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Abstract

In this paper, we construct a framework for modeling teams of agents who apply

techniques or procedures (tools) to solve problems. In our framework, tools differ

in their likelihood of solving the problem at hand; agents, who may be of different

types, vary in their skill at using tools. We establish baseline hiring rules when a

manager can dictate tool choice and then derive results for strategic tool choice by

team members. We highlight three main findings: First, that cognitively diverse

teams are more likely to solve problems in both settings. Second, that teams

consisting of types that master diverse tools have an indirect strategic advantage

because tool diversity facilitates coordination. Third, that strategic tool choice

creates counterintuitive optimal hiring practices. For example, optimal teams may

exclude the highest ability types and can include dominated types. In addition,

optimal groups need not increase setwise. Our framework extends to cover

teamwork on decomposable problems, to cases where individuals apply multiple

tools, and to teams facing a flow or set of problems.

1 | INTRODUCTION

Over the past 35 years the number of people used as cognitive, nonroutine workers has doubled to 60 million. The job
classifications for this category of workers include managing, designing, performing basic research, investing, strategic
consulting, engineering, and providing legal advice and medical care.1 The tasks carried out by cognitive, nonroutine
workers consist in large part of solving problems. Biomedical researchers isolate molecules. Financial analysts build
portfolios. Consultants develop reorganization plans. Engineers design batteries. Equally relevant to our analysis, most
problem solving is now done in teams. Therefore, the study of problem solving is also the study of teams and teamwork.2

In this paper, we construct a framework for studying team performance on problem solving. Specifically, we analyze the
proability of success at problem solving given team composition and derive optimal hiring rules. Our framework assumes
problem solvers who possess skill of varying degrees at applying tools. Better problem solvers know more tools and are more
adept at applying them. Given that problem solving is done primarily in teams, our framework focuses on teamwork. We
assume that a team either succeeds or fails depending upon whether any member of the group finds a solution. We do not
constrain the definition of a problem, so the binary nature of outcomes—success or failure—does not greatly limit the scope
of our framework. Any task that requires constraint satisfaction (with or without an optimization criterion), such as reducing
the rate of defects in a manufacturing process by a certain percentage or designing an internal combustion engine that
exceeds environmental standards while maintaining a torque profile, is admissible.

The difficulty of developing an optimal hiring policy stems from a lack of separability. Ability corresponds to the
probability of solving the problem, which in turn implies a facility with potentially successful tools. Ability fails as a proxy for
a person’s added value to a group because the group may already contain people who possess the high‐ability person’s tools.
As a rule, the best team of problem solvers need not consist of the most able individuals (Hong & Page, 2004; Page, 2008;
Marcolino, Jiang, & Tambe, 2013). In fact, for some classes of problems no measure applied to individuals determines
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optimal team composition (Kleinberg & Raghu, 2018). The best person to add to a group will be the one most likely to apply
a tool that is both novel and effective. Therefore, optimal hiring depends on the group composition (Prat, 2002).3 If firms had
little choice in whom to hire, this optimal hiring problem would not be relevant. That is decidedly not the typical case.
Alphabet, the parent company of Google, annually receives upwards of three million applicants. Leading financial services
companies and consulting companies receive over a quarter of a million applicants. People analytics, the use of data and
models to make hiring decisions, has now become a standard tool (Bock, 2015; Conner, 1991; Conner & Prahalad, 1996;
Demsetz, 1988; Powell & Snellman, 2004).

Our analysis consist of two main parts. We first derive benchmark results where the manager can assign tools to
workers. We find that the manager wants worker types who are proficient with distinct tools. Once we have a firm grasp
of the sometimes subtle relations between individual ability, team diversity, and group effectiveness, this decision
theoretic result is not surprising. We next consider the more complex strategic context in which the manager first
chooses workers who then autonomously choose tools. A worker’s payoff depends on some combination of group
success and individual credit. The manager’s optimal rule takes into account that individual credit matters to workers.
This results in what at first appear to be counterintuitive hiring practices but which upon reflection are rational because
they prevent doubling up on tools.

Our approach complements the traditional models of team performance that take membership as fixed and focus on
moral hazard (Holmstrom, 1982) or both moral hazard and adverse selection (McAfee & McMillan, 1991) in which an
individual’s contribution to the team depends on effort and ability. Their focus on shirking may be more appropriate for
production and the provision of services than for problem solving, where success can produce reputational rents. To the
extent that incentive problems matter in problem solving contexts, we believe they can be handled separately from the
competition arising from team composition.

Within the framework, we uncover direct benefits from cognitive diversity: Teams with diverse tools are more likely
to find solutions to problems. In addition, we find that tool diversity becomes more important both when average skill
increases and group size increases because in such situations existing tools are likely to have been applied correctly. We
also find strategic benefits from diverse teams. They have fewer coordination failures owing to lack of overlap in their
toolkits. We also find strategic advantages to hiring less able workers. Knowing fewer tools can reduce the incentive to
choose the wrong tool, for example, selecting one already tried by teammates. These findings echo a variety of strength‐
through‐weakness results in game theory. Last, extending the model to allow for partial solutions amplifies the benefits
of applying more diverse tools. Thus, our stark model is conservative: It stacks the deck toward ability and simple rules
and away from diversity and complex rules.

Our framework takes an agent’s facility with tools as exogenous. Workers can choose which tool to apply given their set
of tools. They cannot choose to become an expert at a new tool. Robust empirical evidence shows that proficiency with a
tool, particularly one that produces economic value, requires specialized training and hundreds if not thousands of hours of
practice (Ericsson, Krampe, & Tesch‐Romer, 1993; Feltovich, Prietula, & Ericsson, 2006). Consequently, groups that have
tool diversity must have team diversity, that is, people trained in different methods.

To provide context for our results, we refer throughout to five hiring regularities that hold for a constant elasticity of
substitution (CES) production function given equal market wages: Higher ability types should be hired earlier (competency
ordering) and in greater number (competency loading); all previous hires remain in the optimal group as group size increases
(monotonicity); a type that does not have the most skill at some task will not be hired (no dominated hires); eventually all
undominated types will be hired (asymptotic diversity). These regularities bear repeating in more colloquial phrasing to
reinforce their normalcy: Hire the most talented first, hire more of the more talented, do not discard talent, do not hire
ineffective workers, and increase worker diversity as the firm grows.4 These regularity properties hold for a variety of
production functions used in decision‐ and team‐theoretic models (Marshack & Radner, 1972).

As we will show, optimal hiring for problem‐solving workers can violate each of these regularities. Moreover, the
violations are not knife‐edge cases; they arise under a range of reasonable assumptions. While many of the violations
result from incentive issues created by strategic tool selection, some arise from properties of problem solving. For
example, competency ordering and competency loading can be violated even when the manager can assign tools to
workers. The violations arise when the toolkits of different types of workers overlap, that is, have some tools in
common. Without overlap, optimal hiring would be straightforward.

The remainder of the paper has five parts. We begin with informal and formal descriptions of our framework. We next
derive benchmark results for the centralized structure where the manager selects worker types as well as the tools deployed.
We then turn to the decentralized system in which problem solvers strategically choose tools. In the penultimate section, we
consider three natural extensions. We conclude by summarizing our key results and note some implications.

BENDOR AND PAGE | 735



2 | A FRAMEWORK FOR PROBLEM ‐SOLVING GROUPS

Our framework assumes a problem, a set of tools that can be applied to that problem, and problem solvers with varying
levels of facility with subsets of the tools. A tool can be interpreted as an approach, technique, or method. Given a
problem, each tool has a fixed, independent probability of finding a solution. We further assume that a tool’s success
can be observed. After a tool has been applied, the team knows whether or not the team solved the problem.5

Two examples reveal the range of contexts to which the model can apply. First, tools can represent techniques for
finding solutions. For example, biochemists rely on four common techniques for DNA sequencing: Enzyme‐based
methods such as the Sanger method, chemical methods, single‐molecule sequencing using fluorescents, and real‐time
detection of pyrophosphates (França, Carrilho, & Kist, 2002). In any one instance, each of these techniques may or may
not work; a priori, some techniques may be more likely to sequence the gene. Those could be captured as probabilities
of success. In addition, a given researcher has some level of facility with a tool. An experienced biochemist may be more
likely to apply the Sanger method correctly than a new hire.

Second, tools can correspond to types of technologies. There exist a variety of battery technologies including
lithium ion, lithium sulfur, aluminum ion, and nickel‐metal hydride. Each technology has a storage capacity,
recharge cycle, cost per cycle, self‐discharge rate, maximum voltage, weight, temperature, and cost. The battery for
a product, whether it be a smartphone, rechargeable vacuum, or an electric car, must meet certain requirements.
An engineer might be an expert at one of these technologies. The model does not apply as cleanly to problems such
as writing a screenplay in which no problem gets solved even though there does exist a final outcome that either
succeeds or fails.6 Nor does it apply to problems that are embedded in the production process, most of which are
known to be solvable by less‐skilled workers at the bottom of an organizational hierarchy (Garicano, 2000;
Garicano & Rossi‐Hansberg, 2006).

Given a problem, we partition problem solvers into types based on their toolkits and their facility with their tools. We
define two problem solvers to be of the same type if they have the same toolkits and apply each tool correctly with the
same probabilities (Newell & Simon, 1972).7 One type might correspond to recent college graduates who worked in
research labs developing lithium ion batteries, and another type might consist of engineers who have spent a decade
working with solid state battery technologies. In this example, the first type of worker might have less facility with a
better tool.

We implicitly assume a time‐constraint by requiring each type to choose a single tool. She cannot start over if she
misapplies a tool or it fails to solve the problem. This assumption holds provided applying a tool requires time or
resources. It allows us to model a individual’s choice of a single tool as an action in a game.8 The person solves the
problem if she applies the tool correctly and the tool works, that is, succeeds in solving the problem.

As noted, problem solvers work as part of a group or team. The team solves the problem if and only if at least one of
its members finds a solution. The ability of a type is defined as the expected probability that that type solves the problem
using its best tool, that is, the one that, of all the type’s tools, is most likely to solve the problem. The ability of a team
equals the expected probability that at least one person in the group solves the problem.

Because a team’s ability depends on the number of distinct and correctly implemented tools, individual ability is
only a crude proxy of value to a team. This feature of collective problem solving provides intuition for why hiring the
best type (competency loading) fails under mild assumptions. Once a tool has been used correctly, the team does not
need more people who will choose that tool. In contrast, a less able type may be needed in abundance if low‐ability
stems from the difficulty of deploying a tool. The manager of a large team might want many of that inferior type to
increase the probability that somebody correctly applies that type’s unique tool.

Many of our results depend on whether tools are assigned or chosen strategically. This in turn is often a product of
the environment. In some contexts, a manager has sufficient knowledge, authority, and monitoring capability to assign
tools. This might be true in a research lab where the lead researcher knows the tools and assigns them to students.
Assuming that the requisite conditions (e.g., knowledge) hold, this kind of centralized regime is a best‐case scenario as
it avoids strategic coordination problems and incentive effects. In other situations, however, managers lack tool‐specific
knowledge, cannot verify choice of tool, or verification is prohibitively costly. The manager can then select personnel
but not the tools that team members use. Here, once the manager selects problem solvers, she has no authority over
their tools. The workers will select tools strategically: The set of chosen options will be a Nash equilibrium of a game.

To construct the game over tool choices, we define payoff functions in terms of a collective payoff if the team solves
the problem and an individual payoff for those team members whose selected tools solve the problem. The private
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benefit could come in the form of money, reputation in the organization, or status within the team. The collective
component, which could come from profit sharing, aligns problem solvers’ incentives with those of the manager. Even
then, however, strategic tool choice introduces coordination problems. Two problem solvers of the same type may have
an incentive to choose their best tool rather than differentiating for the good of the organization. This distortion
produces violations of both monotonicity and competency ordering. These can sometimes be overcome if individuals
choose tools sequentially. That strategic tool choice introduces coordination failure, order effects, and misaligned
incentives should come as no surprise. Clearly, the centralized process should outperform the strategic one. That said,
centralized tool choice may require unacceptable levels of authority or infeasible levels of knowledge and observation,
thus running afoul of Hayekian critiques of centralization (March & Simon, 1958; Nickerson & Zenger, 2004).9

2.1 | The formal model and definitions

We now introduce the formal model. We assume the game form and all parameters, including the number of types, the
number of tools, and the probability that each tool can solve the problem, are common knowledge.

The set of tools K= {1, 2, 3,… }, denoted by tk.

The set of types of problems solvers M= {1, 2, 3,… }, denoted by si.

The set of tools in type si’s toolkit, T s t s t( ) = { : type can use }i k i k .

A group, G, is a finite nonempty set of types that can contain multiple members of a type.

A problem, X P H= ( , ), where p t( )j denotes the probability that a correctly applied tool tj solves the problem, with
p t( ) (0, 1)j ∈ for all j, and where h t( )s ji

, type si’s skill with tool tj on problem X , denotes the probability that si correctly
applies tj on problem X , with h t( ) (0, 1]s ji

∈ for all i and j. Further, p t p t( ) ( )j l≠ for any j l≠ , and we order tools by
their success probabilities: p t p t j l( ) > ( ) <j l ⟺ .

