
Securing Safety Critical Automotive Systems

by

Ahmad MK. Nasser

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Information Science)

in the University of Michigan-Dearborn
2019

Doctoral Committee:

Associate Professor Di Ma, Chair
Associate Professor Jinhua Guo
Assistant Professor Bochen Jia
Professor Brahim Medjahed

Ahmad MK. Nasser

ahmadnas@umich.edu

ORCID iD 0000-0001-8318-7082

© Ahmad MK. Nasser 2019

DEDICATION

This dissertation is dedicated first to my mom and dad: Amal Awada and Mohamad-

Kheir Nasser. You have taught me from a young age not only to have big dreams,

but also to have the tenacity to pursue them. I also like to dedicate this to my wife,

Batoul Abdallah. Your love and support gave me the necessary strength to persevere

through the arduous journey of combining a full time career with challenging aca-

demic research. Last but not least, I like to dedicate this to my children: Yahya and

Dalia. Although, you gave me many reasons to be distracted, I want this achievement

to motivate you in your future endeavors to always challenge yourself and aim to leave

a mark in whatever you choose to do.

ii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Di Ma, for her guidance, insights and

valuable feedback when reviewing my work. It was her lectures on network security

that initially sparked in me the desire to learn more about the intersection of security

and safety. Thanks to her advice, I was later able to refine my research skills when

looking at problems, not only as an engineer seeking solutions, but also as a researcher

looking for answers. Our collaboration made it possible for this work to be impactful.

I also would like to express my gratitude to my committee members, Dr. Brahim

Medjahed, Dr. Jinhua Guo, and Dr. Bochen Jia, for the time they spent in reviewing

my work and the valuable feedback they provided. In addition, this work would

not have been possible without the support of numerous colleagues and collaborators

who have given me their advice and technical opinions. Special thanks to the Renesas

HSM firmware team (Raymon Abdelmassih, Shem Rajiah, Li Li, Cristian Man, and

Plamen Stoyanov) for their support. I am also grateful to Renesas for providing me

the hardware and software to carry out my experiments as well as the support in

pursuing this work, with special thanks to Paul Kanan, Yasuhisa Shimazaki, and

Takeo Tomokane. To Eric Winder, Wonder Gumise, and Dr. Matthias Krauledat, I

am grateful for our technical debates and discussions which allowed me to refine my

ideas for the larger academic audience. Last but not least, I like to thank Dheeraj

Sharma, Chris Thibeault, and Kyle Taylor from Elektrobit for their support with the

AUTOSAR software stack.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Contributions . 2
1.2 Organization . 3

II. Background and Related Work 5

2.1 AUTOSAR . 5
2.2 Automotive Embedded Systems 6
2.3 Hardware Security Modules 8
2.4 Combining Safety and Security in Automotive Systems 9
2.5 Attacks on Safety . 13

III. Safety Driven Security Analysis: A System View 15

3.1 Introduction . 15
3.2 Background . 16

3.2.1 OTA Architecture 17
3.3 Related Work . 18
3.4 A Safety Driven Approach to Security 21

3.4.1 Safety Goals . 24
3.4.2 Attacker Model . 25

iv

3.4.3 Security Requirements 25
3.4.4 Impact on Safety Architecture 27

3.5 Comparison to UPTANE . 27
3.6 Conclusion . 27

IV. AUTOSAR Safety and Security: Synergies and Conflicts . . 30

4.1 Introduction . 30
4.2 Attack Model . 31
4.3 Survey of AUTOSAR Safety Features 33

4.3.1 End to End Library 34
4.3.2 AUTOSAR OS Protections 35

4.3.2.1 Memory Protections 36
4.3.2.2 Timing Protections 37
4.3.2.3 Hardware Protection 38

4.3.3 Watchdog Manager 39
4.3.4 Core Test . 39
4.3.5 RAM Test . 40
4.3.6 Flash Test . 41

4.4 Summary of Security Gaps 41
4.5 Exploiting Security Gaps . 45

4.5.1 Message Loss Attack 45
4.5.1.1 Security Countermeasures 46

4.5.2 Task Execution Budget Attack 46
4.5.2.1 Security Countermeasures 51

4.5.3 Demonstrative Attacks 52
4.6 Extending Safety Mechanisms for Security 55

4.6.1 Stack Usage Monitoring 56
4.6.2 RAM Execution Prevention 56
4.6.3 Flow Integrity Protection 57
4.6.4 OsTiming Protections 58
4.6.5 Hardware Resource Protection 59
4.6.6 Demonstrative Protections 60

4.6.6.1 Stack Overflow Protection 60
4.6.7 Recommendations for AUTOSAR Protections . . . 62

4.7 Conclusion . 63

V. SecMonQ: Security Monitoring of AUTOSAR Based Systems 64

5.1 Introduction . 64
5.2 Attack Goal and Threat Model 67
5.3 Background and Related Work 67

5.3.1 Control Flow Integrity 67
5.3.2 Hardware Based Security Monitors 69

5.4 Our Framework . 70

v

5.4.1 Secure Execution Environment 72
5.4.2 Secure Checkpoint Buffer 72
5.4.3 Secure Interruption 73
5.4.4 Trusted Safety Function 74

5.5 Design of SecMonQ . 75
5.5.1 Time Checker . 76
5.5.2 Flow Checker . 77

5.5.2.1 Path Definition and Checkpoint Selection 77
5.5.2.2 Flow Violation Detection 79

5.5.3 Firmware Integrity Checker 80
5.5.4 CAN Integrity Checker 82
5.5.5 Policy Handler . 86
5.5.6 Safety Considerations 87

5.6 Case Study: Defeating the CAN Masquerading Attack 88
5.6.1 Experimental Setup: Time and Flow Monitors . . . 90

5.6.1.1 Results 92
5.6.2 Experimental Setup: CAN Integrity Monitor 97

5.6.2.1 Results 97
5.7 Discussion . 99
5.8 Conclusion . 101

VI. Availability: Adding Trust without Sacrificing Performance 103

6.1 Introduction . 103
6.2 Related Work . 105
6.3 PBASS: Probabilistic Boot Authentication Sampling Scheme 108

6.3.1 Threat Model . 108
6.3.2 Notation . 108
6.3.3 Random Block Sampling:rBS 109
6.3.4 Per Block Sampling:pBS 112
6.3.5 Resisting Adversary Evasion 116
6.3.6 Security Properties 117
6.3.7 Support for Firmware Reprogramming 118
6.3.8 PBASS: The Complete Approach 119

6.4 Implementation and Results 120
6.5 Discussion . 126
6.6 Conclusion . 128

VII. Conclusion . 130

BIBLIOGRAPHY . 131

vi

LIST OF TABLES

Table

3.1 Simplified Hazard Analysis for OTA 23
3.2 Safety Driven Attacker Model . 25
3.3 Attacks with safety goal violations 26
3.4 Attacks with safety goal violations 28
4.1 Survey of AUTOSAR safety mechanisms 33
4.2 Applying SDAS to E2E Library . 34
4.3 SDAS results against AUTOSAR Safety Goals 45
4.4 CAN FD frame time in µs based on 64 byte DLC 54
5.1 Frame transmission times for various data lengths 84
5.2 Actions that SecMonQ can take upon policy violation 87
5.3 Checkpoint reporting overhead at host CPU clock of 120Mhz 96
5.4 Attack results at different attack rates and Frame DLC 99
6.1 Impact of file size on evasion, s=15% and m = 512 bytes 112

vii

LIST OF FIGURES

Figure

2.1 Network architecture of a modern vehicle 7
2.2 Security in-depth concept for advanced vehicle architectures 8
2.3 Evita Medium HSM architecture . 9
3.1 Architecture of OTA system considered for the security analysis . . 18
3.2 Safety Driven Security Approach process steps 22
4.1 Data flow from CANIF to the CSM layer for frame authentication . 49
4.2 Triggering the OS protection mechanism 52
4.3 CAN FD Frame layout, for 64 byte frames CRC is 21 bits long . . . 53
4.4 1.04ms of total run-time for processing 22 CAN FD messages 55
4.5 MPU based stack protection . 57
4.6 WdgM monitors password verification checkpoint 59
4.7 Stack content before attack:return address = 0x4e80 60
4.8 Stack content after the attack: return address = 0xfebff000 61
4.9 Malicious routine is successfully entered after the stack overflow . . 61
4.10 MPU exception triggered due to violation of execution rights 62
5.1 AUTOSAR Software Architecture 68
5.2 System Level Block Diagram . 71
5.3 Configuring a trusted function within EB tresos 73
5.4 Attack flow against a function in the safety-critical path 78
5.5 Control flow graph for the Can Write critical function 80
5.6 RSCANFD CAN controller architecture, [19] 83
5.7 Impact of SecMonQ detection time on FTTI constraint 88
5.8 ECU Model of Sensor Actuator Application 88
5.9 RH850 Development Environment and Debug Setup 91
5.10 Attack results on the Can Write function 93
5.11 Contents of stack frame after corruption 93
5.12 Checkpoint cache: reception of CP 4 when CP 1 was expected . . . 94
5.13 Call trace after the attack, OS still scheduling tasks 95
5.14 CAN Bus load to mimic real vehicle bus conditions 96
5.15 Attack results when attack rate is 10ms 98
6.1 Tag generation process using randomly selected blocks 110

viii

6.2 Theoretical probability of detection vs. number of contiguously mod-
ified bytes given various sample sizes using rBS 111

6.3 Per Block Sampling method . 114
6.4 Theoretical probability of detection vs. number of modified bytes for

per Block Sampling (pBS), with B=16 bytes, t=1 byte and b either
1 or 2 bytes per block . 115

6.5 State flow diagram for the dual phase boot approach 119
6.6 Coupling of the sampled boot phase with the full boot phase to reduce

risk of undetected data tampering 120
6.7 Python Simulation showing probability of detection vs. number of

contiguously modified bytes given various sample sizes for Random
Block Sampling (rBS) . 121

6.8 Python Simulation showing probability of detection vs. number of
non-contiguously modified bytes given various sample sizes for Ran-
dom Block Sampling (rBS) . 122

6.9 Python Simulation:probability of detection vs. modified bytes for
different b values using pBS . 123

6.10 Probability of detection vs. number of modified bytes per block(t),
vs. number of tampered blocks(T) for per Block Sampling (pBS)
with b=1. 124

6.11 Setup time comparison between the different variants with different
sample sizes . 125

6.12 Verification time comparison relative to full boot 126

ix

ABSTRACT

In recent years, several attacks were successfully demonstrated against automotive

safety systems. The advancement towards driver assistance, autonomous driving, and

rich connectivity make it impossible for automakers to ignore security. However, au-

tomotive systems face several unique challenges that make security adoption a rather

slow and painful process. Challenges with safety and security co-engineering, the

inertia of legacy software, real-time processing, and memory constraints, along with

resistance to costly security countermeasures, are all factors that must be considered

when proposing security solutions for automotive systems. In this work, we aim to

address those challenges by answering the next questions. What is the right safety se-

curity co-engineering approach that would be suitable for automotive safety systems?

Does AUTOSAR, the most popular automotive software platform, contain security

gaps and how can they be addressed? Can an embedded HSM be leveraged as a secu-

rity monitor to stop common attacks and maintain system safety? When an attack is

detected, what is the proper response that harmonizes the security reaction with the

safety constraints? And finally, can trust be established in a safety-critical system

without violating its strict startup timing requirements? We start with a qualitative

analysis of the safety and security co-engineering problem to derive the safety-driven

approach to security. We then apply the approach to the AUTOSAR classic platform

to uncover security gaps. Using a real automotive hardware environment, we con-

struct security attacks against AUTOSAR and evaluate countermeasures. We then

propose an HSM based security monitoring system and apply it against the popular

CAN masquerading attack. Finally, we turn to the trust establishment problem in

x

constrained devices and offer an accelerated secure boot method to improve the avail-

ability time by several factors. Overall, the security techniques and countermeasures

presented in this work improve the security resilience of safety-critical automotive

systems to enable future technologies that require strong security foundations. Our

methods and proposed solutions can be adopted by other types of Cyber-Physical

Systems that are concerned with securing safety.

xi

CHAPTER I

Introduction

As defined in [60], automotive security is the field of assessing cyber threats against

automotive systems and developing security countermeasures for the detection and

prevention of the corresponding attacks. Due to the increased connectivity of auto-

motive systems to the internet and smart devices, the threat of cyber attacks is ever

more present. Since automotive systems contain an element of control, safety be-

comes a concern when exposed to security threats, therefore securing these systems is

a high priority. Furthermore, securing safety-critical systems in the vehicle requires a

holistic approach that takes into account all vehicle access points, external interfaces,

and internal networks. Failure to properly secure vehicles will result in a chaotic

world where drivers are at the mercy of malicious attackers, who are determined to

create safety hazards through cyber attacks. While functional safety in automotive

systems is a mature and stable domain, the interplay between safety and security re-

mains a hot topic that requires solving. What makes it a difficult problem to solve is

the automotive industry’s resistance to radical changes due to massive market forces

of cost sensitivity, legacy tools and software, as well as existing infrastructure that

cannot be easily adapted. Therefore, security solutions must work within the ex-

isting constraints of the automotive industry otherwise face rejection. The primary

question we want to answer in this dissertation is how to maintain vehicle safety in

1

the presence of a malicious attacker who is determined to circumvent typical security

countermeasures while working within the aforementioned constraints. To answer

this question, we take a two-tiered approach: first, by looking at the system view

to formulate a safety aware security engineering method, and second, by zooming

in onto the electronic control unit to uncover security gaps and formulate security

countermeasures that ensure safe operation even while under attack. To study the

safety and security interplay the following road map is followed:

• Formulate a system level approach to engineering secure safety systems

• Evaluate the current state of the art of ECUs in terms of safety and security to

find existing gaps

• Close the security gaps with a solution that is compatible with the safety re-

quirements of the target systems

• Build practical security defenses that meet the constraints of real-time systems

to satisfy availability and integrity requirements

1.1 Contributions

The contributions of this work are multi-fold. First, we start by studying the Over-

the-Air Update process from a safety point of view. We formulate a safety driven

security approach that aims to uncover security requirements that protect the safety

aspects of the update process in the ECU. We compare the approach against the

state of the art OTA industry approach and show comparable findings. The safety-

driven approach is further used in our work when defining a secure architecture for

protecting safety in deeply embedded ECUs. The second contribution is in the area

of AUTOSAR security analysis. We are the first to perform a comprehensive security

analysis of AUTOSAR as it relates to safety to identify security gaps. We find that

2

AUTOSAR classic took a primarily safety-focused approach which led to some de-

sign decisions being in conflict with security. We demonstrate a network-based attack

that can result in an ECU shutdown. We also show ways in which AUTOSAR safety

mechanisms can be leveraged to improve security hardening. The third contribution

is in defining a secure ECU architecture that leverages the embedded HSM to provide

security monitoring of four critical aspects of the ECU. A context-based control flow

integrity monitor safeguards safety-critical program points by monitoring the rele-

vant execution paths. A timing monitor ensures an attacker does not reroute control

away to his own malicious code consequently starving safety-critical tasks from exe-

cution budget. A firmware integrity monitor ensures flash tampering is detected in

real time to prevent persistent code modification. And a CAN peripheral integrity

monitor ensures that the message transmit list is not modified after startup to launch

a CAN masquerading attack. We show that the approach has minimal impact on

legacy code and host CPU run-time. The fourth contribution is in the area of secure

boot acceleration. Due to the strict startup requirements of safety systems and the

increased demands for memory, authenticating the full software at startup can take

prohibitively excessive time leading to compromises in what gets authenticated and

when. Our probabilistic approach achieves high confidence in the integrity of the

software within a fraction of the traditional secure boot time.

1.2 Organization

The dissertation is organized as follows: Chapter II introduces background topics

and related work. In Chapter III, the OTA process is analyzed from a safety point

of view to derive the safety-driven approach to security analysis. In Chapter IV, the

approach is applied to the AUTOSAR classic software platform to identify security

gaps and propose security hardening countermeasures. In Chapter V, the HSM based

security monitoring system is introduced to address the security gaps uncovered in

3

Chapter IV. In Chapter VI, a probabilistic approach to secure boot is presented to

enable the accelerated availability of automotive embedded devices. Finally, Chapter

VII provides a conclusion and future work.

4

CHAPTER II

Background and Related Work

2.1 AUTOSAR

AUTOSAR stands for AUTomotive Open System ARchitecture. The AUTOSAR

classic version has seen wide success in the automotive ECU market since its initial

introduction in 2003 and is expected to expand its dominance as more users con-

tinue to adopt it across the automotive industry [1]. One of the greatest strengths

of AUTOSAR is its standardized architecture, shown in Figure 5.1, where hardware

features are abstracted away from the rest of the system to ease software portability

and interoperability. For safety support, AUTOSAR follows an approach of safety

element out of context and provides several safety mechanisms to support typical

automotive use cases. In terms of security, AUTOSAR provides a cryptography stack

which enables ECUs to provision keys as well as execute various security and cryptog-

raphy services. There is also a secure onboard communication module that provides

authentication services to in-vehicle network data. As of version 4.4, additional se-

curity modules have been added to support key management, security audit logging,

and dynamic rights management for diagnostic access. Beyond that, it is expected

that ECU designers build additional security layers to secure their systems, for e.g.

locking JTAG ports, implementing secure flash bootloaders, enforcing secure boot on

startup, and following security best practices such as the principle of least privilege.

5

AUTOSAR makes a general assumption that the host CPU running the AUTOSAR

stack is trusted and therefore makes no requirement on how security sensitive software

is accessed and by whom. In fact, AUTOSAR uses the term ”Trusted Applications”

to refer to any application partition which is considered safety qualified. As a result,

such applications run at the same privilege level as the operating system [11], and can,

therefore, change the MPU configuration to disable security protections of memory.

It is, therefore, up to the implementer to add the necessary protections to prevent

unauthorized access to the security-relevant services of AUTOSAR and to act when

an attack is detected. In this work, we study the gaps that currently exist in AU-

TOSAR and create supplementary countermeasures to increase the security resilience

of AUTOSAR based systems.

2.2 Automotive Embedded Systems

Modern vehicles contain upwards of 80 ECUs that control various vehicle func-

tions in a distributed fashion [35]. The right vehicle data architecture is essential

to the security posture of these ECUs. For e.g., if the braking control ECU is con-

nected directly to the infotainment head unit, the attacker only has to compromise

the infotainment head unit to gain access of the braking controller which can have

catastrophic results. In a state of the art vehicle architecture, shown in Figure 2.1,

vehicle buses are separated based on the domain function with a central gateway that

controls cross-domain message transfer. This provides a level of isolation to prevent a

malicious ECU from being able to compromise the entire vehicle. Normally, modules

with external connectivity are located behind the gateway ECU. Examples of those

are the telematics unit with a cellular connection, the bluetooth and wi-fi radios and

V2X module for the car to car communication. On the opposite end of the gateway,

various domain networks are separated by vehicle function. The body bus contains

ECUs that control comfort such as door control and heating and cooling. The power-

6

Figure 2.1: Network architecture of a modern vehicle

train bus contains the engine and transmission controllers. The chassis bus contains

steering and braking controllers. The ADAS bus contains the advanced driving as-

sistance modules which can leverage cameras and radar. And finally, the media bus

contains the head unit which serves various media content to the passengers. The

domain networks most popular communication protocol is CAN due to its robustness

and low implementation cost. Other bus systems such as LIN, Flexray, MOST and

Ethernet are commonly used based on the vehicle manufacturer preference. Data

flowing over these buses are mainly used for control, status, diagnostics, and media.

It is well understood that a defense-in-depth approach is needed to secure the var-

ious data layers of the vehicle architecture as shown in Figure 2.2. First, external

interfaces are protected through traditional firewall technology. Next, an intrusion

detection or prevention system in the smart gateway ensures anomalous network data

is detected or stopped. In addition to that, the gateway enforces separation rules that

prevent nodes of one bus from directly sending messages to other networks. Beyond

the gateway, individual vehicle bus domains are protected through the AUTOSAR

secure onboard communication layer [10], which provides data authentication and

freshness protections. Finally, the ECU level security leverages hardware security

modules(HSM) in order to establish trust and protect its security assets. Note, most

vehicles today only implement a subset of the aforementioned security layers due to

the cost and/or impact on legacy systems.

7

Figure 2.2: Security in-depth concept for advanced vehicle architectures

2.3 Hardware Security Modules

Certain attacks against automotive embedded systems cannot be thwarted through

software-only security mechanisms. An embedded HSM plays a vital role in bridging

that gap by providing support for security primitives, such as secure boot, secure com-

munication, access control, key management, and cryptographic acceleration. The

HSM defined by EVITA [100] and later extended by Bosch [36], was designed to meet

the various security use cases deemed relevant for automotive systems. As shown in

Figure 2.3, HSMs are embedded in the microcontroller with a dedicated CPU and

cryptographic hardware accelerators. Additionally, they support a random number

generator along with optional features such as I/O ports. Communication between

the host and the HSM is done through an interrupt mechanism and shared RAM

buffers. Due to the flexibility of the firmware executed within the HSM environment

[29], it is possible to add security extensions such as host CPU monitoring to detect

malicious behavior. Depending on the chip, an HSM may be able to monitor several

host subsystems such as CAN as well as control the reset of the host CPU.

8

Figure 2.3: Evita Medium HSM architecture

2.4 Combining Safety and Security in Automotive Systems

The problem of combining safety and security engineering processes has been

studied in various industries in which cybersecurity threats intersect with the physical

control of a process. A survey by Kriaa et al. [65], showed the various standards

and approaches proposed across a wide range of cyber-physical systems. Although

the automotive domain is relatively a latecomer to this problem, many parallels can

be drawn between challenges facing the automotive industry and other industries.

Briefly, the problem of security interdependency is one in which the two domains can

be in any one of the following states [85], [53]:

• Synergistic: here the safety and security requirements compliment one another.

A typical example is the usage of a MAC to protect both authenticity and data

integrity which also fulfills the role of a safety CRC. We shall see in Chapter IV,

how we leverage this relationship type in AUTOSAR based systems to improve

security resilience.

• Conflicting: here a safety and security requirement contradict or compete with

one another. We shall see in Chapter IV how this relationship results in safety

mechanisms making the system vulnerable to specific attacks.

• Conditional: here safety and security are prerequisites for one another. We shall

see in Chapter V how we build security systems that guarantee this relation-

ship type is upheld when building security countermeasures that respect safety

9

constraints.

For automotive systems, Glas et al. [53], presented various cases in which these

relationships can be observed. In terms of conflicting requirements, they gave the

example of a safety-related cyclic RAM test that requires stalling the HSM core to

prevent interference. As a result, the safety requirement violates a security principle

that a security module(e.g. HSM) is disabled during normal operation. Such scenar-

ios are important to detect early on in the design of the vehicle to avoid introducing

bugs, or security vulnerabilities. The work in [101] took a practical approach to as-

sessing the resilience of safe automotive micro-controllers in handling power glitching

attacks. They showed that the dual lock core step safety mechanism which is meant

to detect faults within the CPU, could be leveraged to detect maliciously induced

CPU output mismatches. However, the safety mechanism on its own was not always

able to detect all the power glitches which lead to skipping critical security code

sections that unlocked the JTAG interface. The work highlighted the potential for

synergistic relations between safety and security mechanisms albeit with some effort

to account for malicious fault sources. In the area of AUTOSAR based safety and

security overlap, the work of [34], showed how the EB tresos [2] AUTOSAR OS can

be used to harden the ECU against attacks. Using mechanisms such as stack over-

flow protection, and MPU based read/write and execution prevention, the security

posture of such systems can be significantly improved. The work in [56] raised the

issue of conditional safety and security when introducing TPMs in a safety-related

Cyber-Physical System. The study showed various aspects of potential conflicts if

the safety element is dependent on the TPM. As a result, a set of requirements was

proposed to ensure TPM technology can be used safely. The study of TPM usage

in a safety context is useful to explain the practical results of introducing security

elements which can interfere with the safety concept of the system and thus require

adequate analysis and handling.

