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Abstract

In this paper we construct a framework for modeling teams of agents who apply techniques

or procedures (tools) to solve problems. In our framework, tools differ in their likelihood of

solving the problem at hand; agents, who may be of different types, vary in their skill at using

tools. We establish baseline hiring rules when a manager can dictate tool choice and then derive

results for strategic tool choice by team members. We highlight three main findings: First,

that cognitively diverse teams are more likely to solve problems in both settings. Second, that

teams consisting of types that master diverse tools have an indirect strategic advantage because

tool diversity facilitates coordination. Third, that strategic tool choice creates counterintuitive

optimal hiring practices. For example, optimal teams may exclude the highest ability types

and can include dominated types. In addition, optimal groups need not increase set-wise. Our

framework extends to cover teamwork on decomposable problems, to cases where individuals

apply multiple tools, and to teams facing a flow or set of problems.
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t Over the past thirty-five years the number of people employed as cognitive, nonroutine work-

ers has doubled to sixty million. The job classifications for this category of workers include

managing, designing, performing basic research, investing, strategic consulting, engineering,

and providing legal advice and medical care.1 The tasks carried out by cognitive, nonroutine

workers consist in large part of solving problems. Biomedical researchers isolate molecules.

Financial analysts build portfolios. Consultants develop reorganization plans. Engineers de-

sign batteries. Equally important, most problem solving is now done in teams. Therefore, the

study of problem solving is also the study of teams and teamwork.2

In this paper, we construct a framework for studying team performance on problem solving.

Specifically, we analyze the proability of success at problem solving given team composition

and then derive optimal hiring rules. Our framework assumes problem solvers who possess

skill of varying degrees at applying tools. Better problem solvers know more tools and are

more adept at applying them. Given that problem solving is done primarily in teams, our

framework focuses on teamwork. We assume that a team either succeeds or fails depending

upon whether any member of the group finds a solution. We do not constrain the definition

of a problem, so the binary nature of outcomes—success or failure—does not greatly limit

the scope of our framework. Any task that requires constraint-satisfaction (with or without

an optimization criterion), such as reducing the rate of defects in a manufacturing process by

a certain percentage or designing an internal combustion engine that exceeds environmental

standards while maintaining a torque profile, is admissible.

The difficulty of developing an optimal hiring policy stems from a lack of separability. Ability

corresponds to the probability of solving the problem, which in turn implies a facility with

potentially successful tools. Ability fails as a proxy for a person’s added value to a group

because the group may already contain people who possess the high ability person’s tools.

As a rule, the best team of problem solvers need not consist of the most able individuals

(Hong and Page 2004, Page 2008). In fact, for some classes of problems no measure applied

to individuals determines optimal team composition (Kleinberg and Raghu 2015). The best

person to add to a group will be the one most likely to apply a tool that is both novel and

effective. Therefore, optimal hiring depends on the group composition.3 If firms had little

1Data from Federal Reserve Bank of St. Louis. On the growth of the knowledge based economy see Bell (1973)
Wolff (2006), Autor, Katz, and Kearney (2006) and Florida (2002). See also Radner (1993) on information-
processing firms.

2Teams predominate in the academy as well. The majority of science, and most of the best science, is
accomplished by teams, not individuals (Cooke and Hilton 2015). Over ninety percent of papers in science and
engineering have multiple authors (six to ten in the modal paper), as do over sixty percent of papers in the
social sciences. In both categories team authored papers are more than four and half times as likely to receive
one hundred citations (Singh and Fleming 2010, Uzzi et al 2013).

3Voting, forecasting, and reliability also violate additive separability. In reliability studies the probability of
collective failure equals the product, not the sum, of the probability of individual failures. The game theoretic
re-analysis of Condorcet jury theorems, pioneered by Austen-Smith and Banks (1996), has incorporated both
nondecomposable production functions and strategic interaction. Team-composition, and the associated argu-
ment about the relative importance of ability versus diversity, have not been prominent topics in this program
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not the typical case. Alphabet, the parent company of Google, annually receives upwards

of three million applicants. Leading financial services companies and consulting companies

receive over a quarter of a million applicants. People analytics, the use of data and models

to make hiring decisions, has now become a standard tool (Bock 2015, Powell and Snellman

2004, Demsetz 1988, Conner 1991, Conner and Prahalad 1996).

Our analysis consist of two main parts. We first derive benchmark results where the manager

can assign tools to workers. We find that the manager wants worker types who are proficient

with distinct tools. Once we have a firm grasp of the sometimes subtle relations between

individual ability, team diversity, and group effectiveness, this decision theoretic result is not

surprising. We next consider the more complex strategic context in which the manager first

chooses workers who then autonomously choose tools. A worker’s payoff depends on some

combination of group success and individual credit. The manager’s optimal rule takes into

account that individual credit matters to workers. This results in what at first appear to be

counterintuitive hiring practices but which upon reflection are rational because they prevent

doubling up on tools.

This approach complements the traditional models of team performance that take membership

as fixed and focus on moral hazard (Holmstrom 1982) or both moral hazard and adverse selec-

tion (McAfee and McMillan 1991) in which an individual’s contribution to the team depends

on effort and ability. Their focus on shirking may be more appropriate for production and the

provision of services than for problem solving, where success can produce reputational rents.

To the extent that incentive problems matter in problem solving contexts, we believe they can

be handled separately from the competition arising from team composition.

Within the framework, we uncover direct benefits from cognitive diversity: teams with diverse

tools are more likely to find solutions to problems. In addition, we find that tool diversity

becomes more important both when average skill increases and group size increases because in

such situations existing tools are likely to have been applied correctly. We also find strategic

benefits from diverse teams. They have fewer coordination failures owing to lack of overlap in

their toolkits. We also find strategic advantages to hiring less able workers. Knowing fewer

tools can reduce the incentive to choose the wrong tool, e.g., selecting one already tried by

teammates. These findings echo a variety of strength-through-weakness results in game theory.

Last, extending the model to allow for partial solutions amplifies the benefits of applying more

diverse tools. Thus, our stark model is conservative: it stacks the deck toward ability and

simple rules and away from diversity and complex rules.

Our framework takes an agent’s facility with tools as exogenous. Workers can choose which

tool to apply given their set of tools. They cannot choose to become an expert at a new tool.

Robust empirical evidence shows that proficiency with a tool, particularly one that produces

however.
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t economic value, requires specialized training and hundreds if not thousands of hours of practice

(Ericsson et al 1993; Feltovich et al 2006). Consequently, groups that have tool diversity must

have team diversity, i.e., people trained in different methods.

To provide context for our results, we refer throughout to five hiring regularities that hold for a

CES production function given equal market wages: higher ability types should be hired earlier

(competency ordering) and in greater number (competency loading); all previous hires remain

in the optimal group as group size increases (monotonicity); a type that does not have the most

skill at some task will not be hired (no dominated hires); eventually all undominated types will

be hired (asymptotic diversity). These regularities bear repeating in more colloquial phrasing

to reinforce their normalcy: hire the most talented first, hire more of the more talented, do

not discard talent, do not hire ineffective workers, and increase worker diversity as the firm

grows.4 These regularity properties hold for a variety of production functions used in decision-

and team-theoretic models (Marschak and Radner 1972).

As we will show, optimal hiring for problem solving workers can violate each of these regular-

ities. Moreover, the violations are not knife edge cases; they arise under a range of reasonable

assumptions. While many of the violations result from incentive issues created by strategic tool

selection, some arise from properties of problem solving. For example, competency ordering

and competency loading can be violated even when the manager can assign tools to workers.

The violations arise when the tool kits of different types of workers overlap, i.e., have some

tools in common. Without overlap, optimal hiring would be straightforward.

The remainder of the paper has five parts. We begin with informal and formal descriptions

of our framework. We next derive benchmark results for the centralized structure where the

manager selects worker types as well as the tools deployed. We then turn to the decentralized

system in which problem solvers strategically choose tools. In the penultimate section, we

consider three natural extensions. We conclude by summarizing our key results and note some

implications.

A Framework for Problem Solving Groups

Our framework assumes a problem, a set of tools that can be applied to that problem, and

problem solvers with varying levels of facility with subsets of the tools. A tool can be interpreted

as an approach, technique, or method. Given a problem, each tool has a fixed, independent

4Define M types of labor (tasks), assume that each worker type has some capability with each type of labor,
and assume that each worker gets assigned to a single task. Let K denote the level of capital and denote output
as follows: (

βKρ +

M∑
i=1

αiL
ρ
i

) 1
ρ

where
∑M
i=1 αi = (1 − β). Given those assumptions all five regularities hold.
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t probability of finding a solution. We further assume that a tool’s success can be observed.

After a tool has been applied, the team knows whether or not the team solved the problem.5

Two examples reveal the range of contexts to which the model can apply. First, tools can

represent techniques for finding solutions. For example, biochemists rely on four common

techniques for DNA sequencing: enzyme based methods such as the Sanger method, chemical

methods, single molecule sequencing using fluorescents, and real time detection of pyrophos-

phates (França et al 2002). In any one instance, each of these techniques may or may not work;

a priori, some techniques ma be more likely to sequence the gene. Those could be captured as

probabilities of success. In addition, a given researcher has some level of facility with a tool.

An experienced biochemist may be more likely to apply the Sanger method correctly than a

new hire.

Second, tools can correspond to types of technologies. There exist a variety of battery tech-

nologies including lithium ion, lithium sulfur, aluminum ion, and nickel-metal hydride. Each

technology has a storage capacity, recharge cycle, cost per cycle, self discharge rate, maximum

voltage, weight, temperature, and cost. The battery for a product, whether it be a smartphone,

rechargeable vacuum, or an electric car, must meet certain requirements. An engineer might

be an expert at one of these technologies. The model does not apply as cleanly to problems

such as writing a screenplay in which no problem gets solved even though there does exist a

final outcome that either succeeds or fails.6 Nor does it apply to problems that are embedded

in the production process, most of which are known to be solvable by less-skilled workers at the

bottom of an organizational hierarchy (Garicano 2000; Garicano and Rossi-Hansberg 2006).

Given a problem, we partition problem solvers into types based on their tool kits and their

facility with their tools. We define two problem solvers to be of the same type if they have the

same tool kits and apply each tool correctly with the same probabilities (Newell and Simon

1972, Jonassen 2002).7 One type might correspond to recent college graduates who worked

in research labs developing lithium ion batteries, another type might consist of engineers who

have spent a decade working with solid state battery technologies. In this example, the first

type of worker might have less facility with a better tool.

We implicitly assume a time-constraint by requiring each type to choose a single tool. She

cannot start over if she misapplies a tool or it fails to solve the problem. This assumption

holds provided applying a tool requires time or resources. It allows us to model a individual’s

choice of a single tool as an action in a game.8 The person solves the problem if she applies

5In a companion paper we allow for the possibility that different methods improve the status quo by different
amounts.

6Using the problem-categories of Terwiesch and Xu (2008), our framework applies to expertise based projects
and trial and error projects but not ideation projects.

7This probability can be interpreted as applying a tool in an appropriate manner to a given class of problems.
In this paper we consider only one type of problem, so we do not need to condition tool-skill on the kind of
problem.

8Assuming that types apply all of their tools would produce identical results in some cases. In other cases
(when toolkits overlap) that assumption would produce correlation in the probabilities of success. This would
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As noted, problem solvers work as part of a group or team. The team solves the problem if

and only if at least one of its members finds a solution. The ability of a type is defined as the

expected probability that that type solves the problem using its best tool, i.e., the one that,

of all the type’s tools, is most likely to solve the problem. The ability of a team equals the

expected probability that at least one person in the group solves the problem.

Because a team’s ability depends on the number of distinct and correctly implemented tools,

individual ability is only a crude proxy of value to a team. This feature of collective problem

solving provides intuition for why hiring the best type (competency loading) fails under mild

assumptions. Once a tool has been used correctly, the team does not need more people who

will choose that tool. In contrast, a less able type may be needed in abundance if low ability

stems from the difficulty of deploying a tool. The manager of a large team might want many

of that inferior type to increase the probability that somebody correctly applies that type’s

unique tool.

Many of our results depend on whether tools are assigned or chosen strategically. This in turn

is often a product of the environment. In some contexts a manager has sufficient knowledge,

authority, and monitoring capability to assign tools. This might be true in a research lab

where the lead researcher knows the tools and assigns them to students. Assuming that

the requisite conditions (e.g. knowledge) hold, this kind of centralized regime is a best case

scenario as it avoids strategic coordination problems and incentive effects. In other situations,

however, managers lack tool-specific knowledge, cannot verify choice of tool, or verification

is prohibitively costly. The manager can then select personnel but not the tools that team

members use. Here, once the manager selects problem solvers, she has no authority over their

tools. The workers will select tools strategically: the set of chosen options will be a Nash

equilibrium of a game.

