A concern with only focusing on the bacterial community structure is that 

human microbial profiles are dependent on the individual, and species variance across individuals can 

interfere with the presence of certain taxa. This can cause issues if forensic biomarker taxa are not 
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associated with that individual at the time of death. Being able to obtain functional data of active taxa 

that are present along with structural data may circumvent this concern because, while specific taxa 

may change between people, functions needed for microbes to survive across postmortem intervals 

should be redundant. Therefore, coupling community structural and functional profiles may provide 

evidence less biased to the individual’s antemortem microbiome that may be used for biomarker 

detection.

Understanding that a community structural turnover event takes place sometime between 26h 

and 74h, we stratified functional analysis in to three parts: early, middle, and late. We expected the 

comparison of differentially expressed transcripts between the early and middle time groups to be 

similar if the communities are still functionally redundant, and that is exactly what data showed. 

Significant differentially expressed transcripts between metabolic pathways did not occur until early and 

middle timepoints were compared with the late 170h time point, and the heart was the only organ to 

contain significant differential expression. We hypothesize the heart goes through a significant 

functional shift due to its drastic shift in bacterial community structure as Clostridiaceae and 

Enterobacteriaceae dominate during late decomposition. Interestingly, the significant metabolic 

pathways and individual transcripts that were upregulated during late decomposition were almost 

identical in both the early and middle decomposition time groups further underscoring that a major 

change occurred in the body after 26h postmortem affecting not only the bacterial community 

structure, but also their function. 

The increase of amino acid and carbohydrate metabolism suggests that nutritional utilization is 

a key factor in determining which species dominate. Energy metabolism increases predominately 

related to oxidative phosphorylation which correlates with the increase of aerobic respiration after the 

body ruptures (16, 60). A few interesting pathways we saw were stress response, sporulation, and cell 

motility. These allow organisms an advantage by allowing adaptation to adverse environmental 

conditions, such as with adaptation to temperature (stress response), sporulation, or the ability to 

translocate within the body in search for nutrients (motility). These were not identified in bone marrow, 

likely due to the relatively small transcripts obtained. The intestines and stomach community functions 

may not change drastically enough between time groups, although the community structure does still 

change. It is possible the community turnover in the intestines and stomach is caused by the ability to 

replicate or acquire nutrients more efficiently within the same pathway as a competitor instead of the 

ability to use different pathways, but this still needs to be elucidated. 
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With this and our previously conducted study, we have established a murine model of microbial 

transmigration, community assemblage succession, and functional modulation across early 

decomposition time. The use of a vertebrate surrogate model has historically provided researchers the 

ability to obtain statistically meaningful data that have forwarded basic and applied sciences in 

hypothesis testing and human data validation.  Forensic science is also one that ultimately improves the 

welfare of humanity and of animals, and the use of vertebrate surrogates has been a common practice 

in studying the microbial ecology of decomposition for refining PMI estimates and other forensic 

relevant questions [for instance, please see: (4, 6, 7, 16, 70-72)]. The purpose of our study was to 

determine a baseline for microbial transmigration, assemblage, and gene expression in association with 

time since death in order to better refine PMI estimates, and our established model allowed us the 

ability to control PMI and sample size, variables that are often limited with the use of donated cadavers.

In this study, we have demonstrated the use of total RNA as a more cost-efficient method to 

obtain both community structural and functional data to aid in microbial PMI estimations. We have 

shown the taxonomic information extracted computationally from total RNA sequencing is comparable 

with sequencing of 16S rRNA without amplifying the 16S rRNA gene which can lead to overinflated 

diversity estimates from sequencing errors (73, 74). Although, the cost of whole genome sequencing is 

larger, sequencing costs continue to decrease and with this methodology, researchers can obtain 

structural and functional data from a single nucleic acid isolation allowing for more accurate 

comparisons of the community and its function. This is also one of the first studies to provide a broad 

analysis of functional pathway regulation of active bacterial communities during decomposition. This is a 

first step into being able to deeply analyze functional pathways and individual transcripts in conjunction 

with taxonomic analysis of active communities at varying stages of decomposition. Understanding these 

shifts in community composition and gene expression patterns will benefit studies in decomposition 

ecology and forensic science, aiding in biomarker discovery for postmortem interval estimation.
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TABLE 1—Sample metadata. Table demonstrates the sample identification with their treatment (C = Control, NS = Nonsurface Sterilized, S = 

Sterilized), if they were colonized (Y = Yes, N = No), if they were sterilized (Y = Yes, N = No), their PMI (3 Hours, 9 Hours, 26 Hours, 74 Hours, 170 

Hours), the organ the sample was obtained from (HT = Heart, BM = Bone Marrow. INT = Intestines, ST = Stomach), the number of RNA reads after 

paired-end merging, the number of 16S rRNA reads input to QIIME 2, the number of metaRNA reads input in DE analysis, and the family richness 

of each sample based on 16S rRNA. Read counts are after quality control.