10

In terms of the interplay between safety and security engineering processes in

Cyber-Physical Systems, there are generally two schools of thought. The unification

approaches aim to produce a single engineering process that considers both safety

hazards and security threats simultaneously as in [95] and [31]. While this reduces

the number of engineering resources, it is challenging to find experts who can tackle

both areas with the same required rigour. The integration approaches on the other

hand, propose separating the two processes while cross-referencing the resulting re-

quirements to identify and resolve conflicts as in [59]. The automotive industry has

also attempted to address the engineering processes interdependence through various

standardization efforts. The automotive functional safety standard, ISO 26262 [17],

requires that hazards to functional safety be adequately addressed to reduce their

risk to acceptable levels. In terms of security, the standard leaves the handling of

threats that cause safety hazards open for future standards to handle. This is where

SAE stepped in through SAE J3061 [43], to define a cybersecurity framework that

is analogous in process steps to the safety standard. In terms of the combination of

safety and security, the standard proposes three ways of approaching that:

• Apply the process as a standalone activity with communication points to the

safety standard

• Apply process steps in conjunction with the safety standard

• Apply the process as a hybrid, which leads to some activities being done in

conjunction and others done separately

Due to the vast difference of expertise between the domains of safety and security,

there is a near consensus in the automotive industry that the ideal approach pursues

a parallel path between the two processes with connection points that ensure consis-

tency between the derived safety and security requirements. SAE J3061 extends the

Hazard Analysis and Risk Management (HARA) from functional safety, into security

11

Threat Analysis and Risk Assessment (TARA), to identify and prioritize cybersecu-

rity risks. Over the years, several TARA methods have been proposed for automotive

systems such as HEAVENS [3], SAHARA [71], and EVITA [87]. They follow a gen-

eral scheme of applying a threat model against system components or functional use

cases to derive relevant threats. Then they decompose each threat based on a spe-

cific risk model to allow prioritization and subsequent mitigation. Threats that result

in severe impact to safety while requiring low resources, and know-how are priori-

tized for mitigation. Such threats can result in changes to the safety architecture to

mitigate the corresponding security risks. HEAVENS, which stands for Healing Vul-

nerabilities to Enhance Software Security and Safety, uses the STRIDE threat model

[91], against functional use cases to derive threats. Then decomposes threat levels

in terms of required expertise, knowledge about the target, window of opportunity

to carry out the attack, the type of equipment needed to launch the attack, and the

impact severity. SAHARA follows a similar approach but for threat assessment, it

considers three factors: required resource to materialize the threat, required know

how, and threat criticality. EVITA [87], emphasizes the use of attack trees to derive

attacks and performs the risk analysis based on an ASIL extended risk model. The

work in [38], presented an approach to extend the ISO 26262 safety standard [17],

to consider security threats and their potential hazardous classification. They apply

their approach to the use case of the adaptive cruise control function. This resulted in

deriving a set of functional and technical security requirements which aim to reduce

the risk of security threats to an acceptable level. The approach highlighted again

the many parallels between safety and security engineering processes. Alternatively,

the authors in [26] proposed an iterative approach to safety and security in which

one process provides feedback to the next. Their approach requires a safety pattern

engineering step to be performed first to arrive at the close to complete architecture.

Next comes the security pattern engineering which can result in impacts on the safety

12

architecture. This is followed by a safety and security co-engineering loop to resolve

conflicts between the two. The iterative nature of that approach is closely related to

our safety-driven approach to security(SDAS) which we introduce in Chapter III. The

gap in the available approaches listed above is that no clear direction is given on how

to link the safety and security processes practically. While the need for harmonizing

the security and safety requirements is well-understood, how one would go about do-

ing so is left open. In Chapter III, we shall see how our proposed SDAS approach

tackles this problem by providing a practical method for linking the safety engineer-

ing analysis to the security analysis in a way that produces harmonized requirements

between the two domains. Note, at the time of writing this thesis, the ISO/SAE

21434 Road Vehicles Cybersecurity engineering standard was not yet published but

is expected to provide answers that relate to this topic.

2.5 Attacks on Safety

Since one of the primary goals of our work is to improve the security resilience

of safety-critical ECUs, it is useful to survey the types of attacks that such systems

are subjected to. The past years have seen a sharp increase in academic publications

about successful attacks on automotive systems with the intent to create a safety haz-

ard. Checkoway and Koscher [39] performed a comprehensive analysis of automotive

attack surfaces in a groundbreaking study that demonstrated the reality behind cyber

attacks on vehicle systems. They showed different ways by which an attacker can get

access to the vehicle CAN bus where the critical control commands exist, in order to

take control of the vehicle. The approach of their analysis was based on extracting

the ECU firmware and then reverse engineering the code and data using disassembly,

and debug tools. By disassembling the code using a tool like IDA Pro they could map

the control flow and identify vulnerabilities. This approach led to uncovering several

vulnerabilities, such as a buffer overflow in the media player which allowed a mali-

13

cious WMA audio file to run malicious code. The latter could then interfere with the

vehicle based on the vehicle architecture and what other ECUs are connected to the

media player. This and other vulnerabilities demonstrated how security attacks could

be launched to impact vehicle safety. Then came Miller and Valasek [73], [74] who

demonstrated a remote attack on a Jeep vehicle that led to the loss of brake function

at low speed. This later resulted in a recall of Jeep vehicles and became the most

publicized successful attack on a vehicle. They used a software update vulnerability in

the head unit in order to modify the firmware of the vehicle processor interface. The

latter could then interfere with the CAN bus via the park assist module by sending

a diagnostic command to bleed the brakes causing the vehicle to lose braking ability.

The study presented many insights into tools and methods by which vehicle security

can be analyzed for the purpose of launching a successful remote attack. Following

that, several research teams demonstrated successful attacks such as the ones against

the Nissan Leaf [63], GM Corvette [54] and Tesla [66], [98]. The Tencent Labs attacks

followed a similar pattern of finding a vulnerability in the autopilot electronic unit in

order to launch CAN spoofing attack on critical safety components like steering. In

response to such attacks, several security best practices have been published [25] and

individual OEM’s have taken concrete steps to harden the security of their vehicles.

Still, the road to fully securing vehicles seems long and arduous. In the following

chapters, we demonstrate how security resilience of automotive safety systems can

be improved to handle those types of attacks while keeping in line with the unique

constraints and challenges of automotive systems.

14

CHAPTER III

Safety Driven Security Analysis: A System View

3.1 Introduction

The first phase of our research consisted of surveying the available safety-security

engineering approaches. As discussed in section 2.4, it was apparent that engineering

secure safety-critical automotive systems still faced several questions that required

answering. Since the primary goal of our target systems is to ensure safety, the

approach applied had to be heavily biased towards that aim. To do so, the following

questions shall be answered:

• How can the safety analysis be linked to the security analysis in a way that

guarantees that security measures are addressing maliciously triggered hazards?

• In case attack prevention is possible, how to ensure that the resulting security

countermeasures are still compatible with the safety architecture?

• When only attack detection is possible, what is the proper reaction that the

system shall take to ensure safe operation while under attack?

To answer these questions and formulate a safety and security co-analysis approach,

we chose to study the use case of over-the-air updates (OTA). By studying the OTA

safety and security interplay, we can formulate then validate our approach through

15

comparison to the state of the art in OTA security. The outcome of our analysis shall

generate security requirements that ensure the process of updating software in the

vehicle does not result in an unsafe vehicle state at the ECU level [79]. Following

that step, the approach can then be applied to other aspects of our research into ECU

level security as will be shown in the following chapters.

3.2 Background

Securing Cyber-Physical Systems (CPS) depends largely on keeping such systems

up to date with the latest security patches. A connected vehicle which contains a

number of independent and interconnected modules is an example CPS where se-

curely updating the software in any module is a concern for the overall integrity and

availability of safety functions. A connected software update process is defined as a

process in which the software update is delivered to the vehicle wirelessly or through

a connected device to be later flashed into a target ECU over the vehicle network.

Reduction of recall costs, the migration towards ADAS and autonomous driving, the

desire to download security patches, as well as the possibility of upgrading vehicle fea-

tures wirelessly, all make the connected software update a mandatory building block

to support the future of vehicle development. Until recently, flashing an automotive

ECU after it left the manufacturing plant was only possible through the use of a

diagnostic tester tool which physically connected through the OBD II port [57], or

insertion of physical media into the vehicle’s media-related components. Security vul-

nerabilities with such tools are well-documented in[39]. They showed various attack

scenarios such as infecting the diagnostic tool to perform unauthorized diagnostic

services or installing malware on an audio CD infect the head unit and gain access to

the internal vehicle bus system. Adding connectivity to a vehicle makes the attack

surfaces for the software update process much larger. Malware may be delivered to

the vehicle when a vulnerability exists in the OTA update/remote diagnosis process,

16

flaws in embedded web browsers, malicious aftermarket equipment, or through re-

movable media ports and others [103]. With a compromised software update process

an attacker can reprogram ECUs with malicious code that can compromise vehicle

safety. The famous Jeep UConnect attack by Miller and Valasek [74], relied on a soft-

ware update vulnerability in the head unit in order to craft a series of attack steps

that lead to the modification of the vehicle processor interface firmware. The latter

could then interfere with the vehicle CAN bus by sending a diagnostic command to

bleed the brakes causing the vehicle to lose braking ability at low speeds. This and

other similar proven attacks demonstrate the need for the download process especially

at the ECU level where malicious downloads can be catastrophic.

3.2.1 OTA Architecture

The connected software update allows the remote delivery of software updates

to an ECU in a vehicle. Whether the update is delivered over the air, for example

through a telematics unit or through a Bluetooth enabled smart device, direct authen-

tication with the originating source is needed to ensure the integrity and authenticity

of the software update. In this chapter when we discuss over the air update, we are

referencing the process by which software updates are delivered to a vehicle wirelessly

first by downloading to a primary ECU like the vehicle gateway, and second by flash-

ing the target ECU. The architecture, shown in Figure 3.1, is a simplified diagram of

the vehicle data architecture with the following associated attack surfaces and threat

sources:

OBD-II Port:

• Download tool connected to the OBD-II connector

• Aftermarket equipment connected to OBD-II port (Insurance Dongle)

Telematics/Headunit:

17

Figure 3.1: Architecture of OTA system considered for the security analysis

• Cellular Modem Connection

• Wifi Hotspot (and related software)

• Bluetooth connection to mobile device

• Media Ports (USB, SD Card, CD/DVD)

Internal Vehicle network:

• CAN bus network

• Compromised ECU, either gateway or ECU on safety bus.

In the following sections, we will see how this architecture results in a set of threats

that have safety impacts and how they can be mitigated by applying the safety-driven

security approach.

3.3 Related Work

In Section 2.4, we surveyed the various techniques for combining safety and secu-

rity analysis. Here, we shall look at existing approaches for securing software update

18

processes to provide a reference for our comparison. Several papers have already pre-

sented concepts for a secure software update process as well as the possible threats

that such systems face. The EVITA project [87], presented ten attack trees based on

eighteen security use cases. One of the security use cases is the attack on the flashing

capability of the vehicle. Based on the derived attack tree, security requirements were

developed to protect vehicle assets against flash programming threats. The project

derived the following security requirements for firmware updates relative to the OEM,

the Download Tool (DT), the Communication Control Unit (CCU) and the ECU:

• Firmware confidentiality (CSR.1): Firmware must be kept confidential when

transferred from OEM to DT and from DT to the target ECU

• Key confidentiality (CSR.2): Exchanges transferring or using non-public keys

must preserve key secrecy along the whole flashing process

• Internal Authenticity (ASR.1): Whenever an exchange between CCU and ECU

happens, the correspondence between claimed and real authors must be authen-

ticated

• External Authenticity (ASR.2): Whenever data is exchanged between DT util-

ity and OEM server or between DT and in-car components, the correspondence

between claimed and real authors must be authenticated.

Note, the above requirements do not make a distinction between safety-relevant se-

curity requirements and those which are purely security relevant. Nilsson et al. [82],

studied the different security threats that face software updates and presented a list

of threats based on the different elements involved in the flash update process, which

are: the portal, the communication link between the portal and the vehicle, and the

vehicle itself. In the portal, they pointed to masquerading attacks in which an at-

tacker takes-over or creates a fake portal to distribute malicious software packages. In

19

the communication link, they pointed to the risk of the wireless link being vulnerable

to traffic manipulation through packet injection and replay attacks. As for the vehicle

level threats, they pointed to the case where an attacker can impersonate a vehicle

and connect to the portal to uncover security vulnerabilities or attack vectors. These

vectors can then result in further intrusion attacks. The authors derived security

requirements to address those risks in a methodical fashion:

• Preventing impersonation of the portal by using certificate based identity veri-

fication of the portal and preloading the portals public key in the vehicle

• Usage of an Intrusion Detection System in the portal to detect an intrusion and

take the proper action

• Secure end-to-end communication over the wireless link by encrypting all the

data with a freshness counter to prevent packet injection or playback

• Preventing impersonation of a vehicle by establishing the vehicle identity through

a certificate

• Usage of a firewall and an IDS in the vehicle to alert against an intrusion and

log the intrusion to prevent future breaches

In the above requirements, safety is again assumed as a by-product of securing the

overall system. Note, in our work, while we are interested in the overall security, the

focus of our work is on securing safety at the ECU level. UPTANE [61], is an open

source project that proposes a full OTA solution specifically designed for automotive

systems. The project enlisted security experts from academia as well as experts from

the automotive industry to come up with a state of the art open source solution to

OTA. The project presents the following design goals to deal with security attacks:

• Leverage additional storage to recover from endless data attacks. This allows

the new software image to be flashed without overwriting the original image

20

which can serve as a backup.

• Broadcast metadata to prevent mixed-bundles attacks where a compromised

primary ECU can send incompatible software images to secondary ECUs

• Utilize a vehicle version manifest to detect partial bundle installation attacks

which can leave ECUs partially programmed

• Use a time server to limit freeze attacks to prevent an ECU from completing

its download or preventing it from receiving any updates

The above design goals guide the full implementation of UPTANE which defines in

greater detail the roles of primaries, secondaries, and the content of metadata. Due

to the maturity and completeness of UPTANE, we shall use it in this chapter as a

reference for validating the output of our security analysis using the safety-driven

approach to security.

3.4 A Safety Driven Approach to Security

The safety-driven approach to security(SDAS), assumes that the safety analysis

is performed initially to define a safe system architecture along with the risk of safety

hazards that shall be mitigated. Therefore, SDAS starts from the point where the

safety analysis was finished and then re-iterates until both the safety and security

requirements are in no further conflict as shown in Figure 3.2. In each iteration,

changes applied to the architecture are evaluated from both the safety and security

points of view. The approach builds upon the premise that hazards outside the physics

of the system cannot be added through cyber attacks. Instead, the latter is only able

to manifest hazardous events from the set of possible hazards that a specific ECU

can experience. Consider for e.g. an electronic power steering ECU which is required

to mitigate the hazard of an over-steering event that can result from a failure in the

21

Figure 3.2: Safety Driven Security Approach process steps

steering angle sensor. An attacker can induce the hazard of over-steering by spoofing

the sensor data, but he cannot create a totally new hazard in the target ECU outside

its own physical limits. Incidentally, he can create hazards for other ECUs through

a masquerading attack, but that is handled separately within the hazard analysis of

the respective ECUs. Furthermore, by focusing on the safety goals as a starting point

we limit the search space of security threats to ones that are guaranteed to result

in a safety impact. Since our aim is to secure safety-critical systems, we argue that

biasing the security analysis in this manner is acceptable.

Based on the target application use case, we map hazards to attack objectives

using the attacker model. Given the attack objectives, there are several techniques to

produce attack methods, such as attack trees, as is done in the EVITA project [87],

or by looking at documented attack methods as in [92]. Alternatively, applying a

22

Hazard Functional Unit
Software is corrupted during the down-
load process without detection by the
ECU. ECU then executes corrupted
code which can result in undefined and
potentially unsafe behavior

CCU,Gateway,Target ECU

Download of incompatible binary files
for e.g. a calibration file with unsafe
parameter settings

Gateway,Target ECU

A communication failure prevents the
download from completing leaving a
safety critical ECU un-programmed

Gateway,Target ECU

A power failure during programming
leaves a safety critical ECU partially
programmed or un-programmed

Gateway,Target ECU

A permanent communication failure in
the system prevents any updates from
reaching the vehicle including safety
critical patches, e.g. recall related up-
dates

CCU

Table 3.1: Simplified Hazard Analysis for OTA

threat model such as STRIDE[91], can also be useful in enumerating threats that can

lead to a safety hazard. Although we are focusing here on threats that lead to haz-

ards, this does not mean that non-safety related threats are to be ignored. For such

threats, traditional security engineering approaches can be applied in parallel to pro-

tect properties such as driver privacy. Once, we have a set of attacks that can directly

violate our safety goals, we can now evaluate whether each attack is preventable, or

only detectable. For preventable attacks, the next step is to define the technical se-

curity requirement at the component level to realize the security countermeasure. If

only detection is possible, we need to define the detection method as well as how the

system shall react when the attack is detected. Since each attack is mapped to a

specific safety goal, we can reuse the fail safe-states defined in the safety case [17],

to determine what the proper reaction shall be in the face of such an attack. At this

point a re-evaluation of the safety architecture and relevant safety goals is performed

23

to ensure that the resulting system with the added functional security requirements

does not introduce conflicts with the safety assumptions of the system. The process is

repeated with several iterations to allow for refinements to the functional safety and

security requirements until all conflicts are resolved. One example of such a conflict

would be a functional security requirement that aims to immediately reset the system

when an attack is detected. This in turn violates a safety goal for a graceful shut-

down to prevent sudden loss of system function. Since our analysis is biased towards

safety, we always give priority to safety requirements when a conflict is detected. In

the remaining sections, SDAS is applied to the connected software update use case

to demonstrate its effectiveness.

3.4.1 Safety Goals

As stated above, a prerequisite to analyzing the security threats which have safety

implications on the software update process is to define the safety goals first. Typically

these are produced during the safety assessment. Since we do not have a real system to

analyze, we came up with safety goals based on a simplified hazard and risk analysis

of the OTA system described in Figure 3.1. The identified hazards are shown in

Table 3.1. Note, we did not assess risk levels of safety goals in this theoretical use

case because it requires a complete system to be defined first. The list of hazards we

identified lead us to the following consolidated safety goals for the OTA system:

• Data corruption in software downloaded to the ECU shall not go undetected

• Incompatible software images shall not be downloaded to an ECU without de-

tection

• Safety critical ECUs shall not be permanently left in an un-programmed or

partially programmed state as a result of an OTA event.

24

Attacker Objective Impact
Organized
Crime

Download Malware to con-
trol an individual vehicle of
victim

Injury or Loss of Life to In-
dividual Car

Terrorist Download Malware to con-
trol fleets of vehicles to
cause mass chaos

Injury or Loss of Life to
civilian or government vehi-
cles

Cyber Activists Disrupt OTA process to
prevent safety critical
patches or vulnerability
fixes from being installed

Loss of customer confidence
in OTA, potential for injury
or loss of life if manual up-
date not performed

Cyber Criminals Re-program ECUs remotely
with unsigned software,
to force the ECU to stay
in bootloader mode(un-
programmed state) con-
sequently, without safety
critical functionality

Loss of consumer confidence
in ADAS systems, and in-
creased risk of injuries or
loss of life

Table 3.2: Safety Driven Attacker Model

• It shall always be possible to download an update to fix unsafe software or roll

back to a safe version

3.4.2 Attacker Model

In our safety driven security approach, the attacker objectives are to trigger haz-

ardous events that violate the defined safety goals. This is presented in Table 3.2.

Given our attacker objectives, we can derive three safety driven attack objectives

associated with the connected software update as shown in Table 3.3.

3.4.3 Security Requirements

Depending on the security architecture, certain attacks may not be prevented but

at least they can be detected and action is taken. A security analysis shall evaluate

each attack in terms of feasibility of both, prevention and detection in order to assign

the proper recovery action. Based on the attacks presented in Table 3.3, we propose

25

Attack Description Safety Goal
Download malware to take control of an ECU
without detection

1

Download a validly signed binary images with in-
compatible software

2

Disrupt the update process indefinitely to prevent
an update from reaching completion. Here the at-
tacker may not be able to forge an authentic soft-
ware image, yet he is still able to interfere with
the software update process in a way to prevent
critical software updates from being delivered or
flashed to the target ECU.

3

Manipulate the update process to result in an un-
programmed ECU. In the case where the attacker
cannot forge the signature of the software, he may
try to disrupt the download so as to result in an
un-programmed ECU.

4

Table 3.3: Attacks with safety goal violations

the following functional security requirements:

• The software download shall only be possible with authenticated data and from

an authorized source

• The authenticity of the binaries shall include the compatibility information

among binaries to prevent flashing incompatible software binaries

• The OTA architecture shall permit multiple download channels to prevent safety

critical updates from being blocked indefinitely through a single compromised

channel

• Failure to update safety critical ECUs shall not result in an un-programmed

ECU, i.e. the system shall retain a backup copy of the software to be able to

restore such ECUs to their previous functioning state

26

3.4.4 Impact on Safety Architecture

Following the generation of attack prevention and detection countermeasures,

SDAS requires evaluating the impact on the original safety architecture to resolve

potential conflicts. The derived requirements in the previous section focused com-

pletely on prevention. To support these requirements, the ECU requires the ability

to perform data authentication and access control functions. This results in the addi-

tion of security algorithms as well as hardware support, such as a TPM, to store keys

securely. Hoeller et al. [56], showed that TPMs used in safety-critical systems require

special handling. The areas of concern are the impact on real-time performance and

the potential for faults in the TPM hardware which can result in safety violations.

This highlights the need for further refinement of the safety and security architec-

ture to ensure the impact on both is understood and action is taken. In terms of

attack detection, when a software image is maliciously erased and the updated image

is detected as invalidly signed, the safe state is to revert back to the backup software

through the redundant storage. This ensures that our safety goal of not leaving a

safety critical ECU in a permanently un-programmed state is upheld.

3.5 Comparison to UPTANE

The derived security requirements at the ECU level map very well to the security

requirements stated in UPTANE [61], as shown in Table 3.4. In the following chapters,

we shall apply SDAS to a wider use case to validate its effectiveness experimentally.

3.6 Conclusion

In this chapter, we presented a safety-driven approach to security analysis to

bridge the gap between the two interdependent domains of functional safety and cy-

bersecurity. We applied the approach to a popular OTA update process use case

27

UPTANE SDAS
Prevent endless data attacks
through backup storage

Failure to update safety critical
ECUs shall not result in an un-
programmed ECU, i.e. the sys-
tem shall retain a backup copy of
the software to be able to restore
such ECUs to their previous func-
tioning state

Prevent mixed bundle attacks
through the broadcast of meta
data

The authenticity of the binaries
shall include the compatibility in-
formation among binaries to pre-
vent flashing incompatible soft-
ware binaries

Detect partial bundle installation
attacks by using a vehicle version
manifest

Failure to update safety critical
ECUs shall not result in an un-
programmed ECU, i.e. the sys-
tem shall retain a backup copy of
the software to be able to restore
such ECUs to their previous func-
tioning state

Limit freeze attacks by using a
timeserver

The OTA architecture shall per-
mit multiple download channels
to prevent safety critical updates
from being blocked indefinitely
through a single compromised
channel

Table 3.4: Attacks with safety goal violations

to fine-tune and validate the approach. As a result, we produced a list of security

requirements that were shown to be aligned with the state of the art in OTA sys-

tems security. By focusing on the safety goals first, we were able to leverage the

safety analysis in deriving safety hazards that can be induced maliciously. This led

to defining security requirements that are necessary to counteract such threats. Also,

by differentiating preventable from strictly detectable attacks, we were able to refer-

ence back the safe states of the system to ensure recovery action is compatible with

the corresponding safety goals. In the next chapter, we apply SDAS to the AU-

TOSAR software architecture to uncover safety-relevant security vulnerabilities and

28

recommend ways to improve the AUTOSAR security resilience.

29

CHAPTER IV

AUTOSAR Safety and Security: Synergies and

Conflicts

4.1 Introduction

In the previous chapter, we explored how taking an iterative approach to safety

and security by linking safety goals to security threats can lead us to derive safety-

relevant security countermeasures in a harmonized fashion. We saw that a safety-

driven approach to security(SDAS), can indeed generate security requirements that

safeguard safety as a system property. The approach also takes care of exploring areas

of incompatibilities between the safety and security countermeasures which required

iterative refinement to arrive at a system that satisfies both objectives. In this chapter,

we apply the approach to AUTOSAR as the ECU level software architecture with the

hope to uncover security vulnerabilities and then propose security countermeasures

that improve the security posture of AUTOSAR based systems. The latter being the

most popular software architecture platform for automotive systems [1], is a natural

pick when studying the state of the art of automotive systems and ways in which

safety and security may be in conflict or for that matter in harmony. Just as in

chapter III, we start with the safety analysis since the systems primary function is

to meet safety goals. Although, we did not have access to the AUTOSAR safety

30

analysis documentation, by examining the AUTOSAR defined safety mechanisms we

could synthesize the assumed safety architecture behind AUTOSAR safety systems

and evaluate how it would fair under the threat of attack. In parallel, as we analyze

the security requirements of AUTOSAR, we go back to the safety architecture to

determine incompatibilities and synergies. As will be shown in this chapter, there were

instances in which safety mechanisms became attack vectors, and in others, they were

useful as security countermeasures. When it came to attack mitigation, harmonizing

the security response with the safety requirements became a must to ensure a fail-safe

attack response. Next, we enumerated safety mechanisms that are synergistic with

security and provide some constraints on how they can be used for ECU hardening.