To construct the game over tool choices, we define payoff functions in terms of a collective

payoff if the team solves the problem and an individual payoff for those team members whose

selected tools solve the problem. The private benefit could come in the form of money, repu-

tation in the organization, or status within the team. The collective component, which could

come from profit sharing, aligns problem solvers’ incentives with those of the manager. Even

then, however, strategic tool choice introduces coordination problems. Two problem solvers of

the same type may have an incentive to choose their best tool rather than differentiating for

the good of the organization. This distortion produces violations of both monotonicity and

competency ordering. These can sometimes be overcome if individuals choose tools sequen-

tially. That strategic tool choice introduces coordination failure, order effects, and misaligned

incentives should come as no surprise. Clearly, the centralized process should outperform the

affect our results quantitatively but not qualitatively. However, assuming that individuals can try their entire
toolkit removes any possibility of strategic tool choice, a focus of our analysis.
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or infeasible levels of knowledge and observation, thus running afoul of Hayekian critiques of

centralization (March and Simon 1958; Nickerson and Zenger 2004).9

The Formal Model and Definitions

We now introduce the formal model. We assume the game form and all parameters, including

the number of types, the number of tools, and the probability that each tool can solve the

problem, are common knowledge.

The set of tools K = {1, 2, 3, . . .K}, denoted by tk.

The set of types of problems solvers M = {1, 2, 3, . . .M}, denoted by si.

The set of tools in type si’s tool kit, T (si) = {tk : type si can use tk}.

A group, G, is a finite nonempty set of types that can contain multiple members of a type.

A problem, X = (P,H), where p(tj) denotes the probability that a correctly applied tool

tj solves the problem, with p(tj) ∈ (0, 1) for all j, and where hsi(tj), type si’s skill with

tool tj on problem X, denotes the probability that si correctly applies tj on problem X, with

hsi(tj) ∈ (0, 1] for all i and j. Further, p(tj) 6= p(tl) for any j 6= l, and we order tools by their

success probabilities: p(tj) > p(tl) ⇐⇒ j < l.

Two assumptions merit emphasis: any tool might solve the problem but none is guaranteed

to do so, and a tool’s success probability, p, does not depend on the type who applies it. The

second assumption implies that if a tool doesn’t solve the problem when applied correctly by

one problem solver then it will not solve the problem when tried by anyone else. Thus, if a

physicist fails to solve a problem using spectral analysis then a mathematician who tries that

method will also fail. (Types may differ, however, in their skills at applying tools, i.e., in the

h’s.) Note that we allow for the possibility that a type can with certainty apply some tool

correctly (h = 1). We can rank a type’s tools by their overall success probability: the product

of the probability the type can apply the tool correctly and the probability that the tool will,

if correctly deployed, solve the problem. The overall success probability of tool tk for type si

therefore equals hsi(tk) · p(tk) as shown in figure 1.

The notion of ability plays an important role in our analysis. We define a type’s ability as the

probability that that type solves the problem using its best tool. To avoid overcomplicating

the analysis, we assume that each type has a unique best tool, the one with the highest overall

success probability for that type. We denote the best tool of type si by t∗(si).
10

9Such critiques do not apply to production-problems encountered so often that managers know strictly more
than their subordinates (Garicano 2000; Garicano and Rossi-Hansberg (2006).

10 For example, suppose type si has capabilities (0.4, 0.5, 0.9) with tools t1, t2, and t3, which solve the
problem with probabilities 0.6, 0.5, and 0.2, respectively. The best tool for type si is tool t2 which has an
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hs(tk)
.75

p(tk)
.6

a(si)
.45

= xi

Ability
of Type

Skill
w/ Tool

Tool 
Success

Figure 1: How ability depends on skill and a tool’s probability of success

The ability of type si, a(si) equals hsi(t
∗(si)) · p(t∗(si)), the probability of solving the problem

using si’s best tool.

We say that a type is dominated if for every tool in its repertoire there exists some other type

who can better apply that tool.

Type si is dominated if for any tk ∈ T (si), there exists an sj s.t. tk ∈ T (sj) and hsj (tk) >

hsi(tk).

We say that a type is pairwise dominated if it takes only one type to dominate it. Clearly,

pairwise domination implies domination but the converse need not hold.

Type si is pairwise dominated if there is a type sj such that T (si) ⊆ T (sj) and hsi(tk) <

hsj (tk) for all tk ∈ T (si).

Hereafter, we refer to the type that can best apply a tool as the expert at that tool. (Note that a

type is undominated if and only if it is an expert at some tool.) We define the promise of a tool

to be the product of the likelihood that the tool solves the problem and the probability that

its expert applies it correctly. We assume throughout that success of any tool is independent

of that of any other tool.

The promise of tool tk equals hs∗i (tk)p(tk), where s∗i is the expert for tool tk, i.e., the type

with the largest hs(tk). We assume throughout that each tool has a unique expert, denoted by

s∗(tk).

A group solves a problem if and only if at least one of its members solves the problem.11 The

payoff to a type depends on whether the team solves the problem (a collective benefit) and on

whether she is among those who find a solution (a private benefit).

expected probability of solving the problem of 0.25.
11Formally, the probability that a group G consisting of the two problem solvers, si and sj , solves the problem

using tools tk and t` respectively equals hsi(tk) · p(tk) + hsj (t`) · p(t`) − hsi(tk) · p(tk) · hsj (t`) · p(t`).

This article is protected by copyright. All rights reserved.
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u(si, G) = 0 if C = ∅
= b ∈ [0, 1] if si 6∈ C 6= ∅
= b+ (1− b)f(|C|) if si ∈ C

where C denotes the set of problem solvers in G who solve the problem and f(|C|) > 0 for

C = G and f(·) is strictly decreasing in |C|. Thus the maximal payoff accrues to an agent

who is the only person on the team to solve the problem (sharing glory diminishes it); team

failure generates the minimal payoff.

Under centralized tool choice, tool promise is a key measure. The manager can in effect select

and assign tools, matching type to promise. Under strategic tool choice, the manager cannot

assign tools. Here, tool overlap can create inefficiencies: a type may choose a personally better

tool already used by someone else rather than an as-yet-unrepresented one.

We define five categories of tool overlap. First, we separate out those cases that include a

dominated type, i.e., a type that is not expert at any tool. We then define four nested sets

of undominated types. First, types might have no overlap in tools (B0). In this case, a new

type always tries a new tool. This decomposability of toolkits simplifies the manager’s team-

composition problem.12

Next, types might overlap on some tools but not on their best tools, i.e., each type’s best tool

is exclusive to that type (B1). A further weakening would be to allow for overlap on best tools,

requiring only that each type is the expert at its best tool (B2). If recent college graduates know

lithium-ion technology better than any other battery technology, then experienced types, who

may know something about designing lithium-ion batteries, must know less than the recent

graduates. Last, each type can be the expert for at least one tool (B3), though not every

type needs to be expert at its best tool. A college graduate may know just a little about a

potentially useful lithium sulfur battery but that might be more than anyone else. (A college

graduate’s best tool, however, might be common in the industry and most skillfully deployed

by experienced types who have acquired craft knowledge.) A type that is not expert at its best

tool but is expert at some other tool can lead to inefficiencies under strategic tool choice. For

example, suppose that type j has a high skill level with tool k, but that tool is better applied

by other types. Type j is the best at tool `, but that method has little chance of solving the

problem. Private incentives might lead a type j to choose tool k rather than tool `. Under

centralized tool assignment, the manager can require type j to use tool `. Under strategic

tool choice, the manager has no guarantee that type j will not choose tool k instead. Figure

1 shows the five types of tool overlap in graphical form.

No Overlap (B0): T (si) ∩ T (sj) = ∅ ∀i, j
Exclusive Best Tools (B1): t

∗(si) 6∈ T (sj) ∀i, j
12Decomposability generally makes problems easier to solve (Simon 1962).
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∗(si)) > hsj (t
∗(si)) ∀i, j

Experts at a Tool (B3): ∀si ∃k s.t. hsi(tk) > hsj (tk) ∀j
Dominated (D): ∃ si s.t. ∀ k∃sj s.t. hsi(tk) < hsj (tk)

B0	  
No	  

Overlap	  

B1	  
Exclusive	  	  
Best	  Tools	  

B2	  
Best	  at	  	  	  

Best	  Tools	  

B3	  
Each	  Type	  

Best	  at	  a	  Tool	  

D	  
At	  Least	  
One	  Type	  
Dominated	  

Figure 2: Classes of Tool Overlap Across Types

Thus, either a type is dominated (set D) or it isn’t (set B3). If it is undominated then either

it is best at its best tool (set B2) or it isn’t (the shaded part of B3 that is not part of B2).

And so on until we reach the smallest circle, B0 — different types have completely different

toolkits (i.e., no overlap).

Our initial analysis derives necessary and sufficient conditions for optimal hiring to satisfy the

following regularity properties:13

Hiring satisfies competency ordering if for any types si and sj such that a(si) > a(sj) at

least one si is hired before an sj is hired.

Hiring satisfies competency loading if for any types si and sj such that a(si) > a(sj) the

number of type si’s weakly exceeds the number of type sj’s .

Hiring satisfies monotonicity if | G′ |>| G | implies that for all si, the number of si’s in

group G′ weakly exceeds the number in group G.

Hiring satisfies no dominated hires if no type that is dominated is in any group picked by

13The analogy between problem solving and production requires interpreting our probability of solving the
problem as a quantity. That is slightly problematic in that the probability of solving a problem is bounded,
whereas product-quantity is not. However, none of the counterintuitive solutions that we find appear to be
caused by the fact that success-probabilities are bounded; instead, they are caused by interactions between the
types of problem solvers.
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Hiring satisfies asymptotic diversity if for a sufficiently large group size, the group con-

structed by the manager includes at least one of each undominated type.14

Centralized Tool Choice

In centralized tool choice the manager selects a set of types in the first stage. In the second,

she assigns tools to those types. In that stage the manager assigns each tool to its expert.

Centralized tool choice requires that the manager can monitor and enforce the techniques

problem solvers apply. We make that assumption so as to provide a benchmark, first-best

probability of success.

Suppose first that for each tool tk there exists a type, si, that can flawlessly apply tk, i.e.,

hsi(tk) = 1. Hiring decisions become straightforward: for any given size group, G(n), the

manager will select the n best tools in stage two; working backwards, she then selects each

tool’s flawless type in stage one.15

Next, suppose that there exists a type that dominates all other types. In this case, the optimal

group consists only of this dominant (hence best) type.

Observation 1. For all group sizes, the optimal group under centralized tool choice consists

only of the best type if and only if the best type dominates all other types.

The straightforward proof of this observation – the manager wants to hire the expert for each

tool, and a single type is the expert for all tools – should not undermine the fact that it reveals

how strong an assumption must be made for hiring only the most talented to be an optimal

strategy. Hiring just the highest ability type makes sense only if that type is the expert at every

tool. Breadth and depth of talent will often be at odds with one another. Breadth entails less

depth; conversely, great depth requires specializing in a few tools. If either condition fails to

hold then for some size n, the optimal group will contain multiple types.

To analyze more complicated cases, we assume that the project manager hires sequentially,

adding the type that maximally increases the probability of success. A new type can increase

the probability of success if and only if she selects and correctly applies a tool that nobody in

the status quo group applies correctly. (If somebody in the status quo group picks tool tj but

misapplies it, then a new type can add value by selecting tj and using it correctly.)

To characterize the marginal value of adding type si using tool tk to group G, we let G(FAIL, tk)

denote the event that everyone in G fails to solve the problem and tool tk is applied correctly by

somebody in G. In that case, problem solver si cannot add value because tool tk cannot solve

14Note that hiring could satisfy asymptotic diversity but not the property of no dominated hires. If so, the
optimal group would include all of the undominated types as well as some dominated ones.

15Just because the manager’s hiring problem is easy need not imply that the problem that the team will try
to solve is easy. The probability that a group of size n will solve the problem could be arbitrarily close to zero.
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event that everyone in G fails but nobody has correctly applied tk. (Perhaps nobody even tried

tk.) In this case, type si can only be pivotal, i.e., be the unique problem solver to find the

solution, if she applies tool tk correctly and tool tk solves the problem Hence, the probability

that type si is pivotal for group G using tool tk equals Pr[G(FAIL,¬tk)] · hsi(tk)p(tk). These

concepts and properties are the building blocks of the next result.16

Proposition 1. (Optimal Hiring Rule: Centralized Tool Choice) Under centralized

tool-choice, the optimal addition to group G is the type si who can be assigned a tool tk that

maximizes

P+(si, G) = Pr[G(FAIL,¬tk(G))] · hsi(tk(G))p(tk(G))

Proposition 1 reveals the contributions of diversity (applying a new tool) and ability (the skill

to use a tool correctly). The following corollary shows that neither diversity nor individual

ability predominates. In the conditions for the corollary, type si has more ability and type sj

adds diversity. By altering group composition, either ability or diversity can matter more.

Part (i) states a condition for type sj to add diversity but not improve group success as much

as type si. Part (ii) depicts the opposite situation. One type, si, has an edge in ability that

suffices to make it more valuable to group G. Yet sj ’s diversity-advantage would make sj more

valuable for some other group G′ with the same tools as G.