Two assumptions merit emphasis: Any tool might solve the problem but none is guaranteed to do so, and a tool’s
success probability, p, does not depend on the type who applies it. The second assumption implies that if a tool does not
solve the problem when applied correctly by one problem solver, then it will not solve the problem when tried by
anyone else. Thus, if a physicist fails to solve a problem using spectral analysis, then a mathematician who tries that
method will also fail. (Types may differ, however, in their skills at applying tools, i.e., in the h’s.) Note that we allow for
the possibility that a type can with certainty apply some tool correctly (h = 1). We can rank a type’s tools by their
overall success probability: The product of the probability the type can apply the tool correctly and the probability that
the tool will, if correctly deployed, solve the problem. The overall success probability of tool tk for type si therefore
equals h t p t( ) ( )s k ki

⋅ as shown in Figure 1.
The notion of ability plays an important role in our analysis. We define a type’s ability as the probability that that type

solves the problem using its best tool. To avoid overcomplicating the analysis, we assume that each type has a unique best
tool, the one with the highest overall success probability for that type. We denote the best tool of type si by t s( )* i .

10

The ability of type si, a s( )i equals h t s p t s( ( )) ( ( ))* *s i ii
⋅ , the probability of solving the problem using si’s best tool.

We say that a type is dominated if for every tool in its repertoire there exists some other type who can better apply
that tool.

Type si is dominated if for any t T s( )k i∈ , there exists an sj s.t. t T s( )k j∈ and h t h t( ) > ( )s k s kj i
.

FIGURE 1 How ability depends on skill and a tool’s probability of success
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We say that a type is pairwise dominated if it takes only one type to dominate it. Clearly, pairwise domination
implies domination but the converse need not hold.

Type si is pairwise dominated if there is a type sj such that T s T s( ) ( )i j⊆ and h t h t( ) < ( )s k s ki j
for all t T s( )k i∈ .

Hereafter, we refer to the type that can best apply a tool as the expert at that tool. (Note that a type is undominated if
and only if it is an expert at some tool.) We define the promise of a tool to be the product of the likelihood that the tool
solves the problem and the probability that its expert applies it correctly. We assume throughout that the success of any
tool is independent of that of any other tool.

The promise of tool tk equals h t p t( ) ( )s k k*
i

, where s *i is the expert for tool tk, that is, the type with the largest h t( )s k . We
assume throughout that each tool has a unique expert, denoted by s t( )* k .

A group solves a problem if and only if at least one of its members solves the problem.11 The payoff to a type depends
on whether the team solves the problem (a collective benefit) and on whether she is among those who find a solution
(a private benefit).

The payoff to type si can be written as follows:

u s G if C

b if s C

b b f C if s C

( , ) = 0 = Ø

= [0, 1] Ø

= + (1 − ) ( ) ,

i

i

i

∈ ∉ ≠

∣ ∣ ∈

where Cdenotes the set of problem solvers in G who solve the problem and f C( ) > 0∣ ∣ for C G= and f ( )⋅ is strictly
decreasing in C∣ ∣. Thus the maximal payoff accrues to an agent who is the only person on the team to solve the problem
(sharing glory diminishes it); team failure generates the minimal payoff.

Under centralized tool choice, tool promise is a key measure. The manager can in effect select and assign tools, matching
type to promise. Under strategic tool choice, the manager cannot assign tools. Here, tool overlap can create inefficiencies: A
type may choose a personally better tool already used by someone else rather than an as‐yet‐unrepresented one.

We define five categories of tool overlap. First, we separate out those cases that include a dominated type, that is, a
type that is not expert at any tool. We then define four nested sets of undominated types. First, types might have no
overlap in tools (B0). In this case, a new type always tries a new tool. This decomposability of toolkits simplifies the
manager’s team‐composition problem.12

Next, types might overlap on some tools but not on their best tools, that is, each type’s best tool is exclusive to that type (B1).
A further weakening would be to allow for overlap on best tools, requiring only that each type is the expert at its best tool (B2).
If recent college graduates know lithium‐ion technology better than any other battery technology, then experienced types,
who may know something about designing lithium‐ion batteries, must know less than the recent graduates. Last, each type
can be the expert for at least one tool (B3), though not every type needs to be expert at its best tool. A college graduate may
know just a little about a potentially useful lithium sulfur battery but that might be more than anyone else. (A college
graduate’s best tool, however, might be common in the industry and most skillfully deployed by experienced types who have
acquired craft knowledge.) A type that is not expert at its best tool but is expert at some other tool can lead to inefficiencies
under strategic tool choice. For example, suppose that type j has a high skill level with tool k, but that tool is better applied by
other types. Type j is the best at tool ℓ, but that method has little chance of solving the problem. Private incentives might lead
a type j to choose tool k rather than tool ℓ. Under centralized tool assignment, the manager can require type j to use tool ℓ.
Under strategic tool choice, the manager has no guarantee that type j will not choose tool k instead. Figure 2 shows the five
types of tool overlap in graphical form Figure 2.

FIGURE 2 Classes of tool overlap across types
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No overlap (B0): T s T s i j( ) ( ) = Ø ,i j∩ ∀

Exclusive best tools (B1): t s T s i j( ) ( ) ,* i j∉ ∀

Experts at best tools (B2): h t s h t s i j( ( )) > ( ( )) ,* *s i s ii j
∀

Experts at a tool (B3): s ki∀ ∃ s.t. h t h t j( ) > ( )s k s ki j
∀

Dominated (D): si∃ s.t. k sj∀ ∃ s.t. h t h t( ) < ( )s k s ki j

Thus, either a type is dominated (set D) or it is not (set B3). If it is undominated then either it is best at its best tool
(set B2) or it is not (the shaded part of B3 that is not part of B2). And so on until we reach the smallest circle, B0—
different types have completely different toolkits (i.e., no overlap).

Our initial analysis derives necessary and sufficient conditions for optimal hiring to satisfy the following regularity
properties:13

Hiring satisfies competency ordering if for any types si and sj such that a s a s( ) > ( )i j at least one si is hired before an
sj is hired.

Hiring satisfies competency loading if for any types si and sj such that a s a s( ) > ( )i j the number of type si’s weakly
exceeds the number of type sj’s.

Hiring satisfies monotonicity if G G′ >∣ ∣ ∣ ∣ implies that for all si, the number of si’s in group G′ weakly exceeds the
number in group G.

Hiring satisfies no dominated hires if no type that is dominated is in any group picked by the manager.

Hiring satisfies asymptotic diversity if for a sufficiently large group size, the group constructed by the manager
includes at least one of each undominated type.14

3 | CENTRALIZED TOOL CHOICE

In centralized tool choice the manager selects a set of types in the first stage. In the second, she assigns tools to those
types. In that stage the manager assigns each tool to its expert. Centralized tool choice requires that the manager can
monitor and enforce the techniques problem solvers apply. We make that assumption so as to provide a benchmark,
first‐best probability of success.

Suppose first that for each tool tk there exists a type, si, that can flawlessly apply tk, that is, h t( ) = 1s ki
. Hiring

decisions become straightforward: For any given size group, G n( ), the manager will select the n best tools in Stage 2;
working backwards, she then selects each tool’s flawless type in Stage 1.15

Next, suppose that there exists a type that dominates all other types. In this case, the optimal group consists only of
this dominant (hence best) type.

Observation 1. For all group sizes, the optimal group under centralized tool choice consists only of the best type if
and only if the best type dominates all other types.

The straightforward proof of this observation—the manager wants to hire the expert for each tool, and a single type
is the expert for all tools—should not undermine the fact that it reveals how strong an assumption must be made for
hiring only the most talented to be an optimal strategy. Hiring just the highest ability type makes sense only if that type
is the expert at every tool. Breadth and depth of talent will often be at odds with one another. Breadth entails less depth;
conversely, great depth requires specializing in a few tools. If either condition fails to hold then for some size n, the
optimal group will contain multiple types.

To analyze more complicated cases, we assume that the project manager hires sequentially, adding the type that
maximally increases the probability of success. A new type can increase the probability of success if and only if she
selects and correctly applies a tool that nobody in the status quo group applies correctly. (If somebody in the status quo
group picks tool tj but misapplies it, then a new type can add value by selecting tj and using it correctly.)

To characterize the marginal value of adding type si using tool tk to groupG, we letG t(FAIL, )k denote the event that
everyone inG fails to solve the problem and tool tk is applied correctly by somebody inG. In that case, problem solver si
cannot add value because tool tk cannot solve the problem even when an agent deploys it correctly. Similarly, let
G t(FAIL, ¬ )k represent the event that everyone in G fails but nobody has correctly applied tk. (Perhaps nobody even
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tried tk.) In this case, type si can only be pivotal, that is, be the unique problem solver to find the solution, if she applies
tool tk correctly and tool tk solves the problem. Hence, the probability that type si is pivotal for group G using tool tk
equals G t h t p tPr[ (FAIL, ¬ )] ( ) ( )k s k ki

⋅ . These concepts and properties are the building blocks of the next result.16

Proposition 1 (Optimal hiring rule: Centralized tool choice). Under centralized tool choice, the optimal addition
to group G is the type si who can be assigned a tool tk that maximizes

P s G G t G h t G p t G( , ) = Pr[ (FAIL, ¬ ( ))] ( ( )) ( ( )).i k s k k
+

i
⋅

Proposition 1 reveals the contributions of diversity (applying a new tool) and ability (the skill to use a tool correctly).
The following corollary shows that neither diversity nor individual ability predominates. In the conditions for the
corollary, type si has more ability and type sj adds diversity. By altering group composition, either ability or diversity can
matter more.

Part (i) states a condition for type sj to add diversity but not improve group success as much as type si. Part (ii)
depicts the opposite situation. One type, si, has an edge in ability that suffices to make it more valuable to groupG. Yet
sj’s diversity‐advantage would make sj more valuable for some other group G′ with the same tools as G.

Corollary 1. Let T G( ) denote the tools used by the members of the group G. Given centralized tool choice, assume
that T s T G( ) ( )i ⊆ , whereas T s T G( ) ( ) = Øj ⋂ .

(i) If P s G P s G( , ) > ( , ) > 0j i
+ + then there exists an ϵ > 0 and an sj′ with T s T s( ) = ( )j j′ such that if

h tmax{ ( )} < ϵs kj′
then P s G P s G( , ) > ( , )i j

+ +
′ .

(ii) If a s a s( ) > ( )i j and P s G P s G( , ) > ( , ) > 0i j
+ + then there exists a G′ with T G T G( ′) = ( ) such

that P s G P s G( , ′) > ( , ′)j i
+ + .

We now state a benchmark result (see Figure 3) about the regularity properties for centralized tool choice. In this
setting, a type’s value rests on being expert with a tool. A type that has high ability but is not expert at any tool would
never get hired under centralized tool choice.

Proposition 2. Under centralized tool choice, optimal groups

(i) Can violate competency loading for any type of tool overlap.
(ii) Satisfy competency ordering if and only if each type is the expert at its best tool (B2).
(iii) Never include dominated types.
(iv) Always satisfy monotonicity.
(v) Satisfy asymptotic diversity if and only if each type is best at some tool (B3).

FIGURE 3 Necessary and sufficient conditions for regularity properties: Centralized tool choice
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The proof of part (i) is straightforward. Competency loading is violated if there are more low‐ability types in an
optimal group than a high‐ability type. This can happen if the more able type is highly skilled at its assigned tool.
Suppose, for example, that s1, the most able type, uses its best tool, t1, correctly with probability one. If that is s1’s only
tool then an optimal group contains only one agent of this type. If a less able type, say s2, deploys its assigned tool with a
probability less than one then hiring multiple s2’s could be optimal. Hence, the less able type would be more numerous,
which violates competency loading. However, even with no overlap—indeed, even if all types have singleton toolkits—
the conditions for competency loading to hold are quite restrictive: The types with the highest probability of solving the
problem cannot be more likely to use their tool correctly than is any other type.

Part (ii) holds because A type’s ability (competency) equals its probability of solving the problem with its best tool. If
toolkits do not overlap (B0) then types will be hired in order of ability. That assumption, though sufficient, is not
necessary. A weaker sufficient condition for competency ordering to hold is that each type be the expert at its best tool
(B2). To prove that condition B2 is sufficient, consider a manager choosing between two new types, si and sj. Assume
without loss of generality that si is more able. By assumption, each type is expert at its best tool. It follows that neither
type’s best tool has yet been assigned and that, by Proposition 1, the manager will instruct the chosen type to try its best
tool. Therefore, the manager’s optimal personnel choice between si and sj is whichever type has the more promising
best tool. Given B2, the promise of a type’s best tool equals the type’s ability. Hence, if si is more able than sj, its best tool
is more promising than sj’s, whence the manager’s optimal personnel choice is si, so competency ordering holds.

To prove that condition B2 is necessary we consider the case where si knows how to apply only one tool, t k̂. As
before, si is more able than sj. Here, however, there exists an sk who is better at t k̂ than si is. For example, suppose that
the best technique for finding a bug in computer code is to evaluate error messages, the second best technique is to
divide and conquer, and the third best is to write internal checks, with success probabilities of 0.4, 0.3, and 0.2,
respectively. Suppose type s1 can evaluate error messages perfectly and write internal checks half of the time. Hence, it
is the best type. Assume that type s2 correctly evaluates error messages or write internal checks 70% of the time. Finally,
suppose that type s3 successfully applies divide and conquer techniques half the time. Given our assumptions, the
second type is more able than the third type but s2’s ability is based on its skill at evaluating error messages—a tool that
could be better applied by an s1. The optimal hiring rule involves first hiring an s1 followed by an s3 and only then hiring
an s2. This violates competency ordering.

