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Abstract 

Curb space management and traffic flow are two essential elements of the transportation 

system that interact with each other and affect the overall system performance. With the growth of 

new mobility operators and goods delivery, the demand for access to the curb space is increasing 

rapidly. Thus, the traditional use of curb space for parking only is challenged, and it becomes 

essential to manage the curb space effectively. Our study investigates the allocation of curb space 

for various uses (i.e., parking, pick-up/drop-off, and loading/unloading) so that the overall 

transportation system performance can be enhanced. We simulate the transportation system and 

analyze the interactions between traffic flow and curb space usage by investigating the impact of 

the allocated curb spaces for different uses on traffic congestion. We build an optimization model 

to determine dynamic curb space allocation decisions that ensure smooth traffic flow. Our 

objective is to maximize the cities’ profit of curb space allocation decisions and minimizing the 

traffic delay. We further evaluate the value of dynamic curb space allocation policies over the 

fixed allocation policies and find that the dynamic policy can result in improvements in traffic 

delay. 
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Chapter 1: Introduction 

 

1.1 Introduction and Motivation 

 

Curb spaces have evolved so rapidly with the arrival of new mobility services and increased 

needs for goods delivery. Currently, curb spaces are not only used for parking but also used for 

pick-up/drop-off zone of ride-sharing services, bike share or scooter parking racks, delivery zones 

for online shopping companies, etc. Although due to the growing demand in ride-sharing services 

(i.e., Uber, Lyft, Chariot), the need for curbside parking has decreased, the need for other users of 

the curb spaces (i.e., pick-up, wait, drop-off) has risen. Further, the increasing demand in online 

shopping, which was supposed to reduce traffic jams by reducing individual trips to the stores 

(Hsiao, 2009), has resulted in an explosion in the trips made by delivery trucks (i.e.,  UPS,  FedEx) 

and their use of the curb spaces. Hence, the concerns about traffic congestion have arisen, and it 

has found that cruising for parking spaces solely contribute to around 30% of the total traffic 

congestion in business areas during the rush hour (Shoup, 2006). 

Similarly, it has found that the overall traffic delay from pick-up and delivery activities 

ranks third among all congestion-related events, indicating the magnitude of this traffic delay is 

more severe than the expectation (Han, et al., 2005). Moreover, the illegal parking in cities (i.e., 

blockages of bus lanes, bicycle facilities, and crosswalks by double-parked vehicles) has escalated, 

and it is reported that the delivery vans of companies such as FedEx and UPS have received 
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millions of dollars of parking tickets due to the illegal parking in 2016 (Figliozzi & Tipagornwong, 

2016). Thus, the inefficient use of the curb spaces can cause a potential safety hazard for people, 

traffic delays, and loss of city profits (Zalewski, et al., 2012), and it is very crucial for cities to 

utilize the curb spaces efficiently. 

To make the transportation system more reliable, cities across North America are shifting 

curb spaces from solely parking lanes to flexible zones, where the use of the curb zones can vary 

dynamically during the day. For example, these flexible zones could shrink, grow, or be assigned 

to other purposes by considering varying demands for different usages. Some cities have adopted 

policies that define the use of curb spaces. For example, the city of Seattle uses flexible zones and 

assigns the curb spaces to different usages according to some predefined priorities. However, no 

standard methodology exists for cities to assess the potential for dynamic curb space allocation 

and the subsequent impacts of those changes. Also, despite the importance of curb space planning, 

the consideration of dynamic use of the curb spaces during the day limits its large scale adoption. 

In this thesis, we study the dynamic allocation of the curb spaces by the cities for different uses. 

We consider three possible usages of the curb spaces (i.e., parking, pick-up/drop-off, and 

loading/unloading). We address the benefits of dynamic curb space allocation by considering the 

interaction between the traffic and the curb spaces, and we develop answers to the following 

operational questions: 

• Given the number of existing on-street parking spots inside a transportation network, 

what is the optimal dynamic curb space allocation policy which considers the flexible assignment 

of curb spaces for different uses (i.e., parking, pick-up/drop-off, and loading/unloading)? 