Sample Treatment Colonized Sterilized PMI Organ
# RNA 

reads

# 16S rRNA 

reads

# metaRNA 

reads
# OTUs

Family 

Richness

MS1701 C N N 3H HT 493,225 23,220 67,276 1,737 4

MS1702 C N N 3H BM 168,194 14,908 62,698 282 1

MS1703 C N N 3H INT 409,218 45,168 8,601 6,617 9

MS1704 C N N 3H ST 752,026 51,241 20,686 712 4

MS1705 S Y Y 3H HT 505,997 18,044 118,327 1,490 2

MS1706 S Y Y 3H BM 44,183 311 39,809 44 0

MS1707 S Y Y 3H INT 1,555,918 274,399 14,692 49,571 11

MS1708 S Y Y 3H ST 544,635 26,513 15,597 930 2

MS1709 NS Y N 3H HT 2,874,280 128,264 568,258 1,564 2

MS1710 NS Y N 3H BM 330,409 26,226 38,662 1,444 1

MS1711 NS Y N 3H INT 1,013,540 72,919 15,049 4,534 8

MS1712 NS Y N 3H ST 555,832 44,881 36,559 2,862 6

MS1713 C N N 9H HT 1,007,421 47,110 172,875 1,562 3

MS1714 C N N 9H BM 554,059 26,749 23,920 1,001 1
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MS1715 C N N 9H INT 1,364,759 82,815 47,995 4,009 9

MS1716 C N N 9H ST 1,349,461 89,773 30,585 5,554 7

MS1717 S Y Y 9H HT 2,994,097 106,949 1,261,310 2,265 3

MS1718 S Y Y 9H BM 270,149 11,019 38,578 350 0

MS1719 S Y Y 9H INT 1,669,023 121,927 17,763 10,981 11

MS1720 S Y Y 9H ST 796,221 47,815 12,839 1,842 5

MS1721 NS Y N 9H HT 997,408 43,736 340,469 3,440 2

MS1722 NS Y N 9H BM 368,213 16,852 24,838 828 2

MS1723 NS Y N 9H INT 1,071,570 81,311 19,114 7,207 9

MS1724 NS Y N 9H ST 1,478,496 226,807 34,465 34,759 9

MS1725 C N N 26H HT 522,628 31,038 54,628 1,432 4

MS1726 C N N 26H BM 629,159 36,773 19,039 1,447 1

MS1727 C N N 26H INT 881,212 114,781 8,766 23,548 9

MS1728 C N N 26H ST 869,811 38,341 9,664 3,306 7

MS1729 S Y Y 26H HT 726,539 41,970 72,905 1,714 3

MS1730 S Y Y 26H BM 36,447 668 27,914 69 1

MS1731 S Y Y 26H INT 3,994,433 470,358 23,604 100,045 16

MS1732 S Y Y 26H ST 6,187,692 220,910 30,159 17,211 6

MS1733 NS Y N 26H HT 2,297,657 110,162 256,915 2,702 3

MS1734 NS Y N 26H BM 4,823,405 276,299 73,004 17,584 3

MS1735 NS Y N 26H INT 4,786,442 465,240 26,406 96,805 17

MS1736 NS Y N 26H ST 4,670,057 320,933 33,129 50,435 13

MS1737 C N N 74H HT 4,969,927 256,849 65,176 13,111 4
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MS1738 C N N 74H BM 136,543 6,652 105,586 778 4

MS1739 C N N 74H INT 2,904,244 979,241 29,095 238,714 18

MS1740 C N N 74H ST 6,641,573 2,513,136 192,042 352,308 15

MS1741 S Y Y 74H HT 5,245,925 233,351 70,186 11,868 4

MS1742 S Y Y 74H BM 35,474 2,566 21,921 92 3

MS1743 S Y Y 74H INT 4,004,065 1,344,549 40,298 262,263 16

MS1744 S Y Y 74H ST 115,073 14,087 41,581 938 2

MS1745 NS Y N 74H HT 4,775,370 203,646 69,978 10,017 7

MS1746 NS Y N 74H BM 1,444,079 352,811 151,536 57,090 4

MS1747 NS Y N 74H INT 3,705,578 1,178,971 73,858 265,751 20

MS1748 NS Y N 74H ST 7,103,195 2,384,764 349,170 323,904 18

MS1749 C N N 170H HT 8,772,565 3,141,078 257,655 410,126 14

MS1750 C N N 170H BM 156,527 21,510 100,408 2,780 5

MS1751 C N N 170H INT 7,283,554 2,505,032 83,971 276,586 16

MS1752 C N N 170H ST 141,268 7,807 110,978 713 4

MS1753 S Y Y 170H HT 5,683,664 2,326,728 152,434 376,453 19

MS1754 S Y Y 170H BM 77,072 3,245 64,322 311 4

MS1755 S Y Y 170H INT 5,850,139 1,625,875 50,451 75,506 18

MS1756 S Y Y 170H ST 8,137,571 2,932,888 97,344 316,843 13

MS1757 NS Y N 170H HT 5,096,086 1,926,124 176,191 310,930 20

MS1758 NS Y N 170H BM 367,252 117,125 99,943 20,976 6

MS1759 NS Y N 170H INT 9,671,062 3,298,364 76,833 198,896 16

MS1760 NS Y N 170H ST 92,826 12,663 36,897 977 5
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TABLE 2—Number of transcripts detected from differential expression analysis. Time comparisons are separated by their postmortem time 

groups: early (3h, 9h), middle (26h, 74h), and late (170h). The number of significant transcripts from each analysis method is shown with the 

number of common transcripts between the two methods being in parenthesis.