Result (iii) holds because in the centralized system optimal groups include only experts. Because an expert is better than any
other type regarding at least one tool, experts are undominated, thus ruling out dominated types. For intuition for result (iv)
consider a group whose members apply unique tools. Each type must be an expert at its tool. The manager will never reverse
her plan of telling si to try tk as the group gets larger. The general proof (in the appendix) relies on the independence of tool
success. Finally, the result on asymptotic diversity (v) follows from the fact that any tool might solve the problem and no tool
solves the problem for sure. Therefore, every sufficiently large group includes an expert for each tool. Asymptotic diversity
therefore requires B3. If not, a type that is not an expert for at least one tool would never be added to the group.

The previous proposition implies, among other things, that hiring by ability would not be optimal. Nor would hiring
by diversity, if we define that as hiring the type most likely to correctly apply an untried tool. Moreover, even if the
highest ability type is also the most likely to apply an untried tool, that type may be suboptimal, as we show below. In
fact, we show that such rules of thumb can produce marginally worthless hires.

A hiring rule H that selects type H G( ) given the groupG produces amarginally worthless hire if for any ϵ > 0, there
exists a group Gϵ and a type s H G( )j ϵ≠ such that P H G G ϵP s G( ( ), ) < ( , )ϵ ϵ j ϵ

+ + .
A marginally worthless hire increases the probability of solving the problem by ϵ times the increase from some other type.

Remark 1. Under centralized tool choice, hiring by diversity can produce marginally worthless hires even with
no overlap (B0). Hiring by ability or (if possible) by ability and diversity can produce marginally worthless hires
unless types are experts at best tools (B2).

4 | STRATEGIC TOOL CHOICE

Under strategic tool choice the manager determines the composition of the group but cannot control what tools the individuals
select. Instead, each member of the group chooses a tool taking into account the choices of the other group members. The
extent to which strategic tool choice creates coordination and incentive problems depends on the number of tools in each type’s
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toolkit, on the overlap across toolkits, and on the importance of private benefits. If all toolkits are singletons then the manager’s
problem is easy, as it is de facto equivalent to centralized tool choice. When the types have multiple tools, incentive problems
can arise and there may be multiple equilibria. In such circumstances, strong common interests (high b) or a decomposable
skill structure (nonoverlapping toolkits) simplifies the manager’s problem. The extent of coordination problems also depends
on whether workers choose tools simultaneously or sequentially.

4.1 | Simultaneous tool choice

We first consider the case in which each member of the group simultaneously selects a tool or a probability distribution
over tools. Under this assumption, a symmetric equilibrium must exist; further, if toolkits do not overlap then problem
solvers apply tools that have higher promise with higher probability.

Proposition 3. Given any number of types and any number of tools, an equilibrium exists in which every member
of a type chooses the same distribution over tools. Further, if problem solvers’ tools do not overlap and h t h t( ) ( )s j s j′i i

≥

for j j< ′, in equilibrium type si applies tool tj with higher probability than it applies tool tj′.

A less intuitive comparative static result follows as a corollary (given nonoverlapping toolkits). If either there exists a
large private benefit from solving the problem or the group of problem solvers is sufficiently large, then introducing a
new type of problem solver creates incentives for those already in the group to shift toward better tools.

Corollary 2. Assume problem solvers have nonoverlapping toolkits, choose tools strategically, and that given a
groupG, type si plays a symmetric mixed strategy equilibrium strategy q G q G s q G s q G s( ) = ( ( , ), ( , ),…, ( , )* * * *i i K i1 2

→ . If a
problem solver who uses a new tool is added to the group, then the change in the probability that si chooses tool tk is
increasing in h t p t( ) ( )s k ki

.

Our next two propositions give conditions for the group to be composed only of the best type to be optimal and for
the most diverse group to be optimal. The first result requires a dominant type and a small private benefit.

Proposition 4. Consider a group of fixed size under simultaneous tool choice. If type s1 dominates all other types
and b is sufficiently close to one then (a) any pure Nash equilibrium of this homogeneous group of the best type
implements the first‐best outcome and (b) no other group can implement the first best.

Although a homogeneous group of the best type generates multiple equilibria, this causes no problems for the manager
if the members of the group are oriented primarily toward group effectiveness. In such circumstances the individuals will
not overuse more promising tools: If it is collectively optimal for some team members to select less promising tools, this
will happen in equilibrium. The combination of low conflict (group effectiveness is everyone’s priority) and a type that
dominates all others in ability yields intuitive team‐theoretic effects (Marshack & Radner, 1972): the manager can hire the
type, that is, obviously the most competent and the group members will do exactly what she wants. This team‐theoretic
logic fails if the private benefit from solving the problem is high. In such circumstances the optimal team may contain
multiple types, even though one type dominates all others. For the most diverse group to be optimal, no one type can be
better at two tools than some other type is at its best tool, a condition we formalize as follows:

Definition. We say that best tools are more promising if the following condition holds: If tj is the best tool of
some type and tk is not the best tool of any type then h t h t( ) > ( )s j s kj k

, where sj is the expert for tj and sk is the
expert for tk.

Proposition 5. Consider a group of fixed size under simultaneous tool choice. If best tools are exclusive and more
promising and h t smin( ( ( )))*s ii

is sufficiently close to one then (a) the unique pure Nash equilibrium of the group
that is fully diverse and satisfies competency ordering implements the first‐best outcome, and (b) no tool vector
selected by any other group implements the first best.

When best tools are exclusive (B1) and the team is fully diverse (every team member is a different type) then for all b
each agent has a strictly dominant strategy of picking her best tool. Hence this vector of tools is realized in the unique
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Nash equilibrium. Further, this equilibrium is the first‐best solution if the hiring in Stage 1 satisfied competency
ordering, best tools are more promising than other tools, and the corresponding h’s are sufficiently close to one. Finally,
no other team can satisfy all of these criteria, so all fall short of the first‐best.17

Strategic tool choice will typically not cause distortions if the game has a unique Nash equilibrium which implements the
first‐best outcome. The next result, however, shows that rather stringent conditions must be satisfied to ensure the existence of
a vector of tool choices that is both optimal for the manager and the unique strategic equilibrium for the team members.

Proposition 6. Under simultaneous tool choice, the following hold in any unique pure Nash equilibrium that
produces the first‐best tool vector and outcome in Stage 1:

(i) Every problem solver of a given type selects the same tool.
(ii) Each type is the expert at the tool that it selects.
(iii) Each tool is selected by at most one type.
(iv) Only the best type, s1, must select its best tool, t s( )* 1 .

In Proposition 6, condition (i) must be satisfied or multiple equilibria exist. If two problem solvers of the same type choose
distinct tools in an equilibrium, then there exists a second equilibrium in which they switch their tool choices. Condition (ii)
must hold because optimality requires that each tool be tried by its expert. Condition (iii) follows from our assumption that
each tool has a unique expert. Condition (iv) holds because a type need not be the most skilled at its best tool, but the incentives
must be such that it chooses a tool for which it is the most skilled type, that is, it is the expert for that tool.

If types have overlapping toolkits then multiple equilibria may exist. For example, suppose that s1 and s2 have the
same toolkit of t t{ , }1 2 , with s1 the expert at t1 and s2, of t2. If the types’ skills at each tool are similar (the difference
between, e.g., h t( )s 11

and h t( )s 12
is small) then a heterogeneous two‐person team will exhibit two pure equilibria: In one,

each tool is tried by its expert; in the other, the opposite occurs.
Multiple equilibria may not present a difficult problem for a self‐organizing group if b is close to one. The general

intuition is that strategic tool choice can work “well” if problem solvers are motivated primarily by team success. The
following result verifies part of this intuition. Note that this result, unlike Proposition 6, does not assume that the tool
choice game has a unique pure Nash equilibrium.

Remark 2. Suppose for a fixed n there is a unique first‐best tool vector and a corresponding optimal team,G n( )* .
If b is sufficiently close to one then the following hold for G n( )* in the simultaneous tool choice game.

(i) The first‐best tool vector, chosen by the corresponding experts, is supported by a strict Nash equilibrium of
this game.

(ii) The payoffs in this equilibrium strictly Pareto dominate the payoffs produced by any other tool vector.

Collective interest overcomes the incentives to duplicate tool choices but it need not solve coordination problems.
For example, suppose that there exist n problem solvers who all have approximately equal skill with each of n tools.
There exists a large set of cases in which the optimal solution calls for each problem solver to choose a unique tool.
However, if there exist any private incentives, each problem solver would like to choose the best tool. This game has n!

possible equilibria. Coordination would be difficult. And even if coordination occurs, these equilibria may be Pareto
ranked. For example, one type of problem solver might be better at applying tool j but choose tool k, while another
type, which is better at applying k, could choose tool j. Making decentralized tool choice sequential and assuming
subgame perfection rules out these inefficient equilibria.

4.2 | Sequential tool choice

Under sequential tool choice, the manager stipulates the order in which members of the team select the tools that they
will try in Stage 2. These choices are common knowledge and irreversible. Hence, in Stage 1, the manager can
accurately forecast the equilibrium behavior of her subordinates. The fundamental problem that sequential choice can
solve is that of coordination failure. We consider two types of coordination failure categorized by the degree of conflict.
The easier one, which we analyze first, involves “pure” coordination failures: The equilibria are Pareto‐ordered and the
manager wants to avoid the perverse outcome of a dominated equilibrium (the setting of Remark 2).
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Corollary 3. Suppose that tool choice is sequential and that otherwise the assumptions of Remark 2 hold. Then the
first‐best tool vector is realized in equilibrium.

Thus, when tool choice is sequential and team members are mostly oriented toward group‐success, Pareto‐
dominated outcomes cannot occur.

The second type of coordination failure involves multiple equilibria which cannot be Pareto‐ordered. In this context, the
individuals disagree as to which equilibrium should be played: Individual incentives are strong enough to make members of
the team want to play more promising tools, leaving their teammates with the burden of trying less promising tools. For
example, consider a group with two members: An s1 and an s2, the respective experts on t1 and t2, the two most promising
tools. Each type can use either tool. There are two pure Nash equilibria: In one, s1 tries t1 and s2 tries t2; in the other, each
specialist tries the other type’s tool. Because t1 is considerably more likely to solve the problem, each type prefers the
equilibrium in which s/he tries t1. The manager, of course, wants each tool to be selected by its expert. Sequential tool choice
secures this: The manager tells s1 to choose first, s1 picks t1, forcing s2 to select t2. Sequential choice creates a game with a first‐
mover advantage which can be used by the manager to maximize the probability of solving the problem.18

Of course this procedure cannot work if private incentives so powerful that each type has a dominant strategy of
picking t1. In such circumstances, the choice sequence is irrelevant. Hence the ability of the manager to stipulate the
order of tool selection has the most value for intermediate levels of conflict among teammates. If there is little conflict
—b is close to one—then multiple equilibria will be Pareto‐ordered. This is not a difficult coordination problem; self‐
organizing groups should be able to handle such issues. Contrarily, extreme congestion problems arise if there are
strong private incentives to solve the problem. Every agent has the same dominant strategy to apply its best tool. In
these cases, sequencing tool choices is ineffective; only centralized tool‐selection produces the first‐best solution.

4.3 | Regularity properties in strategic tool choice

Strategic tool choice requires more stringent assumptions to ensure that the regularity properties hold (see Figure 4).
We confine attention to sequential tool choice and consider only pure strategy equilibria. The next proposition covers
all five regularity properties. Comparing these results with centralized tool choice (Proposition 2) reveals that the final
three properties are much weaker while the first two are unchanged.

Proposition 7. Under sequential strategic tool choice, optimal groups

(i) Can violate competency loading for any kind of tool overlap.
(ii) Satisfy competency ordering if and only if each type is expert at its best tool (B2).
(iii) Can violate no dominated types for any kind of tool overlap.
(iv) Can violate monotonicity for any kind of tool overlap.
(v) Satisfy asymptotic diversity if and only if each type has exclusive best tools (B1).

FIGURE 4 Necessary and sufficient conditions for regularity properties: Strategic tool choice
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Competency loading fails in the strategic setting for the same reason that it fails under centralized tool choice: An
effective tool (one with a high p) may be easy to apply (its expert’s h is high), making intratool redundancy unnecessary.
Competency ordering again holds so long as each type is the expert at its best tool. The logic is identical to that of
centralized tool choice. If a type is the expert at its best tool then the best tools of more able types are more promising.
The corresponding specialists should be hired earlier than types that are experts of inferior tools.

The conclusions about competency loading and competency ordering hold regardless of whether individuals care
primarily about team success (high b) or personal gain (low b). Indeed, the results hold even if b varies arbitrarily across
types. The relative unimportance of private incentives underscores the power of nonoverlapping toolkits and of the
importance of the distribution of skills across types.

Strategic tool choice flips the result about hiring dominated types. This finding rests on the possibility that a
dominated type creates fewer strategic problems. Suppose, for example, that type s1 is perfect at applying tool t1 and can
apply tool t2 correctly half the time. Suppose that an s2 type can apply both tools correctly slightly less than half the time;
hence s1 dominates s2. For a large class of parameter values, a team of two s1’s will both choose tool t1 whereas a diverse
team will choose both tools. Thus the s s( , )1 2 team will outperform the team of two s1’s.

This example illustrates how the manager can tap the strategic comparative advantage of a dominated type. If the s1

type is extremely good at t1 then that specialist may be unable to credibly commit in Stage 1 to selecting t2 in Stage 2. In
contrast, if s2’s comparative advantage in t2, relative to her skill in t1, is sufficiently strong then the manager knows that it is
a best response for an s2 to follow through on a promise to try t2. Thus, although that type has no absolute advantage with
any tool, it has a strategic comparative advantage at an inferior tool—the problem‐solving version of Ricardo’s insight.