• What is the value of dynamic curb space allocation policy in terms of vehicle traffic delay 

and vehicle drove distance? 
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To address these questions, we first build a macroscopic simulation model to capture the 

interaction between the transportation system and the curb space allocation policy. The 

macroscopic simulation model allows us to analyze several curb space allocation scenarios for 

different uses and observe the impacts of the model parameters (i.e., vehicle-free speed, traffic 

demand, cruising time, etc.) on the overall traffic flow. Second, we build an integer programming 

model by using the outputs of the macroscopic simulation model to determine the optimal dynamic 

curb space allocation policy among different uses of the curb space (i.e., parking, pick-up/drop-

off, and loading/unloading). The objectives of the integer programming model are: (i) to maximize 

the cities’ profit from parking, and (ii) to minimize the traffic delay. Due to the interactions in the 

macroscopic simulation model, we obtain a non-linear objective function, which makes the 

analyses further complicated. Hence, we propose two algorithms to solve the dynamic curb space 

allocation model efficiently. Finally, in our study, we consider both the fixed curb space allocation 

policy, in which the use of curb space is fixed over time and the dynamic allocation policy in which 

the use of curb spaces can vary over time. We further compare both policies to analyze the value 

of the dynamic curb space allocation implementation. We show that the flexible allocation of the 

curb spaces can yield a decrease in the traffic delay within the network. 

The remainder of this thesis is structured as follows: In Chapter 1.2, we review the relevant 

literature. In Chapter 2, we describe our macroscopic simulation model and perform sensitivity 

analysis to validate the simulation model. In Chapter 3, we present the optimization model and 

perform numerical analysis to show our results from both macroscopic simulation and 

optimization models by using the proposed algorithms. Finally, our conclusions are outlined in 

Chapter 4. 
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1.2 Literature Review 

 

In recent years, with the rapid growth of mobility services, the need for the effective use of 

curb space has attracted several researchers. Some of them study how cities manage their curb 

spaces and the existing approaches that are used for curb space management (Chang, 2009), 

(Schaller, et al., 2011), (Zalewski, et al., 2012). Some propose new policies to find solutions for 

mitigating traffic congestion. Among studies that focus on policy development in curb space 

management (Shoup, 2006) points out that the congestion within a network is mostly caused by 

parked vehicles and that the parking rate can be adjusted to decrease the traffic demand entering 

the network and to control the traffic delay better. In another similar study, (Downs, 2004) 

proposes policies to mitigate the traffic congestion, such as greatly expanding road capacity, using 

intelligent transportation system devices to speed traffic flow, and greatly expanding public transit 

capacity. These policies would be helpful if cities can afford the enormous cost and time for the 

changes, for example, new urban planning to expand road capacity and include high-occupancy 

vehicle lanes. However, most cities prefer a lower-cost strategy that takes a shorter time to see the 

effect. Thus, it is more practical and efficient to provide solutions by utilizing the current resources 

and allocating them efficiently for possible different uses. Researchers have also investigated 

drivers’ parking and cruising behaviors and provided solutions related to parking fees and parking 

duration to mitigate the congestion and traffic delay (Calthrop & Proost, 2006), (Chang, 2009), 

(Lee, et al., 2017). However, these studies focus on high-level policies that are not necessarily 

based on any methodological framework/model. 

Another stream of literature that is relevant to our study is on economics and traffic 

assignment. In this stream, studies investigate the interaction between parking and the traffic 
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system and analyze the equilibrium of curbside parking (Arnott & Rowse, 2009), (Anderson & De 

Palma, 2004), (Arnott & Inci, 2006). Different from these studies, we consider the dynamics of 

the traffic system (i.e., time-varying conditions). We further build an optimization model to 

allocate the cities’ curb spaces effectively. The studies related to the curb space management are 

almost solely about parking use, and few studies investigate other uses, such as pick-up/drop-off 

and loading/unloading. How cities manage curb spaces for primary uses (e.g., parking, 

loading/unloading) is studied by (Zalewski, et al., 2012). They propose three models related to 

curb space management planning, price regulation, and community strategies to help cities in curb 

space management policies and decision-making processes. Although the effect of the existing 

curb space management policies and the use of curb space for loading are discussed in the paper, 

no simulation models or optimization models are presented to further validate the efficiency of the 

proposed curb space management policies. 