We then shift from analytical to experimental validation by demonstrating two attacks

against a safety rated micro-controller. Finally, we demonstrate how specific safety

mechanisms that are synergistic with safety can be used for attack mitigation, using

the same hardware target.

4.2 Attack Model

Deeply embedded systems are assumed to be located behind several defense lines:

firewall, security gateway, and a secure communication bus. Assuming the vehicle has

implemented a properly layered secure architecture, launching successful attacks on

such systems requires compromising several security layers upstream. Previous works

by [73], [98], have shown that at some point these defenses can be broken and an

attacker may be able to launch a successful attack against the vehicle control system.

Let us consider the three classes of attacks that are relevant to both deeply embedded

ECUs and traditional computer systems [48]:

• Malware and exploitable software vulnerabilities which aim to take control of

the system

31

• Physical access type attacks

• Network based attacks

Note in the first class, there is a significant difference in the attack surface between

traditional computers and deeply embedded systems [39]. In the former, exposure to

software exploits is more common due to the rich space of applications that can be

loaded and executed on highly configurable operating systems like Linux. In contrast,

deeply embedded systems execute a limited pre-defined set of applications from flash

memory. Creating persistent malware in flash requires the tampering of the flash

bootloader or an exploit that can bypass security checks to use the bootloader routines

directly. Alternatively, loading temporary malware requires injecting code in data

memory (such as the stack) through a buffer overflow exploit due to a software bug

as demonstrated in [50]. When network access is considered together with software-

based exploits, deeply embedded systems suddenly become exposed to similar types

of attacks as traditional computer systems. While security experts may argue that

many protections are already being designed to harden automotive systems, lack of

maturity of cybersecurity principles within automotive ECUs gives us the intuition

that software vulnerabilities and back doors will persist for several years. For the

rest of this chapter, we assume our attackers have indirect network access to the

ECU through a compromised link within the vehicle network architecture. The in-

vehicle network is assumed to support AUTOSAR SecOC [10] to ensure CAN bus

authentication and freshness. Furthermore, there may exist an exploit or backdoor

in the ECU which allows loading software on the target. The attacker’s objective is

to disrupt safety critical systems to create safety hazards.

32

Module Mechanism Max Error
Response

E2E CRC:data integrity Disable consum-
ing function

E2E Sequence counter: message order Disable consum-
ing function

E2E Alive counter: data freshness Disable consum-
ing function

E2E Data Id: detect I-PDU sent on wrong
message

Disable consum-
ing function

E2E Timeout monitoring: detect message
loss

Disable consum-
ing function

WdgM Monitor aliveness of supervised entities Reset
WdgM Detect timeout of supervised entity Reset
WdgM Monitor control flow of supervised en-

tity
Reset

OSTiming Monitor task/ISR execution budget OS Shutdown
OSTiming Monitor task/ISR inter-arrival time OS Shutdown
OSTiming Locking time protection OS Shutdown
OSMemory Stackoverflow detection Reset
OSMemory Detect execution from data section Reset
OSMemory Detect access to restricted memory Reset
OSHardware Prevent untrusted apps from accessing

privileged HW
Reset

CoreTest Test health of core MCU components Reset
RAMTest Test health of RAM cells Reset
FlashTest Test health of Non-volatile memory Reset

Table 4.1: Survey of AUTOSAR safety mechanisms

4.3 Survey of AUTOSAR Safety Features

Before we can evaluate attacks on safety in AUTOSAR based systems, we start by

surveying the safety mechanisms and the corresponding maximum safe state action,

as shown in Table 4.1. This will enable us to extrapolate the safety goals in order to

apply SDAS and derive security attacks with a safety impact.

33

Safety Mechanism Safety Hazard
Cyclic Redundancy Check(CRC): de-
tects data corruption by compar-
ing CRC value appended to message
against the calculated CRC

Consume corrupted data

Sequence counter: detects out of se-
quence messages

Consume out of order data when order
is important

Alive counter: detects unchang-
ing(stale) data

Operate on old data that no longer re-
flects the vehicle state

A unique ID for Interaction Layer Pro-
tocol Data Unit (IPDU) group: detects
a fault of sending IPDU on unintended
message

Misinterpret data from one message as
belonging to another message

Timeout monitoring: detects commu-
nication loss with the sender

Operate on old or no data due to loss
of communication

Table 4.2: Applying SDAS to E2E Library

4.3.1 End to End Library

The first AUTOSAR safety module that we examine is the End to End (E2E)

library which defines several protection profiles for data transmitted over a commu-

nication channel both internally and externally [13]. The goal of this module is to

prevent safety-critical functions from operating on faulty or missing data. To illus-

trate how SDAS can be applied, we list each safety mechanism and the corresponding

hazard it aims to prevent in Table 4.2. Given the extrapolated hazards we apply the

STRIDE model to derive several attacks classes that can materialize those hazards.

The first four hazards can be caused by data spoofing and tampering attacks. With-

out proper data authentication, an attacker can tamper with data, spoof an invalid

sequence or alive counter as well as the IPDU ID. To cause a communication loss, the

attacker can launch a DoS attack to disrupt the transmission of network messages.

To mitigate the risk of the first four attacks, a message authentication code(MAC)

can be appended to the message to protect data, counters, and identifiers. Since

this countermeasure prevents the attack, no fail-safe action is needed. However, the

impact of introducing a MAC has to be evaluated against the original safety archi-

34

tecture. One prominent issue is the MAC calculation time impact. Unlike a CRC,

the time of verifying a MAC is not negligible, therefore, the overall overhead has to

be factored into the design of network messages to ensure control functions are able

to receive their data in a timely manner. Addressing the DoS attack requires the

addition of an intrusion detection system to detect anomalous CAN messages, which

translates into a change in the overall system architecture. DoS attack prevention

may not always be possible, therefore, the system shall at least aim to detect the

attack and take action. If an ECU experiences message loss due to a DoS attack, the

same fail-safe action can be taken as with normal message timeout faults by shutting

down the relevant safety functions. The introduction of the IDS requires an additional

iteration to evaluate the impact of this change on the overall safety assumptions of

the original system. The safety architecture must now account for possible data loss

not only due to a real DoS attack but also due to the IDS falsely flagging valid CAN

messages as anomalous. The risk of false positives has to be assessed from a safety

point of view as it correlates to a system fault. This process continues until all the

safety and security requirements are satisfied.

4.3.2 AUTOSAR OS Protections

AUTOSAR OS [11] defines the properties and interfaces of a real time operating

system. The standard also defines protection mechanisms that are essential for build-

ing safety critical applications. Those protections fall under the following categories:

• Memory Protection: to provide freedom of interference between OS applications

and tasks of mixed criticality

• Timing Protection: to prevent timing errors in tasks, Interrupt Service Routines

(ISRs), or system resource locks from interfering with higher ASIL functions

• Service Protection: to capture invalid use of the OS services API by the appli-

35

cation

• OS Related Hardware Protection: to protect privileged hardware elements from

being modified by lower ASIL functions

Note the OS supports four scalability classes with the following features:

• SC1: Deterministic Real time operating system (OSEK OS based)

• SC2: Stack monitoring and precise time control for periodic tasks

• SC3: Support for MPU/MMU to provide spatial freedom of interference

• SC4: Timing protections

Systems that require higher safety integrity levels must use higher scalability class

types.

4.3.2.1 Memory Protections

AUTOSAR OS SC3 and SC4 support freedom of interference between software

partitions of mixed safety criticality through the hardware-based spatial separation

of memory [11]. The aim of these protections is to prevent lower ASIL software from

corrupting the data of a higher ASIL software within the same system. To understand

the hardware-based memory protection capabilities of automotive embedded systems,

we studied the ARM Cortex M architecture which is among the most popular micro-

controller architectures used in automotive ECUs [32]. Rather than an MMU, such

MCU’s rely on an MPU to restrict access to certain memory regions. Also, the CPU

supports two modes: privileged and user mode. Only privileged mode allows access

to special registers like the MPU configuration. Using the MPU it is possible to

define memory regions with specific attributes such as read, write, and execute as

well as specify access rights by privileged or user modes. AUTOSAR OS supports

protecting memory both at the Task/ISR Category 2 level and at the OS application

36

level. When switching to a ”non-trusted” OS application, the OS can re-configure the

MPU to restrict access to the safety application code, data, and private stack. This

prevents a fault in a lower ASIL OS application from corrupting the data of a higher

ASIL OS application. Note in addition to MPU based stack protection, AUTOSAR

OS defines software based stack monitoring which can identify that a task or ISR has

exceeded a specified stack boundary at context switch time. This is done by checking

a unique stack pattern which is inserted at the end of the reserved stack space. The

downside of this protection is that an attacker can overflow part of the stack without

crossing the stack protection boundary and evade detection. Besides data protection,

the MPU can be used to restrict access to memory mapped registers to prevent

certain tasks from modifying hardware registers which are safety-relevant. Dynamic

MPU reconfiguration adds considerable CPU run-time overhead, therefore for most

systems, a static MPU configuration is desirable. Due to the low number of MPU

ranges supported in hardware, the power of the MPU as a security countermeasure

is limited. Note, AUTOSAR uses the term trust in the context of safety which can

be misleading because cyber security threats are not considered. Consequently, it is

possible to define a ”Trusted OS Application” that has access to all memory resources

even though from a security point of view, that OS Application may be vulnerable

to attacks.

4.3.2.2 Timing Protections

AUTOSAR OS timing protections aim to mitigate timing faults that can exist in

lower ASIL software from impacting higher ASIL software. The timing protections

are:

• Execution Time Protection: detects faults in Tasks or Category 2 ISRs that

exceed their execution budget

• Locking Time Protection: detects faults in blocking resources, and locking in-

37

terrupts for a period longer than the configured maximum

• Inter-arrival time protection: detects faults in the time between successive acti-

vations of tasks or Cat2 interrupts to ensure a minimum separation time is not

violated.

The OsTaskExecutionBudget is a configurable parameter that specifies the maximum

allowed execution time of a task [11]. By monitoring this time, AUTOSAR OS can

detect timing errors before they can lead to tasks missing their deadlines. This

prevents the propagation of timing errors to higher priority tasks and allows the OS

to isolate the offending task. One use case for the locking time protection mechanism

is to prevent global interrupts from being disabled for a period of time that would

create instability in a real-time system. Disabling global interrupts is needed in

scenarios where a routine needs atomic access to a resource and cannot tolerate being

interrupted. But doing so beyond a specific time threshold can prevent the real-time

system from being able to process critical tasks within the required time. The third

timing protection mechanism is needed to ensure the system is not being excessively

interrupted which would starve the CPU from runtime cycles to perform its normal

tasks.

4.3.2.3 Hardware Protection

AUTOSAR OS is expected to run in privileged mode which gives it access to spe-

cial hardware registers that need protection from corruption by Tasks or Cat2 ISRs

running in user mode. Example registers that are only accessible in supervisor mode

can be the MPU configuration, the OS Timer unit, and the interrupt control config-

uration. Protecting those registers from faults in lower ASIL software is mandatory

to ensure the integrity of the OS operation.

38

4.3.3 Watchdog Manager

AUTOSAR defines three modules for supporting watchdog functions [14]:

• Watchdog Driver: services the hardware watchdog whether internal or external

• Watchdog Interface: provides a high level of abstraction of watchdog driver

functions

• Watchdog Manager: supports the supervision of multiple software entities and

the triggering of an MCU reset in case of a supervision failure

Supervised entities can be software components, runnables, or Basic Software(BSW)

modules that report checkpoint events to the watchdog manager. The user config-

ures the time and sequence of checkpoints within a supervised entity. The watchdog

manager then monitors aliveness, and control flow within these supervised entities.

The user calls WdgM CheckpointReached() at specific code locations to notify the

WdgM that an execution event has been reached. A software error that prevents the

checkpoint from being reached by the pre-determined deadline or with the right exe-

cution sequence, results in the detection of a fault by the WdgM during the execution

of the WdgM Mainfunction. The response to any such fault can range from a simple

callback that notifies the user of the error, to a complete system shutdown.

4.3.4 Core Test

Safety critical applications require the monitoring of an MCU core functions to

detect hardware faults during startup or normal run-time of an ECU. The core test

module [5], can perform tests of MCU components such as:

• Arithmetic Logic Unit(ALU)

• Memory Protection Unit(MPU)

39

• Cache controller

• Interrupt Controller

The core test is executed in partial tests as a background task that can be interrupted

by higher priority tasks. However, the core test requires uninterrupted execution of

atomic sequences. In case a core test fails, the module reports the event to the

Diagnostic Event Manager(DEM) [8], to take action based on the severity of the

detected failure. Note that micro-controllers with dual lock step cores do not need

the Core Test module since the dual core lock step feature can detect errors covered

by this module.

4.3.5 RAM Test

The RAM test module [12], provides a physical health test of RAM cells and RAM

registers to meet the fault coverage requirements of a safety critical application. The

tests can either be executed in a background task or through a direct call from the

application. In case a failure is detected, the module reports the results to the DEM

to take the appropriate action. AUTOSAR defines interfaces to start and stop the

tests but there is no direct interface to force the test status to failure. The module

splits tests into atomic units that are not interruptible. A higher priority task can

interrupt the module test in between atomic test units execution. The background

task performs the tests of all configured blocks sequentially and repeats the sequence

after each complete test is finished. One of the limitations of this module is that

during the execution of the RAM test algorithm, another software shall not attempt

to modify the area under test. This is to ensure data consistency in multi-core systems

or with DMA controllers. The AUTOSAR specification lists the following algorithm

types that are supported:

• Checkerboard test algorithm

40

• March test algorithm

• Walk path test algorithm

• Galpat test algorithm

• Transparent Galpat test algorithm

• Abraham test algorithm

4.3.6 Flash Test

The Flash Test module [9], provides test algorithms for non-volatile memory to

meet the diagnostic coverage requirements in a safety critical system. Tests are di-

vided into partial tests based on the number of cells tested in one task cycle. Unlike

the RAM and Core tests, the Flash test can be pre-empted at any point because

it does not require atomic access. It is possible to abort or suspend the flash test

but that introduces a latency based on when the request is received related to the

background task cycle time. A failure during the test algorithm is reported to DEM

to take the proper action. The different test algorithms supported are:

• 8,16,or 32 Bit CRC

• Checksum

• Duplicated Memory

• Error Correcting Codes(ECC)

4.4 Summary of Security Gaps

By examining each safety mechanism listed above and following the SDAS ap-

proach we can extrapolate the hazards which must be prevented. Next, we determine

if those hazards can be materialized through a security attack. In case the hazard

41

cannot be induced through a cyber attack, or the risk of cyber attack is quite low,

then no further action is needed. For hazards that could be induced maliciously with

a significant probability, security countermeasures are needed. First, we examine

if AUTOSAR has any security countermeasures that can be used, and if not then

we identify those as security gaps that require further handling. For AUTOSAR

countermeasure, it is necessary to identify the residual safety impact on the software

architecture which will require further system refinement. The results of this analysis

are summarized in Table 4.3. Let’s walk through the analysis of hazards correspond-

ing to ”OS: Memory Protection for FFI”. The non-malicious hazard is that the data

of a safety application is corrupted by a fault in another application causing the safety

application to misbehave in a serious way. An adversary can materialize this hazard

by injecting malicious code that can tamper with the safety application data causing

an unsafe action. To mitigate this type of threat using AUTOSAR, one has to treat

all applications as untrusted to ensure that they all run in user mode. As a result, the

OS is given the duty of switching contexts and enforcing spatial separation through

the MPU. But implementing such security countermeasure has impacts on the run-

time performance of the CPU due to increased switching time. This requires further

impact analysis to harmonize safety and security requirements. By following this sys-

tematic approach, we can determine security gaps or deficiencies within AUTOSAR.

These will be the driving factors of the solution presented in the next chapter.

Safety

Mecha-

nism

Threats AUTOSAR

Countermea-

sures

Other Countermeasures

and Residual Safety Im-

pact

42

E2E: CRC Malicious data

manipulation

SecOC: Authen-

ticate PDU

Authentication time shall

not result in delay of sig-

nals for proper data han-

dling, therefore, use hard-

ware acceleration and opti-

mized software to authenti-

cate fast

E2E: se-

quence

counter

Malicious se-

quence counter

manipulation

SecOC: Authen-

ticate sequence

counter

Same as above

E2E: alive

counter

Malicious alive

counter manipu-

lation

SecOC: Au-

thenticate alive

counter

Same as above

E2E:

IPDU ID

CAN ID spoof-

ing

SecOC:Authenticate

CAN ID

Same as above

E2E: time-

out detec-

tion

DoS attack to

prevent data re-

ception

None With IDS, disabling the

message relays of offending

nodes shall be done in a

safe way to prevent false

positives from causing un-

intended shutdown of safety

related functions that rely

on the missing messages

43

OS: Mem-

ory Pro-

tection for

FFI

malicious app

corrupts the

data of a safety

application

Treat all ap-

plications as

untrusted and

let OS con-

figure MPU

dynamically

Evaluate MPU context

switching time on real-time

performance and availabil-

ity of safety application

OS:Timing

Protection

Run-time ex-

haustion attack

to cause certain

tasks to run

longer than they

should

Configure Task

Execution Bud-

get to factor

external threat

sources

Implement external com-

ponent that can monitor

the timing execution with-

out the possibility of be-

ing spoofed. Attack detec-

tion response shall be har-

monized with safety con-

straints

Watchdog

Man-

ager: flow

control

Code injection

or reuse attack

to alter the

control flow

Configure super-

vised entities to

protect security

related functions

External component that

can enforce CFI checks

without the possibility of

being disabled. Attack de-

tection action shall be har-

monized with safety con-

straints

44

Flash Test:

memory

faults

Attacker tam-

pers with code

or data in flash

None Authenticate code and crit-

ical flash data to detect ma-

licious tampering. Time for

data authentication shall

not violate the availability

needs of the ECU

Table 4.3: SDAS results against AUTOSAR Safety Goals

4.5 Exploiting Security Gaps

To demonstrate the need for improving AUTOSAR security, we identify security

gaps from the above analysis and build two practical attacks. With the E2E library,

the attacker cannot spoof the data when authentication is enabled, but he can create

a message loss scenario by flooding the network with high priority CAN messages.

With AUTOSAR OS timing protections, the attacker can violate the CPU timing

budget of safety functions by overwhelming the system with network authentication

requests.

4.5.1 Message Loss Attack

In order to create a message timeout event, the attacker can flood the bus with

high priority CAN messages, e.g. zero-ID CAN messages, at the highest periodicity

possible for the target baud rate. Transmitting zero-ID frames in a back to back

fashion will reduce the likelihood that a valid frame wins arbitration to be transmitted

on the bus. As a result of transmitting nodes continuously losing arbitration to the

zero-ID message, receiving nodes will start logging timeout faults. Subsequently,

control functions that rely on those messages will be degraded, which is the safe state

45

of missing safety critical messages. An attacker determined to prevent the safety

critical ECU from performing its intended function can successfully launch this attack

by exploiting this mechanism. Although the system detects the attack, the attacker’s

goal of shutting down safety functions is still attained.

4.5.1.1 Security Countermeasures

In [81], we proposed several countermeasures to the message loss scenario. A smart

gateway that runs intrusion detection software can monitor the received CAN message

identifiers along with their expected frequency and detect attacks such as the zero-

ID flood attack. Alternatively, security monitoring software within the transmitting

ECU can detect the malicious manipulation of the CAN configuration. The monitor

can either reside in the HSM or operate in privileged mode with protections from the

HSM to ensure it is not disabled. If the CAN settings are flagged as tampered, the

HSM can leverage its dedicated IO pins to disable the CAN transceiver and prevent

the disturbance of the local network. Since this attack is not fully preventable, it

is necessary to collect indicators when timeout events occur in order to distinguish

normal failures from security attacks. This can be achieved by logging the frequency

of these failures, as well as capturing additional network traffic to aid in the anomaly

detection either through a local or off-board intrusion detection system. Although

the zero-ID attack has already been mentioned in other publications, such as [73],

the attack is still worth mentioning here because we arrive at by applying the SDAS

approach.

4.5.2 Task Execution Budget Attack

By considering the OS timing protections and how they can be violated mali-

ciously, we arrive at our second attack method which derives from the Task Execution

Budget monitoring. As mentioned in Section 4.3.2.2, AUTOSAR OS monitors the

46

task execution time, to prevent a single task from starving the CPU from run-time re-

sources. In response to this type of timing error, the OS defines the following possible

actions that the application can request[11]:

• PRO IGNORE: the OS can ignore the event

• PRO TERMINATE TASKISR: the OS shall forcibly terminate the task

• PRO TERMINATE APPL: the OS shall terminate the faulty OS Application

• PRO TERMINATE APPL RESTART: the OS shall terminate and then restart

the faulty OS Application

• PRO SHUTDOWN: the OS shall shutdown itself

Upon detecting the error condition, the OS triggers a ProtectionHook to notify the

application to take fail-safe measures. The last action from the above list implies

that the system can be completely shut down as a result of such an error condition.

AUTOSAR OS gives the system configurator the flexibility to specify the appropriate

value for the execution budget as well as the proper behavior in case it is exceeded. In

a stable system absent from a malicious attacker, such a fault is normally caught dur-

ing development when the system is tested under maximum load conditions. However,

in the presence of an attacker who is able to repeatedly cause this error condition, the

system can experience constant resets that prevent it from ever being able to execute

its intended safety functions. To realize the attack goal, the attacker has to cause

an OS task to exceed its execution budget. One way to find candidates for this type

of vulnerability is scanning the application for processes that have variable execution

time due to their dependence on a hardware resource like flash programming time,

or a network resource. We chose the latter and we investigated how to exploit CAN

networks that support authenticated messages via the Secure On-Board Communi-

cation (SecOC) module [10]. When a secure Protocol Data Unit (PDU) is received,

47

SecOC receives an indication from the Protocol Data Unit Router (PDUR) module

to copy the PDU to its own memory buffers. It then triggers the verification of the

authenticator portion of the PDU by calling the AUTOSAR Cryptographic Service

Manager (CSM) module as illustrated in Figure 4.1. Only if the verification passes,

SecOC then notifies the PDUR module to route the PDU up to the consuming layers

[10]. Since SecOC relies on the SecOc MainFunction() to perform the verification pro-

cessing, the attack goal is to cause that function to exceed the AUTOSAR configured

run-time budget: OsTaskExecutionBudget. Based on the CAN FD specification [55],

we can estimate the nominal time for transmitting a CAN frame if the arbitration

rate, data rate and payload size are all known. As shown in Figure 4.3, the number

of bits in a CAN FD frame can be calculated based on the different segments of the

frame. Note, the length of the CRC field is either 17 bits or 21 bits depending on the

payload size. For simplification, we set the CRC field to be 21 bits which corresponds

to a payload length of 20 and 64 bytes. This choice is guided by the fact that in

a vehicle CAN FD frames are more likely to utilize the larger payload size. Thus

the only unknown variable parameter remaining is the number of stuff bits which

depends on the content of the CAN frame. The rule is that no more than 5 bits can

be transmitted consecutively with the same polarity. Therefore, stuff bits are inserted

to ensure bit polarity is toggled if more than 5 consecutive bits have the same logic

level. Accounting for all the variables, results in a formula that gives us the estimated

transmission time of a CAN FD frame (in seconds):

Tcanfd = (1 + f) ∗ (
30

a
+

(28 + dl ∗ 8)

d
) (4.1)

where a is the arbitration baud rate in bits per seconds, f is the stuff bit factor, d is

the data baud rate in bits per seconds, and dl is the frame data length in bytes. Note

that in a worst case scenario, 1 stuff bit is inserted for every 5 consecutive bits which

48

Figure 4.1: Data flow from CANIF to the CSM layer for frame authentication

is equivalent to a factor of 20%. When CAN message authentication is enabled, the

attacker takes advantage of the fact that an ECU needs to spend a fixed amount

of CPU run-time to perform a MAC authentication before the frame is accepted or

discarded. Note, an attacker does not have to worry about generating valid MAC val-

ues, because the goal is to exploit the time taken to verify the MAC, not to spoof a

message with a valid MAC. The processing time varies depending on the target micro-

controller and the CPU operating clock frequency. SecOC defines a parameter for the

number of authenticating attempts when the freshness counter is not transmitted in

its entirety within the frame. The parameter: SecOCFreshnessCounterSyncAttempts,

causes the re-authentication of a secured I-PDU with different freshness values within

the acceptance window until one authentication succeeds or all attempts fail. This

results in more processing time for each message authentication failure. Therefore,

this parameter shall be accounted for in the attack potential evaluation. As shown in

Figure 4.1, SecOC MainFunction() loops through all the buffered PDUs that require

verification and triggers the verification request to the AUTOSAR CSM [6] module.