# of significant up-

regulated transcripts

# of non-significantly 

expressed transcripts

# of significant down-

regulated transcriptsOrgan
Time 

Comparison
DESeq2 EdgeR DESeq2 EdgeR DESeq2 EdgeR

Early v. Middle 0(0) 42(0) 15,647 9,642 0(0) 0(0)

Middle v. Late 0(0) 2,134(0) 15,647 7,470 0(0) 62(0)Intestines

Early v. Late 0(0) 3,684(0) 15,647 5,977 0(0) 5(0)

Early v. Middle 276(0) 0(0) 19,917 12,945 6(0) 0(0)

Middle v. Late 1,056(1,023) 7,073(1,023) 19,138 5,859 5(2) 13(2)Heart

Early v. Late 1,056(1,028) 8,256(1,028) 19,137 4,622 6(4) 67(4)
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Early v. Middle 0(0) 18(0) 9,949 3,967 0(0) 3(0)

Middle v. Late 0(0) 45(0) 9,949 3,861 0(0) 82(0)
Bone 

Marrow
Early v. Late 0(0) 32(0) 9,949 3,911 0(0) 45(0)

Early v. Middle 0(0) 432(0) 14,300 8,771 0(0) 28(0)

Middle v. Late 0(0) 1(0) 14,300 8,800 0(0) 430(0)Stomach

Early v. Late 0(0) 0(0) 14,300 9,212 0(0) 19(0)
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Figure Legends

FIG. 1—Experimental flow chart. A visual representation of the experimental design and downstream 

analyses. Mouse groups are represented as SSI = surface sterilized, colonized; NSSI = nonsurface 

sterilized, colonized; and CON = control.

FIG. 2—16S rRNA family relative abundance in samples at postmortem Ttimes. The families detected in 

A. stomach, B. intestines, C. heart, and D. bone marrow samples are represented by their relative 

percent abundance on the x-axis with the sample on the y-axis. The samples are labeled by postmortem 

timepoint group with the color bars: red = 3h, blue = 9h, yellow = 26h, green = 74h, and purple = 170h. 

Families that constituted less than 3% of sample were grouped as rare taxa to reduce sampling noise. 

Relative abundances were determined using QIIME 2.

FIG. 3—Alpha-diversity comparisons between organs. Boxplots representing the pairwise Kruskal-Wallis 

comparisons of Shannon diversity indices across organs. Analysis was performed in QIIME 2 and 

significance levels are as follows: p ≤ 0.05*, p ≤ 0.01**, p ≤ 0.001***.

FIG. 4—Beta-diversity comparisons between postmortem times and organs. Boxplots representing the 

PERMANOVA comparisons of weighted UniFrac distances across A. organ and B. postmortem time, and 

unweighted UniFrac distances across C. organ and D. postmortem time. Analysis was performed in 

QIIME 2 and significance levels are as follows: p ≤ 0.05*, p ≤ 0.01**.

FIG. 5—PCoA plots of the mouse organ microbiome over the postmortem interval. PCoA plots were 

created for both A. weighted and B. unweighted UniFrac distances. Colors represent the postmortem 

intervals and shapes represent the organ from where the sample was obtained. Image was created using 

QIIME 2 and Emperor. 

FIG. 6—Heatmap of the significant pathway regulation during timepoint group comparisons in heart. 

Heatmap representing the transcript count of each pathway annotated from the significant transcripts of 

each comparison by color. Pathway is included on the x-axis and timepoint group (EvL = early v. late, MvL 

= middle v. late) on the y-axis. Pathways that were not detected in a comparison are in gray.A
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Supplemental Figure Legends

SUPPLEMENTAL FIG. S1—S. aureus KUB7 Detection across Organs over Decomposition. Linear plot 

representing the log genomic units of S. aureus KUB7 detected in the A. kidneys, B. skin, C. spleen, D. 

lungs, and E. liver as determined by RFP gene detection.

SUPPLEMENTAL FIG. S2—S. aureus KUB7 Detection across Organs over Decomposition. Linear plot 

representing the log genomic units of S. aureus KUB7 detected in the A. intestines, B. stomach, C. heart, 

and D. bone marrow as determined by RFP gene detection.
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SUPPLEMENTAL FIG. S3—C. perfringens+pZMB2 Detection across Organs over Decomposition. Linear 

plot representing the log genomic units of C. perfringens+pZMB2 detected in the A. kidneys, B. skin, C. 

spleen, D. lungs, and E. liver as determined by CFP gene detection.

SUPPLEMENTAL FIG. S4—C. perfringens+pZMB2 detection across organs over decomposition. Linear plot 

representing the log genomic units of C. perfringens+pZMB2 detected in the A. intestines, B. stomach, C. 

heart, and D. bone marrow as determined by CFP gene detection.
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