Several studies build multi-agent traffic simulation models to investigate the dynamics of 

the traffic system (Benenson, et al., 2008), (Chen & Cheng, 2010), (Schelenz, et al., 2014). 

Although multi-agent traffic simulation models allow the inclusion of personal preferences, driver 

behaviors, etc., they require detailed data for all specific conditions, and thus their results cannot 

be easily generalized. Also, the integration of the multi-agent simulation models with the 

optimization models would require more computational effort. More relevant to our study, (Cao 

& Menendez, 2015) build a  macroscopic simulation model that analyzes the interaction between 

urban parking and the urban traffic systems and shows their effects on urban congestion. In a 

follow-up study, (Cao, et al., 2017) present a case study of an area within the city of Zurich, 

Switzerland, using their macroscopic simulation model and analyze the traffic performance 

measures (i.e., traffic delay, total distance) within the network. Different from them, we consider 
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other uses of the curb space (i.e., pick-up/drop-off and loading/unloading) in addition to parking-

only use and investigate the optimal curb space allocation by building an optimization model on 

the top of the macroscopic simulation model. 
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Chapter 2: The Simulation Model 

 

 This chapter comprises two main parts. First, we formulate our problem into different 

scenarios and define the system events and transition events that are used to update the number of 

vehicles in each time slice. Then we build the relationship between system events and transition 

events for the simulation model. Second, we perform sensitivity analysis under the current curb 

space management policy to observe how the parameters (i.e., vehicle speed, traffic demand 

proportion, cruising time, etc.) affect the traffic flow. Then, we show the influence of assigning 

some curb space for PD and LU uses to reduce the traffic delay. 

 

2.1 Problem Formulation 

 

  In this section, we build on the study of Cao (Cao, et al., 2017) and develop a macroscopic 

simulation model to investigate the interaction between the transportation system and curb space 

allocation. Different from Cao (Cao, et al., 2017), we introduce additional system events by 

introducing new curb space uses  (i.e., pick-up/drop-off,  loading/unloading). We consider a 

relatively small urban area where all existing on-street public parking spaces are randomly 

distributed, and all vehicles drive on one lane and in the same direction. Also, we assume that all 

existing curb spaces are uniformly distributed, such that the drivers do not have a preference. We 
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use P, PD, and LU to denote the cases of parking, pick-up/drop-off, and loading/unloading, 

respectively. A trip of a vehicle starts when a vehicle enters the urban network area, and it ends 

when the vehicle leaves the urban area. We assume that trips are uniformly distributed after the 

vehicles enter the network.  

When a vehicle enters the network the following cases can occur: (i) the vehicle can go 

through traffic, (ii) the vehicle can search for a parking (P) spot, (iii) the vehicle can search for a 

pick-up/drop-off (PD)  spot,  (iv)  the  vehicle  can  search  for  a  loading/unloading  (LU)  spot.  

We assume that only a proportion of traffic entering the network will look for curb space, the other 

traffic will go through the network after driving for a certain distance. Also, vehicles that look for 

a P/PD/LU spot may leave the network without accessing any curb space after cruising for a 

specific time. More specifically, as illustrated in Figure 2.1 and Figure 2.2, we consider three 

scenarios that can occur after a vehicle enters the network: 

      • Scenario 1: Vehicles that look for P/PD/LU spot enter the network and successfully access a 

curb space (Figure 2.1). 

      • Scenario 2: Vehicles that look for P/PD/LU spot enter the network and then leave the network 

after cruising for more than a certain time without accessing a curb space (Figure 2.2). 

• Scenario 3: Vehicles that do not look for a curb space enter the network and go through the 

network (Figure 2.2). 
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Figure 2.1 Illustration of all states and transition events for scenario 1 

 

Figure 2.2 Illustration of all states and transition events for scenario 2 & 3 

 

 

2.1.1 Definition of System Events and Transition Events 

 

We define system events and transition events to describe the above three scenarios. Let 

𝑧𝑧 ∈ {𝑃𝑃,𝑃𝑃𝑃𝑃, 𝐿𝐿𝐿𝐿} denote the different types of curb space usage and 𝒥𝒥  be the set of system events. 