We intentionally choose to configure CSM to run in synchronous mode so as to maxi-

49

mize the processing time spent in SecOC MainFunction as it tries to authenticate all

frames in the buffer before the task is finished. As a result, SecOc MainFunction()

has to wait for the three CSM steps to be completed before it starts processing the

next secure PDU. To achieve a successful attack, the attacker needs to send a burst

of authenticated PDUs that would result in the SecOc MainFunction() exceeding its

run-time execution budget as shown in Figure 4.2. The key here is finding the min-

imum size of the frame burst needed to cause the timing error condition and then

checking whether it is feasible given the constraints of the CAN FD protocol. The

attack is possible if ∃ a value B ≤ maxB such that Tprocessing > Tbudget where:

maxB =
Tsecoc
Tcanfd

(4.2)

Therefore, assuming SecOc MainFunction has a task cycle time of Tsecoc and a CAN

FD frame transmission time of Tcanfd, our goal is to find the minimum burst size

B such that the processing time of SecOC MainFunction, Tprocessing, is greater than

the configured execution budget Tbudget while B ≤ maxB. In order to evaluate if

a system is affected by this attack, we present Equation 4.3, for calculating burst

size B. Let Tmac be the MAC verification time for verifying a single 64 byte mes-

sage, note this time depends on the MAC algorithm and whether it is accelerated

in hardware or implemented in software. Let Tmain be the run-time to execute the

SecOC MainFunction() to process a single frame without the MAC calculation over-

head. Let Tbudget be the maximum execution budget of the SecOC MainFunction

task. Let Nattempts be the value of SecOCFreshnessCounterSyncAttempts, which is

the number of attempts performed if MAC verification fails. Let B be the number of

CAN FD messages that can be verified within the Tbudget time, then:

B =
Tbudget

Nattempts ∗ (Tmain + Tmac)
(4.3)

50

The above analysis gives us the conditions needed to determine if the mechanism can

be triggered externally based on the target system parameters. An evaluation on a

real target is shown in section 4.5.3.

4.5.2.1 Security Countermeasures

The countermeasures to this attack as shown in [81], require several steps. First,

when defining Task Execution Budgets, system designers shall take into account po-

tential security threats to the task execution time to find the optimal budget that

can address both safety and security-related faults. Moreover, wherever possible, the

asynchronous mode for performing specific functions shall be chosen. AUTOSAR

provides both synchronous and asynchronous mode in several modules like NVM

and CSM. This would limit the time spent in a task as it allows the job to be per-

formed over several call cycles. With CAN authentication, SecOC defines a maxi-

mumretryCounter to repeat the MAC verification with a different freshness counter

upon failure. This can further exacerbate the duration of performing the CAN authen-

tication when an attacker sends a burst of invalid messages(wrong MAC). Therefore,

using the minimum value possible for this parameter is recommended. Alternatively,

a network anomaly detection system can flag and potentially stop anomalous message

bursts like the one presented here to trigger the attack. Note, the effectiveness of an

IDS with this attack may be limited because message bursts do occur naturally. Fi-

nally, a fatal error such as a system shutdown due to exceeding the execution budget

may seem highly improbable under normal conditions, but under the influence of an

attacker can become much more likely. Therefore, it is necessary to review all fatal

errors in the application to re-evaluate if the conditions of such errors are impacted

by a malicious attacker. In the cases where the attack cannot be prevented, it is

necessary that the fail-safe response collects additional indicators to aid in future

forensic analysis. Some of those indicators can be the network traffic at the time the

51

Figure 4.2: Triggering the OS protection mechanism

fault occurred, as well as the frequency at which the error condition occurred. This

information can be analyzed by a vehicle IDS or an offline system that can observe

inputs from many vehicles to identify fleet wide attacks.

4.5.3 Demonstrative Attacks

To demonstrate the attacks presented in section 4.5, we build a test environment

using a Renesas RH850 32-bit micro-controller, operating at a 120 Mhz CPU clock as

the test target, and Vector CANalyzer as a simulated attacker. The two are connected

together through a CAN FD link with an arbitration baudrate of 500 Kbps and a

data rate of 2 Mbps.

Zero-ID Flood Attack: To simulate the attack, CANalyzer is used to send

messages on two CAN FD channels connected together into a single CAN FD channel

on the target board. The micro-controller target board controls a servo motor by

translating the CAN messages into PWM signals that control the steering and driving.

This is representative of a malicious attacker that has direct access to the CAN bus

where the target ECU resides. The aim is to observe the impact of the zero-ID

flood attack on the ability of the target board to steer or drive the car. On the

flood path channel, a Communication Application Programming Language (CAPL)

script is used to send the zero-ID message in a back to back fashion. On the Normal

52

Figure 4.3: CAN FD Frame layout, for 64 byte frames CRC is 21 bits long

channel, a CAPL script simulates the drive and steer messages which cycle through

a sequence of steering and throttle messages. By enabling the flood attack, control

of the servo motor becomes very difficult as only a small fraction of control messages

are transmitted on the bus. In a real vehicle with timeout monitoring protection, the

receiver would simply disable functions that require CAN data within the steering

and power train ECUs which practically corresponds to a successful DoS attack.

Resource Exhaustion Attack: CAN FD extends the CAN 2.0 standard with

a larger payload (up to 64bytes) and a higher data rate (up to 8 Mbps) [55]. The

protocol defines an arbitration baud rate, and a flexible data rate that can be higher

than the arbitration rate. This allows CAN2.0 frames to coexist with CAN FD

frames. In order to evaluate this attack we implemented a simplified CAN driver

along with a minimal SecOC component that performs the entire chain of CAN

message reception and authentication. We assumed that the AUTOSAR CSM [6],

is configured in synchronous mode, as a result, SecOC MainFunction() waits until

a buffered secure PDU is authenticated before triggering the next one as shown in

Figure 4.1. The process is repeated until all the buffered secure PDUs have been

verified. The attacker was simulated by a software task that runs every 10ms and

produces a variable number of CAN FD messages within a single burst on CAN

channel 2 of the micro-controller. A CAPL script in CANalyzer relays the messages

from CAN channel 2 to CAN channel 1 to trigger the authentication in the SecOC

MainFunction(). We configured the receiver to process the CAN messages on CAN

channel 1 in a 10ms cyclic function, i.e. Tsecoc = 10ms. The CAN controller was

setup to receive a maximum of 40 unique messages on the same channel. We also set

the SecOCFreshnessCounterSyncAttempts value to 1, because the freshness counter

53

Arbitration Rate 500 kbps
Data Rate 2000 kbps
Data Length 64 bytes
Arbitration Time 39.1µs
Data Time 314.4µs
Total Frame time 359.5µs
SecOC Cycle Time 10 ms
Burst Size 27.81 frames

Table 4.4: CAN FD frame time in µs based on 64 byte DLC

is sent in its entirety within the CAN FD frame. This is also meant to increase

the attack difficulty, because a larger SecOCFreshnessCounterSyncAttempts increases

the Tprocessing time needed to verify all the failed MAC values received. Due to its

prevalence in embedded systems, we choose the AES-128 CMAC as the authentication

algorithm. Thus the CAN FD frame was constructed to contain 48bytes of payload

data, 8bytes freshness counter and 8bytes truncated CMAC. As for the stuff bit

factor f, we chose a factor of 15% which is below the maximum value and more biased

towards the worst case condition. We then toggle a port pin around the function

SecOC MainFunction() to measure Tprocessing with an oscilloscope. Using Equations

4.1 and 4.2, we can determine that for the parameters of our experiment outlined in

Table 2, the maximum burst of messages possible to attack the system is 27 messages

with a payload of 64 bytes each. By choosing a 64byte CAN FD frame length we

aim to increase the attack difficulty by minimizing the maximum burst size possible

within our time constraint of 10ms. The next step then is to find the burst size for

which Tprocessing exceeds Tbudget. Arriving at the execution budget is highly dependent

on the application and how the operating system is configured. Typically, the system

designer chooses the execution budget of individual tasks based on a static analysis

aided by tools that can estimate worst case execution time. For our evaluation since

we do not have a real application we assume that SecOC MainFunction will be among

several cyclic functions that are part of the 10ms Task. Thus we choose the Tbudget to

54

Figure 4.4: 1.04ms of total run-time for processing 22 CAN FD messages

be 10% of the task cycle time which corresponds to 1ms. In a real system, execution

times can be better estimated based on the demands of the target application. The

results of our experiment in Figure 4.4, show that for Tprocessing to exceed our chosen

execution budget of 1ms, it is sufficient to send a burst of 22 secure PDUs within a

10ms cycle. Therefore the number of frames needed to trigger the AUTOSAR OS

failure is below the maxB = 27 calculated in Table 4.4, which satisfies our condition

for a successful attack. Furthermore, 22 CAN messages is well within the normal

number of CAN frames that a typical ECU consumes.

4.6 Extending Safety Mechanisms for Security

The previous section showed how analyzing the safety mechanisms allowed us to

identify security gaps in AUTOSAR based systems which needed to be addressed.

Now we turn our attention to the question of whether we could use AUTOSAR built-

in safety mechanisms to improve the security posture with minimal impact to cost

and legacy software. Since such protections were not designed to cope with security

attacks, we provide additional constraints to re-purpose those features to cope with

security threats. Note, a previous study by Bohner et al. [34], highlighted several of

55

the same protections, but we extend those to include remaining deficiencies to set the

stage for the work in the next chapter.

4.6.1 Stack Usage Monitoring

Code injection attacks through buffer overflow vulnerabilities [49], continue to be

among the most prevalent and effective attacks in computer systems. An attacker

overflows a buffer boundary to load a malicious payload into the victim’s memory.

This enables rerouting the flow of the program to the new address overwritten by

the malicious payload. Naturally, a protection mechanism that can detect stack

overflow would be relevant for security. As mentioned in Section 4.3.2.1, AUTOSAR

OS supports memory stack overflow monitoring either through software checks (by

checking special patterns on the stack) or with the help of the MPU. Since a malicious

attacker can easily forge the stack pattern value after overwriting the stack space,

software-based stack protection cannot be considered a robust security mechanism.

With the MPU based stack protection, the OS sets up a dedicated MPU stack entry

prior to activating the corresponding task. The user defines the stack size for each

context based on prior measurements to determine the maximum required stack size.

An attacker who manages to inject code in a stack space cannot exceed the stack

boundary and cannot inject code in a stack dedicated for another context. Doing so

results in an immediate exception which results in the OS taking corrective action

such as issuing a reset.

4.6.2 RAM Execution Prevention

Modern operating systems support data execution prevention (DEP) to ensure

that a memory address can either be configured as writable or executable but not

both. Automotive embedded operating systems do not explicitly support such pro-

tections, but using AUTOSAR OS, it is possible to emulate this protection. As

56

Figure 4.5: MPU based stack protection

mentioned in Section 4.3.2.1, using the MPU, it is possible to set up access rights

to memory regions as: read, write, and execute. While AUTOSAR OS does not

explicitly define how to separate access rights, it is expected that specific vendor im-

plementations of AUTOSAR OS offer the user the ability to assign different access

rights to different OS applications. We propose extending this to restrict all execution

out of RAM regardless of the safety level of the corresponding application. While this

does not prevent all stack-based attacks as is the case with a return-to-libc attack

[47], it does raise the difficulty level for mounting attacks on embedded systems. An

attacker who attempts to violate this rule will immediately cause a CPU exception

which can reset the system to restore it to a known secure state.

4.6.3 Flow Integrity Protection

The topic of control flow integrity(CFI) was first introduced in [24]. Moreover,

[51], showed several techniques to alter the execution flow specifically in an embed-

57

ded system. Having a mechanism that can enforce program flow can be useful in

mitigating attacks such as return oriented programming through stack-based code

injection. AUTOSAR offers a mechanism that can be re-purposed for CFI, namely

the checkpoint monitoring in the Watchdog Manager(WdgM). Using the WdgM, it is

possible to define supervised entities(SE) which are code elements that can be mon-

itored for the order of execution. This results in creating an internal graph of code

segments that shall be executed in a specific sequence with time constraints between

checkpoints. In Figure 4.6, we show an example where checkpoints are inserted to

allow the WdgM to enforce the program flow of a password checker. If an attacker

manages to jump to CP1-2 to unlock the security state, the WdgM will detect a pro-

gram flow violation because CP1-0 and CP1-1 were bypassed. During the execution of

WdgM MainFunction(), the WdgM detects the violation and can trigger a watchdog

reset by not refreshing the watchdog timer. If the attacker chooses to reroute control

to his own routine and disables the calling of the WdgM MainFunction(), the watch-

dog timer will also trigger a reset because it has not been serviced. While WdgM can

increase the difficulty of control flow attacks, it suffers from two weaknesses. An at-

tacker can spoof checkpoint events by calling the routine that reports the checkpoint

entry. Also, an attacker can refresh the watchdog on his own to prevent a watchdog

reset. In the next chapter, we will see how we address these problems with the HSM

based security monitor.

4.6.4 OsTiming Protections

The interrupt locking time protection can be useful in detecting attacks in which

a malicious application attempts to disable interrupts for an extended period of time

to complete an attack. The inter-arrival time protection can be useful to detect DoS

attacks in which an attacker attempts to overwhelm the system by triggering an

interrupt too many times to starve the CPU of run-time cycles or to exhaust stack

58

Figure 4.6: WdgM monitors password verification checkpoint

memory resources if nested interrupts are allowed. An example would be malicious

network traffic that results in over triggering the CAN interrupt.

4.6.5 Hardware Resource Protection

AUTOSAR OS relies on the MPU to prevent lower ASIL applications from cor-

rupting the data of a higher ASIL application including register settings. One poten-

tial use case for security is prohibiting access to the CAN registers by mapping them

to a protected MPU entry. This prevents malicious code from directly interacting

with the CAN controller to spoof the CAN bus through an infected ECU. This limits

access to the CAN controller registers to the CAN driver, but this comes at the cost of

59

Figure 4.7: Stack content before attack:return address = 0x4e80

increased CPU overhead to switch contexts and reconfigure the MPU when accessing

the CAN driver.

4.6.6 Demonstrative Protections

Similar to the attack setup, we reuse our RH850 micro-controller and this time

the GreenHills debugger environment to evaluate the defenses shown below.

4.6.6.1 Stack Overflow Protection

To demonstrate this security mechanism we create a CAN diagnostic vulnerability

that allows injecting code into the stack memory reserved for a ”trusted OS appli-

cation”. The diagnostic routine that is loading the data over CAN contains a bug

that allows overflowing the stack with a well-crafted diagnostic request payload. As

a result, the return address of the calling routine is overwritten with a RAM-based

address which corresponds to the entry point of the malicious routine. Since we did

not have access to a full AUTOSAR software stack at this point, we implemented a

minimal RTOS that is responsible for setting up the MPU to protect the stack mem-

ory against writes by unauthorized software partitions. We also disabled execution

rights for stack based memory to prevent an attacker from directly executing injected

code. Figure 4.7 shows the stack state before the attack with the target address to

overwrite being 0x4e80. The code listing shown in IV.1, is a simple routine that

contains the used buffer overflow exploit.

Listing IV.1: Routine containing buffer overflow vulnerability

60

Figure 4.8: Stack content after the attack: return address = 0xfebff000

Figure 4.9: Malicious routine is successfully entered after the stack overflow

void ApplDiagWriteDataByIdent i f ier (u int8 canLen) {

uint8 d iagBuf f e r [8] ;

memcpy(d iagBu f f e r , canBuf fer , canLen) ;

}

The routine copies data from CAN to the diagnostic buffer without checking if the

request length fits into the receive diagnostic buffer. Since the buffer is a local variable,

the stack is overrun and the return address of the routine is overwritten. Figure 4.8,

shows the contents of the stack after executing the routine which causes the overwrite

of the return address with the target routine address: 0xfebff000. The latter contains

a jump into the bootloader in order to bypass application security checks and initiate

flash programming with a new malicious firmware image. Once the routine attempts

to return, the CPU pops the link pointer register value lp from the stack causing

it to jump to the malicious code which then jumps to the bootloader, as shown

in Figure 4.9. Due to the MPU security mechanism being active, the vulnerable

diagnostic routine is only able to overflow its own stack, but not the stack of other

OS applications. Although the stack overwrite is possible, the attempt to fetch the

code to jump to the bootloader immediately triggers an exception as shown in Figure

61

Figure 4.10: MPU exception triggered due to violation of execution rights

4.10. Once the exception is triggered, the system can log the address where the

violation occurred and store that in non-volatile memory for later intrusion analysis.

The next action is to shut down safety functions and reset the system to restore the

CPU back to its original state. Note, that action has to take into consideration the

vehicle state to avoid creating a sudden loss of a safety function which would lead to

a safety goal violation. In order to clear the malicious code, it is highly recommended

that the CPU always resets the contents of the RAM and stack during startup.

4.6.7 Recommendations for AUTOSAR Protections

Before we can rely on AUTOSAR safety mechanisms for security protection, the

software authenticity must be checked at startup by performing secure boot to es-

tablish trust in the AUTOSAR software layers. In terms of the watchdog manager

being used to protect entry into certain critical routines, the global state variables

of the watchdog manager need protection against tampering. Since the watchdog

manager like other basic software services is executed in user mode, it is vulnerable

to a malicious application that directly modifies its variables. Therefore, it is rec-

ommended to treat the watchdog manager as a trusted application that is executed

in supervisor mode. Moreover, the term: ”Trusted OS Application” is a pure safety

characterization which does not imply any security assurance. Thus we recommend

that CPU privilege mode is reserved strictly for the OS and a handful of basic soft-

ware services that control security, while all other tasks and applications run in user

mode. The software shall be partitioned not only based on safety criticality but also

62

based on security relevance. Having separation between security relevant software

and non-security relevant software further enforces the principles of security isolation

and least privilege. This does come at the cost of reduced performance due to the

limitations of the MPU to handle a large number of memory partitions. In order to

raise the difficulty of code injection attacks that can disable protection mechanisms,

RAM-based execution shall be disabled via the MPU for all RAM partitions(data

and stack) in both user and privileged modes. This means that even if an attacker

manages to load code on the stack, attempting to execute that code shall result in

an MPU exception. The timer interrupt upon which the OS is relying shall be solely

controllable by the OS. This ensures that the OS can execute the security monitoring

functions defined in this chapter. When using the WdgM for control flow protection,

the underlying hardware watchdog timer shall be configurable only once after reset.

Attempts to disable the watchdog shall either be ignored or result in a system reset.

This prevents an attacker from disabling the watchdog to prevent it from interfering

with his malicious execution.

4.7 Conclusion

In this chapter, we applied the SDAS approach to AUTOSAR to uncover security

gaps and recommend countermeasures. We then evaluated safety mechanisms as a

means to improve the security of AUTOSAR. Several mechanisms were shown to

be effective in preventing attacks but exhibited limitations in terms of performance

and security guarantees. For those reasons, it became clear that additional security

countermeasures were needed that would relieve the host CPU from the additional

processing burden while improving the security posture of AUTOSAR based systems.

Additionally, it became clear that usage of a real AUTOSAR stack was necessary to

evaluate security countermeasures and their impact on legacy code. This will be

explored in detail in the next chapter.

63

CHAPTER V

SecMonQ: Security Monitoring of AUTOSAR

Based Systems

5.1 Introduction

Up until this point, our evaluation of AUTOSAR was based on analyzing the open

standard specifications and attempting to emulate certain functionality through our

own drivers. In this part of the dissertation, we managed to transfer our test environ-

ment to a real AUTOSAR stack provided by Elektrobit [2]. The study of AUTOSAR

security gaps and protections led us to the conclusion that an additional component

was needed to supplement AUTOSAR safety mechanisms. Thus, we transition to the

problem-solving phase of the dissertation in which an HSM based security monitor is

presented as the missing link for attack detection and/or prevention in safety-critical

ECUs.

Generally, safety monitors are considered a standard feature in safety-critical au-

tomotive systems. In hardware, a safety monitor can check for deviations in core

voltage or clock frequency. In software, safety monitors check for integrity of pe-

ripherals such as CAN registers. With the introduction of cyber threats against

automotive systems, existing safety mechanisms and monitors are inadequate to cope

with malicious fault injection and data tampering [101]. Security best practices for

64

automotive systems, [25], define several security countermeasures against external at-

tacks such as locking JTAG, authenticating CAN communication [10], implementing

code signing, etc. While these best practices raise the bar for a successful attack

significantly, they cannot fully eliminate the possibility that an ECU is hacked and

used to spoof the rest of the vehicle. Surveying published attacks against automotive

ECUs, [73],[74],[98],[66], [64], they almost always follow the pattern of gaining access

of some external facing interface in order to modify the firmware of an intermediate

ECU that can then transmit malicious CAN messages. The target is usually to spoof

a vehicle dynamics ECU like steering or braking in order to cause an unsafe driving

situation. But, whether an attacker can replace firmware such as in [74], or jump

into the CAN transmit service to spoof the CAN bus as in [66], safety systems must

be resilient enough to detect such attacks and take fail-safe action. When it comes

to vehicle intrusion detection and prevention, the bulk of the research is on CAN-

based intrusion detection [58]. The focus of such systems is to create a ground truth

model of the CAN traffic and then detect anomalies when the CAN data deviate

from the model [93],[75], [96]. The difficulty of making such solutions practical is

that vehicle data is highly dynamic in nature and what might seem like an anomaly

in one model, could be a perfectly normal driving scenario in another model. There

are certainly effective features for CAN intrusion detection, such as monitoring CAN

message frequency, and CAN message ID lists. But even when a CAN intrusion de-

tection system performs well in detecting anomalies, the recovery action can be quite

difficult. Such action ranges from a gateway ECU IDS that stops relaying messages

from the offending bus, to adding specialized hardware that can interfere with the

CAN transmission of the offending ECU by injecting CAN errors [20]. Alternatively,

CAN hardware fingerprinting solutions [30], [41], create an electrical signature of each

ECU. This allows the receiving node to cross-check the CAN message ID against the

received electrical signature at the physical layer to detect the spoofed message. The

65

approach shows promising results but noisy vehicle bus characteristics and impacts of

electronic component aging can make this approach unreliable in the long run. In this

chapter, we take a different approach to CAN injection attack prevention by adding

a security monitor at the ECU level to prevent the attacker from reaching the vehicle

bus and injecting hazardous messages. We leverage the built-in Hardware Security

Module(HSM) as the execution environment for our security monitor to detect and

recover from internal attacks that can result in spoofing other ECUs. Our initial

research in this area [78] was focused on detecting code reuse attacks that bypass

diagnostic security checks to execute restricted diagnostic services. In a later work

[80], we extended the security monitoring system to four components to detect and

prevent the most severe attacks against safety-critical automotive systems. For the

rest of this chapter, we refer to the enhanced security monitor as SecMonQ. This

security monitor runs on the embedded HSM in an isolated secure execution environ-

ment. The first monitoring component is a firmware integrity checker. In addition to

performing a secure boot measurement at startup [84], the integrity monitor performs

periodic boot authentication measurements to detect firmware manipulation during

run-time. The second component is a communication peripheral integrity checker.

It is responsible for periodically reading out the register configuration of peripherals

such as CAN and performing an integrity check to ensure that certain fixed settings

such as transmission identifiers are not maliciously modified. The third component is

a time integrity monitor that checks for anomalous behavior in the real-time execu-

tion of safety-critical tasks. The fourth component is the logical flow checker which

checks for anomalies in the control flow of safety-critical paths of execution. When

an attack is detected, the security monitor interrupts the host, forcing it to enter a

trusted failure recovery state which can then bring the system back to a safe state.

In parallel, the security monitor locks security assets and logs the event for further

forensics. The outcome of this work produced a novel approach to defeating the CAN

66

masquerading attack at the ECU level without the need for specialized hardware.

Furthermore, it enabled us to present a harmonized approach for security detection

and safe recovery while keeping the solution compatible with existing AUTOSAR

based software.

5.2 Attack Goal and Threat Model

Our attacker’s goal is to manipulate the safety functions of the vehicle to cause an

unsafe driving situation similar to the Jeep hack attack [74]. He achieves that goal

by modifying the firmware of the target ECU or an intermediary ECU that is then

used to launch a CAN masquerading attack on the rest of the vehicle. To establish a

presence in an ECU, he finds a vulnerability or a hidden backdoor that allows either

the replacement of the ECU firmware in flash or, the injection of code in RAM. As

a result, he is able to modify the control flow to enter safety-critical functions, or

modify the CAN peripheral settings to launch a CAN masquerading attack on other

ECUs. SecMonQ aims to tackle the attack patterns of the Jeep and Tesla hacks. In

the case of the Jeep hack [74], the firmware of the vehicle communication processor

in the UConnect unit was replaced to launch a CAN spoofing attack on the vehicle

dynamics ECUs. In the Tencent Labs attack [66], the Cantx service in the Tesla

autopilot ECU was reached via a security vulnerability in order to construct a data

steering control message to spoof the electronic power steering ECU.