Corollary 1: Let T(G) denote the tools used by the members of the group G. Given

centralized tool-choice, assume that T (si) ⊆ T (G), whereas T (sj)
⋂
T (G) = ∅.

(i) If P+(sj , G) > P+(si, G) > 0 then there exists an ε > 0 and an sj′ with T (sj′) = T (sj)

such that if max{hsj′ (tk)} < ε then P+(si, G) > P+(sj′ , G).

(ii) If a(si) > a(sj) and P+(si, G) > P+(sj , G) > 0 then there exists a G′ with T (G′) = T (G)

such that P+(sj , G
′) > P+(si, G

′).

We now state a benchmark result (see figure 3) about the regularity properties for centralized

tool choice. In this setting, a type’s value rests on being expert with a tool. A type that has

high ability but is not expert at any tool would never get hired under centralized tool choice.

Proposition 2. Under centralized tool-choice, optimal groups

(i) Can violate competency loading for any type of tool overlap.

(ii) Satisfy competency ordering if and only if each type is the expert at its best tool (B2).

(iii) Never include dominated types.

(iv) Always satisfy monotonicity.

(v) Satisfy asymptotic diversity if and only if each type is best at some tool (B3).

16The optimal addition to a given group, identified in Proposition 1, is generically unique. In knife-edge cases
there are multiple such additions.
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Figure 3: Necessary and Sufficient Conditions for Regularity Properties: Centralized Tool
Choice

The proof of part (i) is straightforward. Competency loading is violated if there are more low-

ability types in an optimal group than a higher-ability type. This can happen if the more able

type is highly skilled at its assigned tool. Suppose, for example, that s1, the most able type,

uses its best tool, t1, correctly with probability one. If that is s1’s only tool then an optimal

group contains only one agent of this type. If a less able type, say s2, deploys its assigned tool

with a probability less than one then hiring multiple s2’s could be optimal. Hence, the less

able type would be more numerous, which violates competency loading. However, even with

no overlap — indeed, even if all types have singleton toolkits — the conditions for competency

loading to hold are quite restrictive: the types with the highest probability of solving the

problem cannot be more likely to use their tool correctly than is any other type .

Part (ii) holds because A type’s ability (competency) equals its probability of solving the

problem with its best tool. If toolkits don’t overlap (B0) then types will be hired in order of

ability. That assumption, though sufficient, is not necessary. A weaker sufficient condition for

competency ordering to hold is that each type be the expert at its best tool (B2). To prove

that condition B2 is sufficient, consider a manager choosing between two new types, si and sj .

Assume without loss of generality that si is more able. By assumption, each type is expert

at its best tool. It follows that neither type’s best tool has yet been assigned and that, by

Proposition 1, the manager will instruct the chosen type to try its best tool. Therefore, the

manager’s optimal personnel choice between si and sj is whichever type has the more promising

best tool. Given B2, the promise of a type’s best tool equals the type’s ability. Hence, if si

is more able than sj , its best tool is more promising than sj ’s, whence the manager’s optimal

personnel choice is si, so competency ordering holds.

To prove that condition B2 is necessary we consider the case where si knows how to apply only

one tool, tk̂. As before, si is more able than sj . Here, however, there exists an sk who is better
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code is to evaluate error messages, the second best technique is to divide and conquer, and the

third best is to write internal checks, with success probabilities of .4, .3, and .2, respectively.

Suppose type s1 can evaluate error messages perfectly and write internal checks half of the time.

Hence, it is the best type. Assume that type s2 correctly evaluates error messages or write

internal checks seventy percent of the time. Finally, suppose that type s3 successfully applies

divide and conquer techniques half the time. Given our assumptions, the second type is more

able than the third type but s2’s ability is based on its skill at evaluating error messages—a

tool that could be better applied by an s1. The optimal hiring rule involves first hiring an s1

followed by an s3 and only then hiring an s2. This violates competency ordering.

Result (iii) holds because in the centralized system optimal groups include only experts. Be-

cause an expert is better than any other type regarding at least one tool, experts are undom-

inated, thus ruling out dominated types. For intuition for result (iv) consider a group whose

members apply unique tools. Each type must be an expert at its tool. The manager will

never reverse her plan of telling si to try tk as the group gets larger. The general proof (in

the appendix) relies on the independence of tool success. Finally, the result on asymptotic

diversity (v) follows from the fact that any tool might solve the problem and no tool solves the

problem for sure. Therefore, every sufficiently large group, includes an expert for each tool.

Asymptotic diversity therefore requires B3. If not, a type that is not an expert for at least

one tool would never be added to the group.

The previous proposition implies, among other things, that hiring by ability would not be

optimal. Nor would hiring by diversity, if we define that as hiring the type most likely to

correctly apply an untried tool. Moreover, even if the highest ability type is also the most

likely to apply an untried tool, that type may be suboptimal, as we show below. In fact, we

show that such rules of thumb can produce marginally worthless hires.

A hiring rule H that selects type H(G) given the group G produces a marginally worthless

hire if for any ε > 0, there exists a group Gε and a type sj 6= H(Gε) such that P+(H(Gε), Gε) <

εP+(sj , Gε).

A marginally worthless hire increases the probability of solving the problem by ε times the

increase from some other type.

Remark 1: Under centralized tool choice, hiring by diversity can produce marginally worthless

hires even with No Overlap (B0). Hiring by ability or (if possible) by ability and diversity can

produce marginally worthless hires unless types are Experts at Best Tools (B2).
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Under strategic tool choice the manager determines the composition of the group but cannot

control what tools the individuals select. Instead, each member of the group chooses a tool

taking into account the choices of the other group members. The extent to which strategic

tool choice creates coordination and incentive problems depends on the number of tools in

each type’s toolkit, on the overlap across toolkits, and on the importance of private benefits.

If all toolkits are singletons then the manager’s problem is easy, as it is de facto equivalent to

centralized tool choice. When the types have multiple tools, incentive problems can arise and

there may be multiple equilibria. In such circumstances strong common interests (high b) or

a decomposable skill-structure (nonoverlapping toolkits) simplify the manager’s problem. The

extent of coordination problems also depends on whether workers choose tools simultaneously

or sequentially.

Simultaneous Tool Choice

We first consider the case in which each member of the group simultaneously selects a tool or

a probability distribution over tools. Under this assumption, a symmetric equilibrium must

exist; further, if tool kits do not overlap then problem solvers apply tools that have higher

promise with higher probability.

Proposition 3. Given any number of types and any number of tools, an equilibrium exists in

which every member of a type chooses the same distribution over tools. Further, if problem

solvers’ tools do not overlap and hsi(tj) ≥ hsi(tj′) for j < j′, in equilibrium type si applies tool

tj with higher probability than it applies tool tj′.

A less intuitive comparative static result follows as a corollary (given non-overlapping toolkits).

If either there exists a large private benefit from solving the problem or the group of problem

solvers is sufficiently large, then introducing a new type of problem solver creates incentives

for those already in the group to shift toward better tools.

Corollary 2: Assume problem solvers have non-overlapping toolkits, choose tools strategi-

cally, and that given a group G, type si plays a symmetric mixed strategy equilibrium strategy

~q∗(G) = (q∗1(G, si), q
∗
2(G, si), . . . , q

∗
K(G, si). If a problem solver who uses a new tool is added to

the group, then the change in the probability that si chooses tool tk is increasing in hsi(tk)p(tk).

Our next two propositions give conditions for the group to be composed only of the best type to

be optimal and for the most diverse group to be optimal. The first result requires a dominant

type and a small private benefit.

Proposition 4: Consider a group of fixed size under simultaneous tool choice. If type s1

dominates all other types and b is sufficiently close to one then (a) any pure Nash equilibrium
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group can implement the first best.

Although a homogeneous group of the best type generates multiple equilibria, this causes no

problems for the manager if the members of the group are oriented primarily toward group-

effectiveness. In such circumstances the individuals will not overuse more promising tools: if it

is collectively optimal for some team members to select less promising tools, this will happen

in equilibrium. The combination of low conflict (group effectiveness is everyone’s priority) and

a type that dominates all others in ability yields intuitive team-theoretic effects (Marschak and

Radner 1972): the manager can hire the type that is obviously the most competent and the

group members will do exactly what she wants. This team-theoretic logic fails if the private

benefit from solving the problem is high. In such circumstances the optimal team may contain

multiple types, even though one type dominates all others. For the most diverse group to be

optimal, no one type can be better at two tools than some other type is at its best tool, a

condition we formalize as follows:

Definition We say that best tools are more promising if the following condition holds: if tj

is the best tool of some type and tk is not the best tool of any type then hsj (tj) > hsk(tk),

where sj is the expert for tj and sk is the expert for tk.

Proposition 5: Consider a group of fixed size under simultaneous tool choice. If best tools

are exclusive and more promising and min(hsi(t
∗(si))) is sufficiently close to one then (a)

the unique pure Nash equilibrium of the group that is fully diverse and satisfies competency

ordering implements the first-best outcome, and (b) no tool vector selected by any other group

implements the first best.

When best tools are exclusive (B1) and the team is fully diverse (every team member is a

different type) then for all b each agent has a strictly dominant strategy of picking her best

tool. Hence this vector of tools is realized in the unique Nash equilibrium. Further, this

equilibrium is the first-best solution if the hiring in stage one satisfied competency ordering,

best tools are more promising than other tools, and the corresponding h’s are sufficiently close

to one. Finally, no other team can satisfy all of these criteria, so all fall short of the first-best.17

Strategic tool choice will typically not cause distortions if the game has a unique Nash equi-

librium which implements the first best outcome. The next result, however, shows that rather

stringent conditions must be satisfied in order to ensure the existence of a vector of tool-

choices that is both optimal for the manager and the unique strategic equilibrium for the team

members.

Proposition 6: Under simultaneous tool choice, the following hold in any unique pure Nash

equilibrium that produces the first best tool-vector and outcome in stage two:

17They fall short in a strong way: Propositions 4 and 5 both show that non-optimal groups cannot produce
the first best outcome in or out of equilibrium.
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(ii) Each type is the expert at the tool that it selects.

(iii) Each tool is selected by at most one type.

(iv) Only the best type, s1, must select its best tool, t∗(s1).

In Proposition 6 condition (i) must be satisfied or multiple equilibria exist. If two problem

solvers of the same type choose distinct tools in an equilibrium, then there exists a second

equilibrium in which they switch their tool choices. Condition (ii) must hold because optimality

requires that each tool be tried by its expert. Condition (iii) follows from our assumption that

each tool has a unique expert. Condition (iv) holds because a type need not be the most skilled

at its best tool, but the incentives must be such that it chooses a tool for which it is the most

skilled type, i.e., it is the expert for that tool.

If types have overlapping toolkits then multiple equilibria may exist. For example, suppose

that s1 and s2 have the same toolkit of {t1, t2}, with s1 the expert at t1 and s2, of t2. If the

types’ skills at each tool are similar (the difference between, e.g., hs1(t1) and hs2(t1) is small)

then a heterogeneous two-person team will exhibit two pure equilibria: in one, each tool is

tried by its expert; in the other, the opposite occurs.

Multiple equilibria may not present a difficult problem for a self-organizing group if b is close

to one. The general intuition is that strategic tool choice can work ‘well’ if problem-solvers are

motivated primarily by team-success. The following result verifies part of this intuition. Note

that this result, unlike Proposition 6, does not assume that the tool choice game has a unique

pure Nash equilibrium.

Remark 2: Suppose for a fixed n there is a unique first best tool vector and a corresponding

optimal team, G∗(n). If b is sufficiently close to one then the following hold for G∗(n) in the

simultaneous tool choice game.

(i) The first best tool vector, chosen by the corresponding experts, is supported by a strict Nash

equilibrium of this game.

(ii) The payoffs in this equilibrium strictly Pareto dominate the payoffs produced by any other

tool vector.

Collective interest overcomes the incentives to duplicate tool choices but it need not solve

coordination problems. For example, suppose that there exist n problem solvers who all have

approximately equal skill with each of n tools. There exists a large set of cases in which the

optimal solution calls for each problem solver to choose a unique tool. However, if there exist

any private incentives, each problem solver would like to choose the best tool. This game has

n! possible equilibria. Coordination would be difficult. And even if coordination occurs, these

equilibria may be Pareto ranked. For example, one type of problem solver might be better

at applying tool j but choose tool k, while another type, which is better at applying k, could
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rules out these inefficient equilibria.

Sequential Tool Choice

Under sequential tool choice, the manager stipulates the order in which members of the team

select the tools that they will try in stage two. These choices are common knowledge and

irreversible. Hence in stage one the manager can accurately forecast the equilibrium behavior

of her subordinates. The fundamental problem that sequential choice can solve is that of co-

ordination failure. We consider two types of coordination failure categorized by the degree of

conflict. The easier one, which we analyze first, involves ‘pure’ coordination failures: the equi-

libria are Pareto-ordered and the manager wants to avoid the perverse outcome of a dominated

equilibrium (the setting of Remark 2).