We use the following system events to simulate the vehicle movement: 

1. Non-searching (𝑛𝑛𝑛𝑛): This state includes vehicles that are not searching for any spot. The 

vehicles may have either just entered the network or just departed from the curb space. 

2. Searching (𝑆𝑆𝑧𝑧): The vehicles in this state are cruising to find a curb spot 𝑧𝑧 ∈ {𝑃𝑃,𝑃𝑃𝑃𝑃, 𝐿𝐿𝐿𝐿}. 

3. Stationary (𝑤𝑤𝑧𝑧): This state involves vehicles that have accessed a curb spot 𝑧𝑧 ∈ {𝑃𝑃,𝑃𝑃𝑃𝑃, 𝐿𝐿𝐿𝐿}. 
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4. Going through traffic (𝑔𝑔): In this state vehicles do not enter the searching state and go 

through the network. 

During the simulation, we assume that there are 𝑡𝑡 ∈ 𝒯𝒯 time periods. In order to capture the 

changes in the number of vehicles, we define 𝑁𝑁𝑗𝑗𝑡𝑡 to represent the number of vehicles in each system 

event 𝑗𝑗 ∈ 𝒥𝒥 = {𝑛𝑛𝑛𝑛, 𝑛𝑛𝑧𝑧 ,𝑤𝑤𝑧𝑧 ,𝑔𝑔}  in time period 𝑡𝑡 , and we define 𝑛𝑛𝑗𝑗,𝑗𝑗′
𝑡𝑡  to represent the number of 

vehicles transitioning from system event 𝑗𝑗 ∈ 𝒥𝒥 to system state 𝑗𝑗′ ∈ 𝒥𝒥 in time period 𝑡𝑡. All system 

events and transition events are defined in Table 2.1. 

 

2.1.2 Update the Number of Vehicles in Each System Event 

 

To capture the cumulative change of the number of vehicles in each system event, we build 

the relationship between system events and transition events. During a given time slice t (e.g., 1 

min), we assume vehicles are driving at the same speed such that no overtaking is allowed in the 

network. Vehicle speed does not influence the total number of occupied curb spaces because a 

curb space always serves the first vehicle that passes by. Thus, we use the equations (2.1) - (2.4) 

to calculate the number of vehicles in each system event 𝑗𝑗 ∈ 𝒥𝒥.  We note that 𝑛𝑛(.),𝑗𝑗
𝑡𝑡  denotes the 

number of vehicles entering the network and 𝑛𝑛𝑗𝑗,(.)
𝑡𝑡  denotes the number of vehicles leaving the 

network. Equations (2.1) - (2.4) define the number of vehicles in the states of non-searching, 

searching (i.e., for parking, for picking-up/dropping-off, for loading/unloading), stationary(i.e., P, 

PD, LU), and going through traffic, respectively, in time period t. 



11 
 

In equation (2.1), the number of "non-searching" vehicles consist of vehicles that enter the 

urban area and vehicles depart P/PD/LU, vehicles that start to search and all vehicles (no matter 

vehicles have accessed P/PD/LU or not) that leave the area.  

𝑁𝑁𝑛𝑛𝑛𝑛𝑡𝑡 = 𝑁𝑁𝑛𝑛𝑛𝑛𝑡𝑡−1 + 𝑛𝑛(.),𝑛𝑛𝑛𝑛
𝑡𝑡−1 + 𝑛𝑛(.),𝑔𝑔

𝑡𝑡−1 + � �𝑛𝑛𝑤𝑤𝑧𝑧,𝑛𝑛𝑛𝑛
𝑡𝑡−1 − 𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑧𝑧

𝑡𝑡−1 �
𝑧𝑧∈{𝑃𝑃,𝑃𝑃𝑃𝑃,𝐿𝐿𝐿𝐿}

− 𝑛𝑛𝑛𝑛𝑛𝑛,(.)
𝑡𝑡−1 − 𝑛𝑛𝑔𝑔,(.)

𝑡𝑡−1                (2.1) 

In equation (2.2), the number of “searching” vehicles consists of vehicles that start to 

search for P/PD/LU and vehicles that access P/PD/LU. 