5.3 Background and Related Work

5.3.1 Control Flow Integrity

SecMonQ borrows several ideas from the mature field of control flow integrity(CFI)

and adapts them for the real-time constrained nature of automotive ECUs while

ensuring the safe and secure response to a control flow violation. Buffer overflow

67

Figure 5.1: AUTOSAR Software Architecture

vulnerabilities which are among the most widely used software errors to overwrite

the stack or the heap with malicious code [72], can also be exploited to manipulate

automotive safety systems [78]. Modern processors can prevent arbitrary code exe-

cution through the OS kernel enforcement of the Writable xor eXecutable (W ⊕X)

policy. Similarly, as shown in the previous chapter, AUTOSAR based systems can

use the MPU to prevent RAM based execution of certain memory regions like the

stack. With such protections in place, an attacker has to resort to Return Oriented

Programming (ROP) attacks [89], in which gadgets are stitched together to execute

code by jumping from one code snippet to another within the target system. To ad-

dress the aforementioned types of attacks, several CFI schemes have been proposed

over the years [24], [62], [46]. They typically instrument the code to insert additional

checks for indirect branch and return instructions. The checks are made against a

fixed call graph based on static analysis of the source code or binary. A special type

of CFI techniques aims to reduce the explosion of branch checks by considering the

context of a branch and return operation [99]. Context sensitive CFI(CCFI) promises

more accurate branch restrictions based on checking a chain of edges upon reaching a

critical program point. The idea of path monitoring is appealing for the automotive

68

use case because automotive systems usually have a limited set of functions that are

the target of an attack. As seen in recently published attacks, normally the CAN

transmission function is one of those targets that adversaries are trying to manipu-

late. CCFI is the base approach for the SecMonQ flow checker monitor. Applying

CFI techniques in automotive systems faces several challenges. While several known

CFI techniques have been shown to perform with an average CPU overhead of under

5% [37], deterministic systems are more concerned with the worst case performance

rather than the average overhead. Moreover, CFI techniques that are fully imple-

mented on the host would require code instrumentation of safety-critical code. This

raises the cost of the CFI code as it now has to pass the rigorous requirements of

safety-critical software development. This can be further exacerbated by continuous

updates of the normal application code which would result in more validation of the

re-instrumented code. SecMonQ aims to overcome these challenges by placing the

bulk of the checks inside the HSM where the security monitor runs in an independent

isolated environment. This results in a deterministic CPU overhead and the isolation

of safety and security concerns.

5.3.2 Hardware Based Security Monitors

Wolf et al. [102], proposed a set of collaborating security monitors that are im-

plemented in hardware to detect attacks on cyber-physical systems. The thermal

monitor checks for anomalies in the device temperature, while a flow checker monitor

detects anomalies in the control flow transitions. Specialized hardware is needed to

interface the monitors to the host system and to take recovery action. Conceptually,

SecMonQ follows a similar approach but without the need for specialized hardware.

Instead, embedded HSMs are widely available in automotive micro-controllers which

translates to no additional hardware cost. Also, our flow checker monitor is limited

to checking for specific anomalies within safety and security execution paths. Var-

69

ious hardware based control flow integrity monitors have been proposed to reduce

the impact of CPU overhead when performing flow integrity checks: [45],[23], [103],

[67], [42]. [23] proposes an on-chip control flow monitoring module (OCFMM) which

monitors the program counter and instruction register of the host CPU. It compares

the control flow to a CFG stored in an isolated memory unit. OCFMM requires a

generation tool to create the CFG and then load it into the isolated memory unit.

While SecMon shares a similar high-level architecture as OCFMM, the use of a built-

in HSM instead of specialized hardware, and the path generation approach make it

more practical for automotive systems. In [103], an anomaly path detector is proposed

with the help of a secure processor with special pipeline-checking hardware. Checking

tables are created during a training phase and are stored in the host memory while

being protected via the MMU against tampering by the host. Instead of checking

a call graph, the execution path is broken into segments which are checked against

the normal execution path. The approach requires specialized hardware as well as

incorporating a training phase, which makes software updates costlier due to the need

for retraining. [42] proposed a CFI enabled Instruction Set Architecture(ISA) with a

hardware implemented shadow stack. The approach significantly reduces host CPU

overhead, but at the cost of modified hardware architecture. Also, when a violation is

detected, the host itself has to take action through an exception. The methods listed

above have several benefits but are not quite suitable for the automotive use case.

Also, the lack of safety focus clearly points us to the need for a specialized automotive

solution to CFI defense.

5.4 Our Framework

For a security monitor to be effective, the system being monitored must exhibit a

high level of determinism. This is to reduce falsely flagging normal events as anoma-

lous. AUTOSAR based systems follow well-defined execution patterns which make

70

Figure 5.2: System Level Block Diagram

up the ground truth of the ECU. According to the AUTOSAR methodology, software

application components and complex device drivers, shown in Figure 5.1, can only in-

teract with the basic software(BSW) layers through the run time environment(RTE)

layer. Due to the real-time nature of the ECU, Software Component(SW-C) runnables

and basic software layers are triggered in a periodic fashion based on a statically de-

fined schedule table. Moreover, communication peripherals are normally configured

once at startup with a fixed set of parameters. For e.g. an ECU normally has a fixed

set of CAN message ID’s that it can send and receive. This high degree of determin-

ism is one of the main motivations for pursuing a security monitor approach. In order

to use the embedded HSM as a security monitor, the following requirements must be

first met:

• The security monitor algorithms are executed in an isolated secure execution

environment without direct host interference

• The security monitor is capable of inspecting host settings independently from

the host

• A secure channel linking the host with the HSM is needed to report host states

• A secure interface linking the HSM and the host is needed to report attack

events

71

• A trusted safety function within the host is needed to process the attack event

data and transition the ECU into a fail-safe state

Next, we show how each security requirement is met with SecMonQ.

5.4.1 Secure Execution Environment

The HSM secure CPU shown in Figure 5.2, is based on the Bosch HSM archi-

tecture [36] making the solution portable to other automotive devices that support

an embedded HSM. The BoschHSM architecture supports an independent CPU that

executes its code from dedicated memory. It also contains exclusive memory for stor-

ing keys and other assets. SecMonQ runs as a software partition within the firmware

of the HSM. This allows it to act as an independent monitor that is not directly

influenced by the host. Moreover, an HSM typically has access to parts of the host

memory and peripherals in order to perform monitoring independently [4]. This al-

lows SecMonQ to perform monitoring activities without direct interference from the

host.

5.4.2 Secure Checkpoint Buffer

The host CPU and the HSM communicate through a two-way interrupt mech-

anism coupled with a shared RAM buffer for message exchange, as shown in figure

5.2. Host execution events are represented with checkpoint identifiers. Entry and exit

from a critical function translate into writing a checkpoint id into the shared RAM

buffer. Typically, Trustzone [70] is not available in deeply embedded automotive

MCU’s, therefore, a malicious host can technically spoof checkpoint events by simply

writing the checkpoint id into the shared buffer. Therefore, we protect the buffer via

an AUTOSAR OS feature known as the trusted function approach [11]. AUTOSAR

OS provides the ability to call a trusted function which belongs to a trusted appli-

cation from a non-trusted application. Using the MPU, a dedicated shared RAM

72

Figure 5.3: Configuring a trusted function within EB tresos

buffer can be configured as non-readable/write-able or executable in user mode. This

makes direct access to the buffer only possible through the kernel and the trusted

function. But simply restricting access to the buffer through the trusted function is

not sufficient, because an attacker could call the trusted function to make it write a

spoofed value. To cope with this, the trusted function performs a plausibility check of

the reported checkpoint. This is possible through a hook inside the system call API

in AUTOSAR OS which allows us to read the return address from the link pointer

register and write it to the secure buffer. When the kernel switches into the trusted

function, the buffered return address is cross-checked with the checkpoint id through

an authenticated lookup table in general memory. The table itself is protected from

tampering by SecMonQ which monitors the authenticity of the table on a periodic

basis. This prevents an attacker from spoofing checkpoints.

5.4.3 Secure Interruption

When an attack is detected by the HSM, the mechanism of interrupting the host

and forcing it back into a trusted state must be protected. Without protection, a

malicious host can disable the interrupt mechanism to keep control of the host. In

the hardware we evaluated, the interrupt mechanism from the HSM to the host is

maskable. This is to allow the host to limit the number of interrupts that the HSM can

generate which can interfere with the real-time performance of the host application.

Therefore we propose two types of attack notification methods to the host. The

73

first uses the interrupt method which is subject to being disabled. This is used for

anomalous events that are not considered severe. It is up to the system implementer

to choose which events can use this notification method. For critical attacks that

must result in host interruption to recover control, we make use of the non-maskable

interrupt(NMI) feature on the host controller. The HSM has a physical port pin that

shall be connected to the NMI input pin on the host CPU. When a severe attack

is detected by SecMonQ, it asserts the NMI pin which forces the host to enter into

the NMI exception handler. The host then executes code that safely shuts down the

ECU and reboots the system into a trusted safe state.

5.4.4 Trusted Safety Function

When the host is interrupted, the function that controls the transitioning of the

system to a fail-safe state must be trusted from a security point of view. The NMI

exception code on the host is itself protected against modification because it is in flash

memory that is periodically checked by the HSM for authenticity. The reason why

we require that the transition to a fail-safe state be handled by the host rather than

the HSM is that the latter does not have the full knowledge of the vehicle state. It

is also not a safety qualified core and therefore it cannot take actions related directly

to safety. By giving control back to the host, we ensure the principle of isolation is

maintained where safety and security are separated but coordinated. From a safety

point of view, we argue that an NMI is a proper response to a memory tampering

attack because it is equivalent in severity to a non-recoverable memory corruption

fault in the host. In that case, the host CPU issues a reset because he can not rely

on the RAM data which has been corrupted.

In order for the security monitor to be truly effective, the following additional

ECU security requirements must be applied:

• Only the RTOS shall be allowed to run in privileged mode. This may seem

74

obvious to security experts but AUTOSAR allows any safety-critical application

to run in full privilege mode

• All stack memory shall be configured as non-executable via the MPU to prevent

execution of injected code

5.5 Design of SecMonQ

As shown in Figure 5.2, SecMonQ consists of four monitoring components: time

checker, flow checker, firmware checker and CAN peripheral checker. These monitors

operate under two modes. The time and flow monitors rely on host application events

which have to be reported by the host CPU to the HSM. While the CAN peripheral

and firmware integrity monitors are executed autonomously by the HSM without di-

rect host interference. For event reporting from the host, we initially leveraged the

standard HSM job interface following the AUTOSAR crypto stack approach [6]. With

the standard interface, the host creates a job object with unique job information then

sends it to the HSM for processing. Instead of requesting a typical cryptographic

job, the interface can be used to report an event such as a checkpoint being reached.

But upon performing the time measurement of the communication overhead we de-

termined that the job interface is not optimized for frequent event reports. Therefore,

we implemented a lightweight interface that allows the host to set the checkpoint id

and trigger an HSM interrupt without the need to wait for an acknowledgment. To

prevent interrupts from being lost by the HSM, we added a check that the interrupt

flag is cleared by the HSM before the host generates a new checkpoint event. On

the HSM side, an interrupt service routine checks if the received interrupt is due to

a checkpoint report and if so it buffers the event after adding a secure timestamp to

mark the time it was received. The reason for caching these events is to reduce the

time spent in the HSM interrupt service routine to allow the next checkpoint event

75

to be received with minimal delay. The actual sequence and time check is deferred

to a periodic task that performs the monitoring activities inside the HSM firmware.

That task loops through the received checkpoint events and performs the flow and

time checks. On the other hand, the firmware and CAN integrity monitors perform

their checks in a dedicated periodic task. In case any monitor detects a violation, it

reports it immediately through the host interrupt or NMI assertion as described in

section 5.4.3. Next, we examine each monitor design in detail.

5.5.1 Time Checker

The time monitor behaves like a security watchdog that detects missing or delayed

safety tasks. The main purpose of this monitor is to detect attacks that reroute con-

trol to malicious code effectively disabling or delaying the execution of safety-critical

tasks. But unlike a traditional watchdog which can be refreshed by an attacker who

is executing code on the host, the time monitor cannot be easily spoofed due to the

secure shared buffer mechanism described in section 5.4.2. Therefore missing the exe-

cution of periodic safety functions is guaranteed to raise a flag within SecMonQ. The

time monitor takes as input the AUTOSAR OS generated schedule table [11], to de-

termine the expected separation time between any two consecutive root nodes(tasks).

A system expert chooses the tasks that must be monitored for timing during an initial

setup phase. Examples of such checkpoints are application tasks that control vehicle

safety functions, and basic software tasks that control vehicle communication. The

resulting list is programmed securely into the HSM memory. During run-time, each

monitored periodic task reports a checkpoint event upon its activation. If the time

monitor does not receive any two consecutive timed checkpoints within a predefined

time window then it flags the event as an attack and notifies the host.

76

5.5.2 Flow Checker

The SecMonQ flow checker is based on the context based control flow integrity(CCFI)

approach presented in [99]. Given a security critical program point P and a path of

control transfers p = e1, e2, ..en, the goal of CCFI is to check that ∀i ∈ 1, 2, .., n, edge

ei occurs in the correct sequence of preceding edges of the control flow graph(CFG).

Instead of the program point being a security relevant kernel function, as is the case

normally in typical computer systems, in our use case, P represents a safety or secu-

rity critical edge function. In the context of AUTOSAR, examples of such functions

are MCAL layer functions that directly interact with hardware actuation, sensing

or communication. They could also be functions that control the security state of

the ECU such as the diagnostic security access unlock function [7], which if entered

maliciously would give an attacker access to perform privileged diagnostic services.

During the setup phase, a system expert identifies the program points that must be

protected against code reuse attacks based on the risk associated with such threats.

For each chosen program point, a path of execution, referred to as secure path(SP),

has to be defined and every function within that path shall be monitored as shown

next.

5.5.2.1 Path Definition and Checkpoint Selection

The execution path of a program point can be generated with the help of a run-

time profiling tool, which traces calls into the program point from various functions

and generates a pruned control flow graph. For our target micro-controller, the Green-

Hills profiling tool, [22], is able to perform this tracing. This one time process is

needed to detect all functions that can lead to the critical program point. For each

path that leads to our program point, we trace back until we reach the root node.

The resulting path is given a unique SP id value. And each function on the path is

given a checkpoint(CP) id value. Once all the functions on the critical path are iden-

77

Figure 5.4: Attack flow against a function in the safety-critical path

tified, a forward scan is performed to identify exit functions that do not correspond

to our monitored program point. The resulting additional branches must be included

in our monitoring to ensure exits out of our secure path are possible without being

flagged as an attack. An example pruned graph based on the AUTOSAR Can Write

function is shown in Figure 5.5. Furthermore, for each function on the SP, an entry

and exit checkpoint is needed. To understand this point we examine the way func-

tions are chained on our target CPU. The jarl addr,lp instruction stores the return

address(pc+ 4), in the link pointer register: lp, then jumps to the address addr. Re-

turning is done by executing a jmp [lp] instruction which retrieves the return address

from lp and jumps back to the calling function. As seen in Figure 5.4, the function

prologue pushes the return address in the link pointer register lp on the stack. To

78

return to the caller at the end of the function, the lp is popped from the stack and

loaded into the pc register. An attacker can chain jumps by overwriting the stack

with a sequence of addresses that skip the target function prologue. This ensures that

at the end of each function, the address popped from the stack is the next address

in the jump chain. Since the attacker can skip the prologue, he may also choose to

skip the checkpoint entry, therefore, we insert an exit checkpoint to prevent complete

evasion of our flow checker. For any given function, if the exit checkpoint is reached

without the entry checkpoint being received, then SecMonQ flags an attack.

5.5.2.2 Flow Violation Detection

The flow checker periodic task fetches checkpoint tuples(SP id, CP id) from the

checkpoint buffer in the order they were received. It then compares the received tuple

to the preloaded graph of expected tuples for the active SP as shown in Algorithm 1.

When a root node checkpoint is received, the flow checker sets the active SP to that

root node. Since a checkpoint can belong to multiple SP’s, the flow checker keeps track

of the possible active SP’s until the flow transitions into an SP with no overlapping

branches. Due to the preemptive nature of AUTOSAR OS [11], it is possible that

SP’s that belong to tasks with different priorities preempt each other. Therefore,

the detection algorithm allows switching from one active SP to another when a new

root node checkpoint is received. For checkpoints corresponding to intersecting paths,

the SP id is ignored by the flow checker. Instead of the checkpoint id following the

sequence number, in this case it is assigned a unique label. This is necessary to allow

the function to report a checkpoint regardless of which path it came from. Even

though the SP id is ignored, transitioning into such functions is not possible from

any arbitrary SP because the flow checker keeps track of the active SP and thus only

allows transitions accordingly.

79

Figure 5.5: Control flow graph for the Can Write critical function

5.5.3 Firmware Integrity Checker

The ability to modify the ECU firmware or calibration data has been the ultimate

goal for anyone who wants to alter the vehicle behavior. The NIST security best

practices mentioned in [25], include code signing to prevent attackers from altering

vehicle firmware. Another security primitive that is essential to firmware integrity

is secure boot [84]. While full boot measurement can be time-consuming at startup

for automotive systems with strict availability requirements, background integrity

80

Algorithm 1 Attack Detection Algorithm

while CheckpointBuffer != empty do
FetchFromQueue(SP(i),CP(j));
if CP(j).type = TASK then // this is a root node

// update active SP based on new received SP id
SP.active = SP(i);
// update expected checkpoint based on active SP call tree
SP.expected → CP.expected = SP.active →CP.next

else
if SP(i) = SPx then

// intersecting function, check unique CP label and ignore SP
if CP(j) = SP.active → CP.expected then SP.expected → CP.expected
= SP.active → CP.next ;
else goto flagAttack ;

else if SP(i) → CP(j) = SP.active → CP.expected then SP.expected →
CP.expected = SP.active → CP.next ; // update CP to the next one in the
SP sequence

else // received checkpoint did not match expected checkpoint for the active
SP
goto flagAttack ;

end

end

measurements performed inside the HSM present no timing penalty. The HSM can

perform periodic boot measurements in the background when it is not busy with pro-

cessing cryptographic jobs for the host. This is primarily the function of our firmware

integrity monitor. During the firmware installation, the firmware monitor calculates

an AES CMAC or a HASH of the downloaded firmware. The MAC or HASH value

is stored in the HSM secure memory. During normal run-time, the integrity monitor

performs an authenticity measurement using the built-in AES or HASH accelerators.

If an attacker manages to bypass security checks and re-programs part of the firmware

code or data, the firmware integrity monitor detects the manipulation and takes ac-

tion within a predetermined time. The time to detect such tampering depends largely

on the size of the data being authenticated. By partitioning the firmware code and

data into blocks, it is possible to perform the integrity checks of critical code and data

sections within a shorter period, before a full authentication measurement is finished.

81

An example of such a code block is the NMI exception handler which must be trusted

to restore the ECU to a safe state. Therefore it is monitored with its own MAC tag

which can be quickly verified without having to wait for the full firmware image to

be authenticated to determine if it can remain trusted or not. If the NMI handler is

no longer trusted due to an authentication failure, then the HSM locks its security

assets and enters a reduced functionality mode to prevent an attacker from using it

to authenticate transactions required for participating in secure vehicle operations.

Here it is up to the system designer to decide on the recovery plan. At a minimum,

an ECU that cannot pass a secure boot measurement is not allowed to participate in

secure communication with the rest of the vehicle, and that is possible by the HSM

restricting usage of its keys.

5.5.4 CAN Integrity Checker

The CAN masquerading attack requires the usage of a compromised ECU to send

CAN messages that are not within its own CAN message transmit list. For e.g. a body

controller that has been compromised, can be reprogrammed to send CAN messages

that are received by the steering control ECU to manipulate the vehicle steering.

Given the fact that the CAN controller settings are normally fixed after startup,

and since the HSM has read access to the CAN registers, the CAN peripheral is

a good candidate for security monitoring. The CAN integrity checker periodically

monitors transmit control registers that contain the CAN identifier and data length

code configuration of transmit messages. Additionally, the CAN integrity checker

could monitor the CAN reception identifiers and mask filters to detect tampering

with the reception rules. Such tampering would result in an ECU receiving messages

that it would otherwise ignore, but we consider that out of scope. The Renesas

CAN controller implementation in our device is called RSCANFD version 3 and

shown in Figure 5.6. It supports 8 CAN channels, each with 32 transmit buffers and

82

Figure 5.6: RSCANFD CAN controller architecture, [19]

operates in both CAN classic and CANFD [55] mode. Transmission can be done

either with FIFO structures, prioritized queues or the traditional transmit mailboxes

[19]. For simplicity, we only choose to monitor the traditional transmit mailboxes

method. Protecting FIFO and the queue method will be considered in future work.

Consequently, the registers that are mandatory for monitoring are:

• RCFDC0CFDTMIDp: sets the CAN frame type(classic vs. CANFD), the CAN

ID value as well as the CAN frame ID type(standard vs. extended)

• RCFDC0CFDTMPTRp: sets the data length code value of the corresponding

CAN frame

Note p is a value between 0 and 255 to cover all 8 CAN channels, thus we have to

monitor a total of 512 registers. The remaining registers related to transmission are

changed dynamically for e.g. to set the actual CAN data bytes or request transmis-

sion. Such registers are not suitable for monitoring with SecMonQ. The periodic rate

at which SecMonQ must perform the CAN integrity checks must comply with the

following inequation:

tcheckerperiod ≤ nframes ∗ (tframe transmit + tarbitration) (5.1)

83

a d dl Tcanfd
500 Kbps 2 Mbps 8 127.2µs
500 Kbps 2 Mbps 16 165.6µs
500 Kbps 2 Mbps 24 204µs
500 Kbps 2 Mbps 32 242.4µs
500 Kbps 2 Mbps 64 396µs

Table 5.1: Frame transmission times for various data lengths

where nframes is the number of consecutive frames that the attacker must send back

to back in order to override the real message on the bus and cause the intended harm,

tframe transmit is the transmission time of each individual frame, and tarbitration is the

arbitration delay before the CAN frame is transmitted. tframe transmit depends on

the CAN bus baud-rate, message length and number of stuff bits resulting from the

data payload. Using Equation 4.1, we calculate the transmission times for various

frame lengths and commonly used baud-rate configurations, as shown in Table 5.1.

In terms of the arbitration delay, it depends on the busload and the priority level

of the message being transmitted. If an attacker is trying to send a message that

has a low priority, then it can be delayed by several frame transmission times as it

loses arbitration to the higher priority messages. On the other hand, a high priority

frame will likely suffer one or no frame transmission delay. For safety messages,

the data length is typically 8 bytes or longer, in order to accommodate the CAN

signals, checksum or MAC, rolling counters and other parameters. In the worst case

scenario where a CAN frame is an 8 bytes long high priority message, the CAN

integrity monitor would have to check the CAN controller settings at a very high

rate which places an impractical computational burden on the HSM. Therefore, we

turn to a probabilistic approach that uses a practical tcheckerperiod that can instead

detect tampering in CAN register settings with a certain probability. Since the CAN

integrity monitor is used in conjunction with the other monitors, we argue that this

compromise is acceptable. Assuming that Tcanfd < tcheckerperiod, then we can segment

each tcheckerperiod into equal slots of Tcanfd time each. If the CAN integrity checker

84

reads the register values during the time segment where the malicious message is

being transmitted, then detection occurs, otherwise, the attacker evades detection

and simply rewrites the transmit ID with the original value to cover his tracks. Due

to the nature of automotive control systems, the attacker cannot achieve his attack

goal by sending a single malicious CAN frame. Typically, a control algorithm reads

in data from the CAN bus continuously until the desired operation is completed.

This forces the attacker to send the malicious message during that time to prevent

the real ECU messages from being received, and consequently, aborting the malicious

operation. To override the real ECU message, the attacker must send his messages

with an attack rate, tattackrate, faster than the real messages in order to either cause a

collision or to overwrite the valid received data. Assuming an attack period, tattack, in

which the attacker is forced to send the malicious message m times, the probability

of full evasion can be calculated by multiplying the probabilities of evasion during

each instance that the CAN integrity checker is running, as follows:

P (¬Det) =

(
1− Tcanfd

tcheckerperiod

)m

(5.2)

where m = tattack/tattackrate and P (¬Det) is the probability of evasion, or simply put:

1 − P (Detection). Consequently, the probability of evasion decreases as the attack

period and the number of required malicious frames increases. Note, if the attacker

sends only a few malicious frames, i.e. below the threshold to override the real

message, the probability of detection will be low, but the safety impact will be non-

existent, as the real ECU will manage to send the valid messages causing the system

to continue to operate safely. Moreover, to reduce the overhead on the HSM, we chose

to perform the integrity check through an XOR operation between the register values

and the expected values, instead of a MAC or hash calculation. If the XOR operation

result is different from zero, then we flag a tampering event. Note, a MAC can be used

85

instead when the number of registers to be monitored is quite large which would place

a significant storage overhead for the HSM secure memory. When the checker detects

that the transmit buffer identifier values have been modified, SecMonQ locks access

to the secure communication keys and notifies the host. Additionally, SecMonQ can

leverage one of its IO port pins to assert the inhibit line on the CAN transceiver. This

takes the CAN channel completely offline as the transceiver is no longer operating

in normal state. To use the IO port pin option, the HSM must be physically wired

to control the transceiver inhibit line, [18]. Incidentally, while the focus of the CAN

integrity checker is to detect tampering with CAN transmission settings, the concept

can be easily adapted for other communication controllers such as the LIN bus.