As an index of the dominated type’s comparative advantage in tool t2 we use θ t h t h t( ) = 1 − (( ( ))/( ( )))s s s2 1 22 2 2
. This

index is positive if s2 has any comparative advantage in tool t2 (i.e., if h t h t( ) > ( )s s2 12 2
) and reaches its maximum value of

one if s2 is completely feckless at t1. This strategic comparative advantage can be useful to the manager even when the
inferior type, s2, is completely dominated by s1. This strong sense of skill domination is defined below.

Definition. Type si completely dominates sj ifT s T s( ) ( )j i⊆ and h t t T s h t t T smin{ ( ) ( )} > max{ ( ) ( )}s k k i s l l ji j
∣ ∈ ∣ ∈ .

Complete domination is about as clear a skill difference as can be imagined: si is better at everything in its toolkit
than sj is at anything in its repertoire. (This is a special kind of pairwise domination, which in turn is nested inside
ordinary domination.) Recall that under centralized tool choice a rational manager never selects a type that is
dominated in any way, for example, even if domination requires all other types. In contrast, under strategic choice she
may hire a completely dominated one.

Remark 3. Suppose there are two types and s1 completely dominates s2. The best tool of s1 is t1 and s2’s best tool
is t2. If tool choice is strategic then there exists a vector of parameter thresholds b h θ p{ > 0, < 1, < 1, > 0}* * * *

such that if b b h t h θ t θ< , ( ) > , ( ) >* * *s s1 21 2
, and p t p( ) < *2 then (a) the optimal two‐person group is s s( , )1 2 and

(b) in its unique equilibrium in Stage 2 each type picks its best tool.

As is often the case, the manager’s quest here is for tool diversity, and if this would not be implemented in the Nash
equilibrium of a homogeneous team of the most able type then in some parametric regions it is worthwhile to accept a
dominated worker to attain tool diversity.19 Next, we show how monotonicity can fail for any overlap, including the
case of no overlap (B0). The violation arises because as groups grow larger, private benefits decrease: The glory of solving
the problem will likely be shared by several teammates. This weakens the incentives for choosing a unique, less
effective tool, having the same effect as increasing b, the collective benefit.

Asymptotic diversity violations also require that a type’s best tool not be unique. The proof, though technically
involved, relies on a straightforward construction. Suppose there are three types and two tools. Assuming that the best
type can apply the better tool correctly with probability one, the second type can correctly deploy the better tool and a
lesser tool with probability h < 1, and the third type has only the inferior tool in his repertoire. Further, suppose that
the second type is marginally more capable with the lesser tool than is the third type. When the private benefits for
solving the problem are large, the second type will choose the better tool when added to a team of one person. Thus, the
third type is a more valuable addition to that group. The asymptotic result relies on similar logic.

We conclude this section by stating an analog of our previous result for centralized tool choice relating the potential
loss from hiring rules based on ability, diversity, or the combination of diversity and ability.
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Remark 4. Under sequential tool choice, hiring by diversity can produce marginally worthless hires even when
toolkits do not overlap. Hiring by ability or ability and diversity can produce marginally worthless hires unless
experts at best tools (B2) holds.
This claim relies on the same logic as in the centralized case. Using diversity alone can lead to poor outcomes

because team performance depends on the tools applied, not on the set of potential tools. Balancing ability and diversity
can also produce worthless hires when problem solvers are not experts at best tools because as we have seen, a high‐
ability problem solver might fail to choose a new tool.

If, however, each person brings different expertise to the table then overlap will not arise. We consider that case next.

4.4 | Experts and the opportunity costs of expertise

It is well known that it takes many years andmuch effort to become highly proficient in chess, cryptography, physics, and other
informationally intensive domains (Ericsson et al., 1993; Feltovich et al., 2006). Indeed, it is generally believed that it is
impossible to become a top notch expert in such fields without thousands of hours of intense study and practice. (How much is
training vs. real experience varies across domains and over time—e.g., “book learning” in medicine has greatly increased over
the last century—but the total number of necessary hours is both high and not all that variable across informationally intensive
domains.) This last section incorporates that robust empirical regularity by making an assumption that reflects the temporal
opportunity cost of expertise: In modern economies, everybody faces a time budget that binds. In the context of our framework,
that means, roughly speaking, that a type can become proficient in only a few tools. Hence candidates for the team might be
either specialists, who are good at a few tools, or generalists, who are mediocre at many.

To derive the formal conditions necessary for this to hold, we say that type sj is highly specialized if (a) it is the expert
at some tool, say tj, and (b) for all other t T s( )k j∈ , there is a small but strictly positive ϵsj such that h t ϵ( ) <s k jj

for all
k j≠ . We assume, of course, that ϵ h t< ( )s s kj k

⋆ , the skill level of the expert at tk; thus a highly specialized type is an expert
at only one tool. If becoming an expert is time‐consuming then everyone in an optimal group will be highly specialized.
This result holds for both simultaneous and sequential games.

Remark 5. We assume a group of a fixed size, n. If all experts are highly specialized and none is perfect at
applying any tool then everyone in any optimal group of size n is highly specialized. If in addition b < 1 then for
any optimal group, G n( )* , there exists an ϵ > 0 such that if h t ϵmax{ ( )} <s ji

for every t T s( )j i∈ which is not si’s
best tool, then everybody in G n( )* has a strictly dominant strategy of selecting his best tool and the tool vector
produced by the corresponding unique Nash equilibrium is the first best.

Thus, this high degree of skill specialization delivers just what the manager wants: Problem‐solving effectiveness and clean
strategic properties. The former is easy to see: In general the first‐best tool vector is produced only by experts and Remark 5
assumes that all experts are highly specialized, so this part of what the manager wants follows immediately.20 The strategic
benefits of skill specialization are a bit more subtle. It helps to examine the limiting case in which experts are completely
feckless with everything in their repertoire that is not their best tool. (Technically this special case is excluded from the feasible
set because it means that h t( ) = 0s kj

for all k j≠ and we assume throughout that h ( )si ⋅ is strictly positive for all i, but it is a
useful limiting case.) In this circumstance, an expert has no chance of solving the problem with anything other than his best
tool, so trying that tool is obviously a dominant strategy for every expert for any composition of G n( ); eliminating the knife‐
edge case of b = 1 ensures that selecting one’s best tool is strictly dominant.

We can see the strategic advantage of hiring only experts from a somewhat different angle by reusing the idea of strategic
comparative advantage introduced earlier. Remark 3 showed that the manager may find it worthwhile to put a dominated type
on the team if that type enjoys a strategic comparative advantage in a tool that the manager wants the group to try. In the
context of Remark 5, however, only experts enjoy strategic comparative advantage. This is a direct effect of their being highly
specialized: Since experts are inept at anything that is not their speciality they have a comparative advantage only with their
best tool, which is exactly what the manager wants the experts to use. All strategic coordination problems disappear.

Remark 5 implies that if the first‐best tool vector is completely diverse then so is the optimal team. In such circumstances
tool diversity and team diversity are linked. Nevertheless, competency loading can still be violated: A less promising tool, say
tk, might be more difficult to apply than a more promising one, tj; hence there may be more tk experts on the team than tj
specialists. It is straightforward to show that the other four regularity hiring properties—competency ordering, monotonicity,
no dominated hires, and asymptotic diversity—will satisfied in strategic tool choice under the assumptions of Remark 5.
Hence we might regard this result as identifying a set of conditions that make the manager’s hiring problem a “nice” one.
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5 | EXTENSIONS: PARTIAL SOLUTIONS, MULTIPLE TOOLS,
AND UNCERTAINTY

Our framework makes three strong assumptions. First, we do not allow for the possibility that a tool is a partial
solution. In some cases, one tool might solve a part of a problem, while a second tool solves the remainder. Second, we
assume that a problem solver applies a single tool. In practice, a problem solver might apply several. Third, we assume
that in Stage 1 the manager knows what problem will confront the team in Stage 2. Sometimes, however, more than one
problem may arise and a manager is uncertain which it will be. In this section, we describe how our model can be
extended to account for all three possibilities.

Consider the following sketch of a model that allows for partial solutions. We first assume that each problem has two
parts, denoted by “/” and “\” which together form an X . To simplify the analysis, we assume that if a problem solver
applies a tool correctly on one part then she applies it correctly on all parts. We can then rewrite the probability that
type si solves the problem using tool tk as h t p t p t( ) ( ) ( )s k k k

\
i

⋅ ⋅∕ , where p t( )k∕ and p t( )k\ correspond to the probabilities of
solving the two parts of the problem, given that the tool was applied correctly.

The probability that two problem solvers, si and sj, who apply tool tk solve the problem equals the probability that at
least one of them correctly applies the tool and that the tool solves both parts of the problem:

h t h t h t h t p t p t[ ( ) + ( ) − ( ) ( )] ( ) ( ).s k s k s k s k k k
\

i j i j
⋅ ⋅∕

In contrast, the probability that two problem solvers, si and sj, who apply tools tk and tk′, respectively, solve the
problem equals the sum of probabilities that each solves it on their own minus the probability that both solve it plus the
two cases where each solves a different part of the problem

h t p t h t p t h t p t h t p t h t h t p t p t p t p t[ ( ) ( ) + ( ) ( ) − ( ) ( ) ( ) ( )] + ( ) ( )[ ( ) ( ) + ( ) ( )].s k k s k k s k k s k k s k s k k k k k′ ′ ′ ′ ′
\

′
\

′i j i j i j
⋅ ⋅ ⋅ ⋅∕ ∕

The possibility that each tool solves a different part confers an advantage to groups that applies diverse tools. This
benefit from diversity is the main effect of allowing partial solutions.21 A straightforward argument shows that because
success requires only that at least one tool solves each part, increasing the number of parts makes more tools even more
advantageous. Thus, decomposability (Simon, 1962) and diversity (Hong & Page, 2004; Page, 2008) appear to be
complements.

A second question is how the potential for multiple solutions influences incentives. Notice first that if toolkits do not
overlap, partial solutions have no effect other than to make weaker tools more promising at the margin. Some incentive
problems would be attenuated. For example, the second member of a type who has skill with two tools would have a
stronger incentive to choose the inferior tool. In cases where the better tool has a higher probability of success on one
part of the problem and the weaker tool has a higher probability on the remainder, the incentives for the second
member of the type added to the group would be clear: Choose the inferior tool.

None of this implies that allowing for partial solutions overcomes all incentive problems. Rather, it shifts the
range of parameters for which incentive problems arise. The potential for violations of monotonicity and of no
dominated types still exists. The only difference is that with partial solutions, tools with even lower probabilities
of success should be applied to problems.

Including the possibility that a type can apply multiple tools requires assumptions about the number of tools applied.
If a type applies all its tools then no dominated type would ever be hired. If a type can apply at most K tools, then the
assumption has no effect unless types overlap in their tools. Accordingly, violations of competency loading,
monotonicity, and no dominated types would still arise.

If we fix the number of tools that a type can apply, the same kinds of incentive problems arise as in the single tool
case. For instance, suppose that at most three tools can be applied by any problem solver and that type s1 has skill with
tools t t t, ,1 2 3, and t4. A second type s1 on the team would face a choice between applying any of the four sets consisting
of three tools. Among these, the sets t t t{ , , }1 2 3 and t t t{ , , }1 2 4 have the highest individual success rate. If type s1 is a
virtuoso with tools t1 and t2, the choice between these two sets for the second type s1 is equivalent to choice between t3
and t4 when two other problem solvers apply tools t1 and t2 and third agent applies t3.

Using similar constructions, the arguments used for single tools carry over to the multiple tool setting with
one important caveat. Now, those proofs require particular assumptions on tool overlap. More important, if types

BENDOR AND PAGE | 747



can apply multiple tools then a type’s skill with multiple tools becomes more valuable. Paradoxically, a type with
skill at a single, novel tool may be hired earlier because other tools will be more likely to have been applied
correctly.

Third, the manager may not know for certain in Stage 1 which problem will confront the team in Stage 2. The simplest
version of this extension would presume an exogenously fixed probability distribution over a set of possible problems and
zero conflict within the team (b = 1).22 In such a setting, it is intuitive that problem uncertainty will increase the value of
tool diversity, as the optimal mix of tools will typically be state (i.e., problem) contingent and in Stage 1 the manager does not
know which state will arise in Stage 2. Further, we suspect that the existence of unlikely but dangerous problems—a fire in
an oil refinery; an earthquake in a populous area—heightens the tension between ability, as measured by skill with tools that
are likely to be needed, and diversity. Indeed, when it is difficult to identify (diagnose) problems—is this an X or a Y ?—it
may be optimal to include dominated generalists on the team even when there are no issues of credible commitment.23

Finally, if the set of possible problems is very large then long‐standing issues of organizational boundaries can arise. When
maintaining optimal diversity inside the firm is too expensive then it will be outsourced. This in turn will generate
interesting contracting issues.

Our main findings hold in all three extensions. Optimal groups must balance ability, as measured by skill with
the most promising tools, and diversity, as measured by skill with unique tools. In addition, in some situations,
the manager has incentives to take unconventional actions, such as hire dominated types (because they are more
likely to apply high margin tools) or violate monotonicity (because increasing team size changes the private
benefit from solving the problem).