 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 = 𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡−1 + 𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑧𝑧
𝑡𝑡−1 − 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧

𝑡𝑡−1  (2.2) 

In equation (2.3), the number of P/PD/LU vehicles consists of vehicles that access 

P/PD/LU and vehicles that leave from P/PD/LU. 

 𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡 = 𝑁𝑁𝑤𝑤𝑧𝑧

𝑡𝑡−1 + 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡−1 − 𝑛𝑛𝑤𝑤𝑧𝑧,𝑛𝑛𝑛𝑛

𝑡𝑡−1  (2.3) 

In equation (2.4), the number of vehicles that go through traffic consists of vehicles that 

enter the area that go through it and vehicles that leave the area without P/PD/LU after driving for 

a certain distance. 

 𝑁𝑁𝑔𝑔𝑡𝑡 = 𝑛𝑛(.),𝑔𝑔
𝑡𝑡−1 − 𝑛𝑛𝑔𝑔,(.)

𝑡𝑡−1  (2.4) 
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2.1.3 Update the Number of Vehicles in Each Transition Event 

  

 In this section, we describe how we calculate the number of vehicles in each transition 

event during time slice t. First, we describe the assumptions used in the simulation model. Second, 

we describe the model inputs of the simulation model. Third, new variables are introduced to build 

up the equations. Finally, we describe how we update the number of vehicles in each transition 

event. 

 

2.1.3.1 Assumptions 

 

The network is assumed to be small and compact, and all existing parking spots are 

uniformly distributed such that there is no difference to the drivers’ walking distance. Also, the 

parking rate inside the network should be identical to avoid personal preference. 

We assume the network size, the vehicle arrival rates, the vehicle P/PD/LU duration 

distribution, the parking rate, and the number of existing on-street parking spots are known. We 

only consider vehicles that are heading for on-street P/PD/LU in this thesis. Thus, the proportion 

of vehicles that are heading for private parking, garage parking, and off-street parking are not 

considered in this thesis. 
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2.1.3.2 Model input 

 

In Table 2.2, we define the inputs of the simulation model. For example, the length of the 

urban network, the vehicle arrival rate, the existing number of on-street parking spots, and the 

parking duration distributions are assumed to be known in the simulation model.   

 

2.1.3.3 Intermediate variables 

 

In order to capture the change in the number of vehicles between transitioning events 

during a given time period, we introduce some intermediate variables, as shown in Table 2.2.  

Table 2.2 Intermediate variable definition 

 

The number of curb spots available of type z in period t (i.e., 𝐴𝐴𝑧𝑧𝑡𝑡  ) equals the number of 

curb spots of type z minus the number of curb spots that are occupied in type z in period t. We 

define this relation by using Equation (2.5): 

 𝐴𝐴𝑧𝑧𝑡𝑡 = 𝐴𝐴𝑧𝑧 − 𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡  (2.5) 

where 𝐴𝐴𝑧𝑧𝑡𝑡 ≤ 𝐴𝐴𝑧𝑧 . 
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Let L be the length of the traffic network. In Equation (2.6), we define the average traffic 

density in period t (𝑘𝑘𝑡𝑡) as the division of the total number of vehicles on the road at the beginning 

of time period t by the length of the network. 

 𝑘𝑘𝑡𝑡 =
𝑁𝑁𝑛𝑛𝑛𝑛𝑡𝑡 + 𝑁𝑁𝑔𝑔𝑡𝑡 + ∑ 𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡
𝑧𝑧∈{𝑃𝑃,𝑃𝑃𝑃𝑃,𝐿𝐿𝐿𝐿}

𝐿𝐿
 (2.6) 

In Equation (2.7), 𝑣𝑣𝑡𝑡  denotes the average vehicle speed during time period t, and we 

calculate it based on a triangular fundamental diagram (FD) (Daganzo & Newell, 1995). To this 

end, we use 𝑘𝑘𝑐𝑐 and 𝑘𝑘𝑗𝑗 to denote the critical traffic density and the jam traffic density, respectively. 

We define 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 as the maximum traffic flow rate that can be adopted on the network. We consider 

that congestion occurs if the traffic density for a given period is greater than the critical traffic 

density.  