5.5.5 Policy Handler

The policy handler takes input from all the four monitors and then decides the

proper action based on the pre-programmed policy actions. The HSM, being a master

controller, can reset itself as well as the host cores. Our initial intuition was to allow

the HSM to reset the system as a recovery mechanism to an attack. While this can

be an acceptable response in typical IT systems, for safety-critical systems, such a

reset can result in a sudden loss of control functionality which is, in fact, a safety

goal violation. Since the HSM does not know what state the host is in, and is not

equipped to take safety-related action, we decided to prohibit the HSM from resetting

the entire system. Note, allocating safety-related action to the HSM would increase

the automotive safety integrity level (ASIL) requirement of the HSM hardware and

firmware adding cost and complexity to the system[17]. Instead, we designed the

security monitor to delegate such action to the host safety core via the secure interrupt

mechanism after taking actions from the action list in Table 5.2.

86

Nr. Action
1 Set error state in a shared register with the host to inform of attack

detection and reason
2 Dump out the host stack memory and write it to secure memory for

future forensics
3 Lock the HSM security assets to prevent the host from successfully spoof-

ing other ECU’s with authenticated messages
4 Issue a maskable interrupt to the host to notify it of an attack that may

require a transition into a fail-safe state
5 Issue a non-maskable interrupt to the host to force it to transition into

a fail-safe state
6 Assert the IO pin that controls the CAN transceiver inhibit line to take

the CAN channel completely offline

Table 5.2: Actions that SecMonQ can take upon policy violation

5.5.6 Safety Considerations

Due to the safety-critical nature of AUTOSAR based systems, several safety-

related considerations are needed for SecMonQ. In terms of the peripheral monitoring,

the host is expected to prohibit write access from the HSM into its own internal

memory and register settings. This is in line with the freedom of interference concept

that ISO26262 requires when elements with varying safety-criticality co-exist in a

system. Read access, however, causes no safety violation and therefore, the HSM

shall be permitted such access to the host peripherals. If a malicious host denies read

access to the HSM, this would be considered an active attack and the HSM can take

corrective action from the list outlined in Table 5.2. Another important safety factor

is whether the attack detection time can be kept within the safety constraints of the

system as shown in Figure 5.7. SecMonQ shall follow this rule for all its monitors:

tattackdetection ≤ FTTI − FRTI (5.3)

where FRTI is the fault reaction time interval and FTTI is the fault tolerant time

interval, as defined by ISO26262 [17].

87

Figure 5.7: Impact of SecMonQ detection time on FTTI constraint

Figure 5.8: ECU Model of Sensor Actuator Application

Definition 1. According to Part 1 of the automotive functional safety standard [17],

FTTI is the time span in which a fault or faults can be present in a system before a

hazardous event occurs.

Figure 5.7 is adapted for security from the fault based model defined in the func-

tional safety standard [17]. We make the argument that for embedded automotive

systems, as long as the attack detection and reaction can be performed within the

fault tolerant time interval(FTTI) [17], the system can still meet its safety objectives.

5.6 Case Study: Defeating the CAN Masquerading Attack

In prior work [78], we applied an early version of SecMonQ to the use case of

protecting safety-critical routines which are triggered through the vehicle diagnostic

commands. Protecting the diagnostic protocol[15], is a perfect candidate for Sec-

MonQ because the ground truth can be easily modeled with a limited number of

valid diagnostic command sequences that impact safety. In this chapter we consider

the more complex use case of protecting an AUTOSAR based application from the

88

CAN masquerading attack, as described in section 5.5.4. Our test application con-

sists of a single AUTOSAR software component(SW-C) that periodically reads in

data from the CAN bus, increments a counter and sends out another CAN message

again periodically. This is to model a simplified sensor actuator application as shown

in Figure 5.8.

To evaluate SecMonQ, we construct several attack classes that aim to achieve the

CAN masquerading attack objectives. In the first attack, the attacker attempts to

modify the firmware to reprogram how CAN messages are transmitted. We expect

that the firmware integrity monitor to detect that within the following time:

tdetect ≤ tmonitorperiod + tauthenticate (5.4)

where tmonitorperiod is the task periodic time for executing the firmware integrity moni-

tor in the HSM, and tauthenticate is the time to calculate a MAC of the monitored code

and data blocks and comparing it with a pre-stored authentication tag. The second

attack involves RAM based code injection to redirect control to the Can Write func-

tion in the MCAL layer. We apply the path generation steps to produce the SP,CP

sequences corresponding to Can Write function as shown in Figure 5.5. The attacker

aims to reach the Can Write function either directly by jumping into it, or through

jumping into one of the functions that lead to it. To launch this attack, we overflow

the stack frame of the vulnerable function with a payload of chained jumps that reach

the Can Write function. Consider tHost2HSM to be the time to switch to the trusted

function and send the checkpoint event from the Host to the HSM, tHSM2Host to be

the communication overhead from the HSM to the host to report the attack detection,

tHSMcheckerperiod to be the periodic rate at which SecMonQ performs its monitoring

checks, and (tn−tn−1) to be the time between any two consecutive checkpoint reports

which result in a flow control violation, then the attack detection time must satisfy

89

the following rule:

tattackdetection ≤ tHost2HSM + tHSMcheckerperiod + (tn − tn−1) + tHSM2Host. (5.5)

The goal of SecMonQ is to minimize the detection time by minimizing the overhead for

reporting a checkpoint as well reducing the rate at which the monitoring algorithms

are executed without causing the HSM to be fully occupied with monitoring workload.

Next, we apply the rerouting control attack in which the attacker jumps into

a function outside the monitored SP’s and never returns back control. He can do

that by jumping into an AUTOSAR critical section entry point which disables global

interrupts or suspends the OS [11]. We expect the time monitor to detect missing

checkpoints within a time window of:

tdetect ≤ tmonitorperiod + tmaxtaskcycle (5.6)

where tmaxtaskcycle is the maximum separation time between consequtive activations

of a periodic task. Finally, we inject a malicious routine that modifies the CAN

controller registers related to the transmitted CAN message identifiers. We expect

the CAN integrity monitor to detect this tampering before the vehicle function is

successfully activated. Note, detection here is coupled with a probability value as

described in Equation 6.3.

5.6.1 Experimental Setup: Time and Flow Monitors

Our experimental setup consists of the EB tresos AUTOSAR stack [2] version

4.0.3 with a single core configuration. The microcontroller used is a Renesas RH850

F1KM, shown in Figure 5.9, which is typically used in body control ECUs [21].

The latter is equipped with an HSM, also known as Intelligent Cryptographic Unit

Master (ICU-M) [4]. In addition to being a security enabled micro-controller, it is

90

Figure 5.9: RH850 Development Environment and Debug Setup

also an ASIL qualified device. To interact with our ECU, we use the GreenHills

Multi debugger which allows us to send commands over the debug interface as well

as log data for further analysis. We configured the host core on the RH850 to run

at a CPU clock frequency of 120 Mhz. For demonstration purposes we load the

malicious stack memory payload used in our evaluation via the GreenHills debugger

over the JTAG link. The overflowed stack contains a jump to the Can Write routine

located at a known flash address that the attacker determines by inspecting the

firmware binary image. To observe the attack detection, we place one breakpoint

in the Can Write routine at the point where the transmission request is set in the

hardware, and a second breakpoint in the NMI exception handler which is triggered

by an attack detection. Then we corrupt the stack with our carefully crafted payload.

We consider a missed attack as one that results in the Can Write breakpoint being

hit without the NMI detection breakpoint. We trigger the stack overflow at random

points in the software execution flow to cause a jump into the Can Write function

via all the possible paths described in Figure 5.5. Note, even if Can Write is entered

successfully and a CAN message is sent, as long as the detection and recovery occurs

within a fault tolerant time, the attacker can be prevented from doing real harm due

to the built-in fault tolerance. In order to hook our checkpoint notification from the

AUTOSAR application to the HSM, we take advantage of the AUTOSAR entry and

exit hooks which are autogenerated in the RTE and BSW layers. The hooks can

91

be used for tracing certain events during development by mapping the macros to a

trace tool. But we repurpose those macros to call the checkpoint handling function

to report entry and exit from a function. The code in listing V.1 shows an example

of tracing hooks for the Communication Layer function: Com SendSignal.

Listing V.1: Com SendSignal function containing the trace hooks at entry and exit

of the function

FUNC(uint8 , COM CODE) Com SendSignal

(

Com SignalIdType S igna l Id ,

P2CONST(void , AUTOMATIC, COM APPL DATA) SignalDataPtr

)

{

. . .

DBG COM SENDSIGNAL ENTRY(Signa l Id , SignalDataPtr) ;

. . .

DBG COM SENDSIGNAL EXIT(RetVal , S igna l Id , SignalDataPtr) ;

return RetVal ;

This allows us to integrate SecMonQ with AUTOSAR without the need to modify

AUTOSAR specific interfaces.

5.6.1.1 Results

First, we targeted the function Com SendSignal which belongs to the Com layer

[16]. The function allows us to modify a CAN signal value which is later transmitted

on the CAN bus by the CAN driver layer. The goal is to create a chain of two

jumps, first to setup the modified CAN signal and second to jump directly to the

Can Write function to trigger the transmission. Using the memory map, we located

92

Figure 5.10: Attack results on the Can Write function

Figure 5.11: Contents of stack frame after corruption

Com SendSignal at address 0x15a10 and Can Write at 0x66ce. We then had to find

the location on the stack where the lp register value must be corrupted. Through

trial and error we determined the location of the lp and the rest of the registers

which are popped from the stack of our assumed vulnerable function. Then we

performed the code injection as shown in Figure 5.11. Instead of jumping to the start

of Com SendSignal, we skip the function prologue to avoid overwriting our next lp

value by the prologue stack push. This way, once Com SendSignal reaches the end, it

again pops our next lp value and jumps to Can Write. Since, our aim is to send our

93

Figure 5.12: Checkpoint cache: reception of CP 4 when CP 1 was expected

spoofed CAN message continuously, we used the start address of Can Write in the

second jump. This results in the lp value being pushed on the stack at the start of

Can Write, and getting popped at the end, causing circular calls into Can Write and

effectively triggering the CAN transmission continuously. This is necessary to override

the transmission of the actual message which is coming from the real ECU on the

bus. Next we place our breakpoint in the Can Write routine and the interrupt service

routine which contains our attack detection code. By executing the attack, we can

see that we entered the Can Write function as expected, but the invalid checkpoint

sequence triggers the attack interrupt service routine as shown in Figure 5.12. If the

NMI is used, the sequence violation would have prevented reaching the Can Write

function on the entrance of the Can Write function. But for convenience we relied on

the attack detection interrupt to observe the behavior after each attack detection. One

interesting finding was that after we launched the attack and observed the Can Write

function being continuously called, we verified that the OS was still able to schedule

other tasks that needed to run as shown in the call trace in Figure 5.13. In effect, the

task with the exploit was now converted into an endless loop of calling the Can Write

function, while other tasks could run as expected. This basically means that without

the security monitor being present, an attacker could launch this attack without

necessarily causing a crash thus continuing without detection. But due to our flow

monitor, such attack gets detected and corrective action is taken. We repeated this

attack scenario from various points against the secure path sequence and the detection

94

Figure 5.13: Call trace after the attack, OS still scheduling tasks

rate was 100% as seen in Figure 5.10. For the cases where we called the parent task to

trigger the Can Write function, a timing violation was detected in the time monitor.

In one case when the attacker jumped directly into the Can Write routine, the CAN

transmit request was reached but detection occurred afterwards. Since SecMonQ

issues an NMI, the attacker is unable to send any further CAN messages, thus causing

no harm. In the remaining attacks, detection happened before the CAN transmission

request could be set in hardware. In terms of checkpoint reporting overhead, we

observed a significant difference, as shown in Table 5.3, when the checkpoint reporting

is done through the AUTOSAR trusted function, vs. a normal function call. With

the trusted function call AUTOSAR OS switches into the kernel mode which results

in saving then restoring the current context. Since each checkpoint report adds a

fixed delay, the overall delay within a single task depends on the length of the SP. In

our experiment, the Can Write SP required 22 checkpoints(including entry and exit),

and this results in a total overhead of 2.32% during a single 10ms periodic cycle.

We choose 10ms cycle rate because it is normally the common rate for AUTOSAR

basic software components such as the CAN layers. It is important to note here that

increasing the CPU clock frequency would have resulted in a lower overhead, but

we chose to operate the chip at the slower clock frequency to show the worst case

95

tHost2HSM(µsec) CPU Load/10ms cycle
Trusted
Function

10.55 2.32%

Without
Trusted
Function

1.375 0.30%

Table 5.3: Checkpoint reporting overhead at host CPU clock of 120Mhz

Figure 5.14: CAN Bus load to mimic real vehicle bus conditions

scenario. As for the tHSM2Host, we measured 0.6µs with our HSM running at 60Mhz

clock frequency. tHSMtaskperiod was set to 5ms to ensure the HSM has enough CPU

bandwidth to handle normal cryptographic jobs. The attack reaction time, as shown

in Figure 5.7, depends heavily on the implementation of the NMI exception handler

and the amount of steps needed before the system can be switched to a safe state. In

our case the combined detection and reaction time were observed to average around

8.6ms.

96

5.6.2 Experimental Setup: CAN Integrity Monitor

For the CAN integrity monitor testing, we use Vector CANalyzer and the CAPL

language to simulate a malicious ECU and a driver assistance ECU which are com-

municating with a braking ECU. The malicious ECU aims at causing an emergency

braking situation by spoofing the related CAN message. The CAN FD link was

configured at 500kbps arbitration rate and 2Mbps data rate. The simulated driver

assistance ECU sends a periodic message to the braking control ECU at a 20ms rate

indicating no emergency braking needed. The simulated malicious ECU on the other

hand sends the same message with the brake request signal enabled. Once the request

is received, the braking ECU takes 250ms to start physically pumping brake fluid into

the brakes to cause the deceleration. This time was given to us by discussing with

domain experts. Therefore, the minimum attack time tattack is 250ms. To ensure an

attack does not result in a safety violation, the attack detection time must be less than

tattack. During that time, if any one of the driver assistance ECU messages is received

successfully by the braking ECU, then the operation is aborted. The attacker thus

has to continue to spoof the braking request message during that time to override the

real messages. To simulate real vehicle conditions we create a CAN busload of around

50%, as shown in Figure 5.14, by scheduling several arbitrary CAN FD frames that

are sent periodically to create bus traffic. Furthermore, we inject a jitter of 10% in

the tranmission rate of the real braking request message. This mimics a real CAN

bus where CAN messages do not get transmitted at exactly the same time due to loss

of arbitration and varying busloads. Doing so is necessary to prevent attack messages

from artificially lining up right after the real messages causing perfect overwrites.

5.6.2.1 Results

To determine the required attack rate that causes the successful attack, we vary

the malicious message periodic rate starting at a value of 100ms down to 2ms. A

97

Figure 5.15: Attack results when attack rate is 10ms

CAPL routine that receives the CAN data at a 20ms rate, sets a flag that indicates

the start of braking for a period of 250ms. During that time, if a real message is

received, the routine aborts the operation. Otherwise, it prints a message indicating

that the attack was successful, as shown in Figure 5.15. This indicates that the

malicious brake request suppressed the real messages for the full attack duration of

250ms. As for the CAN integrity checker period, we chose a value of 1ms which is

both computationally practical and also yields a high detection probability. Note, for

testing purposes we did not enable the CAN integrity checker to take action when

an attack is detected in order to allow the attacks to continue for data collection. As

shown in Table 5.4, the attack is not successful until we reach half the periodic rate

of the real message. Clearly, when the attack message is transmitted at twice the

rate of the real message or faster, the attacker can overwrite the reception of the real

message or cause a collision, causing the receiver to only see data from the malicious

ECU. As we increase the rate even faster, successful attacks became more frequent.

The experiment was repeated at a frame length of 64 bytes to study the impact of

98

Attack
Rate

Successful
Attack

Number of
malicious
frames

Prob(Det)
(8byte frame)

Prob(Det)
(64byte
frame)

20ms+ no less than
25

Don’t Care Don’t Care

10ms yes 25 96.4% 99.999%
5ms yes 50 99.87% 100%
2ms yes 125 99.999% 100%

Table 5.4: Attack results at different attack rates and Frame DLC

frame length on the detection rate. As expected, the detection rate improves as either

the attack rate increases or the frame transmission time increases. Both increase the

time window for the CAN integrity monitor to detect the register tampering. Note,

for attack rates greater than the periodic rate of the real message, the detection rate

dropped, however the attack itself did not result in a successful emergency brake

operation. In terms of the CAN integrity monitor performance on the real hardware,

we measured 96.6µsec to read all 512 register values and perform the XOR operation.

The monitor executed this check once every 1ms.

5.7 Discussion

Embedded HSMs provide strong security guarantees in terms of isolation from the

host. Since they are becoming standard in many popular automotive microcontrollers

and SoC’s, using them for security monitoring requires no additional hardware cost.

However, there are some drawbacks that limit their scope of use as security moni-

tors. With SecMonQ, knowledge about the host execution state, through checkpoints,

requires switching into the kernel and back which results in considerable host CPU

overhead for each reported event. Since our goal was to keep the implementation com-

patible with AUTOSAR, we chose the AUTOSAR trusted function which resulted

in an approximately 8x increase in CPU overhead vs. sending the checkpoint report

without the context switch, as shown in Table 5.3. It is possible to reduce that time

99

through an optimized method that utilizes the CPU software trap functionality di-

rectly to enter privileged mode. But, we did not pursue that route because we wanted

to keep the solution compatible with AUTOSAR. The current approach results in a

linear increase of the CPU overhead as the number of checkpoint reports increases.

This limits the number of SP’s that can be monitored without adversely impacting

the real-time behavior of AUTOSAR. Future automotive microcontroller and SoC

hardware architectures shall consider providing a hardware mechanism to reflect the

host CPU state directly to the HSM. This would allow the HSM to observe execution

events such as program counter values without the need for special software in the

host. In terms of secure interruption, we had to utilize the NMI feature to ensure our

attack detection interrupt cannot be ignored. But NMI is not a recoverable excep-

tion, therefore the host must shutdown itself and issue a reset at the end to recover

the system. Having a hardware-supported security non-maskable interrupt would be

desirable to allow the host to switch to a safe state without the need for a full shut-

down at the end. Instead, the host could restart the offending OS application, which

results in the increased overall availability of the ECU functionality.

Furthermore, one may argue that a ROP chain [89], can be used to execute arbi-

trary code without the need to enter the Can Write function. However, ROP chains

that rely on variable length assembly instructions gadgets are much slower compared

to the normal execution flow. For e.g. the quicksort algorithm has been shown to take

100 times longer when entirely implemented as a return-oriented program [46]. This

increased time works to the advantage of SecMonQ. If an attacker wants to mimic the

functionality of the Can Write function with ROP gadgets, he must perform register

writes to the CAN controller. To avoid the normal AUTOSAR task from overwriting

the modified CAN registers, the attacker must disable global interrupts as part of

the attack chain. By doing so, he increases the detection window by both our CAN

peripheral integrity monitor and the time monitor inside SecMonQ. This problem is

100

exacerbated by the fact that sending a single spoofed CAN message is not sufficient

to cause real harm, so the process has to be repeated for a fixed number of times to

ensure enough spoofed messages reach the target ECU, which further increases the

chances of detection by the time and CAN integrity monitors.

When comparing with traditional host-based monitors, one advantage of SecMonQ

is the clear isolation of safety and security which is especially important in safety-

critical automotive systems. With host-based monitors, the safety-critical code must

be instrumented with branch and return checks. But the resulting instrumented code

is now the subject of safety validation. This results in significant cost to validate

that the software is still safe after instrumentation. Similarly, there is a high cost

and effort of safety qualification of the code instrumentation offline tools because

they are generating code that is directly impacting the safe execution [17]. With

SecMonQ, only the checkpoint report mechanism in the host and the NMI handler

must be shown to be safe. Since the bulk of the logic is performed inside the HSM,

there is no fluctuating CPU overhead that can happen in the host. Additionally, the

HSM code that controls the NMI must be developed with safety in mind to prevent

spurious NMI events to the host which can result in continuous shutdowns. Still, this

translates in significant cost reduction due to the lower safety burden placed on the

HSM software as a whole.

5.8 Conclusion

In this chapter, we presented a security monitoring system that addresses several

security gaps which were uncovered in the previous chapter. The four components of

SecMonQ allow us to detect CAN controller tampering, OS timing violations, flow

control violations, and application code tampering. To demonstrate effectiveness

we applied the solution to the popular CAN masquerading attack. It is easy to

see that the approach can be extended to other use cases like protecting restricted

101

diagnostic services and flash programming routines. Due to the increased availability

of embedded HSMs in automotive ECUs, SecMonQ adds no hardware cost and is

compatible with AUTOSAR which results in minimal impact on legacy software.

SecMonQ also defines a harmonized approach to attack detection within a safety

environment by delineating fail-safe action to the host, while the HSM performs

the security protections of its assets. This harmonized approach between safety and

security shows how safety-critical systems can separate responsibilities within a single

system yet harmonize the reaction when a cyber attack with safety impact is detected.

By shifting the bulk of the monitoring to the HSM, we ensure freedom of interference

between the safety-related host software and the HSM security monitoring software.

This leads to lower cost for safety validation of the overall system. Furthermore, the

approach can be implemented in any HSM equipped ECU. For future work, we plan

on adding new monitors for clock and power glitch detection by utilizing the HSM

built-in clock monitoring system. The CAN integrity monitor can also be extended

to detect changes in the receive filters configuration. We also aim to investigate the

impact of monitoring when multi-core systems are employed.

102

CHAPTER VI

Availability: Adding Trust without Sacrificing

Performance

6.1 Introduction

In the previous chapter, we saw that the firmware integrity monitor was a critical

component for ensuring that firmware manipulations in flash are detected and action is

taken to bring the system back to a safe state. For the firmware integrity monitor to be

effective in a safety-critical system, manipulations of flash have to be detected within

a constrained timing rule. But the firmware integrity checking time increases as the

size of the image in flash increases. This calls for a solution that accelerates firmware

authentication to meet the strict timing constraints of automotive systems. In this

chapter, we introduce a novel approach to accelerate the firmware authentication

time based on our work in [77]. The approach has two purposes: reducing the time

to detect a flash tampering attack during runtime, and meeting the startup timing

requirements for real-time embedded systems without foregoing secure boot.

Dependable embedded systems like automotive Electronic Control Units (ECUs)

are expected to perform an integrity measurement on startup, through either a Cyclic

Redundancy Check (CRC) or a checksum calculation, to prevent corrupted software

from being executed [83]. With the introduction of cyber threats against such sys-

103

tems, it is not sufficient to only look for memory corruption errors, but also to perform

a data authenticity check to ensure the software has not been tampered with while at

rest. This is a prerequisite for allowing the software to perform safety related func-

tions. For automotive systems, a secure boot measurement is typically performed

with the help of hardware accelerators in Trusted Platform Modules (TPMs), or

embedded Hardware Security Modules (HSMs) [36], [44]. Although cryptographic

hardware accelerators improve the boot authentication time, the ever increasing de-

mand for memory makes it challenging to perform a boot measurement of the entire

software while still meeting the availability timing requirements of such systems. The

emergence of ADAS and autonomous driving systems further increases the memory

requirements resulting in even longer times to perform a full boot measurement. For

real-time systems that run within the context of an RTOS, partitioning the applica-

tion into independent components that can be started in stages is often impractical

especially with the need to support legacy software. Even with a staged boot ap-

proach, the full system functionality cannot be available until all the stages have

been completed, causing overall delays in the startup time.