6 | DISCUSSION

In this paper, we construct a framework to analyze team problem solving under centralized and decentralized tool
choice. Our main results can be grouped into four sets. First, we characterize optimal team composition. That result
reveals the direct benefits from diverse tools. In highlighting the importance of applying diverse tools, our main findings
align with a growing empirical literature on cognitive diversity and problem solving in organizations (Wuchty, Jones, &
Uzzi, 2007), crowds (Jeppesen & Lakhani, 2010; Lakhani & Jeppesen, 2007), academic publishing (Jones, Uzzi, &
Wuchty, 2008; Uzzi et al., 2013), and team‐based IQs (Bachrach, Graepel, Kasneci, Kosinski, & Gael, 2012). These
studies consider nearly every academic paper ever published and find positive correlation between diversity, measured
by email address, and impact and citations (Freeman & Huang, 2014). Deeper dives into smaller samples find a
significant contribution of diversity as captured by references to atypical literatures—a crude proxy for our diverse tools
(Schilling & Green, 2011; Shi, Adamic, Tseng, & Clarkson, 2009).

Second, we show that if a manager can control tool choice then optimal groups never include dominated types but
they must satisfy asymptotic diversity. If we further assume specialists to be the best at their best tools then optimal
groups also satisfy competency ordering; since we assume that each tool has a unique expert, monotonicity holds as
well. However, competency loading—better types are more numerous—need not be satisfied, and in fact rarely holds in
optimal groups. Together, these results imply that project managers with tool assignment authority seeking to build
optimal groups can abide by some, though not all, of a standard set of hiring practices.

Our third set of results characterizes properties of the Nash equilibria in the strategic tool‐selection game. These
results underpin the fourth set which show that the above regularities do not hold when the manager selects team
members but lacks the authority or information necessary to assign tools. In those cases, optimal groups can and
typically will violate all of the standard properties. True, competency ordering—better types are hired earlier—holds if
types are experts at their best tools, and asymptotic diversity holds if each type has exclusive best tools. But apart from
those special cases, none of the conventional hiring rules (e.g., hire the best) apply.

These third and fourth sets of results apply to environments in which the manager does not or perhaps cannot know the
tools a worker applies. Given the difficulties that can arise from strategic tool choice, one might then think that organizations
should not allow problem solvers the freedom to choose tools. Such a policy would require the manager to possess deep and
accurate knowledge of workers’ repertoires and skill levels and knowledge of the efficacy of different tools for the problem at
hand. This may be unlikely. Empirical studies of this type of environment reveal a tendency toward hiring people with general
skills (Lazear, 2009), that is, lots of tools. Our model suggests a possible flaw in that approach. Generalists will have incentives
to choose their best tools, which may overlap across types. If the manager cannot dictate which tools are tried, the firm may
prefer specialists who create fewer coordination problems regarding tool choice.
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A manager could, of course, ignore the possibility of unorthodox solutions and stick with the standard rules despite
knowing that doing so could produce suboptimal groups. That strategy would be practical if the violations produced
modest inefficiencies—if they were nearly efficient. We show, however, that things can be much worse than that: hiring
by ability, hiring by diversity, and even hiring by both diversity and ability can produce hires that are worthless at the
margin. Thus, a manager should design groups via the more combinatoric tool‐based approach described here. This
approach may entail nontraditional hiring practices, for example, putting a specialist with a dominated set of skills on
the team, removing previously hired workers, and so on.

When modeling strategic tool choice we have assumed both individual and collective incentives. If a manager can
weaken individual incentives, be they financial or reputational, she reduces the coordination problems. However,
because tool choice is discrete, coordination failure may persist even when individual incentives are weak. Recall also
that coordination failure can arise because a team member’s actions can affect other agents’ incentives. When a new
problem solver successfully applies a tool that nobody on the existing team has correctly applied, the probability of
solving the problem increases. That increased probability boosts the incentives for existing team members to choose
better tools even if someone else on the team is also using that tool rather than unique tools. This dampens diversity and
reduces the value of the new tool.

We also discuss three extensions. The first allows for partial solutions. The second enables individuals to apply
multiple tools. The third allows for the possibility that the manager is uncertain which problem will confront the team.
None of these extensions qualitatively changes our results. In yet another extension one could allow individuals to differ
in their capacity to apply tools. Problem solvers with greater capacity could apply more tools and would have higher
measured ability. This extension would tilt the results in favor of higher capacity individuals but would not negate
diversity’s value. Diversity would contribute to team performance so long as the set of tools relevant to a task exceeds
the repertoire of any one person.

In addition to their applications to hiring and staffing within firms, our findings have implications for
crowdsourcing, that is, presenting a problem to many problem solvers who need not belong to the organization.
Managers have little to no control over the tools used by a crowd. As a crowd becomes larger, individuals pursuing a
private reward have greater incentive to try more promising tools, attenuating the increase in crowd effectiveness as a
function of size. If participation is costly, individuals should also be less likely to join larger crowds (Terwiesch & Xu,
2008). Contrarily, for problems that might be solved by many different tools, the effect of the participation cost would be
smaller. This logic aligns with the finding of Boudreau, Lacetera, and Lakhani (2011) that the free rider problem is less
pronounced in more uncertain domains where the appropriate toolkits are larger. Relatedly, for organizations that do
both in‐house research and solicit the advice of outsiders (i.e., external crowdsourcing), the crowd’s presence could
induce in‐house researchers to use more promising tools.

In sum, our framework allows us to unpack the contributions of individual ability and collective diversity in problem
solving and to characterize the incentive problems that arise with strategic tool choice. We find that the potential for
coordination failure, by that we mean people applying the same tools, is reduced when toolkits are disjoint, implying a
strategic benefit from specialized expertise as well as the direct problem‐solving benefit of tool diversity.
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END NOTES

1 Data from Federal Reserve Bank of St. Louis. On the growth of the knowledge based economy, see Autor, Katz, and Kearney (2006), Bell (1973), Florida
(2002), and Wolff (2006).

2 Teams predominate in the academy as well. The majority of science, and most of the best science, is accomplished by teams, not individuals (Cooke & Hilton,
2015). Over 90% of papers in science and engineering have multiple authors (6–10 in the modal paper), as do over 60% of papers in the social sciences. In both
categories team authored papers are more than four‐and‐half times as likely to receive one hundred citations (Singh & Fleming, 2010; Uzzi, Mukherjee,
Stringer, & Jones, 2013).

3 Voting, forecasting, and reliability also violate additive separability. In reliability studies, the probability of collective failure equals the product, not the sum,
of the probability of individual failures. The game theoretic reanalysis of Condorcet jury theorems, pioneered by Austen‐Smith and Banks (1996), has
incorporated both nondecomposable production functions and strategic interaction. Team composition and the associated argument about the relative
importance of ability versus diversity have not been prominent topics in this program however.
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4 Define M types of labor (tasks), assume that each worker type has some capability with each type of labor, and assume that each worker gets assigned to a
single task. Let K denote the level of capital and denote output as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟βK α L+

ρ

i

M

i i
ρ

ρ

=1

1/

∑

where α β= (1 − )
i

M
i=1

∑ . Given those assumptions all five regularities hold.
5 In a companion paper, we allow for the possibility that different methods improve the status quo by different amounts.
6 Using the problem categories of Terwiesch and Xu (2008), our framework applies to expertise‐based projects and trial and error projects but not ideation projects.
7 This probability can be interpreted as applying a tool in an appropriate manner to a given class of problems. In this paper we consider only one type of
problem, so we do not need to condition tool‐skill on the kind of problem.

8 Assuming that types apply all of their tools would produce identical results in some cases. In other cases (when toolkits overlap) that assumption would
produce correlation in the probabilities of success. This would affect our results quantitatively but not qualitatively. However, assuming that individuals can
try their entire toolkit removes any possibility of strategic tool choice, a focus of our analysis.

9 Such critiques do not apply to production problems encountered so often that managers know strictly more than their subordinates (Garicano, 2000;
Garicano & Rossi‐Hansberg, 2006).

10 For example, suppose type si has capabilities (0.4, 0.5, 0.9) with tools t t,1 2, and t3, which solve the problem with probabilities 0.6, 0.5, and 0.2, respectively.
The best tool for type si is tool t2 which has an expected probability of solving the problem of 0.25.

11 Formally, the probability that a group G consisting of the two problem solvers, si and sj, solves the problem using tools tk and tℓ, respectively, equals
h t p t h t p t h t p t h t p t( ) ( ) + ( ) ( ) − ( ) ( ) ( ) ( )s k k s s k k si j i j⋅ ⋅ ⋅ ⋅ ⋅ℓ ℓ ℓ ℓ .

12 Decomposability generally makes problems easier to solve (Simon, 1962).
13 The analogy between problem solving and production requires interpreting our probability of solving the problem as a quantity. That is slightly problematic

in that the probability of solving a problem is bounded, whereas product quantity is not. However, none of the counterintuitive solutions that we find appear
to be caused by the fact that success probabilities are bounded; instead, they are caused by interactions between the types of problem solvers.

14 Note that hiring could satisfy asymptotic diversity but not the property of no dominated hires. If so, the optimal group would include all of the undominated
types as well as some dominated ones.

15 Just because the manager’s hiring problem is easy need not imply that the problem that the team will try to solve is easy. The probability that a group of size n

will solve the problem could be arbitrarily close to zero.
16 The optimal addition to a given group, identified in Proposition 1, is generically unique. In knife‐edge cases, there are multiple such additions.
17 They fall short in a strong way: Propositions 4 and 5 both show that nonoptimal groups cannot produce the first‐best outcome in or out of equilibrium.
18 Recall that if the parent wants the children to implement the fair (i.e., equal) split then she tells one child to cut the cookie and the second to select a piece. If

the children’s utility is strictly increasing in the size of their piece then in the unique equilibrium the cutter divides the cookie in half. The manager in our
model has substantively different preferences but her exploitation of the conflict among the individuals is similar to the parent’s exploiting the children’s
conflict over the cookie.

19 Note that here s2 is dominated by just one type. If it were dominated by a set of other types then the Ricardian property need not hold. Suppose, for example,
that s2 is a jack‐of‐all‐trades: Worse than s1 regarding t1 but better on t2, and worse than some third type, s3, regarding t2 but better on t1. Here s2 is dominated
by the combination of s1 and s3. This feature could rob s2 of its strategic comparative advantage in t2: If s3 is sufficiently bad at t1 then his promise to try t2 will
be credible. Thus a team of s s( , )1 3 will deliver tool diversity in equilibrium and the manager will get what she wants without putting a dominated type on
the team.

20 Remark 5 does not presume complete skill specialization; there can be generalists in the set of types. But every generalist type is dominated by the set of
experts whose repertoires collectively span that generalist’s toolkit.

21 That advantage exists even if we assume that problem solvers might apply tools correctly to only a part of a problem.
22 In more complex versions some of the problems would be profitable opportunities discovered by enterprising managers (Hsieh, Nickerson, & Zenger, 2007)

and hence endogenous.
23 We suspect, however, that only strategic problems can prompt a rational manager to hire a type that is pairwise dominated. A type that is dominated though

not pairwise so can be a useful jack‐of‐all‐trades in a small problem‐solving team that is unsure what problem it will face; one that is pairwise dominated
lacks this decision theoretic justification.

24 The inequalities are strictly satisfied of p p p p= 0.5, = = = 0.3t t t t1 2 3 4
, and b = 0.25. Note that as pt1 increases and b decreases in size, the inequalities

become satisfied on an increasingly larger domain.
25 If h t( )s 22 could be exactly zero then the expected payoff of playing t2 would obviously also be zero, whence it would follow immediately selecting t2 is a strictly

dominant strategy since t( )2 is s2’s best tool and so must have strictly positive promise. By assumption all h’s are strictly positive so technically this case does
not hold, but the corresponding intuition is correct.
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APPENDIX A

Proof of Observation 1. The formal proof relies on Proposition 1 which states that the optimal addition to a
given group G is the type si that maximizes

[ ( )] ( ) ( )P s G G t G h t G p t G( , ) = Pr FAIL, ¬ ( ) ( ) ( ) .* * *i s s s s
+

i i i i
⋅

By assumption, type h t h t( ) ( )s k s ki1
≥ for all si. The result follows. □

Proof of Corollary 1. To prove part (i), note first that the conclusion holds if h tmax{ ( )} = 0s kj′
because in that

case sj′ is completely worthless whereas P s G( , )i
+ is strictly positive. Since P s G( , )i

+ must continue to exceed
P s G( , )j

+
′ if j′’s skill at using any tool in his toolkit is sufficiently close to zero, the result follows. To prove part (ii)

construct a G′ such that for every t T s( )k i∈ there is a pure specialist in G′, that is, some type sk for which
T s t( ) = { }k k . If h t( ) = 1s kk

for all such pure specialists then si is completely worthless toG′ because every tool that
si possesses will be tested with probability one by this group. Hence if the h t( )s kk

’s are sufficiently close to one
then P s G( , ′)i

+ , though strictly positive, can be arbitrarily close to zero, whence P s G P s G( , ′) > ( , ′)j i
+ + . □