To calculate the average vehicle speed, we compare the current traffic density with the jam 

traffic density. For example, if 𝑘𝑘𝑡𝑡 is not greater than 𝑘𝑘𝑗𝑗 (i.e., traffic density in time period t is not 

greater than the jam density), we assume a free speed in the network, and we will use the FD 

methodology to update the travel speed during the time period t. Otherwise (i.e., if traffic density 

in time period t is greater than the jam density), we assume all vehicles are not able to move any 

farther in the network, indicating zero vehicle speed. During a given time period t, we assume all 

vehicles drive at the same speed such that no overtaking is allowed in the network, and curb space 

is always occupied by the first vehicle that passes by. 

 𝑣𝑣𝑡𝑡 =  �
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑐𝑐 − 𝑘𝑘𝑗𝑗

∙ (1 −
𝑘𝑘𝑗𝑗
𝑘𝑘𝑖𝑖

), 𝑘𝑘𝑡𝑡 ≤ 𝑘𝑘𝑗𝑗

0, 𝑘𝑘𝑡𝑡 > 𝑘𝑘𝑗𝑗
 (2.7) 
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The maximum driven distance of a vehicle in time period t (𝑑𝑑𝑡𝑡) is the multiplication of the 

vehicle speed in time period t by the length of the time period, and we define this relation through 

Equation (2.8). 

 𝑑𝑑𝑡𝑡 = 𝑣𝑣𝑡𝑡 ⋅ 𝑡𝑡 (2.8) 

To calculate the distance between two consecutive vehicles in time period t (𝑛𝑛𝑡𝑡), we divide 

the length of the network by the number of vehicles searching for P/PD/LU spots as shown in 

Equation (2.9). 

 𝑛𝑛𝑡𝑡 =
𝐿𝐿
𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡  (2.9) 

In Equation (2.10), we describe 𝑚𝑚𝑡𝑡, which is the maximum number of vehicles that can 

pass by the same curb space in the network during time period t. We formulate 𝑚𝑚𝑡𝑡 by using the 

maximum distance a vehicle can drive and the space between two consecutive vehicles in period 

t. We note that all curb spaces on the network could potentially be visited by 𝑚𝑚𝑡𝑡 − 1 vehicles. 

𝑚𝑚𝑡𝑡 =  �
𝑑𝑑𝑡𝑡

𝑛𝑛𝑡𝑡
�   (2.10) 

In Equation (2.11), 𝑑𝑑𝑟𝑟𝑡𝑡  is formulated as explained by its definition when 𝑑𝑑𝑡𝑡 > 𝑛𝑛𝑡𝑡. 

𝑑𝑑𝑟𝑟𝑡𝑡 = 𝑑𝑑𝑡𝑡 −  �
𝑑𝑑𝑡𝑡

𝑛𝑛𝑡𝑡
� ∙  𝑛𝑛𝑡𝑡  (2.11) 
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Assume a vehicle is located at 𝑥𝑥𝑐𝑐 at the beginning of a time slice t. The locations of the 

vehicles behind it are 𝑥𝑥𝑐𝑐 − 𝑛𝑛𝑡𝑡, 𝑥𝑥𝑐𝑐 − 2 ∙ 𝑛𝑛𝑡𝑡, …, 𝑥𝑥𝑐𝑐 − 𝑚𝑚𝑡𝑡 ∙ 𝑛𝑛𝑡𝑡. The maximum driven distance is from 

𝑥𝑥𝑐𝑐 − (𝑚𝑚𝑡𝑡 − 1) ∙ 𝑛𝑛𝑡𝑡 to 𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡 . Thus, one of the vehicles behind the 𝑥𝑥𝑐𝑐 is not able to drive beyond 

𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡 . Since we assume identical vehicle speed within the network, vehicle located in 𝑥𝑥𝑐𝑐 −

𝑚𝑚𝑡𝑡 ∙ 𝑛𝑛𝑡𝑡 is not able to drive beyond 𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡 . In other words, a maximum of 𝑚𝑚𝑡𝑡 vehicles can pass 

by area within [𝑥𝑥𝑐𝑐 , 𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡], and a maximum of 𝑚𝑚𝑡𝑡 − 1 vehicles can pass by area within [𝑥𝑥𝑐𝑐 +

𝑑𝑑𝑟𝑟𝑡𝑡 , 𝑥𝑥𝑐𝑐 + 𝑛𝑛𝑡𝑡]. 