To address the security and availability requirement of real-time embedded sys-

tems, this chapter presents a dual phase secure boot approach that leverages an

embedded hardware trust anchor such as an HSM to perform a sampled boot au-

thentication step followed by a full boot authentication step. The probabilistic boot

authentication sampling scheme(PBASS), uses pseudo random functions(PRFs) and

message authentication codes(MACs) to randomly sample the firmware space and

authenticate it. The general scheme relies on a true random seed that is generated

during the setup phase and stored in secure memory. Using a PRF, the seed produces

a set of memory blocks that are selected for the MAC calculation. During the verifi-

cation phase, the seed is fetched from secure memory and the PRF is used to generate

the sampled memory blocks to perform the MAC calculation. The calculated MAC

104

is compared to the stored MAC and if a mismatch is detected then the firmware is

considered tampered. It is assumed that a hardware trust anchor is available to store

the security parameters in a protected environment. PBASS shall fulfill the following

requirements:

• Achieve high detection probability of data tampering

• Provide significant startup time improvement when compared to traditional

secure boot approaches

• Resist attackers who attempt to evade detection by guessing the unsampled

blocks

• Support firmware update strategies

6.2 Related Work

Secure boot is the process by which a hardware trust anchor evaluates the in-

tegrity of the software running on a device to ensure the device is booted in a secure

state [69]. It is considered a fundamental security primitive of trusted computing

[84], [40],[88]. Secure elements play a major role in building trust in a system [90],

[52], [97]. In the case of a TPM[27], a well defined process of hash measurements is

performed at each boot stage to be compared to a signed hash. The boot process

continues if the calculated hash matches the expected hash until the full software has

been authenticated successfully. Failure at any stage can cause the boot process to

halt or cause a security reset. In the case of authenticated boot, the boot process

is allowed to continue but the integrity values will be stored to be later reported for

e.g. when connecting to a cloud server that requires remote attestation. Alterna-

tively to TPM’s, EVITA [87], proposes an embedded hardware security module [44],

to support the main automotive security use cases. EVITA offers three profiles: light,

105

medium and full. The medium and full profiles, offer a secure execution environment

that allows supporting various secure boot strategies. Another popular security ar-

chitecture in automotive devices is the BoschHSM[36], introduced in Chapter V. The

secure boot approach presented in this chapter is well-suited for an embedded HSM

due to the flexibility of such platforms. The commonly known secure boot approaches

in automotive systems can be summarized as follows:

• Full Secure Boot: here the full binary image is verified in a single operation. It

is suitable for devices that execute from internal flash and have to authenticate

a relatively small application. The advantage of this approach is that there is

no need for partitioning the firmware into independent blocks. The downside is

that as the application grows, the time to finish the authentication can easily

exceed the startup time requirements.

• Staged Boot: with this approach the application is partitioned into multiple

images that have to be booted sequentially, prioritizing partitions that are time

critical over less time critical software partitions. A hardware trust anchor is

normally used to securely boot an initial partition which is then trusted to

boot the next stage. The drawback of this approach in embedded systems that

run from internal flash, is that it requires segmenting the software into several

partitions that can be executed independently. For deeply embedded devices

that run a single binary image, this is hard to achieve. Also, the full functionality

of the system is not possible until all partitions have been authenticated. In

the case of bigger devices that have heterogeneous cores and boot from external

flash, staged boot allows various cores to be booted in parallel which results in

an overall improvement in startup time.

• Just in Time: here the system verifies executables before they are booted into

RAM. This can improve timing but when various executables depend on each

106

other, the overhead of constantly booting code can become prohibitive. It is

also only usable for SoC’s in which software is executed exclusively from RAM.

Regardless of which secure element or boot strategy is used, the issue of competing

goals between dependability and security remains. This was well-studied in [56],

where the use of TPM’s in Cyber Physical systems was shown to impact various

aspects of dependable systems. One such aspect is the delay of availability due to the

computational overhead of cryptographic protocols [86]. This is the problem we aim

to solve in this chapter.

Surveying the literature, we did not find any work related to probabilistic secure

boot schemes. However in the work of [28], a probabilistic authentication scheme was

proposed for proof of possession of data between a client and a cloud server. In that

use case, the client gives the cloud his files and is concerned the server is lying about

possession of all his files. As a countermeasure, he challenges the cloud on a periodic

basis by requesting it to calculate authentication tags of pre-sampled data blocks.

Since the server does not know which blocks are covered by the authentication tags

he cannot delete large data blocks without risking detection by the client. While the

use case is different than secure boot, the underlying principal is similar to what we

are proposing here. Instead of a malicious server that has the incentive to modify

large number of blocks of user data without detection, we have an attacker who wants

to tamper with a device software to change its behavior. But unlike the cloud use

case, our attacker does not necessarily modify a large number of blocks making it

harder to detect tampering. Therefore, we extend the probabilistic authentication

scheme to cope with small block modifications and apply it to embedded systems

showing that it can be practical for accelerating the secure boot process.

107

6.3 PBASS: Probabilistic Boot Authentication Sampling Scheme

In this section we describe the different variants of PBASS which were designed to

deal with the security requirements listed in the introduction. Each variant aims to

solve deficiencies of the previous variant until we reach the final variant that satisfies

all our requirements.

6.3.1 Threat Model

We assume a powerful adversary who has managed to find a way to reflash the

firmware on the device. The adversary also knows the details about the secure boot

algorithm and how sampling is done, so he aims to modify blocks of memory that

are outside the sampled space in order to evade detection. Due to the storage of the

random seed, keys and MACs in secure memory, and the difficulty of inverting the

PRF to recover the seed, the attacker can only guess which parts of the firmware

are outside the sampling area through trial and error. We assume the adversary has

direct access to the device and can repeat the process of modifying the firmware as

many times as he wants until he can create an image that can evade detection of the

sampled boot phase.

6.3.2 Notation

• d – total data blocks in the firmware image.

• m ∈ d : 1 ≤ m ≤ d – modified data blocks.

• B – block length in bytes.

• q = m×B – modified data bytes.

• s ∈ d : 1 ≤ s ≤ d – randomly sampled data blocks.

• b : 1 ≤ b ≤ B – randomly sampled data bytes per block.

108

• T : 1 ≤ T ≤ d
B

– modified data blocks with t > 0.

• t ∈ T : 1 ≤ t ≤ B – modified bytes per block.

• P (Det) = P (m ∩ s) – probability of detection of a modification to d.

• P (¬Det) = 1− P (Det) – probability of detection evasion.

6.3.3 Random Block Sampling:rBS

Following the general scheme of Section 6.1, this variant also consists of a setup

phase and a verification phase. The setup phase is depicted in Figure 6.1, while the

details are shown in Algorithm 2. During the setup phase a random seed is generated

along with the corresponding pseudo random numbers list. The random values are

translated to memory block addresses to be used in the sampled boot measurement.

The conversion of random bits into random block addresses consists of selecting a

number of consecutive random bits and then applying a mask with an offset to produce

a valid memory address. The mask is needed to limit the range of values in the random

sequence and align it to an addressable block. The offset is needed to convert the

random sequence into a valid memory address in the firmware image address map. A

random key is also generated to be used for the tag generation/verification of each

sampled image. The corresponding boot tag is calculated and stored in secure memory

along with the corresponding key. During startup, the embedded HSM performs the

verification boot measurement using the stored random seed and corresponding key to

verify the authenticity of the firmware sample as shown in Algorithm 3. The sequence

is identical to the setup phase with the exception that the random seed is fetched

from memory instead of being generated and the MAC is compared to the stored

value. Due to the size of the sample being a fraction of the full image, the secure

boot time measurement is also a fraction of the total secure boot time. Note that

the block size is chosen based on the optimal fetching speed of the hardware and the

109

Figure 6.1: Tag generation process using randomly selected blocks

underlying MAC algorithm. For AES CMAC, the minimum block size shall be 16

bytes to avoid wasting clock cycles in packing the data into 16 byte aligned blocks.

For other MAC algorithms, the block size can be adjusted accordingly to optimize

performance. Moreover, PBASS can only be practical if it can detect tampering of

data blocks with a high probability. Our sampling method is equivalent to a sampling

with replacement approach, since the number of blocks remains the same after each

sampling event. Therefore, the probability of detection after a single sampling event i

is P (Deti) = m
d

, where m is the number of modified blocks and d is the total number

of blocks in the firmware image. Consider M to be the set of modified blocks while

S is the set of sampled blocks, then the adversary evades detection if M ∩ S = φ.

Consider P (¬Deti) as the probability of missed detection for each sample i, then

P (¬Deti) = (1− P (Deti)) =
(

1− m

d

)
(6.1)

Since all the samples i are random they are also independent events, therefore, to

evade detection, the attacker has to escape each one of the sampling events, i.e:

P (¬Dets) = P (¬Det1)× P (¬Det2)× . . . P (¬Dets) (6.2)

110

Figure 6.2: Theoretical probability of detection vs. number of contiguously modified
bytes given various sample sizes using rBS

Consequently:

P (¬Dets) = P (¬Deti)s =
(

1− m

d

)s

(6.3)

For a given maximum value of m modified blocks and a maximum probability of eva-

sion, P (¬Det), both of which the system can tolerate, we can represent the required

sample size as follows:

s =
ln (P (¬Det))

ln (1− m
d

)
(6.4)

Figure 6.2 shows the P (Det) for various sample levels and different values of m.

Note m was converted to bytes by multiplying it with a block size of 16. Intuitively,

the larger the sample size is the higher the probability of detection should be. More-

over, the smaller the number of modified bytes is, the harder it should be to detect

the attacker’s modification. Interestingly, at a sample size of 15%, the detection

111

probability converges to 1 as long as m is sufficiently large. To see the impact of

the image size on the evasion probability, Table 6.1 shows the calculated probabili-

ties given a sample size of 15% and a fixed number of modified bytes of 512 bytes.

Another notable point with this scheme, is that the attacker is motivated to pack his

Image Size(KB) P (¬Det)
128 0.81528%
256 0.81912%
512 0.82105%
1024 0.82201%
2048 0.82249%
4096 0.82273%

Table 6.1: Impact of file size on evasion, s=15% and m = 512 bytes

modification in full blocks to increase his chances of evasion. In other words, if the

attacker distributes the modified bytes in an un-contiguous way, then he effectively

modifies more m blocks than he would if he modified bytes in complete blocks. To

keep the speed performance high, we need to minimize the sampling rate, but doing

so limits the number of modified blocks that we can detect with rBS. This leads us

to the next scheme.

6.3.4 Per Block Sampling:pBS

The previous variant showed high detection probability but only if the number of

tampered bytes were large enough. This might not be suitable for applications of high

criticality in which even a small program modification can render the system unsafe.

To cope with low values of m, we extend PBASS to perform a double sampling

approach. The first level of sampling is done at the full firmware image level by

dividing it into smaller blocks. The second level of sampling is done at each one of

these smaller blocks by sampling b number of bytes as shown in Figure 6.3. In this

scheme, each block is guaranteed to be sampled b number of times. Assuming that

the attacker modifies a minimum of t bytes over a single block of size B, and that we

112

Algorithm 2 Sampled Boot Setup

Input: Choose parameters: K, scheme, n
Output: Sstored[1 : n], Tstored[1 : n]
Function generateTag(S,K, scheme):

Rbytes[]← PRF(S)
switch scheme do

case rBS do
for i← 1 to s do

Raddrs[i]← derMemAdd(Rbytes[])
Rdata[1 : B] = getDataBlock(Raddrs[i])
Ti ← updateMAC(Rdata[], K)

end

end
case pBS do

for i← 1 to d do
Raddr[1 : b]← derMemAdd(Rbytes[])
Rdata[1 : b] = getDataByte(Raddr[1 : b])
if len(Rdata) = MAC len then
Ti ← updateMAC(Rdata[], K)

else
Continue

end

end

end

end

return T
for i← 1 to n do

S ← TRNG
Sstored[i]← S
Kstored[i]← K
Tstored[i]← generateTag(S,K, scheme)

end

113

Figure 6.3: Per Block Sampling method

are sampling b bytes out of every block in the firmware image, then the probability

of evasion can be calculated as follows:

P (¬Deti) = (1− P (Deti)) =

(
1− t

B

)b

(6.5)

But since the attacker cannot fit his entire program into a single block, he has to

spread the malicious code over T blocks. Thus, to evade detection he has to do so in

each one of the T blocks. Following the same reasoning of Equation 6.2 we arrive at

this equation:

P (¬Dets) = P (¬Deti)T = (1− t

B
)b∗T (6.6)

Intuitively, by sampling each block in the image, the detection sensitivity rises

significantly as T rises. This is evident in Figure 6.4, where B = 16 bytes while

b = 1 and b = 2. We observe that the detection probability quickly converges to

1 even for small values of T modified blocks, each with a single modified byte, i.e.

t = 1. When sampling individual bytes per block, the byte fetching and buffer

packing operations slow down the overall performance in comparison to variant 1

which fetches complete blocks. Therefore, to keep the performance fast, the sampling

ratio b/B has to remain relatively small. For a given total number of modified bytes

that the system can tolerate T ∗ t, an acceptable evasion probability P (¬Det), and a

114

Figure 6.4: Theoretical probability of detection vs. number of modified bytes for per
Block Sampling (pBS), with B=16 bytes, t=1 byte and b either 1 or 2 bytes per block

block size granularity B, we can calculate the required b value as follows:

b =
ln (P (¬Det))
T ∗ ln (1− t

B
)

(6.7)

Note here that the firmware image size is not factored in this equation. The reason

is that independently of the image size, we are sampling each block in the image.

Therefore, the sampling rate is simply b/B. It is important to note here that unlike

the previous variant, the attacker can no longer pack his data in full blocks without

risking immediate detection. The reason is that since each block is being sampled, if

he modifies all values in just a single block, he will cause 100% detection probability.

This forces the attacker to distribute his code modifications over as many blocks

as he can, i.e. t has to be as small as possible. But to allow the malicious code

to operate continuously, the attacker has to insert jump instructions to chain the

modified blocks. This increases the amount of modified bytes needed to realize the

115

attack goal. Depending on the CPU architecture, a minimum t value can be fixed to

account for the minimum instruction length plus the jump instruction length.

6.3.5 Resisting Adversary Evasion

Both schemes presented so far can be subverted by an attacker who aims to avoid

detection by only modifying blocks which are outside the sampled region. Note here,

we use the term blocks to refer to either multi-byte blocks or single byte blocks.

Due to the secret nature of the random seed, to discover the unsampled blocks, the

attacker modifies blocks one at a time and cycles power to rerun the boot verification

and determine if the block is within the sampled space. Due to the flash architecture,

it is not possible to just program a single byte, so the attacker has to erase the entire

sector containing the target block, then reprogram all blocks in that sector with their

original values except for the modified block. If the system is degraded, he infers that

his modification was detected and so he marks the block as sampled and moves on to

the next block. This process is repeated until the attacker maps out enough blocks

that are out of the sampled space and then creates the program modification that

only changes the unsampled blocks. To activate his malicious program, he needs to

hook into one of the untampered software routines. To defeat this attack, we extend

both variants 1 and 2 in two ways. First, we add a second phase boot measurement

that is performed by the HSM in the background after the system is operational in

order to fully authenticate the firmware. If the firmware is verified successfully, the

HSM re-executes the setup phase to generate a new random seed, a new MAC key

and a new MAC of the resulting sample space. If the full boot measurement fails, the

HSM switches off the sampled boot measurement until the system has at least been

fully booted successfully once. This frustrates the attacker who now needs to replace

his modified blocks with the valid image to allow full boot to pass, before he can

repeat his experiments of searching for unsampled blocks. However, since full boot

116

generated a completely new random seed, the attacker loses all the knowledge gained

from previous evasions. This in essence limits the attacker to guess unsampled blocks

from a single cycle. As long as the selected probability of detection is sufficiently high,

the attacker cannot rely on guessing the unsampled blocks from a single measurement

run. To further frustrate the attacker, we extend the setup phase to generate n

random seeds. This produces n random samples which PBASS will now select from

randomly at startup. This means, the attacker not only has to discover unsampled

blocks in a single measurement run, but also in all the sampled measurements. That

is because the attacker cannot guess which seed will be selected during startup. Note,

that having n sampled spaces does not degrade the boot measurement time at startup

because only one single space is verified. However, it does increase the setup time

which now has to be multiplied by n setup instances.

6.3.6 Security Properties

PBASS has several security properties that make it hard for attackers to bypass:

• Although the firmware image is the same for ECUs of the same type, the mea-

sured sample is different due to the different random seeds. So even if an attacker

is successful in tampering with one ECU, he cannot scale the unsampled space

knowledge to other ECUs.

• Even if the attacker finds some bytes that he can modify without detection, he

is limited severely to the time window that the ECU is active before he has to

cycle power to evade detection by the second phase boot authentication. In case

an attacker is cycling power to prevent a full boot measurement to be reached,

the HSM can count power resets which would trigger the switch from sampled

boot to full secure boot on each subsequent cycle. This would cause immediate

detection of tampering and allow the ECU to take appropriate action. A sliding

window approach can be applied where if m out n attempts fail, then we assume

117

that tampering is ongoing. As a result we switch to a single phase full boot

authentication approach until a successful secure boot measurement has been

performed. Then, we switch back to the dual phase approach.

Algorithm 3 Sampled Boot Verification

Input: Sstored[1 : n], Tstored[1 : n], Kstored[1 : n], scheme
Output: True/False
n← rnd(1 : n)
S ← Sstored[n]
K ← Kstored[n]
T ← generateTag(S,K, scheme)
if T = Tstored[n] then

Run Host
Initiate Full Boot Authentication

else
Sample Boot Allowed F lag ← False

end

6.3.7 Support for Firmware Reprogramming

Firmware in embedded devices is expected to be updated at some point in the

lifetime of the device. PBASS easily integrates with firmware reprogramming strate-

gies through the firmware verification step. After the firmware is downloaded into

the device, it is expected that a verification step is performed to validate the digital

signature of the firmware. It is after this point that the setup phase of PBASS is

executed to generate the set of random seeds, keys and MAC’s, to be used for the

subsequent boot cycle. By incorporating the setup phase during the update process,

we ensure that no startup burden is placed on the device. A secure programming

event is equivalent to a full boot measurement, therefore on the next boot up event,

the device software is allowed to be authenticated using the sampled boot approach.

118

Figure 6.5: State flow diagram for the dual phase boot approach

6.3.8 PBASS: The Complete Approach

Now that we have shown how PBASS can meet the security requirements set

forth in the introduction, we present the complete dual phase boot flow in Figure 6.5.

For devices that require a single secure boot authentication stage, such as ones that

execute out of internal flash, the PBASS flow replaces that single stage. For devices

that require multiple secure boot authentication stages, such as ones that boot from

external flash, the PBASS flow can be selected to run within individual stages where

acceleration is desirable. This makes PBASS compatible with existing secure boot

strategies. Assuming the firmware has not yet been securely programmed, then the

sampled boot verification is not allowed. The system has to either perform at least

119

Figure 6.6: Coupling of the sampled boot phase with the full boot phase to reduce
risk of undetected data tampering

a single full boot measurement following a failed boot authentication attempt, or

undergo a secure programming event in order to transition into the sampled boot

algorithm. The next boot cycle, the ”sample boot allowed” flag is checked and if

TRUE, then the flow for sample boot verification is executed. After a successful

verification, the application is started and a full boot measurement is triggered in the

background. A successful full boot measurement leads to a new setup phase initiation

to generate the new random seed set and corresponding tags. This is illustrated in

Figure 6.6. Moreover, if during any boot cycle, the sample boot verification fails,

the ”sample boot flag” is cleared forcing the device to switch back to the full boot

measurement approach.

6.4 Implementation and Results

To evaluate our scheme we started first with a python simulation. Since the de-

tection rate is hardware independent, we setup a python script that uses the open

source pycrypto toolkit[68], to perform the underlying cryptographic functions. For

the random block sampling(rBS) simulation, we follow the algorithm to generate a

120

Figure 6.7: Python Simulation showing probability of detection vs. number of con-
tiguously modified bytes given various sample sizes for Random Block Sampling (rBS)

list of sample addresses within our memory address range. For the modified block ad-

dresses, first we use the urandom python library to generate a list of attack addresses

that correspond to q contiguous bytes, and make up m contiguous block modifications.

As discussed earlier, packing the modified blocks is in the interest of the attacker so we

simulate that scenario first. To test whether rBS detects the modification, we check

if for any address in the attack list, the address also exists in the sampled list. The

assumption here is that if the attacker modifies a single byte within the sampled block

set, the MAC value will no longer match leading to a detection of tampering. For each

set of the tests, we choose a sample size s from the following list: 1%, 2%,5%,10%,

15% and a q value from the following list: 1, 16, 128, 256, 512 bytes. For statistical

significance the test for each single combination of q and s is repeated 1000 times, with

the list of attack addresses changing each time. The results are shown in Figure 6.7.

Comparing with Figure 6.3, we can see that the simulation agrees with the theoretical

model with the probability of detection approaching 1 for q ≥ 512 bytes and s ≥ 15%

of d. To demonstrate the need for the attacker to pack his modifications, the attack

121

Figure 6.8: Python Simulation showing probability of detection vs. number of non-
contiguously modified bytes given various sample sizes for Random Block Sampling
(rBS)

addresses for the second simulation consist of randomly modified bytes. As seen in

Figure 6.8, spreading the modified bytes greatly reduces the attacker’s chances for

evasion. Next we turn to the per block sampling method (pBS). Two simulations are

run, one with b = 1 i.e. 1 sampled address per block, and the other with b = 2. Since

modifying any single block entirely now results in a definite detection, with pBS the

attacker now has an incentive to spread out his modifications. Therefore, we generate

a list of attack addresses, which are completely random irrespective of block location.

Since the attacker wants to maximize the distribution of bytes to evade detection, we

choose t = 1 which is the worst case scenario. Even though this is not practical for

an attacker who wants to chain instructions through jumps, it allows us to evaluate

our system’s performance even in the case of an attacker doing the illogical thing of

just corrupting data. As with rBS, we repeat each test 1000 times. Note: Instead of

a single q value, the modified bytes now have two components: T and t. The results

are shown in Figure 6.9. Comparing with Figure 6.4, we can see that the simulation

agrees with the theoretical model with the probability of detection approaching 1 for

122

Figure 6.9: Python Simulation:probability of detection vs. modified bytes for different
b values using pBS

T × t ≥ 80 bytes when b = 1, and T × t ≥ 40 bytes when b = 2.

To measure the timing performance we switch to the real hardware. One of the

assumptions for implementing PBASS in an embedded system is that a secure ex-

ecution environment with secure storage is available. This is mandatory to be able

to store the random seed, keys and MAC values of the sampled blocks. Also, the

full boot phase has to be executed using a trusted entity and the HSM is ideal for

this due to it’s secure core that runs an independent firmware. Therefore, we chose a

popular automotive microcontroller:Renesas RH850 which has an embedded HSM[4].

We implemented an HSM firmware service that takes as input the boot measurement

phase(setup or verify) and returns a job result. The HSM firmware performed the

random seed generation using a built-in true random generator. The PRF was im-

plemented as the NIST recommended AES CTR DRBG function [33]. The MAC

was implemented using AES CMAC[94]. The choice for a CMAC was driven mainly

by the fact that all automotive MCU’s equipped with EVITA-MEDIUM or EVITA-

FULL HSM have AES hardware accelerators. The algorithm can easily be adapted to

123

Figure 6.10: Probability of detection vs. number of modified bytes per block(t), vs.
number of tampered blocks(T) for per Block Sampling (pBS) with b=1.

work with other hardware accelerators such as a SHA engine. Although the sampling

approach reduces the size of data that has to be processed with the AES engine,

the additional overhead to generate the pseudo random numbers as well as fetching

blocks or bytes from memory to construct the AES data payload can be time consum-

ing. For that reason, we optimized the algorithm to generate a large set of random

numbers which are buffered in HSM RAM as a first step. Then we constructed our

sample addresses using the random numbers buffer and fed the data into the AES

engine through multi-segment requests of 16 bytes each. Due to the RAM size limi-

tation, the process of generating random bytes may have to be repeated several times

depending on the total sample size. We adapted the C version of the algorithm into

python and made it available at [76]. In terms of memory overhead, each sampled

space requires the storage of a 32 byte random seed, a 16-byte AES CMAC tag and

a 16-byte AES key. If n seeds are used, the total storage needed is multiplied by n.

A single flag to indicate whether sampled boot is allowed or not must be stored in

the HSM secure memory. The actual implementation of the sampled boot algorithm

required less than 500 bytes of flash memory. As for the RAM consumption, since the

124

Figure 6.11: Setup time comparison between the different variants with different
sample sizes

sampled boot verification step is performed only during startup, any RAM buffers

used by this algorithm can be freed after the verification is complete. This makes the

RAM usage impact minimal. For running the tests, we used the GreenHills MULTI

environment which allowed us to send UART based commands to trigger the boot

authentication jobs. First we issued a setup request to generate the random seeds and

MACs. Then we issued the verification request to verify a preloaded firmware image.

Subsequently, prior to each verification job request, we manipulated a fixed number

of bytes with a specific pattern:”0xA5”. We then tabulated the result of the verifi-

cation phase to compare with the simulation without finding a significant difference.