Proof of Proposition 2. Parts (i) and (ii) are proved in the text. Here we prove the other three parts. We start
with (iii). Under centralized tool choice, the manager can assign any member of the group a specific tool.
Therefore, if the manager hires a type sj and assigns it tool tk, then sj must be best at applying tool tk. This
proves (iii).
The proof of (iv) is by contradiction. Suppose there is some group size, n†, when the manager will for the
first time kick out a type, say si, whom she hired earlier. Let us use n* to label the smaller group size at which
the manager (a) added an si to the group and (b) for sizes n n+ 1,…, − 1* † she did not add any si’s to the
group. Suppose that for G n= *∣ ∣ the manager tells the next type hired, si to use tool tk. The pair, s t( , )i k , must
satisfy the optimality condition of Proposition 2. Proposition 2 immediately implies that si must be the
expert of tk; otherwise, the planned pair of s t( , )i k would not be optimal for G n= *∣ ∣ . By assumption, for
G n= †∣ ∣ , the manager removes the si hired at G n= *∣ ∣ , replacing him with (say) sj. Because si is the expert at
tk, the manager must be planning to tell the new member, sj, to try some other tool, say tℓ. Hence, for G n= †∣ ∣

it must be true that the pair s t( , )j ℓ increases the probability of group success more than does the s t( , )i k pair.
But if this is true for G n= †∣ ∣ then it must have been true for G n= *∣ ∣ . Given that si is the expert at tk, none

of the other types added in‐between n* and n† are using tools tk. Hence the probability that tk will be tested by
the group is unchanged from G n= *∣ ∣ to n†. In contrast, the probability that tℓ will be tested by the group may
have gone up, if a sj has been added in that interim and the manager plans to order that sj try tℓ. Or the
test‐probability is unchanged, if no s t( , )j ℓ pair has been added in the interim. In either case, given that the
probabilities of different tools are succeeding are independent of each other, if the marginal contribution of
s t( , )j ℓ exceeds that of s t( , )i k for G n= †∣ ∣ then the same strict inequality must have held when G n= *∣ ∣ . But
then the choice of si given the group‐size of n* would not have been optimal after all, and we have a
contradiction.
To prove (v), we first note that if tk is a new tool, then a straightforward argument shows that the manager assigns
the same tools to the existing members ofG after a problem solving using tool tk is added toG. Given a type si and
a tool t *si that has been assigned to the group, the increase in the group’s probability of solving the problem equals

G t G h t p tPr[ (FAIL, ¬ ( )] ( ( )* * *s s s si i i i
⋅ ). This converges to zero as the number of type si’s using tool t *si increases. In

contrast, given there exists a finite number of tools and none solves the problem with probability one, the increase
in the probability of solving the problem given a type sj who is best at tool tk which is not used by G equals

G t G h t p tPr[ (FAIL ¬ ( )] ( ) ( )*s s k ki j
⋅ , which is strictly positive. □
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Proof of Remark 1. The proof is by construction. Assume that tool t1 solves the problem with probability 0.8 and t2
solves it with probability 0.2 and that tool t3 solves the problem with probability ϵ. Suppose that G consists of one
specialist who always possesses tool t1 and one specialist who possesses tool t2 who can correctly apply that
tool half the time. Thus, G solves the problem with probability 0.8 + (0.2)(0.1) = 0.82. Assume that type si
applies tool t1 with h t( ) = 0.15s 1i

and tool t3 with probability h t( ) = 0.07/0.18s 3i
and that type sj is a specialist

who applies tool t2 with h t( ) = 0.4s 2j
. By construction type si has an ability of 0.15 and is more diverse than

type sj, which has an ability of 0.08. The manager will assign si tool t3, so the probability that G and si solve
the problem equals

ϵ ϵ0.82 + (0.18)
0.007

0.18
= 0.82 + 0.007 .⋅ ⋅

The manager will assign sj tool t2, so the probability that G and sj solve the problem equals

0.8 + 0.2[(0.5)(0.2) + (0.5)(0.4)(0.2)] = 0.828.

Thus, P s G ϵ( , ) = 0.07i
+ and P s G( , ) = 0.08j

+ . Note that this example requires that type si is not best at its best
tool. If both types are best at their best tools then hiring by ability will be optimal. □

Proof of Proposition 3. Follows from Nash (1951). Choose a type si and assume any set of strategies
by the individuals of the other types. This can be thought of as the environment for the individuals of type si. By
Nash (1951), individuals of type si have a symmetric best response. Therefore, a symmetric equilibrium exists. To
prove the second part of the proposition, recall that p pk k′≥ . In a symmetric by type equilibrium, the payoff from
choosing tool tk and tool k′must be equal. Assume there exist Ñ + 1 individuals of a given type, and suppose that
the remaining Ñ individuals play the mixed strategy equilibrium. Conditional on rk of those individuals choosing
tool tk and rk′ choosing tool k + 1, let ρ ( )i ℓ denote the probability that i of the ℓ individuals not choosing tool tk or
tool tk′ individuals solve the problem. These individuals need not be of this same type. Further let
q q qˆ = (1 − − )t tk k′

The payoff from choosing tool t π q, ( )k k
→ can be written as follows:
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The fourth term subtracts off the case where no one chose tool k′ and none of the other tools solves the problem.
The expression for the payoff from playing k′ can be written similarly. It follows that the payoff from choosing
tool tk equals the payoff from choosing tool k′ if and only if:

BENDOR AND PAGE | 753



⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

p h p h
Ñ

r r
q q q ρ

b

r i

p h p h
Ñ

r r
q q q ρ

p h p h
Ñ

r r
q q ρ

p h p h
Ñ

r r
q q q ρ

b

r i

p h p h
Ñ

r r
q q q ρ

p h p
Ñ

r
q q ρ

(1 − )
!

! ! !
ˆ ( ) 1 +

1 + +

+ (1 − )
!

! ! !
ˆ ( )

− (1 − )
!

! ! !
ˆ ( )

= (1 − )
!

! ! !
ˆ ( ) 1 +

1 + +

+ (1 − )
!

! ! !
ˆ ( )

− (1 − )
!

! !
ˆ ( ) ,

k ik k ik

r

Ñ

r

Ñ r Ñ r r

i

Ñ r r

k k
t
r

t
r

i
k

k ik k ik

r

Ñ

r

Ñ r Ñ r r

i

Ñ r r

k k
t
r

t
r

i

k ik k ik

r

Ñ Ñ r

k k
t
r

k ik k ik

r

Ñ

r

Ñ r Ñ r r

i

Ñ r r

k k
t
r

t
r

i
k

k ik k ik

r

Ñ

r

Ñ r Ñ r r

i

Ñ r r

k k
t
r

t
r

i

k ik k

r

Ñ Ñ r

k
t
r

′ ′

=0 =0

−

=0

− −

=0

− −

′

′ ′

=0 =0

−

=0

− −

=0

− −

′

′ ′

=0 =0

−

′
0

′ ′

=0 =0

−

=0

− −

=0

− −

′ ′

′ ′

=0 =0

−

=0

− −

=0

− −

′

′ ′ ′

=0 =0

−

′
0

k k

k k k k k

k

k

k

k

k k

k k k k k

k

k

k

k

k

k

k

k

k k

k k k k k

k

k

k

k

k k

k k k k k

k

k

k

k

k

k

k

k

′

′ ′

′

′

′

′ ′

′

′

′

′ ′

′

′

′

′ ′

′

′

′

′

′

′

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

which can be simplified as
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Given p h p h>k ik k ik, p h p h p h p h(1 − ) > (1 − )k ik k ik k ik k ik′ ′ ′ ′ . It suffices to show that
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implies q q>t tk k′
. We will show that q q<t tk k′

implies the opposite inequality. Suppose that q q<t tk k′
. The rightmost

term of the first expression will then exceed the rightmost term of the second expression. Therefore, it suffices to
show that q q<t tk k′
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Notice that the values of rk and rk′ both range from 0 to Ñ. Therefore, the comparison depends on the relative weights
assigned to each term. Given q q<t tk k′

, the values of rk′ are biased towards higher values, completing the proof. □

754 | BENDOR AND PAGE



Proof of Corollary 2. Let z denote the number of problem solvers of some other type other than si or the
new type who solve the problem. We show that the result holds for any z. The assumption of
nonoverlapping toolkits implies additive separability of the payoff function for any one type as a function of
the number of problem solvers of another type who solve the problem. Therefore, if the result holds for any
one z, it also holds for a probability distribution over z.

The formal proof relies on Lemma 1 stated below. Assume that there exists Ñ individuals of type si, who
choose tools tk and tk′ with probabilities q t( )s ki

and q t( )s k′i
such that q t q t( ) > ( )s k s k′i i

. Define the difference in the
probabilities of exactly ℓ winners, D t t( , )s k k, ′i ℓ , to be the probability that exactly ℓ of the si’s choose tool tk′ times the
probability that tool tk′ was successfully applied by a single type si problem solver and tool tk′ solved the problem,
minus the probability that exactly ℓ of the si’s choose tk. times the probability that tool tk was successfully applied
by a single type si problem solver and tool tk successfully solved the problem. □

Lemma A1. Given q t q t( ) > ( )s k s k′i i
, there exists an ′ℓ such that for any D t t′, ( , ) 0s k k, ′i

ℓ ≤ ℓ ≥ℓ and for
any D t t′, ( , ) 0s k k, ′i

ℓ ≥ ℓ ≤ℓ

Proof of Lemma 1. The probability of exactly ℓ of the si choosing tool tk equals q q( ) (1 − )t t
Ñ (Ñ− )

k kℓ
ℓ ℓ . The

probability of exactly ℓ of the si choosing tool tk′ equals q q( ) (1 − )t t
Ñ (Ñ− )

k k′ ′ℓ
ℓ ℓ . The latter exceeds the former if and

only if
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Given q t q t( ) > ( )s k s k′i i
, it follows that there exists an ′ℓ such that the left‐hand side exceeds the right‐hand side if

and only if ′ℓ ≤ ℓ . The result will still hold if we multiply the left‐hand side of the inequality by a constant,
though the value of ′ℓ may change. Let that constant equal p h p h( / )k ik k ik′ ′ . We can write D t t( , )s k k, ′i ℓ as follows:

⎛
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⎞
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This completes the proof of the lemma. To prove the corollary, assume Ñ problem solvers of type si. Take the
actions of Ñ − 1 of those problems solvers as given according to a symmetric by type mixed strategy equilibrium
q G( )*→ . LetQtk

ℓ denote the probability that exactly ℓ of Ñ − 1 type si problem solvers choose tool tk in equilibrium.
Note that expected payoff to a type si conditional on using tool tk when exactly − 1ℓ other type si problem solver
uses tool tk equals b Z1 + ( / + )ℓ . Consider the tool choice by the Ñth problem solver of type si. If tools tk and tk′
are used in equilibrium with strictly positive probability by type si, then each must have the same expected value.
Let G s XPr( , )i⧹ equal the probability that the group solves the problem without si. The following equation must
be satisfied in equilibrium.
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Recall that if there exists no overlap then p p>k k′ implies that q G s q G s( , ) > ( , )* *
t i t i
k k′

. Therefore, by Lemma A1
there exists an ′ℓ such that for any D t t′, ( , ) 0s k k, ′i

ℓ ≤ ℓ ≤ℓ and for any D t t′, ( , ) 0s k k, ′i
ℓ ≥ ℓ ≥ℓ , where D t t( , )s k k, ′i ℓ

equals the probability that exactly ℓ problem solvers use tool tk′ and a single problem solver of type si successfully
applies tool tk′ minus the probability that exactly ℓ use tool tk and a single problem solver of type si successfully
applies tool tk′. We can rewrite the equilibrium equation as follows:
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If we add a problem solver that uses nonoverlapping tools, and if that problem solver does not solve the
problem, then there is no effect on the payoffs from playing either tool. However, if the new problem solver
solves the problem then the left‐hand side of the equation becomes zero because the problem is always
solved. Note then that if b is sufficiently large then the left‐hand side will be positive. Therefore, we
have that
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To simplify notation let w D t t= ( , )s k k, ′iℓ ℓ . By assumption w > 0ℓ off ′ℓ ≤ ℓ . Therefore, we can write the previous
inequality as
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Given this inequality and given the signs on the w′ℓ, the following inequality holds because the decrease in each
term on the right strictly exceeds the decreases of each term on the left,
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Notice that these payoffs correspond to exactly one more individual solving the problem. This inequality therefore
implies that the expected payoff from choosing tool tk strictly exceeds that of playing tool tk′, so that in
equilibrium tk must be played with strictly higher probability. □

Proof of Proposition 4. Given that s1 dominates all the other types, by Proposition 1 the optimal group must
consist only of the best type. Hence any group which contains any type other than s1 is suboptimal. Hence such a
group cannot implement the first‐best outcome, thus establishing part (b) of the result.

In contrast, we now show that all Nash equilibria of the homogeneous s1 group achieve the first‐best tool vector. (For
convenience we assume it to be unique; the proof extends in a straightforward but tedious way to the case of multiple
first‐best tool vectors.) Call this vector, which the manager would select under centralized tool choice,T*. Consider any
vector T T*• ≠ . We need to show that any such T• is not an equilibrium under decentralized tool choice by the
homogeneous group of the best type. To do this we initially assume that b is exactly equal to one; this will be relaxed
below.

EitherT• has gaps (a more promising tool, tj, is not selected by anyone but a less promising tool, tk, is) or it does
not. If it does have gaps then clearly T• cannot be an equilibrium because the agent picking tk would increase the
probability of group success, P G( ), and therefore his payoff, by switching from tk to tj.

So now consider a T• without gaps. We need to show that despite this similarity with T* (which the manager
would obviously design to be gapless), this kind ofT• is not an equilibrium either. SinceT T*• ≠ , there must be at
least one tool, say tj, which has too many agents selecting it, and hence some other tool, say tk, which has too few:
P G( ) would rise if one agent (possibly more) moved from the former to the latterer. But given that b = 1, agents
care only about group success, so if agent would increase P G( ) by switching from tk to j then playing the former
is not a best response to the choices of the other n − 1 agents: Hence T• is not an equilibrium.