 

2.1.3.4 Enter the network 

 

 We first define the number of vehicles that enter the network (i.e., 𝑛𝑛(.),𝑛𝑛𝑛𝑛
𝑡𝑡  and 𝑛𝑛(.),𝑔𝑔

𝑡𝑡 ). We 

consider that there is a probabilistic traffic demand that enters the network. Among those vehicles, 

we assume that a 𝛿𝛿 percentage of the vehicles will go through the traffic and leave the network 

directly after driving a distance of 𝑙𝑙𝑔𝑔𝑡𝑡  during the time period t. The remainder of the vehicles (i.e., 

(1 − 𝛿𝛿) percentage of the vehicles) will search for a curb spot. More specifically, vehicles will 

search for a P, PD, or LU spot with a percentage of 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾, respectively, where 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 

=1. However, we assume that if the vehicles cruise more than a certain time before entering the 

searching state, they will leave the area instead. We consider that 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 and 𝛿𝛿 values are fixed 

throughout the simulation. 
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2.1.3.5 Start to search for P/PD/LU 

 

After vehicles enter the network, they start to search for a P/PD/LU spot after driving a 

distance 𝑙𝑙𝑛𝑛𝑡𝑡 during time period t. However, some vehicles leave the network without entering the 

searching state after they cruise for a certain time, and they leave the network after driving for a 

distance of 𝑙𝑙𝑛𝑛𝑛𝑛 
𝑡𝑡 during time period t. We denote vehicle cruising time as CT in the following 

equations. We formulate the number of vehicles that cannot enter the searching state in time period 

t after cruising for a certain time through Equations (2.12) and (2.13), where 𝜙𝜙′
𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 defines the 

binary variables indicating whether these vehicles can drive the required distance to start searching. 

 𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛
𝑡𝑡 = � 𝑛𝑛(.),𝑛𝑛𝑛𝑛

𝑡𝑡′
𝑡𝑡 −𝐶𝐶𝐶𝐶

𝑡𝑡′=1

⋅ 𝜙𝜙𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛
′   𝑑𝑑𝑡𝑡′ < 𝑙𝑙𝑛𝑛𝑡𝑡

′  (2.12) 

where 

 𝜙𝜙′
𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 = �1, 𝑙𝑙𝑛𝑛𝑡𝑡 > � 𝑑𝑑𝑡𝑡′  

𝑗𝑗=𝑡𝑡

𝑗𝑗=𝑡𝑡−𝐶𝐶𝐶𝐶
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑛𝑛𝑒𝑒

 (2.13) 

In Equation (2.12), 𝑛𝑛(.),𝑛𝑛𝑛𝑛
𝑡𝑡′  consists of vehicles that entered the area in any time period 𝑡𝑡′ ∈

{1, … , 𝑡𝑡 − 𝐶𝐶𝐶𝐶}. In time period 𝑡𝑡′ ∈ [1, 𝑡𝑡 − 𝐶𝐶𝐶𝐶], the vehicles that satisfy the following conditions 

cannot enter the searching state: (i) vehicles that do not drive the required distance 𝑙𝑙𝑛𝑛𝑡𝑡 and (ii) 

vehicles that have cruised for a certain time. We define these conditions through the above 

equations. We further formulate the number of vehicles that start searching for P/PD/LU spots 

during time period t after driving a certain distance 𝑙𝑙𝑛𝑛𝑡𝑡 with Equations (2.14) and (2.15). 
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 𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑧𝑧
𝑡𝑡 = � 𝑛𝑛(.),𝑛𝑛𝑛𝑛