With each modification, we performed ten different sample verifications based on ten

different seeds and measured the time. This was done to speed up the testing. We

also measured the time taken to perform a full boot measurement of the entire image

for comparison. We chose P (¬Det) = 0.0005 and m = 128 bytes as representative

values of the risk level acceptable along with the tolerance for undetected tampering.

Figure 6.11 shows the setup time performance when comparing the random block

sampling approach at a 12.5% sampling rate vs. the per block sampling approach

at two sampling rates of 12.5% and 6.25%. As expected, to achieve a similar setup

time to rBS we had to sacrifice the sampling rate in pBS to counter the inefficiency

of fetching individual bytes from memory rather than fetching entire blocks.

125

Figure 6.12: Verification time comparison relative to full boot

Figure 6.12 shows the verification time performance as compared to the full boot

approach. The pBS algorithm at a sampling rate of 6.25% performed almost as good

as the rBS algorithm at 12.5% sampling rate. Both of which performed at about 22%

of the full boot time, approximately a 5X speed improvement.

6.5 Discussion

Our experiments showed a 5X speed improvement at 99.95% detection probability

with a tolerance of up to 128 modified bytes. Due to the second full boot measure-

ment, the risk tolerance is only for the time window from startup until the full boot

measurement has finished. By delaying the full boot measurement until the system

is operational, we are suggesting a two-level transitive trust approach. A successful

full boot authentication operation infers a degree of trust that allows the second boot

cycle to rely on the sampled boot phase, followed again by a full boot authentica-

tion phase that re-affirms trust in the environment and acts as an anti-tampering

countermeasure.

PBASS comes with a few limitations that must be considered. While an attacker

is restricted by how many bytes he can modify to perform something useful in code,

126

modifying data is not so restrictive. Take for e.g. calibration data or safety-critical

constant data. An attacker may be interested in modifying only a few bytes to achieve

his aim of chip tuning or causing a safety hazard. For data that is considered safety

or security related we propose that a separate authentication scheme is applied to

prevent undetected tampering. Instead of performing an aggregated verification at

startup of all data, the application would verify the authenticity of such data elements

on-demand. This would reduce the impact on boot up time while ensuring that data

is not consumed if it has not been authenticated first. Another limitation is related

to the boot failure strategy in case the background full boot authentication operation

detects tampered memory. By switching to full boot mode, this means the ECU will

now take longer to startup on the next ignition cycle because trust is degraded in the

environment. But this is not a severe restriction because if tampering is detected,

the ECU would have to be degraded anyway until someone restores it to a valid state

through reprogramming. And since the setup phase is repeated as part of the next

reprogramming cycle(needed to recover the ECU to a valid state), if programmed

successfully, the following ignition cycle PBASS will run the sampled boot phase so

the ECU experiences no added delay.

With pBS, the attacker is forced to spread his malicious modification over as many

blocks as possible. If he wants to jump from one code modification area to another,

then he has to add jump instructions to each code snippet. This can force him to use

high t values and, depending on the complexity of his malicious code modification, a

large number of T blocks. Alternatively, the attacker can modify individual bytes by

carefully constructing instructions in a ROP attack style[89]. Instead of modifying

return addresses through the stack or the heap, the attacker would modify blocks

containing jump addresses in order to chain various software gadgets. But ROP

based gadget execution is known to be slow compared to normal execution because

it requires many gadgets to achieve what normal code would. This results in a high

127

number of modified bytes which again causes an increased probability of detection.

Moreover, the attacker is not freely able to use any gadget because at each startup

we select a different sampled space forcing the attacker to generate many gadget

combinations that he has to try, which makes such attack impractical. In terms of

performance, When a Direct Memory Access Controller(DMAC) is available in the

hardware, it can happen that full boot measurement is close in time to a sampled

boot measurement due to the increased speed of data fetching into the hardware

accelerators. Without the speed performance edge, PBASS would become unfavorable

when compared to a full boot authentication. We argue that DMAC can also make

PBASS faster. In the case of rBS, DMAC would allow us to use larger s values

with greater block sizes. Instead of sampling 16-byte blocks at a time, PBASS would

sample multiple blocks to take advantage of the increased speed of data fetching.

Since the overall data sample would still be a fraction of what full boot measurement

has to process, we anticipate that PBASS would still be superior. Evaluating with

DMAC will be a target for a future extension of this work.

6.6 Conclusion

In this chapter we presented a probabilistic boot sampling authentication scheme

that provides a high degree of confidence in the integrity of the booted software. This

allows resource constrained embedded systems to speed up their boot authentication

process in two phases. The full boot authentication phase affirms trust in the environ-

ment and triggers a new setup phase as an anti-tampering countermeasure. While the

environment is trusted, a first phase sampled boot authentication verifies the integrity

of the system with a degree of confidence. The coupling of both phases allows the sys-

tem to prevent undetected data tampering while meeting the constrained availability

requirements of embedded systems. The approach allows time constrained embedded

systems to utilize the security guarantees of secure boot without the downside of

128

delayed startup time. It also enables, our security monitoring system to detect flash

tampering in a fraction of the time that it would take with traditional authentication

methods. Furthermore, the approach was evaluated both in simulation and on a tar-

get showing its efficacy and practicality. We recognize that further optimizations are

possible especially when a DMAC is available which could further improve the boot

timing with our approach. This is the basis for future work in which we intend to

investigate ways to optimize performance while increasing sensitivity to tampering.

129

CHAPTER VII

Conclusion

In this work, we started with a systematic approach to safety and security co-

engineering to uncover security threats that impact safety and take action within the

safety constraints of the system. We then applied this approach to AUTOSAR which

is the most widely used standard automotive software platform. This lead to uncover-

ing several security gaps in the platform. To cope with these deficiencies, we proposed

an HSM based security monitoring system(SecMonQ), made up of four monitors that

handle the most severe attack classes in relation to safety. SecMonQ was then shown

to improve the security of AUTOSAR based systems in the face of popular attacks

such as CAN masquerading. To supplement SecMonQ’s firmware integrity monitor

and reduce the impact of secure boot on real-time systems, we introduced a proba-

bilistic boot authentication approach. The approach significantly reduced the time

before real-time systems can become available without sacrificing the need to establish

trust first in the application software. In each step of this research, the safety impli-

cations of attacks and security countermeasures were studied. When an attack was

detected, we proposed practical means for bringing the system to a safe state while

harmonizing the safety and security goals. The work performed in this dissertation

pays special attention to the unique constraints and needs of automotive systems and

avoids introducing solutions that result in prohibitive cost, major impact to legacy

130

code, violation of safety standards, and the need for increased computational and

memory resources. This makes the methods and solutions presented here practical

and effective in improving the resilience of automotive safety-critical systems against

security attacks. Our hope is that the work presented in this dissertation will enable

further research in the area of improved hardware and software architectures to sup-

port safety-critical systems in coping with the security threats that are only expected

to grow in the future.

131

BIBLIOGRAPHY

[1] Autosar core and premium members list. https://www.autosar.org/about/
current-partners/. Accessed: 2018-07-22.

[2] Eb tresos autocore. https://www.elektrobit.com/products/ecu/eb-tresos/
autocore/. Accessed: 2018-07-22.

[3] Healing vulnerabilities to enhance software security and safety. https://

bit.ly/2ndStzy. Accessed: 2018-07-22.

[4] Renesas icum firmware. https://bit.ly/2LX5492. Accessed: 2018-07-22.

[5] Specification of Core Test. AUTOSAR Release 4.2.2.

[6] Specification of Crypto Service Manager. AUTOSAR Release 4.2.2.

[7] Specification of Diagnostic Communication Manager. AUTOSAR Release 4.2.2.

[8] Specification of Diagnostic Event Manager. AUTOSAR Release 4.2.2.

[9] Specification of Flash Test. AUTOSAR Release 4.2.2.

[10] Specification of Module Secure Onboard Communication. AUTOSAR Release
4.2.2.

[11] Specification of Operating System. AUTOSAR Release 4.2.2.

[12] Specification of RAM Test. AUTOSAR Release 4.2.2.

[13] Specification of SW-C End-to-End Communication Protection Library. AU-
TOSAR Release 4.2.2.

[14] Specification of Watchdog Manager. AUTOSAR Release 4.2.2.

[15] ISO 14229-1, road vehicles - unified diagnostic services (UDS) – part 1: Speci-
fication and requirements, 2006.

[16] Specification of Communication. AUTOSAR Release 4.2.2, 2015.

[17] Road vehicles – functional safety, ISO26262, 2018.

[18] https://www.infineon.com/cms/en/product/transceivers/automotive-
transceiver/automotive-can-transceivers, Accessed: 2019-05-27.

132

[19] https://www.renesas.com/eu/en/doc/products/mpumcu/apn/rl78/001/
R01AN2535ED0202-CAN.pdf, Accessed:2019-05-07.

[20] https://ariloutech.com/solutions/in-vehicle-intrusion-detection-
and-prevention-system-idps/, Accessed:2019-05-07.

[21] Rh850 evaluation platform. https://www.renesas.com/eu/en/doc/products/
tool/doc/004/r20ut4009ed0100 rh850f1x.pdf, Accessed:2019-05-07.

[22] Greenhills compiler. https://www.ghs.com/products/compiler.html,
Accessed:2019-06-01.

[23] Abad, F. A. T., Van Der Woude, J., Lu, Y., Bak, S., Caccamo,
M., Sha, L., Mancuso, R., and Mohan, S. On-chip control flow integrity
check for real time embedded systems. In Cyber-Physical Systems, Networks,
and Applications (CPSNA), 2013 IEEE 1st International Conference on (2013),
IEEE, pp. 26–31.

[24] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow
integrity. In Proceedings of the 12th ACM conference on Computer and com-
munications security (2005), ACM, pp. 340–353.

[25] Administration, N. H. T. S., et al. Cybersecurity best practices for
modern vehicles. Report No. DOT HS 812 (2016), 333.

[26] Amorim, T., Martin, H., Ma, Z., Schmittner, C., Schneider, D.,
Macher, G., Winkler, B., Krammer, M., and Kreiner, C. System-
atic pattern approach for safety and security co-engineering in the automotive
domain. In International Conference on Computer Safety, Reliability, and Se-
curity (2017), Springer, pp. 329–342.

[27] Arthur, W., and Challener, D. A Practical Guide to TPM 2.0: Using
the Trusted Platform Module in the New Age of Security. Apress, 2015.

[28] Ateniese, G., Di Pietro, R., Mancini, L. V., and Tsudik, G. Scalable
and efficient provable data possession. In Proceedings of the 4th international
conference on Security and privacy in communication netowrks (2008), ACM,
p. 9.

[29] Automotive, E. Hardware security modules unleash autosar. EDN Network
(2018).

[30] Avatefipour, O., Hafeez, A., Tayyab, M., and Malik, H. Linking
received packet to the transmitter through physical-fingerprinting of controller
area network. arXiv preprint arXiv:1801.09011 (2018).

[31] Aven, T. A unified framework for risk and vulnerability analysis covering
both safety and security. Reliability engineering & System safety 92, 6 (2007),
745–754.

133

[32] Bai, Y. Practical Microcontroller Engineering with ARM Technology. John
Wiley & Sons, 2015.

[33] Barker, E., and Kelsey, J. Nist special publication 800-90a revision 1:
Recommendation for random number generation using deterministic random bit
generators. NIST, June 20q5, http://nvlpubs. nist. gov/nistpubs/SpecialPubli-
cations/NIST. SP (2015).

[34] Böhner, M., Mattausch, A., and Much, A. Extending software archi-
tectures from safety to security. Automotive-Safety & Security 2014 (2015).

[35] Broy, M. Challenges in automotive software engineering. In Proceedings of the
28th international conference on Software engineering (2006), ACM, pp. 33–42.

[36] Bubeck, O., Gramm, J., and Ihle, M. A hardware security module for
engine control units. In escar -Embedded Security in Car (Dresden, Germany,
Nov. 2011).

[37] Burow, N., Carr, S. A., Nash, J., Larsen, P., Franz, M., Brun-
thaler, S., and Payer, M. Control-flow integrity: Precision, security, and
performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 16.

[38] Burton, S., Likkei, J., Vembar, P., and Wolf, M. Automotive func-
tional safety= safety+ security. In Proceedings of the First International Con-
ference on Security of Internet of Things (2012), ACM, pp. 150–159.

[39] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham,
H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T.,
et al. Comprehensive experimental analyses of automotive attack surfaces. In
USENIX Security Symposium (2011), San Francisco.

[40] Chen, K., Zhang, S., Li, Z., Zhang, Y., Deng, Q., Ray, S., and Jin,
Y. Internet-of-things security and vulnerabilities: Taxonomy, challenges, and
practice. Journal of Hardware and Systems Security 2, 2 (2018), 97–110.

[41] Cho, K.-T., and Shin, K. G. Fingerprinting electronic control units for ve-
hicle intrusion detection. In 25th {USENIX} Security Symposium ({USENIX}
Security 16) (2016), pp. 911–927.

[42] Christoulakis, N., Christou, G., Athanasopoulos, E., and Ioanni-
dis, S. Hcfi: Hardware-enforced control-flow integrity. In Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy (2016),
ACM, pp. 38–49.

[43] Committee, S. V. E. S. S., et al. Sae j3061-cybersecurity guidebook
for cyber-physical automotive systems. SAE-Society of Automotive Engineers
(2016).

134

[44] Corbett, C., Brunner, M., Schmidt, K., Schneider, R., and Dan-
nebaum, U. Leveraging hardware security to secure connected vehicles. Tech.
rep., SAE Technical Paper, 2018.

[45] Davi, L., Koeberl, P., and Sadeghi, A.-R. Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems against
software exploitation. In Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE (2014), IEEE, pp. 1–6.

[46] Davi, L., and Sadeghi, A.-R. Building Secure Defenses Against Code-Reuse
Attacks. Springer, 2015.

[47] Day, D. J., and Zhao, Z.-X. Protecting against address space layout ran-
domisation (aslr) compromises and return-to-libc attacks using network intru-
sion detection systems. International Journal of Automation and Computing 8,
4 (2011), 472–483.

[48] Dwoskin, J. S., Gomathisankaran, M., Chen, Y.-Y., and Lee, R. B. A
framework for testing hardware-software security architectures. In Proceedings
of the 26th Annual Computer Security Applications Conference (2010), ACM,
pp. 387–397.

[49] Foster, J. C., Osipov, V., Bhalla, N., and Heinen, N. Buffer overflow
attacks: Detect, exploit. Prevent. Syngress Publishing (2005).

[50] Francillon, A., and Castelluccia, C. Code injection attacks on harvard-
architecture devices. In Proceedings of the 15th ACM conference on Computer
and communications security (2008), ACM, pp. 15–26.

[51] Francillon, A., Perito, D., and Castelluccia, C. Defending embedded
systems against control flow attacks. In Proceedings of the first ACM workshop
on Secure execution of untrusted code (2009), ACM, pp. 19–26.

[52] Fuchs, A., Krauß, C., and Repp, J. Advanced remote firmware upgrades
using tpm 2.0. In IFIP International Conference on ICT Systems Security and
Privacy Protection (2016), Springer, pp. 276–289.

[53] Glas, B., Gebauer, C., Hänger, J., Heyl, A., Klarmann, J., Kriso,
S., Vembar, P., and Wörz, P. Automotive safety and security integration
challenges. In Automotive-Safety & Security (2014), pp. 13–28.

[54] Greenberg, A. Hackers cut a corvette’s brakes via a common car gadget.
Wired (2015).

[55] Hartwich, F. Controller area network with flexible data-rate, May 24 2016.
US Patent 9,350,617.

135

[56] Hoeller, A., and Toegl, R. Trusted platform modules in cyber-physical
systems: On the interference between security and dependability. In 2018 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW) (2018),
IEEE, pp. 136–144.

[57] II, O. Scan tool equivalent to iso/dis 15031-4, sae std. J1978 199 (2001), 203.

[58] Ji, H., Wang, Y., Qin, H., Wang, Y., and Li, H. Comparative perfor-
mance evaluation of intrusion detection methods for in-vehicle networks. IEEE
Access 6 (2018), 37523–37532.

[59] Johnson, C. Cybersafety: on the interactions between cybersecurity and the
software engineering of safety-critical systems. Achieving System Safety (2012),
85–96.

[60] Kaja, N., Nasser, A., Ma, D., and Shaout, A. Automotive security. In
Encyclopedia of Wireless Networks (2018), Springer.

[61] Karthik, T., Brown, A., Awwad, S., McCoy, D., Bielawski, R.,
Mott, C., Lauzon, S., Weimerskirch, A., and Cappos, J. Uptane:
Securing software updates for automobiles. In International Conference on
Embedded Security in Car (2016), pp. 1–11.

[62] Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., and Ponomarev, D.
Branch regulation: Low-overhead protection from code reuse attacks. In ACM
SIGARCH Computer Architecture News (2012), vol. 40, IEEE Computer Soci-
ety, pp. 94–105.

[63] Kelion, L. Nissan leaf electric cars hack vulnerability disclosed. BBC News.
Np 24 (2016).

[64] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Check-
oway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H.,
et al. Experimental security analysis of a modern automobile. In Security
and Privacy (SP), 2010 IEEE Symposium on (2010), IEEE, pp. 447–462.

[65] Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., and Halgand, Y.
A survey of approaches combining safety and security for industrial control
systems. Reliability engineering & system safety 139 (2015), 156–178.

[66] Lab, T. K. S. Experimental security research of tesla
autopilot. https://keenlab.tencent.com/en/whitepapers/
Experimental Security Research of Tesla Autopilot.pdf, Accessed:2019-
04-20.

[67] Lee, J., Heo, I., Lee, Y., and Paek, Y. Efficient security monitoring
with the core debug interface in an embedded processor. ACM Transactions on
Design Automation of Electronic Systems (TODAES) 22, 1 (2016), 8.

136

[68] Litzenberger, D. C. Pycrypto-the python cryptography toolkit. URL:
https://www. dlitz. net/software/pycrypto (2016).

[69] Löhr, H., Sadeghi, A.-R., and Winandy, M. Patterns for secure boot
and secure storage in computer systems. In 2010 International Conference on
Availability, Reliability and Security (2010), IEEE, pp. 569–573.

[70] Ltd., A. Trustzone technology for armv8-m architecture. https://

developer.arm.com/ip-products/security-ip/trustzone, Accessed:2019-
05-07.

[71] Macher, G., Sporer, H., Berlach, R., Armengaud, E., and Kreiner,
C. Sahara: a security-aware hazard and risk analysis method. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition
(2015), EDA Consortium, pp. 621–624.

[72] Martin, B., Brown, M., Paller, A., Kirby, D., and Christey, S. 2011
cwe/sans top 25 most dangerous software errors. Common Weakness Enumer
7515 (2011).

[73] Miller, C., and Valasek, C. Adventures in automotive networks and con-
trol units. DEF CON 21 (2013), 260–264.

[74] Miller, C., and Valasek, C. Remote exploitation of an unaltered passenger
vehicle. Black Hat USA (2015), 91.

[75] Müter, M., and Asaj, N. Entropy-based anomaly detection for in-vehicle
networks. In 2011 IEEE Intelligent Vehicles Symposium (IV) (2011), IEEE,
pp. 1110–1115.

[76] Nasser, A., and Gumise, W. Authenticated boot acceleration algorithm.
doi: http://dx.doi.org/10.7302/yeh1-1x17.

[77] Nasser, A., Gumise, W., and Ma, D. Accelerated secure boot for real-
time embedded safety systems. SAE International Journal of Transportation
Cybersecurity and Privacy 2 (2019). doi:10.4271/11-02-01-0003.

[78] Nasser, A., and Ma, D. Defending AUTOSAR safety critical systems
against code reuse attacks. In Proceedings of the ACM Workshop on Auto-
motive Cybersecurity (2019), ACM, pp. 15–18.

[79] Nasser, A., Ma, D., and Lauzon, S. Safety-driven cyber security engi-
neering approach applied to OTA. In Computer Science,Computer Engineering
and Applied Computing (July 2016).

[80] Nasser, A. M., and Ma, D. SecMonQ: An HSM Based Security Moni-
toring Approach for Protecting AUTOSAR Safety-critical Systems. Vehicular
Communications (2019), 100201. doi:10.1016/j.vehcom.2019.100201.

137

[81] Nasser, A. M., Ma, D., and Lauzon, S. Exploiting AUTOSAR safety
mechanisms to launch security attacks. In International Conference on Network
and System Security (2017), Springer, pp. 73–86.

[82] Nilsson, D. K., Larson, U. E., and Jonsson, E. Creating a secure
infrastructure for wireless diagnostics and software updates in vehicles. In In-
ternational Conference on Computer Safety, Reliability, and Security (2008),
Springer, pp. 207–220.

[83] Paulitsch, M., Morris, J., Hall, B., Driscoll, K., Latronico, E.,
and Koopman, P. Coverage and the use of cyclic redundancy codes in ultra-
dependable systems. In 2005 International Conference on Dependable Systems
and Networks (DSN’05) (2005), IEEE, pp. 346–355.

[84] Pearson, S. Trusted computing platforms, the next security solution. HP
Labs (2002).

[85] Piètre-Cambacédès, L. Des relations entre sûreté et sécurité. PhD thesis,
Télécom ParisTech, 2010.

[86] Ravi, S., Raghunathan, A., Kocher, P., and Hattangady, S. Security
in embedded systems: Design challenges. ACM Transactions on Embedded
Computing Systems (TECS) 3, 3 (2004), 461–491.

[87] Ruddle, A., Ward, D., Weyl, B., Idrees, S., Roudier, Y., Friede-
wald, M., Leimbach, T., Fuchs, A., Gürgens, S., Henniger, O.,
et al. Deliverable d2. 3: Security requirements for automotive on-board net-
works based on dark-side scenarios. tech. rep., EVITA (2009).

[88] Sha, K., Wei, W., Yang, T. A., Wang, Z., and Shi, W. On security
challenges and open issues in internet of things. Future Generation Computer
Systems 83 (2018), 326–337.

[89] Shacham, H. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference
on Computer and communications security (2007), ACM, pp. 552–561.

[90] Shepherd, C., Arfaoui, G., Gurulian, I., Lee, R. P., Markanton-
akis, K., Akram, R. N., Sauveron, D., and Conchon, E. Secure and
trusted execution: Past, present, and future-a critical review in the context of
the internet of things and cyber-physical systems. In 2016 IEEE Trustcom/Big-
DataSE/ISPA (2016), IEEE, pp. 168–177.

[91] Shostack, A. Experiences threat modeling at microsoft. In MODSEC@ MoD-
ELS (2008).

[92] Smith, C. The car hacker’s handbook: a guide for the penetration tester. No
Starch Press, 2016.

138

[93] Song, H. M., Kim, H. R., and Kim, H. K. Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle network.
In 2016 international conference on information networking (ICOIN) (2016),
IEEE, pp. 63–68.

[94] Song, J., Poovendran, R., Lee, J., and Iwata, T. The aes-cmac algo-
rithm. Tech. rep., 2006.

[95] Stoneburner, G. Toward a unified security-safety model. Computer 39, 8
(2006), 96–97.

[96] Taylor, A., Japkowicz, N., and Leblanc, S. Frequency-based anomaly
detection for the automotive can bus. In 2015 World Congress on Industrial
Control Systems Security (WCICSS) (2015), IEEE, pp. 45–49.

[97] TCG TPM 2.0 Automotive Thin Profile For TPM Family 2.0. Specification,
Trusted Computing Group, May 2018.

[98] Tencent. New car hacking research: 2017, remote attack tesla motors again.
Keen Security Lab Blog (2017).

[99] van der Veen, V., Andriesse, D., Göktaş, E., Gras, B., Sambuc, L.,
Slowinska, A., Bos, H., and Giuffrida, C. Practical context-sensitive
cfi. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 927–940.

[100] Weyl, B., Wolf, M., Zweers, F., Gendrullis, T., Idrees, M. S.,
Roudier, Y., Schweppe, H., Platzdasch, H., El Khayari, R., Hen-
niger, O., et al. Secure on-board architecture specification. Evita Deliverable
D 3 (2010), 2.

[101] Wiersma, N., and Pareja, R. A security assessment of the resilience against
fault injection attacks in ASIL-D certified microcontrollers. esCar, 2017.

[102] Wolf, T., Mao, S., Kumar, D., Datta, B., Burleson, W., and Gog-
niat, G. Collaborative monitors for embedded system security. In 1st Work-
shop on Embedded Systems Security (EMSOFT). ACM (2006), Citeseer.

[103] Zhang, T., Zhuang, X., Pande, S., and Lee, W. Anomalous path detec-
tion with hardware support. In Proceedings of the 2005 international conference
on Compilers, architectures and synthesis for embedded systems (2005), ACM,
pp. 43–54.

139