Corollary 3: Suppose that tool choice is sequential and that otherwise the assumptions of

Remark 2 hold. Then the first best tool vector is realized in equilibrium.

Thus, when tool choice is sequential and team members are mostly oriented toward group-

success, Pareto-dominated outcomes cannot occur.

The second type of coordination failure involves multiple equilibria which cannot be Pareto-

ordered. In this context the individuals disagree as to which equilibrium should be played:

individual incentives are strong enough to make members of the team want to play more

promising tools, leaving their teammates with the burden of trying less promising tools. For

example, consider a group with two members: an s1 and an s2, the respective experts on t1

and t2, the two most promising tools. Each type can use either tool. There are two pure

Nash equilibria: in one, s1 tries t1 and s2 tries t2; in the other, each specialist tries the other

type’s tool. Because t1 is considerably more likely to solve the problem, each type prefers the

equilibrium in which s/he tries t1. The manager, of course, wants each tool to be selected by

its expert. Sequential tool choice secures this: the manager tells s1 to choose first, s1 picks t1,

forcing s2 to select t2. Sequential choice creates a game with a first-mover advantage which

can be used by the manager to maximize the probability of solving the problem.18 (See Bendor

and Page [2016, Proposition 7] for a generalization of this example to groups of arbitrary size.)

Of course this procedure cannot work if private incentives so powerful that each type has

a dominant strategy of picking t1. In such circumstances the choice-sequence is irrelevant.

Hence the ability of the manager to stipulate the order of tool-selection has the most value for

18Recall that if the parent wants the children to implement the fair (i.e., equal) split then she tells one child
to cut the cookie and the second to select a piece. If the children’s utility is strictly increasing in the size of
their piece then in the unique equilibrium the cutter divides the cookie in half. The manager in our model has
substantively different preferences but her exploitation of the conflict among the individuals is similar to the
parent’s exploiting the children’s conflict over the cookie.
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then multiple equilibria will be Pareto-ordered. This is not a difficult coordination problem;

self-organizing groups should be able to handle such issues. On the other hand, extreme

congestion problems arise if there are strong private incentives to solve the problem. Every

agent has the same dominant strategy to apply its best tool. In these cases, sequencing tool

choices is ineffective; only centralized tool-selection produces the first-best solution.

Regularity Properties in Strategic Tool Choice

Strategic tool choice requires more stringent assumptions to ensure that the regularity proper-

ties hold (see figure 4). We confine attention to sequential tool choice and consider only pure

strategy equilibria. The next proposition covers all five regularity properties. Comparing these

results with centralized tool choice (proposition 2) reveals that the final three properties are

much weaker while the first two are unchanged.
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Figure 4: Necessary and Sufficient Conditions for Regularity Properties: Strategic Tool Choice

Proposition 7: Under sequential strategic tool choice, optimal groups

(i) Can violate competency loading for any kind of tool overlap.

(ii) Satisfy competency ordering if and only if each type is expert at its best tool (B2).

(iii) Can violate no dominated types for any kind of tool overlap.

(iv) Can violate monotonicity for any kind of tool overlap.

(v) Satisfy asymptotic diversity if and only if each type has exclusive best tools (B1).

Competency loading fails in the strategic setting for the same reason that it fails under cen-

tralized tool choice: an effective tool (one with a high p) may be easy to apply (its expert’s h

is high), making intra-tool redundancy unnecessary. Competency ordering again holds so long

as each type is the expert at its best tool. The logic is identical to that of centralized tool

choice. If a type is the expert at its best tool then the best tools of more able types are more

promising. The corresponding specialists should be hired earlier than types that are experts

of inferior tools.

The conclusions about competency loading and competency ordering hold regardless of whether

individuals care primarily about team success (high b) or personal gain (low b). Indeed, the

results hold even if b varies arbitrarily across types. The relative unimportance of private

incentives underscores the power of non-overlapping toolkits and of the importance of the

distribution of skills across types.

Strategic tool choice flips the result about hiring dominated types. This finding rests on the

possibility that a dominated type creates fewer strategic problems. Suppose, for example, that

type s1 is perfect at applying tool t1 and can apply tool t2 correctly half the time. Suppose that

an s2 type can apply both tools correctly slightly less than half the time; hence s1 dominates

s2. For a large class of parameter values, a team of two s1’s will both choose tool t1 whereas

a diverse team will choose both tools. Thus the (s1, s2) team will outperform the team of two

s1’s.
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dominated type. If the s1 type is extremely good at t1 then that specialist may be unable

to credibly commit in stage one to selecting t2 in stage two. In contrast, if s2’s comparative

advantage in t2, relative to her skill in t1, is sufficiently strong then the manager knows that

it is a best response for an s2 to follow through on a promise to try t2. Thus, although that

type has no absolute advantage with any tool, it has a strategic comparative advantage at an

inferior tool—the problem solving version of Ricardo’s insight.

As an index of the dominated type’s comparative advantage in tool t2 we use θs2(t2) =

1 − hs2 (t1)

hs2 (t2)
. This index is positive if s2 has any comparative advantage in tool t2 (i.e., if

hs2(t2) > hs2(t1)) and reaches its maximum value of one if s2 is completely feckless at t1. This

strategic comparative advantage can be useful to the manager even when the inferior type, s2,

is completely dominated by s1. This strong sense of skill-domination is defined below.

Definition: Type si completely dominates sj if T (sj) ⊆ T (si) and min{hsi(tk)|tk ∈ T (si)} >
max{hsj (tl)|tl ∈ T (sj)}.

Complete domination is about as clear a skill-difference as can be imagined: si is better at

everything in its toolkit than sj is at anything in its repertoire. (This is a special kind of

pairwise domination, which in turn is nested inside ordinary domination.) Recall that under

centralized tool choice a rational manager never selects a type that is dominated in any way,

e.g., even if domination requires all other types. In contrast, under strategic choice she may

hire a completely dominated one.

Remark 3: Suppose there are two types and s1 completely dominates s2. The best tool of s1

is t1 and s2’s best tool is t2. If tool choice is strategic then there exists a vector of parameter

thresholds {b∗ > 0, h∗ < 1, θ∗ < 1, p∗ > 0} such that if b < b∗, hs1(t1) > h∗, θs2(t2) > θ∗, and

p(t2) < p∗ then (a) the optimal two-person group is (s1, s2) and (b) in its unique equilibrium

in stage two each type picks its best tool.

As is often the case, the manager’s quest here is for tool diversity, and if this won’t be imple-

mented in the Nash equilibrium of a homogeneous team of the most able type then in some

parametric regions it is worthwhile to accept a dominated worker in order to attain tool di-

versity.19 Next, we show how monotonicity can fail for any overlap, including the case of No

Overlap (B0). The violation arises because as groups grow larger, private benefits decrease:

the glory of solving the problem will likely be shared by several teammates. This weakens the

incentives for choosing a unique, less effective tool, having the same effect as increasing b, the

collective benefit.
19Note that here s2 is dominated by just one type. If it were dominated by a set of other types then the

Ricardian property need not hold. Suppose, for example, that s2 is a jack-of-all-trades: worse than s1 regarding
t1 but better on t2, and worse than some third type, s3, regarding t2 but better on t1. Here s2 is dominated
by the combination of s1 and s3. This feature could rob s2 of its strategic comparative advantage in t2: if s3 is
sufficiently bad at t1 then his promise to try t2 will be credible. Thus a team of (s1, s3) will deliver tool diversity
in equilibrium and the manager will get what she wants without putting a dominated type on the team.
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though technically involved, relies on a straightforward construction. Suppose there are three

types and two tools. Assume that the best type can apply the better tool correctly with

probability one, the second type can correctly deploy the better tool and a lesser tool with

probability h < 1, and the third type has only the inferior tool in his repertoire. Further,

suppose that the second type is marginally more capable with the lesser tool than is the third

type. When the private benefits for solving the problem are large, the second type will choose

the better tool when added to a team of one person. Thus, the third type is a more valuable

addition to that group. The asymptotic result relies on similar logic.

We conclude this section by stating an analog of our previous result for centralized tool choice

relating the potential loss from hiring rules based on ability, diversity, or the combination of

diversity and ability.

Remark 4: Under sequential tool choice, hiring by diversity can produce marginally worthless

hires even when toolkits do not overlap. Hiring by ability or ability and diversity can produce

marginally worthless hires unless experts at best tools (B2) holds.

This claim relies on the same logic as in the centralized case. Using diversity alone can lead

to poor outcomes because team performance depends on the tools applied, not on the set of

potential tools. Balancing ability and diversity can also produce worthless hires when problem

solvers are not experts at best tools because as we have seen, a high ability problem solver

might fail to choose a new tool.

If, however, each person brings different expertise to the table then overlap will not arise. We

consider that case next.

Experts and the Opportunity Costs of Expertise

It is well-known that it takes many years and much effort to become highly proficient in

chess, cryptography, physics, and other informationally-intensive domains (Ericsson et al 1993;

Feltovich et al 2006). Indeed, it is generally believed that it is impossible to become a top notch

expert in such fields without thousands of hours of intense study and practice. (How much is

training versus real experience varies across domains and over time—e.g., ‘book learning’ in

medicine has greatly increased over the last century—but the total number of necessary hours

is both high and not all that variable across informationally-intensive domains.) This last

section incorporates that robust empirical regularity by making an assumption that reflects

the temporal opportunity cost of expertise: in modern economies, everybody faces a time

budget that binds. In the context of our framework, that means, roughly speaking, that a

type can become proficient in only a few tools. Hence candidates for the team might be either

specialists, who are good at a few tools, or generalists, who are mediocre at many.

To derive the formal conditions necessary for this to hold, we say that type sj is highly spe-

cialized if (1) it is the expert at some tool, say tj , and (2) for all other tk ∈ T (sj), there is a
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εsj < h?sk(tk), the skill-level of the expert at tk; thus a highly specialized type is an expert at

only one tool. If becoming an expert is time-consuming then everyone in an optimal group

will be highly specialized. This result holds for both simultaneous and sequential games.

Remark 5: We assume a group of a fixed size, n. If all experts are highly specialized and

none is perfect at applying any tool then everyone in any optimal group of size n is highly

specialized. If in addition b < 1 then for any optimal group, G∗(n), there exists an ε > 0 such

that if max{hsi(tj)} < ε for every tj ∈ T (si) which isn’t si’s best tool, then everybody in G∗(n)

has a strictly dominant strategy of selecting his best tool and the tool vector produced by the

corresponding unique Nash equilibrium is the first-best.

Thus, this high degree of skill-specialization delivers just what the manager wants: problem-

solving effectiveness and clean strategic properties. The former is easy to see: in general the

first-best tool vector is produced only by experts and Remark 5 assumes that all experts are

highly specialized, so this part of what the manager wants follows immediately.20 The strategic

benefits of skill-specialization are a bit more subtle. It helps to examine the limiting case in

which experts are completely feckless with everything in their repertoire that isn’t their best

tool. (Technically this special case is excluded from the feasible set because it means that

hsj (tk) = 0 for all k 6= j and we assume throughout that hsi(·) is strictly positive for all i,

but it is a useful limiting case.) In this circumstance an expert has no chance of solving the

problem with anything other than his best tool, so trying that tool is obviously a dominant

strategy for every expert for any composition of G(n); eliminating the knife-edge case of b = 1

ensures that selecting one’s best tool is strictly dominant.

We can see the strategic advantage of hiring only experts from a somewhat different angle by

re-using the idea of strategic comparative advantage introduced earlier. Remark 3 showed that

the manager may find it worthwhile to put a dominated type on the team if that type enjoys

a strategic comparative advantage in a tool that the manager wants the group to try. In the

context of Remark 5, however, only experts enjoy strategic comparative advantage. This is a

direct effect of their being highly specialized: since experts are inept at anything that isn’t

their speciality they have a comparative advantage only with their best tool, which is exactly

what the manager wants the experts to use. All strategic coordination problems disappear.

Remark 5 implies that if the first best tool vector is completely diverse then so is the optimal

team. In such circumstances tool diversity and team diversity are linked. Nevertheless, compe-

tency loading can still be violated: a less promising tool, say tk, might be more difficult to apply

than a more promising one, tj , hence there may be more tk experts on the team than tj special-

ists. It is straightforward to show that the other four regularity hiring properties—competency

20Remark 5 does not presume complete skill specialization; there can be generalists in the set of types. But
every generalist-type is dominated by the set of experts whose repertoires collectively span that generalist’s
toolkit.
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gic tool choice under the assumptions of Remark 5. Hence we might regard this result as

identifying a set of conditions that make the manager’s hiring problem a ‘nice’ one.

Extensions: Partial Solutions, Multiple Tools, and Uncertainty

Our framework makes three strong assumptions. First, we do not allow for the possibility that

a tool is a partial solution. In some cases, one tool might solve a part of a problem while a

second tool solves the remainder. Second, we assume that a problem solver applies a single

tool. In practice, a problem solver might apply several. Third, we assume that in stage one

the manager knows what problem will confront the team in stage two. Sometimes, however,

more than one problem may arise and a manager is uncertain which it will be. In this section,

we describe how our model can be extended to account for all three possibilities.