The above logic continues to hold if b is sufficiently close to one. And since there are finitely many T•’s, there
exists a b < 1 such that any b b> is sufficiently close to one for all of them. This establishes part (a). □
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Proof of Proposition 5. By Proposition 3, an optimal group must satisfy competency ordering. To complete the
identification of the first‐best outcome, we initially assume that h t smin( ( ( )))*s ii

exactly equals one. Given this,
it is obviously suboptimal to have any type’s best tool selected by more than one member of the group. Further, it
is inefficient to overlook any best tool. More precisely, it is suboptimal if in any group there is some tool, tj, that is
not selected even though it is the best tool of some type (say sj) while some other tool, tk, is selected even though
it is not the best tool of any type. This holds because best tools are more promising than the other tools: that is,
h p t h p t( ) > ( )s j s kj k

, where sj and sk are the experts at deploying tj and tk, respectively. Finally, best tools are
exclusive, so if the manager wants some best tool, say tj, selected in Stage 2 then she must put its expert, sj, on the
team in Stage 1. Together, these properties imply that if G n( ) is no bigger than the number of types then the
manager’s design problem under centralized tool choice is simple: In Stage 1 she selects the n most able types and
in Stage 2 she tells each one to try his best tool. And since this design is strictly better than any other design when

h t smin( ( ( )))*s ii is exactly one, it continues to hold if h t smin( ( ( )))*s ii is sufficiently close to one.
Turning now to strategic tool choice, consider a groupG of size n which the manager in Stage 1 stocked with the n

most able types. (The proof is trivial forn = 1 so assume thatn > 1.) Each type’s best tool is exclusive. This implies that
for all b 0≥ , each agent has a strictly dominant strategy of selecting his best tool, t s( )* i . Hence G produces a unique
Nash equilibrium in which every member of the group plays his strictly dominant strategy, that is, tries his best tool.
But this is exactly the description ofG and its unique tool‐selection equilibrium: Everyone inG is of a different type;G
satisfies the property of no competency skipping; in equilibrium everyone tries his (exclusive) best tool. Thus this Nash
equilibrium implements the first‐best outcome, establishing part (a) of the result.

Finally, consider any group G G′ ≠ . We now show that any such G′ cannot generate the first‐best tool vector.
Either G′ satisfies competency ordering or it does not. If it does not then it follows immediately from Proposition
2 that G′ is suboptimal and hence cannot implement the first‐best outcome in any tool vector.

Alternatively,G′ does satisfy competency ordering. Either each type is a singleton in the group or it is not. If each type
is a singleton then G′ is, in fact, G, so there’s nothing to compare. Alternatively, there is at least one type, say si, with
multiple members in the group. But this is not the optimal G n( )* identified in paragraph one of this proof, thus
establishing part (b). □

Proof of Proposition 6. We prove each part in turn.

(i) We use contradiction to prove that all problem solvers of the same type pick the same tool. Suppose instead
that two si’s chose different tools, tj and tk; then, since agents of the same type are clones of each other there

must be at least two equilibria, because the choices of t t( , )j k and t t( , )k j are strategically equivalent. But by
assumption there is a unique Nash equilibrium in this case. hence we have reached a contradiction, so the
supposition that two agents of the same type have chosen different tools must be wrong.

(ii) By contradiction. From (i) we know that all agents of the same type choose the same tool. Suppose that all
the si types choose tool tk, despite the fact that the expert at that tool is sj. Obviously, then, the status quo
group cannot be a first‐best composition of types: The si’s should be replaced by the sj’s.

(iii) From (ii) we know that each type is an expert at the tool it selects. The conclusion follows given that each
tool has a unique expert.

(iv) Suppose that the best tool for every type is t1. By construction, the expert at t1 must be the best type, s1. Hence
from (ii) we know that s1 picks t1, and from (ii) we know that no other type picks s1. Therefore, any type that
is not the best type picks a tool that is not its best tool. □

Proof of Remark 2.

(i) Consider first the case of b = 1. Here players rank‐order outcomes by the probability of group success, P G( ).
It is given that there is a unique tool vector (implemented by the corresponding experts) that maximizes this
probability. Hence if anyone deviates from this tool‐player combination he will reduce P G( ). Since b = 1 this
will reduce his expected utility, which shows that the original configuration of tools and agents was a (strict)
Nash equilibrium. Because a deviation strictly reduces the deviator’s expected utility for b exactly equal to
one, it continues to do so for b sufficiently close to one.
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(ii) Any outcome produced by a different tool vector or by the first‐best tool vector where some tool is tried is
applied by a nonexpert generates a strictly lower probability of group success than does the first‐best tool
vector implemented by experts. For b = 1 this probability completely determines payoffs, so strict Pareto
ordering follows immediately. The usual continuity argument for b close to one finishes the proof. □

Proof of Corollary 3. Suppose initially that b = 1. We solve the problem backwards. Suppose that n − 1

players have chosen tools. The last player will choose the tool that maximizes P G n( ( ))* , the probability that this
group, G n( )* , succeeds, given the first n − 1 choices. Anticipating this, the second‐to‐last chooses the tool that
induces the last player to choose the tool that, together, maximizes P G n( ( ))* . This logic works all the way back to
the first player who, anticipating all subsequent choices, chooses a tool that triggers a sequence that
maximizes P G n( ( ))* .
(Note that this doesn’t presume that there is a unique such sequence. Generically, that is, for b < 1, there is a
unique sequence, but if b exactly equals one then players are indifferent about who gets to select which tool,
provided that in every case every tool is chosen by its corresponding expert.)

Since the relevant inequalities are strict for b = 1, by continuity they hold for b sufficiently close to one. □

Proof of Proposition 7. Competency loading follows using the same example as in the centralized tool choice
case. Competency ordering follows if each type is best at its best tool because the first member of each type will
choose its best tool. Note that the proof requires that the group is optimal. The manager will be careful not to
select better types that have an incentive to apply a lesser type's best tool. If a type is not best at its best tool, then
competency ordering fails using the same example as in the centralized case.

We next show that monotonicity can be violated with nonoverlapping toolkits. We first provide a sketch and
then give the formal proof. Suppose that the best type, s1 possesses two tools, t1 and t2, and is perfect at applying
each. Under a large set of parameter values, the optimal two‐person group has two agents of the best type who
choose different tools. Next, suppose the types s2 and s3, are each perfect at tools t3 and t4 and that these tools are
approximately as likely to solve the problem as the best type’s weaker tool. For a range of parameter values, a
group consisting of two s1’s and one s2 both of the agents of the best type will both choose their best tool. They do
so because the s2 has some probability of solving the problem. If this occurs, the private benefit for one of the s1’s
from choosing t2 falls more than had that problem solver chosen the best tool. The reason: The loss from getting
the entire benefit to an even split equals one half of the benefit, while the loss from splitting the benefit two ways
to splitting it three ways equals only one‐sixth of the benefit. Thus, the optimal group of size three consists of one
of each type.

The formal proof goes as follows. We consider the special case where f C C( ) = 1/∣ ∣ ∣ ∣. Assume that if a type can
apply a tool, then it can always apply it correctly. The second problem solver of type s1 will choose tool t2 provided
the following inequality holds:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠p b

b
p p b p p p p b

b
+

1 −

2
(1 − ) + (1 − ) + +

1 −

2
.t t t t t t21 1 2 1 1 2

≤

This can be rewritten as

p p
b

p p p(1 − )
1 −

2
+ .t t t t 21 2 1 2

≤

Note that this holds for any p > 1/2t2
. By assumption, type s2 only can apply tool t3. In a group of size three

consisting of two type s1’s and one type s2, the payoff to the second type s1 from choosing tool t1 can be written as
follows:

p p
b

p p
b

p p b(1 − )
1 +

2
+

1 + 2

3
+ (1 − ) .t t t t t t1 3 1 3 1 3

The payoff from choosing tool t2 can be written as follows:
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p p p p p b p p p p p p p p
b

p p p
b

( + − )(1 − ) + (1 − )(1 − ) + ( (1 − ) + (1 − ) )
1 +

2
+

1 + 2

3
.t t t t t t t t t t t t t t t21 3 1 3 2 1 3 2 1 3 1 3 1 2 3

It is easy to assign probabilities so that the second type s1 in a group of two would choose tool t2, but would switch to
tool t1 when a problem solver of type s2 is added. For example, if p = 2/3t1

and b = 1/2, then the second problem
solver of type t1 will choose tool t2 if p 1/3t2

≥ . But if pt3 is also close to 1/3, then the problem solver of type s1 would
switch to tool t1 if a problem solver who uses tool t3 is added to the group. If we set both pt2 and pt3 equal to 1/3, then
using the expressions above, the payoff for a type s1 from choosing tool t1 equals 174/324. The payoff from choosing
tool t2 equals 169/174. Thus, if there were a third type of problem solver s3 and a tool t4 such that pt4 was also
approximately 1/3, then the optimal group of size three consists of one type s1, one type s2 and one type s3.

24

We next show that the optimal team could include an undominated type, we derive the mixed strategy
equilibrium for the game with two players. □

Lemma (Equilibrium conditions for the two player mixed strategy). Given two type s1 players withT t t= { , }1 1 2 , the
symmetric mixed strategy equilibrium probability of playing tool t q, *1 , can be written as follows:

q r r
p p

p p p

b

b
= +

( − )

( − ) (2 + )
,* 12 12

1 2

1 1 2

where r12 equals the unique solution ratio of t1 to t2.

Proof of Lemma. Let q denote the probability that a problem solver applies tool t1. We can solve for the incentive
compatibility constraint for using the better tool as follows. Incentive compatibility requires that the payoff from using
the tool t1 given q exceeds the payoff from using tool t2. These payoffs can be written as follows:

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

π q qp
b

q p p b p p
b

p p

π q q p p
b

p p b p p q p
b

( ) = 1 +
2

+ (1 − ) (1 − )(1 + ) + 1 +
2

+ (1 − ) ,

( ) = 1 +
2

+ (1 − ) (1 + ) + (1 − ) + (1 − ) 1 +
2

.

1 1 1 2 1 2 1 2

2 1 2 1 2 1 2 2

These can be simplified as

⎟

⎜ ⎟ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎞
⎠

⎤
⎦⎥

π q p p p p p
p p

b q p p p p p p
b

π q p
b

q p p p p p p
b

( ) = ( + − ) + −
2

− ( − ) + ( − )
2

,

( ) = 1 +
2

+ ( − ) + ( − )
2

.

1 1 2 1 2 1
1 2

2 1 2 1 1 2

2 2 1 1 2 2 1 2

Therefore π q π q( ) ( )1 2≥ if and only if

⎟ ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎞
⎠⎟

p p p p p
p p

b q p p p p p p
b

p
b

q p p p

p p p
b

( + − ) + −
2

− ( − ) + ( − )
2

1 +
2

+ ( − )

+ ( − )
2

,

1 2 1 2 1
1 2

2 1 2 1 1 2 2 1 1 2

2 1 2

≥

which reduces to

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥p p p p p p p

b
qr p p p p

b
( − ) + (2 − − )

2
( + − 2 ) 1 +

2
,1 1 2 1 2 1 2 1 2 1 2≥

which further reduces to
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q
p p p b p p b

p p p p b

( − )(2 + ) + ( − )

( + − 2 )(2 + )
.1 1 2 1 2

1 2 1 2

≤

It will be helpful to write the incentive compatibility constraint as follows:

q
p p p

p p p p

p p b

p p p p b

( − )

( + − 2 )
+

( − )

( + − 2 )(2 + )
.1 1 2

1 2 1 2

1 2

1 2 1 2

≤ (1)

The formal counterexample relies on the same construction as the informal example presented in the
body of the paper. The probability that two problem solvers of type s1 solve the problem equals

s s X q p q q p p p p q pPr({ , }, ) = ( ) + 2 (1 − )( + − ) + (1 − )* * * *1 1
2

1 1 2 1 2
2

2. As an example, set b p= 6, = 0.51 and
p = 0.42 . It follows that q = 0.75* and that s s XPr({ , }, ) = 0568751 1 . Choose p = 2 0.06875 − ϵ3 ⋅ and let p4 be
arbitrarily close to p3. When the type s2 is added to the group of two type s1’s, the equilibrium probability of
playing t1 increases above 0.75, and for small ϵ a group of all three types outperforms a group of two type s1’s
and a type s2. A diminishing marginal returns argument implies that two s1’s and one s2 solve the problem
with higher probability than three s1’s. This implies that the group s s s{ , , }1 1 1 solves the problem with a
lower probability than the group s s s{ , , }1 1 2 , which completes this part of the proof.

To prove that asymptotic diversity can be violated, let T s t( ) = { }1 1 and assume that h t( ) = 1s 11
and that

p t p( ) =1 . Let T s t t( ) = { , }2 1 2 and assume that h t h h t θh( ) = , ( ) =s s1 12 2
, where θ < 1 and that p t q p( ) = <2 .

Finally, let T s t( ) = { }3 2 and assume that h t γh( ) =s 23
where γ θ< .