Consider the following sketch of a model that allows for partial solutions. We first assume that

each problem has two parts, denoted by “/” and “\” which together form an X. To simplify

the analysis, we assume that if a problem solver applies a tool correctly on one part then she

applies it correctly on all parts. We can then rewrite the probability that type si solves the

problem using tool tk as hsi(tk) · p/(tk) · p\(tk), where p/(tk) and p\(tk) correspond to the

probabilities of solving the two parts of the problem, given that the tool was applied correctly.

The probability that two problem solvers, si and sj , who apply tool tk solve the problem equals

the probability that at least one of them correctly applies the tool and that the tool solves

both parts of the problem:

[hsi(tk) + hsj (tk)− hsi(tk) · hsj (tk)]p/(tk) · p\(tk)

In contrast, the probability that two problem solvers, si and sj , who apply tools tk and tk′

respectively, solve the problem equals the sum of probabilities that each solves it on their own

minus the probability that both solve it plus the two cases where each solves a different part

of the problem.

[hsi(tk)p(tk)+hsj (tk′)p(tk′)−hsi(tk)p(tk)·hsj (tk′)p(tk′)]+hsi(tk)·hsj (tk′)[p/(tk)·p\(tk′)+p\(tk)·p/(tk′)]

The possibility that each tool solves a different part confers an advantage to groups that apply

diverse tools. This benefit from diversity is the main effect of allowing partial solutions.21 A

straightforward argument shows that because success requires only that at least one tool solve

each part, increasing the number of parts makes more tools even more advantageous. Thus,

21That advantage exists even if we assume that problem solvers might apply tools correctly to only a part of
a problem.
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complements.

A second question is how the potential for multiple solutions influences incentives. Notice first

that if tool kits do not overlap, partial solutions have no effect other than to make weaker tools

more promising at the margin. Some incentive problems would be attenuated. For example,

the second member of a type who has skill with two tools would have a stronger incentive to

choose the inferior tool. In cases where the better tool has a higher probability of success on

one part of the problem and the weaker tool has a higher probability on the remainder, the

incentives for the second member of the type added to the group would be clear: choose the

inferior tool.

None of this implies that allowing for partial solutions overcomes all incentive problems.

Rather, it shifts the range of parameters for which incentive problems arise. The potential

for violations of monotonicity and of no dominated types still exists. The only difference is

that with partial solutions, tools with even lower probabilities of success should be applied to

problems.

Including the possibility that a type can apply multiple tools requires assumptions about the

number of tools applied. If a type applies all its tools then no dominated type would ever be

hired. If a type can apply at most K tools, then the assumption has no effect unless types

overlap in their tools. Accordingly, violations of competency loading, monotonicity, and no

dominated types would still arise.

If we fix the number of tools that a type can apply, the same kinds of incentive problems arise

as in the single tool case. For instance, suppose that at most three tools can be applied by

any problem solver and that type s1 has skill with tools t1, t2, t3, and t4. A second type s1 on

the team would face a choice between applying any of the four sets consisting of three tools.

Among these, the sets {t1, t2, t3} and {t1, t2, t4} have the highest individual success rate. If

type s1 is a virtuoso with tools t1 and t2, the choice between these two sets for the second type

s1 is equivalent to choice between t3 and t4 when two other problem solvers apply tools t1 and

t2 and third agent applies t3.

Using similar constructions, the arguments used for single tools carry over to the multiple tool

setting with one important caveat. Now, those proofs require particular assumptions on tool

overlap. More importantly, if types can apply multiple tools then a type’s skill with multiple

tools becomes more valuable. Paradoxically, a type with skill at a single, novel tool may be

hired earlier because other tools will be more likely to have been applied correctly.

Third, the manager may not know for certain in stage one which problem will confront the

team in stage two. The simplest version of this extension would presume an exogenously

fixed probability distribution over a set of possible problems and zero conflict within the team

(b = 1).22 In such a setting it is intuitive that problem uncertainty will increase the value of

22In more complex versions some of the problems would be profitable opportunities discovered by enterprising
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in stage one the manager doesn’t know which state will arise in stage two. Further, we suspect

that the existence of unlikely but dangerous problems—a fire in an oil refinery; an earthquake

in a populous area—heightens the tension between ability, as measured by skill with tools

that are likely to be needed, and diversity. Indeed, when it is difficult to identify (diagnose)

problems—is this an X or a Y ?—it may be optimal to include dominated generalists on the

team even when there are no issues of credible commitment.23 Finally, if the set of possible

problems is very large then long-standing issues of organizational boundaries (Williamson 1975)

can arise. When maintaining optimal diversity inside the firm is too expensive then it will be

outsourced. This in turn will generate interesting contracting issues.

Our main findings hold in all three extensions. Optimal groups must balance ability, as mea-

sured by skill with the most promising tools, and diversity, as measured by skill with unique

tools. In addition, in some situations the manager has incentives to take unconventional ac-

tions, such as hire dominated types (because they are more likely to apply high margin tools)

or violate monotonicity (because increasing team size changes the private benefit from solving

the problem).

Discussion

In this paper we construct a framework to analyze team problem solving under centralized

and decentralized tool choice. Our main results can be grouped into four sets. First, we

characterize optimal team composition. That result reveals the direct benefits from diverse

tools. In highlighting the importance of applying diverse tools, our main findings align with

a growing empirical literature on cognitive diversity and problem solving in organizations

(Wuchty et al 2007), crowds (Lakhani and Jepperson 2007, Jepperson and Lakhani 2010),

academic publishing (Jones, et al 2008, Uzzi et al 2013), and team-based IQs (Bachrach et al

2012). These studies consider nearly every academic paper ever published and find positive

correlation between diversity, measured by email address, and impact and citations (Freeman

and Huang 2014). Deeper dives into smaller samples find a significant contribution of diversity

as captured by references to atypical literatures—a crude proxy for our diverse tools (Shi 2009,

Schilling and Green 2011).

Second, we show that if a manager can control tool choice then optimal groups never include

dominated types but they must satisfy asymptotic diversity. If we further assume specialists to

be the best at their best tools then optimal groups also satisfy competency ordering; since we

assume that each tool has a unique expert, monotonicity holds as well. However, competency

managers (Hsieh et al 2007) and hence endogenous.
23We suspect, however, that only strategic problems can prompt a rational manager to hire a type that is

pairwise dominated. A type that is dominated though not pairwise so can be a useful jack-of-all-trades in a
small problem solving team that is unsure what problem it will face; one that is pairwise dominated lacks this
decision theoretic justification.
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optimal groups. Together, these results imply that project managers with tool assignment

authority seeking to build optimal groups can abide by some, though not all, of a standard set

of hiring practices.

Our third set of results characterize properties of the Nash equilibria in the strategic tool

selection game. These results underpin the fourth set which show that the above regularities

do not hold when the manager selects team members but lacks the authority or information

necessary to assign tools. In those cases, optimal groups can and typically will violate all of

the standard properties. True, competency ordering—better types are hired earlier—holds if

types are experts at their best tools, and asymptotic diversity holds if each type has Exclusive

Best Tools. But apart from those special cases, none of the conventional hiring rules (e.g., hire

the best) apply.

These third and fourth sets of results apply to environments in which the manager does not

or perhaps cannot know the tools a worker applies. Given the difficulties that can arise from

strategic tool choice, one might then think that organizations should not allow problem solvers

the freedom to choose tools. Such a policy would require the manager to possess deep and

accurate knowledge of workers’ repertoires and skill levels and knowledge of the efficacy of

different tools for the problem at hand. This may be unlikely. Empirical studies of this type of

environment reveal a tendency toward hiring people with general skills (Lazear 2009), i.e., lots

of tools. Our model suggests a possible flaw in that approach. Generalists will have incentives

to choose their best tools, which may overlap across types. If the manager cannot dictate

which tools are tried, the firm may prefer specialists who create fewer coordination problems

regarding tool choice.

A manager could, of course, ignore the possibility of unorthodox solutions and stick with the

standard rules despite knowing that doing so could produce suboptimal groups. That strategy

would be practical if the violations produced modest inefficiencies—if they were nearly efficient.

We show, however, that things can be much worse than that: hiring by ability, hiring by

diversity, and even hiring by both diversity and ability can produce hires that are worthless

at the margin. Thus, a manager should design groups via the more combinatoric tool-based

approach described here. This approach may entail non-traditional hiring practices: e.g.,

putting a specialist with a dominated set of skills on the team, removing previously hired

workers, and so on.

When modeling strategic tool choice we have assumed both individual and collective incentives.

If a manager can weaken individual incentives, be they financial or reputational, she reduces

the coordination problems. However, because tool choice is discrete, coordination failure may

persist even when individual incentives are weak. Recall also that coordination failure can arise

because a team member’s actions can affect other agents’ incentives. When a new problem

solver successfully applies a tool that nobody on the existing team has correctly applied, the
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for existing team members to choose better tools even if someone else on the team is also using

that tool rather than unique tools. This dampens diversity and reduces the value of the new

tool.

We also discuss three extensions. The first allows for partial solutions. The second enables

individuals to apply multiple tools. The third allows for the possibility that the manager

is uncertain which problem will confront the team. None of these extensions qualitatively

changes our results. In yet another extension one could allow individuals to differ in their

capacity to apply tools. Problem solvers with greater capacity could apply more tools and

would have higher measured ability. This extension would tilt the results in favor of higher

capacity individuals but would not negate diversity’s value. Diversity would contribute to team

performance so long as the set of tools relevant to a task exceeds the repertoire of any one

person.

In addition to their applications to hiring and staffing within firms, our findings have impli-

cations for crowdsourcing, i.e., presenting a problem to many problem solvers who need not

belong to the organization. Managers have little to no control over the tools used by a crowd.

As a crowd becomes larger, individuals pursuing a private reward have greater incentive to

try more promising tools, attenuating the increase in crowd effectiveness as a function of size.

If participation is costly, individuals should also be less likely to join larger crowds (Terwi-

esch and Xu 2008). On the other hand, for problems that might be solved by many different

tools, the effect of the participation cost would be smaller. This logic aligns with the finding of

Boudreau, Lacetera, and Lakhani (2011) that the free rider problem is less pronounced in more

uncertain domains where the appropriate tool kits are larger. Relatedly, for organizations that

do both in-house research and solicit the advice of outsiders (i.e., external crowdsourcing), the

crowd’s presence could induce in-house researchers to use more promising tools.

In sum, our framework allows us to unpack the contributions of individual ability and collective

diversity in problem solving and to characterize the incentive problems that arise in tool choice.

We find that the potential for unconventional solutions is generally less when toolkits are

disjoint, implying a strategic benefit from specialized expertise as well as the direct problem-

solving benefit of diversity.
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Appendix

Proof of Observation 1: The formal proof relies on Proposition 1 which states that the optimal

addition to a given group G is the type si that maximizes

P+(si, G) = Pr[G(FAIL,¬t∗si(G))] · hsi(t∗si(G))p(t∗si(G))

By assumption, type hs1(tk) ≥ hsi(tk) for all si. The result follows.

Proof of Corollary 1: To prove part (i), note first that the conclusion holds if max{hsj′ (tk)} = 0

because in that case sj′ is completely worthless whereas P+(si, G) is strictly positive. Since P+(si, G)

must continue to exceed P+(sj′ , G) if j′’s skill at using any tool in his toolkit is sufficiently close to

zero, the result follows. To prove part (ii) construct a G′ such that for every tk ∈ T (si) there is a pure

specialist in G′, i.e., some type sk for which T (sk) = {tk}. If hsk(tk) = 1 for all such pure specialists

then si is completely worthless to G′ because every tool that si possesses will be tested with probability

one by this group. Hence if the hsk(tk)’s are sufficiently close to one then P+(si, G
′), though strictly

positive, can be arbitrarily close to zero, whence P+(sj , G
′) > P+(si, G

′).

Proof of Proposition 2: Parts (i) and (ii) are proved in the text. Here we prove the other three

parts. We start with (iii). Under centralized tool choice, the manager can assign any member of the

group a specific tool. Therefore, if the manager hires a type sj and assigns it tool tk, then sj must be

best at applying tool tk. This proves (iii).

The proof of (iv) is by contradiction. Suppose there is some group size, n†, when the manager will

for the first time kick out a type, say si, whom she hired earlier. Let us use n∗ to label the smaller

group-size at which the manager (1) added an si to the group and (2) for sizes n∗ + 1, . . . , n† − 1 she

did not add any si’s to the group. Suppose that for |G| = n∗ the manager tells the next type hired, si

to use tool tk. The pair, (si, tk), must satisfy the optimality condition of Proposition 2. (Proposition 2

immediately implies that si must be the expert of tk; otherwise, the planned pair of (si, tk) would not

be optimal for |G| = n∗. By assumption, for |G| = n† the manager removes the si hired at |G| = n∗,

replacing him with (say) sj . Because si is the expert at tk, the manager must be planning to tell the

new member, sj , to try some other tool, say t`. Hence, for |G| = n† it must be true that the pair (sj , t`)

increases the probability of group success more than does the (si, tk) pair.

But if this is true for |G| = n† then it must have been true for |G| = n∗. Given that si is the expert at

tk, none of the other types added in-between n∗ and n† are using tools tk. Hence the probability that

tk will be tested by the group is unchanged from |G| = n∗ to n†. In contrast, the probability that t`

will be tested by the group may have gone up, if a sj has been added in that interim and the manager

plans to order that sj try t`. Or the test-probability is unchanged, if no (sj , t`) pair has been added in

the interim. In either case, given that the probabilities of different tools are succeeding are independent

of each other, if the marginal contribution of (sj , t`) exceeds that of (si, tk) for |G| = n† then the same

strict inequality must have held when |G| = n∗. But then the choice of si given the group-size of n∗

would not have been optimal after all, and we have a contradiction.

To prove (v), we first note that if tk is a new tool, then a straightforward argument shows that the

manager assigns the same tools to the existing members of G after a problem solving using tool tk is

added to G. Given a type si and a tool t∗si that has been assigned to the group, the increase in the
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group’s probability of solving the problem equals Pr[G(FAIL,¬t∗si(G)] · hsi(t∗sip(t
∗
si). This converges to

zero as the number of type si’s using tool t∗si increases. In contrast, given there exists a finite number

of tools and none solves the problem with probability one, the increase in the probability of solving the

problem given a type sj who is best at tool tk which is not used by G equals Pr[G(FAIL] · hsj (tk)p(tk),

which is strictly positive.

Proof of Remark 1: The proof is by construction. Assume that tool t1 solves the problem with

probability 0.8 and t2 solves it with probability 0.2 and that tool t3 solves the problem with probability

ε. Suppose that G consists of one specialist who always possesses tool t1 and one specialist who possess

tool t2 with can correctly apply that tool half the time. Thus, G solves the problem with probability

0.8 + (0.2)(0.1) = 0.82. Assume that type si applies tool t1 with hsi(t1) = 0.15 and tool t3 with

probability hsi(t3) = 0.07
0.18 and that type sj is a specialist who applies tool t2 with hsj (t2) = 0.4. By

construction type si has an ability of 0.15 and is more diverse that type sj , which has an ability of 0.08.

The manager will assign si tool t3, so the probability that G and si solve the problem equals:

0.82 + (0.18) · 0.007

0.18
· ε = 0.82 + 0.007ε

The manager will assign sj tool t2, so the probability that G and sj solve the problem equals

0.8 + 0.2[(0.5)(0.2) + (0.5)(0.4)(0.2)] = 0.828

Thus, P+(si, G) = 0.07ε and P+(sj , G) = 0.08. Note that this example requires that type si is not best

at its best tool. If both types are best at their best tools then hiring by ability will be optimal.

Proof of Proposition 3: Follows from Nash (1951). Choose a type si and assume any set of strategies

by the individuals of the other types. This can be thought of as the environment for the individuals of

type si. By Nash (1951), individuals of type si have a symmetric best response. Therefore, a symmetric

equilibrium exists. To prove the second part of the proposition, recall that pk ≥ pk′ . In a symmetric

by type equilibrium, the payoff from choosing tool tk and tool k′ must be equal. Assume there exist

Ñ+1 individuals of a given type, and suppose that the remaining Ñ individuals play the mixed strategy

equilibrium. Conditional on rk of those individuals choosing tool tk and rk′ choosing tool k + 1, let

ρi(`) denote the probability that i of the ` individuals not choosing tool tk or tool tk′ individuals solve

the problem. These individuals need not be of this same type. Further let q̂ = (1 − qtk − qtk′ ) The

payoff from choosing tool tk, πk(~q) can be written as follows:
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πk(~q) = pkhikpk′hik′

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
1 +

b

1 + rk + rk′ + i

)
+ pkhik(1− pk′hik′)

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
1 +

b

1 + rk + i

)
+ (1− pkhik)pk′hik′

 Ñ∑
rk=0

Ñ−rk∑
rk′=1

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)


− (1− pkhik)pk′hik′

 Ñ∑
rk=0

Ñ−rk∑
`=0

Ñ !

rk!`!
qrktk q̂

`ρ0(`)


+ (1− pkhik)(1− pk′hik′)

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=1

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)



The fourth term subtracts off the case where no one chose tool k′ and none of the other tools solves

the problem. The expression for the payoff from playing k′ can be written similarly. It follows that the

payoff from choosing tool tk equals the payoff from choosing took k′ if and only if:

pkhik(1− pk′hik′)

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
1 +

b

1 + rk + i

)
+ (1− pkhik)pk′hik′

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)


− (1− pkhik)pk′hik′

 Ñ∑
rk=0

Ñ−rk∑
`=0

Ñ !

rk!rk′ !`!
qrktk q̂

`ρ0(`)


= pk′hik′(1− pkhik)

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
1 +

b

1 + rk′ + i

)
+ (1− pk′hik′)pkhik

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)


− (1− pk′hik′)pk′

 Ñ∑
rk′=0

Ñ−rk′∑
`=0

Ñ !

rk′ !`!
q
rk′
tk′
q̂`ρ0(`)



Which can be simplified as:
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pkhik(1− pk′hik′)

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
b

1 + rk + i

)
+

Ñ∑
rk′=0

Ñ−rk′∑
`=0

Ñ !

rk′ !`!
q
rk′
tk′
q̂`ρ0(`)


= pk′hik′(1− pkhik)

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
b

1 + rk′ + i

)
+

Ñ∑
rk=0

Ñ−rk∑
`=0

Ñ !

rk!`!
qrktk q̂

`ρ0(`)



Given pkhik > pkhik, pkhik(1− pk′hik′) > pk′hik′(1− pkhik). It suffices to show that

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
b

1 + rk + i

)
+

Ñ∑
rk′=0

Ñ−rk′∑
`=0

Ñ !

rk′ !`!
q
rk′
tk′
q̂`ρ0(`)


<

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
b

1 + rk′ + i

)
+

Ñ∑
rk=0

Ñ−rk∑
`=0

Ñ !

rk!`!
qrktk q̂

`ρ0(`)



implies qtk > qtk′ . We will show that qtk < qtk′ implies the opposite inequality. Suppose that qtk < qtk′ .

The right most term of the first expression will then exceed the rightmost term of the second expression.

Therefore, it suffices to show that qtk < qtk′ implies

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
b

1 + rk + i

)
>

 Ñ∑
rk=0

Ñ−rk∑
rk′=0

Ñ−rk−rk′∑
`=0

Ñ−rk−rk′∑
i=0

Ñ !

rk!rk′ !`!
qrktk q

rk′
tk′
q̂`ρi(`)

(
b

1 + rk′ + i

)

Notice that the values of rk and rk′ both range from 0 to Ñ . Therefore, the comparison depends on

the relative weights assigned to each term. Given qtk < qtk′ , the values of rk′ are biased towards higher

values, completing the proof.

Proof of Corollary 2: Let z denote the number of problem solvers of some other type other than si or

the new type who solve the problem. We show that the result holds for any z. The assumption of non

overlapping toolkits implies additive separability of the payoff function for any one type as a function

of the number of problem solvers of another type who solve the problem. Therefore, if the result holds

for any one z, it also holds for a probability distribution over z.

The formal proof relies on lemma 1 stated below. Assume that there exists Ñ individuals of type si,

who choose tools tk and tk′ with probabilities qsi(tk) and qsi(tk′) such that qsi(tk) > qsi(tk′). Define

the difference in the probabilities of exactly ` winners, Dsi,`(tk′,tk), to be probability that exactly ` of
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the si’s choose tool tk′ times the probability that tool tk′ was successfully applied by a single type si

problem solver and tool tk′ solved the problem, minus the probability that exactly ` of the si’s choose

tk. times the probability that tool tk was successfully applied by a single type si problem solver and

tool tk successfully solved the problem.

Lemma 1. Given qsi(tk) > qsi(tk′), there exists an `′ such that for any ` ≤ `′, Dsi,`(tk′ , tk) ≥ 0 and

for any ` ≥ `′, Dsi,`(tk′ , tk) ≤ 0

Proof of Lemma 1: The probability of exactly ` of the si choosing tool tk equals
(
Ñ
`

)
q`tk(1−qtk)(Ñ−`).

The probability of exactly ` of the si choosing tool tk′ equals
(
Ñ
`

)
q`tk′ (1− qtk′ )

(Ñ−`). The latter exceeds

the former if and only if

(
qtk′
qtk

)`
≥
(

1− qtk
1− qtk′

)Ñ−`
Given qsi(tk) > qsi(tk′), it follows that there exists and `′ such that the left hand side exceeds the

right hand side if and only if ` ≤ `′. The result will still hold if we multiply the left hand side of the

inequality by a constant, though the value of `′ may change. Let that constant equal pk′hik′
pkhik

. We can

write Dsi,`(tk′ , tk) as follows

Dsi,`(tk′ , tk) =

(
Ñ

`

)(
pk′hik′q

`
tk′

(1− qtk′ )
(Ñ−`) − pkhikpkhikq`tk(1− qtk)(Ñ−`)

)
This completes the proof of the lemma. To prove the corollary, assume Ñ problem solvers of type si.

Take the actions of Ñ − 1 of those problems solvers as given according to a symmetric by type mixed

strategy equilibrium ~q∗(G). Let Q`tk denote the probability that exactly ` of Ñ − 1 type si problem

solvers choose tool tk in equilibrium. Note that expected payoff to a type si conditional on using

tool tk when exactly ` − 1 other type si problem solver use tool tk equals 1 + b
Z+` Consider the tool

choice by the Ñth problem solver of type si. If tools tk and tk′ are used in equilibrium with strictly

positive probability by type si, then each must have the same expected value. Let Pr(G \ si, X) equal

the probability that group solves the problem without si. The following equation must be satisfied in

equilibrium.

pkhik

Ñ−1∑
`=0

Q`tk(1+
b

Z + `
)+(1−pkhik)Pr(G\si, X) = pk′hik′

Ñ−1∑
`=0

Q`tk′ (1+
b

Z + `
)+(1−pk′hik′)Pr(G\si, X)

Recall that if there exists no overlap then pk > pk′ implies that that q∗tk(G, si) > q∗tk′ (G, si). Therefore,

by lemma 1 there exists an `′ such that for any ` ≤ `′, Dsi,`(tk′ , tk) ≤ 0 and for any ` ≥ `′, Dsi,`(tk′ , tk) ≥
0, where Dsi,`(tk, tk′) equals the probability that exactly ` problem solvers use tool tk′ and a single

problem solver of type si successfully applies tool tk′ minus the probability that exactly ` use tool tk a

single problem solver of type si successfully applies tool tk′ . We can rewrite the equilibrium equation

as follows:

(pkhik − pk′hik′)Pr
[
(1 +

b

Z + `
)− Pr(G \ si, X)

]
=

Ñ−1∑
`=1

Dsi,`(tk′ , tk)(1 +
b

Z + `
)

This article is protected by copyright. All rights reserved.



A
u
th

or
M

an
u
sc

ri
p
t

REFERENCES REFERENCES

If we add a problem solver that uses non overlapping tools, and if that problem solver does not solve the

problem, then there is no effect on the payoffs from playing either tool. However, if the new problem

solver solves the problem then the left hand side of the equation becomes zero because the problem is

always solved. Note then that if b is sufficiently large then the left hand side will be positive. Therefore,

we have that

0 >

Ñ−1∑
`=1

Dsi,`(tk′ , tk)(1 +
b

Z + `
)

To simplify notation let w` = Dsi,`(tk′ , tk). By assumption w` > 0 off ` ≤ `′. Therefore, we can write

the previous inequality as

Ñ−1∑
`=`′+1

−w`(1 +
b

Z + `
) >

`′∑
`=1

w`(1 +
b

Z + `
)

Given this inequality and given the signs on the w′`, the following inequality holds because the decrease

in each term on the right strictly exceeds the decreases of each term on the left.

Ñ−1∑
`=`′+1

−w`(1 +
b

Z + 1 + `
) >

`′∑
`=1

w`(1 +
b

Z + 1 + `
)

Notice that these payoffs correspond to exactly one more individual solving the problem. This inequality

therefore implies that the expected payoff from choosing tool tk strictly exceeds that of playing tool tk′ ,

so that in equilibrium tk must be played with strictly higher probability.

Proof of Proposition 4: Given that s1 dominates all the other types, by Proposition 1 the optimal

group must consist only of the best type. Hence any group which contains any type other than s1 is

suboptimal. Hence such a group cannot implement the first best outcome, thus establishing part (b) of

the result.

In contrast, we now show that all Nash equilibria of the homogeneous s1 group achieve the first best

tool vector. (For convenience we assume it to be unique; the proof extends in a straightforward but

tedious way to the case of multiple first best tool vectors.) Call this vector, which the manager would

select under centralized tool choice, T ∗. Consider any vector T • 6= T ∗. We need to show that any such

T • is not an equilibrium under decentralized tool choice by the homogeneous group of the best type.