Note first that a type s2 added to a group of a single type s1 will choose tool t2 if and only if it receives a higher
payoff from doing so. Its payoff from choosing tool t2 can be written as follows:

⎡
⎣⎢

⎤
⎦⎥u t s p θhq b pθhq b

b
p θhq( { }) = (1 − )(1 − ) + (1 − ) +

2
+ (1 − ) .s 2 12

∣

Its payoff from choosing tool t1 equals

⎡
⎣⎢

⎤
⎦⎥u t s p h b ph b

b
( { }) = (1 − )(1 − ) + (1 − ) +

2
s 1 12

∣

It follows that type s2 should choose tool t2 if and only if

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥p θhq b pθhq b

b
p θhq p h b ph b

b
(1 − )(1 − ) + (1 − ) +

2
+ (1 − ) (1 − )(1 − ) + (1 − ) +

2
,≥

which can be simplified as

⎜ ⎟⎛
⎝

⎞
⎠ph θq b p hθq ph θq

b
(1 − )(1 − ) + (1 − ) (1 − ) 1 −

2
.≥

Canceling like terms gives

p hθq ph θq
b

(1 − ) (1 − )
2

.≥

Solving for q gives

q
pb

θ p b[2(1 − ) + ]
.≥
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It follows that if q and θ are sufficiently small then a problem solver of type s2 will choose tool t1 and the optimal
group of size 2 consists of one problem solver of type s1 and one problem solver of type s3.
Consider the special case where p = 1/2 and θ = 1/2. The inequality can then be written as

q
b

b(1 + )
.≥

Note this makes intuitive sense. If there exists no collective benefit, for example, b = 0 and θ = 1/2, then tool t2
would have to have the same probability of solving the problem as tool t1 for type s2 to choose it because type s2

would have a 50% chance of solving the problem by itself.
The manager only needs one person using tool t1 but could hire more people who use tool t1 to create incentives

for a problem solver of type s2 to choose tool t2 instead of tool t1. Given that a type s1 always applies tool t1
successfully, the manager would always choose a type s1 rather than a type s2 as it requires fewer problem solvers
to align incentives.
First, we note that t suffices to show that a fixed proportion of the group would have to be of type s1 to induce a
type s2 problem solver to choose tool t2. To see why suppose that there exist n problem solvers of type s3, then at
least one will apply tool t2 correctly with probability γh1 − (1 − )n (this is one minus the probability that they all
fail to apply the tool correctly). Suppose that a proportion ρ < 1 of n problem solvers are type s2 and try tool t2.
The probability that at least one applies the tool correctly equals θh1 − (1 − )ρn.

The first expression is strictly larger than the second if and only if the following strict inequality holds:

γh θh(1 − ) < (1 − ) .n ρn

But this is equivalent to

γh θh(1 − ) < [(1 − ) ] .n ρ n

Given ρ < 1, a γ can be chosen so that this expression always holds.
It remains to show that a fixed percentage of the problem solvers must be of type s1. To simplify the

presentation, we assume b = 0, that there is only a private benefit. Given n1 type s1’s using tool t1 and n2 type s2

problem solvers using tool t2, the expected payoff for a type s2 problem solver choosing tool t1 can be written as the
sum of two terms. The first term equals the payoff if tool t1 solves the problem and tool t2 does not or is not applied
correctly by any of the other n2 problem solvers. The second term equals the payoff if the problem is solved by
both tools. The second term is averaged over all possible cases for the number of type s2’s who solve the problem

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥ph

q q θh

n
q θh θh

n

n

(1 − ) + (1 − )

+ 1
+ (1 − ) ( )

1

+ + 1
.

n n

n

1 =1

− 2

1

2 2

2∑
ℓ ℓ

ℓ

ℓ ℓ

If the problem solver of type s2 chooses tool t2, the expected payoff equals

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥qθh θh θh

n p p

n
(1 − ) ( )

(1 − )

+ 1
+

+ + 1
.

n

n

=0

− 2

1

2

2∑
ℓ ℓ ℓ

ℓ

ℓ ℓ

Define B S({ }) to be the expected payoff to the problem solver of type t2 if it solves the problem and exactly the
tools in the set S solve the problem. It therefore follows that the expected payoff for the type s2 problem solver is
higher for choosing tool t2 than for choosing tool t1 if and only if
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⎡
⎣⎢

⎤
⎦⎥qθh p B t pB t t ph

q q θh

n
qB t t[(1 − ) ({ }) + ({ , })]

(1 − ) + (1 − )

+ 1
+ ({ , }) ,

n

2 1 2
1

1 2

2

≥

which simplifies to

⎡
⎣⎢

⎤
⎦⎥qθh p B t ph

q q θh

n
q θ B t t(1 − ) ({ })

(1 − ) + (1 − )

+ 1
+ (1 − ) ({ , }) .

n

2
1

1 2

2

≥

For example, B t t({ , })1 2 denote the expected payoff conditional on both tools solving the problem

⎜ ⎟
⎛
⎝

⎞
⎠B t t θh θh

n

n
({ , }) = (1 − ) ( )

1

+ + 1
.

n

n
1 2

=0

− 2

1

2

2∑
ℓ ℓ

ℓ

ℓ ℓ

Thus, B t({ })2 denotes the expected benefit condition on only t2 solving the problem

⎜ ⎟
⎛
⎝

⎞
⎠B t θh θh

n
({ }) = (1 − ) ( )

1

+ 1
.

n

n
2

=0

− 2
2

2∑
ℓ ℓ

ℓ

ℓ ℓ

This expression is difficult to evaluate because of the last term. However, we can rewrite the expression as a
binomial distribution with an extra draw to obtain the following:

( )
B t

θh θh

θh n
({ }) =

(1 − ) ( )

( + 1)
.

n n n

2
=0

+1− + 1

2

2 2 2∑
ℓ

ℓ ℓ
ℓ

Notice that the top of the fraction equals a binomial distribution minus the last term. Therefore, we can simplify
the expression as

B t
θh

θh n
({ }) =

1 − ( )

( + 1)
.

n

2

+1

2

2

From above, the problem of type s2 has a higher expected payoff of choosing tool t2 if and only if

⎡
⎣⎢

⎤
⎦⎥qθh p B t ph

q q θh

n
q θ B t t(1 − ) ({ })

(1 − ) + (1 − )

+ 1
+ (1 − ) ({ , }) .

n

2
1

1 2

2

≥

Given that q θ B t t(1 − ) ({ , })1 2 is strictly positive and therefore increases the payoff from choosing tool t1. It suffices
to show that a fixed proportion of the problem solvers must be of type s1, that is, there exists a ρ such that
ρn n>1 2, in order for the following inequality to hold:

qθh p B t ph
q q θh

n
(1 − ) ({ }) >

(1 − ) + (1 − )

+ 1
.

n

2
1

2

Substituting in for B t({ }2 and canceling an h gives

qθ p
θh

θh n
p

q q θh

n
(1 − )

1 − ( )

( + 1)
>

(1 − ) + (1 − )

+ 1
.

n n+1

2 1

2 2

By the same logic as above, it suffices to show that ρn n>1 2 for some ρ > 0 for the following expression (again,
we have increased the left‐hand side and decreased the right‐hand side so we have made it less likely to hold):
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qθ p
θh n

p
q

n
(1 − )

1

( + 1)
>

(1 − )

+ 1
.

2 1

Canceling out the θ’s from the right‐hand side and rearranging terms, we obtain the following necessary condition.

q

h q n

p

p
n

(1 − )

1

+ 1
>

1 −
+ 1.

2
1

Define ω as follows:

ω
q

h q

p

p
=

(1 − )

1 −

The condition can then be written as

ω n n( + 1) ( + 1)1 2≥

This implies that ωn n ω> + (1 − )1 2 which means that a fixed proportion must be type s1. As an example, suppose
that p=1/2, q=1/4, and h=1/3, then ω = 1 and the number of s1’s must equal the number of s2’s. □

Proof of Remark 3. Because complete dominance implies dominance, Proposition 1 implies that under
centralized tool choice the manager would never put an s2 on the team, no matter its size. But here tool choice is
strategic, so the manager must anticipate what the team will do in equilibrium. We turn to this now (hence we
will prove part [b] first and then turn to [a]). We initially consider the extreme cases of b h t= 0, ( ) = 1s 11

, and
θ t( )s 22

is some ϵ close to zero.
Consider the equilibrium behavior of a pair of s1’s. Letting EV s t s t[( , ); ( , )]1 1 1 1 denote an s1’s expected payoff if

she plays t1 against the same choice of another s1, we get the following:

EV s t s t h t p t f C h t h t p t f C[( , ); ( , )] = [ ( )] ( ) ( = 2) + ( )[1 − ( )] ( ) ( = 1),s s s1 1 1 1 1
2

1 1 1 11 1 1
⋅ ∣ ∣ ⋅ ∣ ∣

where f C n( = )∣ ∣ denotes the value of the sharing function, given that n players solved the problem.
The expected payoff of responding with a choice of t2, given that the teammate selects s1, is as follows:

EV s t s t h t p t h t p t f C

h t p t h t f C

h t p t h t p t f C

[( , ); ( , )] = ( ) ( ) ( ) ( ) ( = 2)

+ ( ) ( )[1 − ( )] ( = 1)

+ ( ) ( ) ( )[1 − ( )] ( = 1).

s s

s s

s s

1 2 1 1 2 2 1 2

2 2 1

2 2 1 1

1 1

1 1

1 1

∣ ∣

∣ ∣

∣ ∣

The best response to a partner’s choice of s1 is to do likewise if EV s t s t EV s t s t[( , ); ( , )] > [( , ); ( , )]1 1 1 1 1 2 1 1 .
Collecting terms and solving for p t( )2 , this is equivalent to

h t p t f C h t h t p t f C
p t

[ ( )] ( ) ( = 2) + ( )[1 − ( )] ( ) ( = 1)

Ψ
> ( ),

s s s1
2

1 1 1 1
2

1 1 1
⋅ ∣ ∣ ⋅ ∣ ∣

where h t h t p t f C h t h t p t f CΨ = ( ){ ( ) ( ) ( = 2) + [[1 − ( )] + ( )[1 − ( )]] ( = 1)s s s s2 1 2 1 1 11 1 1 1
∣ ∣ ∣ ∣ .

It is optimal, obviously, for an s1 to select its best tool if its partner chooses something other than t1. Hence, if

p t p
h t p t f C h t h t p t f C

( ) <
[ ( )] ( ) ( = 2) + ( )[1 − ( )] ( ) ( = 1)

Ψ
,*

s s s
2

1
2

1 1 1 11 1 1≡
⋅ ∣ ∣ ⋅ ∣ ∣

then selecting t1 is the best

response to either pure strategy of the other player, that is, choosing t1 is a strictly dominant strategy in this
homogeneous two‐person group. Hence the unique equilibrium of this team is that both players choose t1. This is
bad news for the manager: Given that h t( ) = 1s 11

, duplication on that tool is worthless for her.
Now consider the equilibrium behavior of a diverse two‐person team: G s s= ( , )1 2 . Given that s1 completely
dominates s2 and h t( ) = ϵs 12

, it is easy to show that the s1 player has a strictly dominant strategy of playing her
best tool, t1. Turning to the s2 player, the expected payoff of playing t1 is a function of h t( )s 22

, no matter what the
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other player does, and since h t( ) = ϵs 22
we can always choose ϵ sufficiently close to zero so that choosing t2

delivers a higher expected payoff, again regardless of what the other player does.25 Hence this team also has a
unique equilibrium in the tool‐selection stage, and in it each type chooses his best tool.

To complete the equilibrium analysis, note that because all of the relevant payoff inequalities (above) hold
strictly they continue to hold for b close to zero, h t( )s 11

close to one, and θ t( )s 22
close to one.

With the predictions of what happens in equilibrium in mind, the manager can now figure out how to create
the optimal team in Stage 1. For h t( ) = 1s 11

, the addition of a second s1 would add no value: The probability that a
homogeneous team of the best type solves the problem is the same as a singleton s1. In contrast, a diverse team
will try t2 as well as t1, and since t2 has strictly positive promise (i.e., h t p t( ) ( ) > 0s 2 22

), its success probability must
be strictly bigger than that of a singleton s1, who selects only one tool (although the best one) or, equivalently, of
the homogeneous team. Hence the manager prefers the diverse team, which includes the completely dominated
type, to the homogeneous group. And since a homogeneous group of the completely dominated type
—G s s= ( , )2 2 —is obviously inferior to a team which includes the best type, it follows that the optimal group is
s s( , )1 2 , thus establishing part (a). □

Proof of Remark 4. The example used in the proof of Remark 1 applies here as well. The only difference is that
type si would choose tool t1 for all but the smallest values of b implying that type si adds no value. □

Proof of Remark 5. Fix an arbitraryG n( )* . (Generically there is only one such group, but this proof also holds
for multiple optimal group compositions.) Under centralized tool choice it is obviously optimal to put only experts
on the team. Further, since no expert is perfect at any tool there are no optimal teams with completely
superfluous members: Everyone on G n( )* is making the probability of group success strictly greater.
Consequently, carrying a nonexpert cannot be free: Replacing such a member by the corresponding expert
would strictly increase the probability of group success. Hence everyone in an optimal group of size n must be the
expert at the tool which s/he must select to generate the corresponding optimal tool vector.

Now consider a member of G n( )* who is supposed to select tool tk (there may be more than one such person)
whom we will call player n. Suppose player n had exactly zero chance of correctly implementing any tool in his
toolkit other than tk. If that were true then he would have zero chance of getting any personal credit for solving
the problem by playing any t tj k≠ . This implies that playing his best tool, tk, must be strictly better than doing
anything else, no matter what his teammates are doing; that is, if h t( ) = 0s jn

for all j k≠ then selecting tk is a
strictly dominant strategy. Since this holds strictly, it continues to hold if all of that player’s h’s (other than h t( )s kn

)
are sufficiently close to zero. □
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