To do this we initially assume that b is exactly equal to one; this will be relaxed below.

Either T • has gaps (a more promising tool, tj , isn’t selected by anyone but a less promising tool, tk, is)

or it doesn’t. If it does have gaps then clearly T • cannot be an equilibrium because the agent picking

tk would increase the probability of group success, P (G), and therefore his payoff, by switching from tk

to tj .

So now consider a T • without gaps. We need to show that despite this similarity with T ∗ (which the

manager would obviously design to be gapless), this kind of T • is not an equilibrium either. Since

T • 6= T ∗, there must be at least one tool, say tj , which has too many agents selecting it, and hence

some other tool, say tk, which has too few: P (G) would rise if one agent (possibly more) moved from

the former to the latterer. But given that b = 1, agents care only about group success, so if agent would

increase P (G) by switching from tk to j then playing the former isn’t a best response to the choices of
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the other n− 1 agents: Hence T • is not an equilibrium.

The above logic continues to hold if b is sufficiently close to one. And since there are finitely many T •’s,

there exists a b < 1 such that any b > b is sufficiently close to one for all of them. This establishes part

(a).

Proof of Proposition 5: By Proposition 3, an optimal group must satisfy competency ordering. To

complete the identification of the first best outcome, we initially assume that min(hsi(t
∗(si))) exactly

equals one. Given this, it is obviously suboptimal to have any type’s best tool selected by more than

one member of the group. Further, it is inefficient to overlook any best tool. More precisely, it is

suboptimal if in any group there is some tool, tj , that isn’t selected even though it is the best tool

of some type (say sj) while some other tool, tk, is selected even though it is not the best tool of any

type. This holds because best tools are more promising than the other tools: i.e., hsjp(tj) > hskp(tk),

where sj and sk are the experts at deploying tj and tk, respectively. Finally, best tools are exclusive,

so if the manager wants some best tool, say tj , selected in stage two then she must put its expert, sj ,

on the team in stage one. Together, these properties imply that if G(n) is no bigger than the number

of types then the manager’s design problem under centralized tool choice is simple: in stage one she

selects the n most able types and in stage two she tells each one to try his best tool. And since this

design is strictly better than any other design when min(hsi(t
∗(si))) is exactly one, it continues to hold

if min(hsi(t
∗(si))) is sufficiently close to one.

Turning now to strategic tool choice, consider a group G of size n which the manager in stage one stocked

with the n most able types. (The proof is trivial for n = 1 so assume that n > 1.) Each type’s best

tool is exclusive. This implies that for all b ≥ 0, each agent has a strictly dominant strategy of selecting

his best tool, t∗(si). Hence G produces a unique Nash equilibrium in which every member of the group

plays his strictly dominant strategy, i.e., tries his best tool. But this is exactly the description of G and

its unique tool-selection equilibrium: everyone in G is of a different type; G satisfies the property of no

competency skipping; in equilibrium everyone tries his (exclusive) best tool. Thus this Nash equilibrium

implements the first-best outcome, establishing part (a) of the result.

Finally, consider any group G′ 6= G. We now show that any such G′ cannot generate the first best tool

vector. Either G′ satisfies competency ordering or it doesn’t. If it doesn’t then it follows immediately

from Proposition 2 that G′ is suboptimal and hence cannot implement the first best outcome in any

tool vector.

Alternatively, G′ does satisfy competency ordering. Either each type is a singleton in the group or it

isn’t. If each type is a singleton then G′ is, in fact, G, so there’s nothing to compare. Alternatively,

there is at least one type, say si, with multiple members in the group. But this is not the optimal G∗(n)

identified in paragraph one of this proof, thus establishing part (b).

Proof of Proposition 6: We prove each part in turn.

(i) We use contradiction to prove that all problem solvers of the same type pick the same tool. Suppose

instead that two si’s chose different tools, tj and tk then, since agent of the same type are clones of each

other there must be at least two equilibria, because the choices of (tj , tk) and (tk, tj) are strategically

equivalent. But by assumption there’s a unique Nash equilibrium in this case. hence we’ve reached a

contradiction, so the supposition that two agents of the same type have chosen different tools must be

wrong.
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ß(ii) By contradiction. From (i) we know that all agents of the same type choose the same tool. Suppose

that all the si types choose tool tk, despite the fact that the expert at that tool is sj . Obviously, then,

the status quo group cannot be a first-best composition of types: the si’s should be replaced by the

sj ’s.

ß(iii) From (ii) we know that each type is an expert at the tool it selects. The conclusion follows given

that each tool has a unique expert.

ß(iv) Suppose that the best tool for every type is t1. By construction, the expert at t1 must be the

best type, s1. Hence from (ii) we know that s1 picks t1, and from (ii) we know that no other type picks

s1. Therefore, any type that isn’t the best type picks a tool that isn’t its best tool.

Proof of Remark 2

ß(i) Consider first the case of b = 1. Here players rank-order outcomes by the probability of group

success, P (G). It is given that there is a unique tool vector (implemented by the corresponding experts)

that maximizes this probability. Hence if anyone deviates from this tool-player combination he will

reduce P (G). Since b = 1 this will reduce his expected utility, which shows that the original configuration

of tools and agents was a (strict) Nash equilibrium. Because a deviation strictly reduces the deviator’s

expected utility for b exactly equal to one, it continues to do so for b sufficiently close to one.

ß(ii) Any outcome produced by a different tool vector or by the first-best tool vector where some tool

is tried is applied by a non-expert generates a strictly lower probability of group success than does the

first-best tool vector implemented by experts. For b = 1 this probability completely determines payoffs,

so strict Pareto ordering follows immediately. The usual continuity argument for b close to one finishes

the proof.

Proof of Corollary 3: Suppose initially that b = 1. We solve the problem backwards. Suppose

that n − 1 players have chosen tools. The last player will choose the tool that maximizes P (G∗(n)),

the probability that this group, G∗(n), succeeds, given the first n − 1 choices. Anticipating this, the

second-to-last chooses the tool that induces the last player to choose the tool that, together, maximizes

P (G∗(n)). This logic works all the way back to the first player who, anticipating all subsequent choices,

chooses a tool that triggers a sequence that maximizes P (G∗(n)).

(Note that this doesn’t presume that there is a unique such sequence. Generically, i.e. for b < 1, there

is a unique sequence, but if b exactly equals one then players are indifferent about who gets to select

which tool, provided that in every case every tool is chosen by its corresponding expert.)

Since the relevant inequalities are strict for b = 1, by continuity they hold for b sufficiently close to one.

Proof of Proposition 7: Competency loading follows using the same example as in the centralized

tool choice case. Competency ordering follows if each type is best at its best tool because the first

member of each type will choose its best tool. Note that the proof requires that the group is optimal.

The manager will be careful not to select better types that have an incentive to apply a lesser types

best tool. If a type is not best at its best tool, then competency ordering fails using the same example

as in the centralized case.

We next show that monotonicity can be violated with non overlapping toolkits. We first provide a

sketch and then give the formal proof. Suppose that the best type, s1 possesses two tools, t1 and t2,

and is perfect at applying each. Under a large set of parameter values, the optimal two-person group

has two agents of the best type who choose different tools. Next, suppose the types s2 and s3, are each

perfect at tools t3 and t4 and that these tools are approximately as likely to solve the problem as the
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best type’s weaker tool. For a range of parameter values a group consisting of two s1’s and one s2 both

of the agents of the best type will both choose their best tool. They do so because the s2 has some

probability of solving the problem. If this occurs, the private benefit for one of the s1’s from choosing

t2 falls more than had that problem solver chosen the best tool. The reason: the loss from getting the

entire benefit to an even split equals one half of the benefit while the loss from splitting the benefit two

ways to splitting it three ways equals only one sixth of the benefit. Thus, the optimal group of size

three consists of one of each type.

The formal proof goes as follows. We consider the special case where f(| C |) = 1
|C| . Assume that if a

type can apply a tool, then it can always apply it correctly. The second problem solver of type s1 will

choose tool t2 provided the following inequality holds.

pt1(b+
1− b

2
) ≤ pt1(1− pt2)b+ (1− pt1)p2 + pt1pt2(b+

1− b
2

)

This can be rewritten as

pt1(1− pt2)
1− b

2
≤ pt1pt2 + p2

Note that this holds for any pt2 >
1
2 . By assumption, type s2 only can apply tool t3. In a group of size

three consisting of two type s1’s and one type s2, the payoff to the second type s1 from choosing tool

t1 can be written as follows:

pt1(1− pt3)
1 + b

2
+ pt1pt3

1 + 2b

3
+ (1− pt1)pt3b

The payoff from choosing tool t2 can be written as follows:

(pt1 +pt3 −pt1pt3)(1−pt2)b+(1−pt1)(1−pt3)p2 +pt2(pt1(1−pt3)+(1−pt1)pt3)
1 + b

2
+pt1pt2pt3

1 + 2b

3

It is easy to assign probabilities so that the second type s1 in a group of two would choose tool t2, but

would switch to tool t1 when a problem solver of type s2 is added. For example, if pt1 = 2
3 and b = 1

2 ,

then the second problem solver of type t1 will choose tool t2 if pt2 ≥ 1
3 . But if pt3 is also close to 1

3 ,

then the problem solver of type s1 would switch to tool t1 if a problem solver who uses tool t3 is added

to the group. If we set both pt2 and pt3 equal to 1
3 , then using the expressions above, the payoff for a

type s1 from choosing tool t1 equals 174
324 . The payoff from choosing tool t2 equals 169

174 . Thus, if there

were a third type of problem solver s3 and a tool t4 such that pt4 was also approximately 1
3 , then the

optimal group of size three consists of one type s1, one type s2 and one type s3.24

We next show that the optimal team could include an undominated type, we derive the mixed strategy

equilibrium for the game with two players.

Lemma: (Equilibrium Conditions for the Two Player Mixed Strategy) Given two type s1

players with T1 = {t1, t2}, the symmetric mixed strategy equilibrium probability of playing tool t1, q∗,

can be written as follows:

24The inequalities are strictly satisfied of pt1 = 0.5, pt2 = pt3 = pt4 = 0.3, and b = 0.25. Note that as pt1
increases and b decreases in size, the inequalities become satisfied on an increasingly larger domain.
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q∗ = r12 + r12
(p1 − p2)

(p1 − p1p2)

b

(2 + b)

where r12 equals the unique solution ratio of t1 to t2.

Proof of Lemma: Let q denote the probability that the a problem solver applies tool t1. We can solve

for the incentive compatibility constraint for using the better tool as follows. Incentive compatibility

requires that the payoff from using the tool t1 given q exceeds the payoff from using tool t2. These

payoffs can be written as follows:

π1(q) = qp1(1 +
b

2
) + (1− q)[p1(1− p2)(1 + b) + p1p2(1 +

b

2
) + (1− p1)p2]

π2(q) = q[p1p2(1 +
b

2
) + (1− p1)p2(1 + b) + p1(1− p2)] + (1− q)p2(1 +

b

2
)

These can be simplified as

π1(q) = (p1 + p2 − p1p2) + (p1 −
p1p2

2
)b− q[(p2 − p1p2) + (p1 − p1p2)

b

2
)]

π2(q) = p2(1 +
b

2
) + q[(p1 − p1p2) + (p2 − p1p2)

b

2
)]

Therefore π1(q) ≥ π2(q) if and only if

(p1 +p2−p1p2)+(p1−
p1p2

2
)b−q[(p2−p1p2)+(p1−p1p2)

b

2
)] ≥ p2(1+

b

2
)+q(p1−p1p2)+(p2−p1p2)

b

2
)

which reduces to

(p1 − p1p2) + (2p1 − p2 − p1p2)
b

2
≥ qr[(p1 + p2 − 2p1p2)(1 +

b

2
)]

which further reduces to

q ≤ (p1 − p1p2)(2 + b) + (p1 − p2)b

(p1 + p2 − 2p1p2)(2 + b)

It will be helpful to write the incentive compatibility constraint as follows:

q ≤ (p1 − p1p2)

(p1 + p2 − 2p1p2)
+

(p1 − p2)b

(p1 + p2 − 2p1p2)(2 + b)
(IC)

The formal counterexample relies on the same construction as the informal example presented in the

body of the paper. The probability that two problem solvers of type s1 solve the problem equals

Pr({s1, s1}, X) = (q∗)2p1 +2q∗(1−q∗)(p1 +p2−p1p2)+(1−q∗)2p2. As an example, set b = 6, p1 = 0.5

and p2 = 0.4. It follows that q∗ = 0.75 and that Pr({s1, s1}, X) = 056875. Choose p3 = 2 · 0.06875− ε
and let p4 be arbitrarily close to p3. When the type s2 is added to the group of two type s1’s, the

equilibrium probability of playing t1 increases above 0.75, and for small ε a group of all three types

outperforms a group of two type s1’s and a type s2. A diminishing marginal returns argument implies

that two s1’s and one s2 solve the problem with higher probability than three s1’s. This implies that
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the group {s1, s1, s1} solves the problem with a lower probability than the group {s1, s1, s2}, which

completes this part of the proof.

To prove that asymptotic diversity can be violated, let T (s1) = {t1} and assume that hs1(t1) = 1 and

that p(t1) = p. LetT (s2) = {t1, t2} and assume that hs2(t1) = h, hs2(t1) = θh, where θ < 1 and that

p(t2) = q < p. Finally, let T (s3) = {t2} and assume that hs3(t2) = γh where γ < θ.

Note first that a type s2 added to a group of a single type s1 will choose tool t2 if and only if it receives

a higher payoff from doing so. It’s payoff from choosing tool t2 can be written as follows:

us2(t2 | {s1}) = p(1− θhq)(1− b) + pθhq[(1− b) +
b

2
] + (1− p)θhq

Its payoff from choosing tool t1 equals

us2(t1 | {s1}) = p(1− h)(1− b) + ph[(1− b) +
b

2
]

It follows that type s2 should choose tool t2 if and only if

p(1− θhq)(1− b) + pθhq[(1− b) +
b

2
] + (1− p)θhq ≥ p(1− h)(1− b) + ph[(1− b) +

b

2
]

which can be simplified as

ph(1− θq)(1− b) + (1− p)hθq ≥ ph(1− θq)(1− b

2
)

Canceling like terms gives

(1− p)hθq ≥ ph(1− θq) b
2

Solving for q gives

q ≥ pb

θ[2(1− p) + b]

It follows that if q and θ are sufficiently small then a problem solver of type s2 will choose tool t1 and

the optimal group of size two consists of one problem solver of type s1 and one problem solver of type

s3.

Consider the special case where p = 1
2 and θ = 1

2 . The inequality can then be written as reduces to

q ≥ b

(1 + b)

Note this makes intuitive sense. If there exists no collective benefit, e.g. b = 1 and θ = 1
2 , then tool

t2 would have to have the same probability of solving the problem as tool t1 for type s2 to choose it

because type s2 would have a fifty percent chance of solving the problem by itself.

The manager only needs one person using tool t1 but could hire more people who use tool t1 to create

incentives for a problem solver of type s2 to choose tool t2 instead of tool t1. Given that a type s1

always applies tool t1 successfully, the manager would always choose a type s1 rather than a type s2 as

it requires fewer problem solvers to align incentives.

First, we note that t suffices to show that a fixed proportion of the group would have to be of type s1’s

in order to induce a type s2 problem solver to choose tool t2. To see why suppose that there exist n
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problem solvers of type s3 at least one will apply tool t2 correctly with probability1 − (1 − γh)n (this

is one minus the probability that they all fail to apply the tool correctly). Suppose that a proportion

ρ < 1 of n problem solvers of are type s2 and try tool t2. The probability that at least one applies the

tool correctly equals 1− (1− θh)ρn.

The first expression is strictly larger than the second if and only if the following strict inequality holds:

(1− γh)n < (1− θh)ρn

But this is equivalent to

(1− γh)n < [(1− θh)ρ]n

Given ρ < 1, a γ can be chosen so that this expression always holds.

It remains to show that a fixed percentage of the problem solvers must be of type s1. To simplify the

presentation, we assume b = 1, that there only a private benefit. Given n1 type s1’s using tool t1 and

n2 type s2 problem solvers using tool t2, , the expected payoff for a type s2 problem solver choosing

tool t1 can be written as the sum of two terms. The first term equals the payoff if tool t1 solves the

problem and tool t2 does not or is not applied correctly by any of the other n2 problem solvers. The

second term equals the payoff if the problem is solved by both tools. The second term is averaged over

all possible cases for the number of type s2’s who solve the problem.

ph

[
(1− q) + q(1− θh)n2

n1 + 1
+ q

n2∑
`=1

(1− θh)n2−`(θh)`
(
n2

`

)
1

n1 + `+ 1

]
If the problem solver of type s2 chooses tool t2, the expected payoff equals

qθh

[
n2∑
`=0

(1− θh)n2−`(θh)`
(
n2

`

)[
(1− p)
`+ 1

+
p

n1 + `+ 1

]]
Define B({S}) to be the expected payoff to the problem solver of type t2 if it solves the problem and

exactly the tools in the set S solve the problem. It therefore follows that the expected payoff for the

type s2 problem solver is higher for choosing tool t2 than for choosing tool t1 if and only if

qθh [(1− p)B({t2}) + pB({t1, t2})] ≥ ph
[

(1− q) + q(1− θh)n2

n1 + 1
+ qB({t1, t2})

]
Which simplifies to

qθh(1− p)B({t2}) ≥ ph
[

(1− q) + q(1− θh)n2

n1 + 1
+ q(1− θ)B({t1, t2})

]
For example, B({t1, t2}) denote the expected payoff conditional on both tools solving the problem.

B({t1, t2}) =

n2∑
`=0

(1− θh)n2−`(θh)`
(
n2

`

)
1

n1 + `+ 1

Thus, B({t2}) denotes the expected benefit condition on only t2 solving the problem.

B({t2}) =

n2∑
`=0

(1− θh)n2−`(θh)`
(
n2

`

)
1

`+ 1
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This expression is difficult to evaluate because of the last term. However, we can rewrite the expression

as a binomial distribution with an extra draw to obtain the following.

B({t2}) =

∑n2

`=0(1− θh)n2+1−`(θh)`
(
n2+1
`

)
θh(n2 + 1)

Notice that the top of the fraction equals a binomial distribution minus the last term. Therefore, we

can simplify the expression as

B({t2}) =
1− (θh)n2+1

θh(n2 + 1)

From above, the problem of type s2 has a higher expected payoff of choosing tool t2 if and only if

qθh(1− p)B({t2}) ≥ ph
[

(1− q) + q(1− θh)n2

n1 + 1
+ q(1− θ)B({t1, t2})

]
Given that q(1− θ)B({t1, t2}) is strictly positive and therefore increases the payoff from choosing tool

t1. It suffices to show that a fixed proportion of the problem solvers must be of type s1, i.e. there exists

a ρ such that ρn1 > n2, in order for the following inequality to hold:

qθh(1− p)B({t2}) > ph
(1− q) + q(1− θh)n2

n1 + 1

Substituting in for B({t2} and canceling an h gives

qθ(1− p)1− (θh)n2+1

θh(n2 + 1)
> p

(1− q) + q(1− θh)n2

n1 + 1

By the same logic as above, it suffices to show that ρn1 > n2 for some ρ > 0 for the following expression

(again, we have increased the left hand side and decreased the right hand side so we’ve made it less

likely to hold)

qθ(1− p) 1

θh(n2 + 1)
> p

(1− q)
n1 + 1

Canceling out the θ’s from the right hand side and rearranging terms, we obtain the following necessary

condition.

q

h(1− q)
1

n2 + 1
>

p

1− p
n1 + 1

Define ω as follows

ω =
q

h(1− q)
1− p
p

The condition can then be written as

ω(n1 + 1) ≥ (n2 + 1)

This implies that ωn1 > n2 + (1 − ω) which means that a fixed proportion must be type s1. As an

example, suppose that p = 1
2 , q = 1

4 , and h = 1
3 , then ω = 1 and the number of s1’s must equal the

number of s2’s.
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Proof of Remark 3

Because complete dominance implies dominance, Proposition 1 implies that under centralized tool choice

the manager would never put an s2 on the team, no matter its size. But here tool-choice is strategic, so

the manager must anticipate what the team will do in equilibrium. We turn to this now (hence we will

prove part (b) first and then turn to (a).) We initially consider the extreme cases of b = 0, hs1(t1) = 1,

and θs2(t2) is some ε close to zero.

Consider the equilibrium behavior of a pair of s1’s. Letting EV [(s1, t1); (s1, t1)] denote an s1’s expected

payoff if she plays t1 against the same choice of another s1, we get the following:

EV [(s1, t1); (s1, t1)] = [hs1(t1)]2 · p(t1)f(|C| = 2) + hs1(t1)[1− hs1(t1)] · p(t1)f(|C| = 1)

where f(|C| = n) denotes the value of the sharing function, given that n players solved the problem.

The expected payoff of responding with a choice of t2, given that the teammate selects s1, is as follows:

EV [(s1, t2); (s1, t1)] = hs1(t2)p(t2)hs1(t1)p(t2)f(|C| = 2)

+hs1(t2)p(t2)[1− hs1(t1)]f(|C| = 1)

+hs1(t2)p(t2)hs1(t1)[1− p(t1)]f(|C| = 1)

The best response to a partner’s choice of s1 is to do likewise if EV [(s1, t1); (s1, t1)] > EV [(s1, t2); (s1, t1)].

Collecting terms and solving for p(t2), this is equivalent to

[hs1(t1)]2 · p(t1)f(|C| = 2) + hs1(t1)[1− hs1(t1)] · p(t1)f(|C| = 1)

Ψ
> p(t2)

where Ψ = hs1(t2){hs1(t1)p(t2)f(|C| = 2) +
[
[1− hs1(t1)] + hs1(t1)[1− p(t1)]

]
f(|C| = 1).

ß

It is optimal, obviously, for an s1 to select its best tool if its partner chooses something other than

t1. Hence, if p(t2) < p∗ ≡ [hs1 (t1)]2·p(t1)f(|C|=2)+hs1 (t1)[1−hs1 (t1)]·p(t1)f(|C|=1)

Ψ then selecting t1 is the best

response to either pure strategy of the other player, i.e., choosing t1 is a strictly dominant strategy in

this homogeneous two-person group. Hence the unique equilibrium of this team is that both players

choose t1. This is bad news for the manager: given that hs1(t1) = 1, duplication on that tool is worthless

for her.

Now consider the equilibrium behavior of a diverse two-person team: G = (s1, s2). Given that s1

completely dominates s2 and hs2(t1) = ε, it is easy to show that the s1 player has a strictly dominant

strategy of playing her best tool, t1. Turning to the s2 player, the expected payoff of playing t1 is a

function of hs2(t2), no matter what the other player does, and since hs2(t2) = ε we can always choose ε

sufficiently close to zero so that choosing t2 delivers a higher expected payoff, again regardless of what

the other player does.25 Hence this team also has a unique equilibrium in the tool-selection stage, and

in it each type chooses his best tool.

To complete the equilibrium analysis, note that because all of the relevant payoff-inequalities (above)

hold strictly they continue to hold for b close to zero, hs1(t1) close to one, and θs2(t2) close to one.

25If hs2(t2) could be exactly zero then the expected payoff of playing t2 would obviously also be zero, whence
it would follow immediately selecting t2 is a strictly dominant strategy since (t2) is s2’s best tool and so must
have strictly positive promise. By assumption all h’s are strictly positive so technically this case does not hold,
but the corresponding intuition is correct.
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With the predictions of what happens in equilibrium in mind, the manager can now figure out how to

create the optimal team in stage one. For hs1(t1) = 1, the addition of a second s1 would add no value:

the probability that a homogeneous team of the best type solves the problem is the same as a singleton

s1. In contrast, a diverse team will try t2 as well as t1, and since t2 has strictly positive promise (i.e.,

hs2(t2)p(t2) > 0), its success-probability must be strictly bigger than that of a singleton s1, who selects

only one tool (albeit the best one) or, equivalently, of the homogeneous team. Hence the manager

prefers the diverse team, which includes the completely dominated type, to the homogeneous group.

And since a homogeneous group of the completely dominated type—G = (s2, s2)—is obviously inferior

to a team which includes the best type, it follows that the optimal group is (s1, s2), thus establishing

part (a).

Proof of Remark 4: The example used in the proof of Remark 1 applies here as well. The only

difference is that type si would choose tool t1 for all but the smallest values of b implying that type si

adds no value.

Proof of Remark 5: Fix an arbitrary G∗(n). (Generically there is only one such group, but this

proof also holds for multiple optimal group-compositions.) Under centralized tool choice it is obviously

optimal to put only experts on the team. Further, since no expert is perfect at any tool there are no

optimal teams with completely superfluous members: everyone on G∗(n) is making the probability of

group success strictly greater. Consequently, carrying a non-expert cannot be free: replacing such a

member by the corresponding expert would strictly increase the probability of group success. Hence

everyone in an optimal group of size n must be the expert at the tool which s/he must select in order

to generate the corresponding optimal tool-vector.

Now consider a member of G∗(n) who is supposed to select tool tk (there may be more than one such

person) whom we will call player n. Suppose player n had exactly zero chance of correctly implementing

any tool in his toolkit other than tk. If that were true then he would have zero chance of getting any

personal credit for solving the problem by playing any tj 6= tk. This implies that playing his best tool,

tk, must be strictly better than doing anything else, no matter what his teammates are doing; i.e., if

hsn(tj) = 0 for all j 6= k then selecting tk is a strictly dominant strategy. Since this holds strictly, it

continues to hold if all of that player’s h’s (other than hsn(tk)) are sufficiently close to zero.
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