𝑡𝑡′′
𝑡𝑡−1

𝑡𝑡′′=𝑡𝑡−𝐶𝐶𝐶𝐶

⋅ 𝜙𝜙𝑛𝑛𝑛𝑛,𝑛𝑛𝑧𝑧
′   𝑑𝑑𝑡𝑡′′ < 𝑙𝑙𝑛𝑛𝑡𝑡

′′ (2.14) 

where   

 𝜙𝜙𝑛𝑛𝑛𝑛,𝑛𝑛𝑧𝑧
′ = �1, 𝑙𝑙𝑛𝑛𝑡𝑡 ≤ ∑ 𝑑𝑑𝑗𝑗  and ∑ 𝑑𝑑𝑗𝑗 ≤ 𝑙𝑙𝑛𝑛𝑡𝑡 + 𝑑𝑑𝑡𝑡−1𝑗𝑗=𝑡𝑡−1

𝑗𝑗=𝑡𝑡′′
𝑗𝑗=𝑡𝑡−1
𝑗𝑗=𝑡𝑡′′

0, otherwise
   (2.15) 

In Equation (2.14), 𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑧𝑧
𝑡𝑡  consists of vehicles that transit to a searching state in any time 

period between 𝑡𝑡 − 𝐶𝐶𝐶𝐶 and 𝑡𝑡 − 1. We do not consider the vehicles that cruise more than the 

cruising time CT. In the time period 𝑡𝑡′′ ∈ [𝑡𝑡 − 𝐶𝐶𝐶𝐶, 𝑡𝑡 − 1], 𝑛𝑛(.),𝑛𝑛𝑛𝑛
𝑡𝑡′′ vehicles will search for P/PD/LU 

spots after entering the area. Two conditions must be satisfied to enter searching state: (i) the 

vehicles should drive a certain distance 𝑙𝑙𝑛𝑛𝑡𝑡 to start searching, and (ii) they should not start searching 

in previous periods. In Equation (2.15), 𝜙𝜙𝑛𝑛𝑛𝑛,𝑛𝑛𝑧𝑧
′  indicates whether 𝑛𝑛(.),𝑛𝑛𝑛𝑛

𝑡𝑡′′  vehicles can drive the 

distance 𝑙𝑙𝑛𝑛𝑡𝑡 within the cruising time CT. 

 

2.1.3.6 Access P/PD/LU 

 

 Once vehicles drive enough distance to enter the searching state, they are able to access 

any curb space as long as there is a vacancy. However, we keep track of only the number of 

vehicles that can access curb space and not which vehicles. More specifically, we do not model 

the exact location of each vehicle and each curb space. Our goal is to observe how the curb space 

allocation decisions impact the overall traffic. Thus, we model the number of vehicles that access 

curb space and the number of spots that are occupied at time period t. 
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At the beginning of each time period, the number of vehicles searching for P/PD/LU spots 

and the number of available curb spaces are calculated in Equation (2.2) and Equation (2.5) 

respectively. We use the following two assumptions in the model: First, the locations of the 

available curb space are random at the beginning of each time period. Second, the locations of 

searching vehicles are uniformly distributed on the network at the beginning of each time period. 

The first assumption ensures stochasticity of the parking availability. The second assumption 

guarantees that the demand is homogeneously generated. The second assumption is necessary 

because if vehicles are located mostly within a few streets, the other available curb spaces will not 

be occupied even if they are vacant. Also, the model can provide an average amount of curb space 

being taken, and this average value is meaningful only when all searching vehicles are uniformly 

distributed in the network. 

We use x to denote the curb space location. Assume a P/PD/LU spot is located at the 

location 𝑥𝑥𝑧𝑧 , and the remaining P, PD, and LU spots are located at the location 𝑥𝑥𝜇𝜇 , for 𝜇𝜇 ∈

{1,2,3, … ,𝐴𝐴𝑧𝑧𝑡𝑡 − 1} (i.e., there remain 𝐴𝐴𝑧𝑧𝑡𝑡 − 1 spots for each curb space use z). We consider that the 

searching vehicles' initial positions are at the location 𝑥𝑥𝑐𝑐, for 𝑐𝑐 ∈ �1,2,3, … ,𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 − 1�. Then, we 

consider three different cases based on the relations between 𝑑𝑑𝑡𝑡, 𝑛𝑛𝑡𝑡, and L to calculate the number 

of searching vehicles that access a curb space for parking, picking-up/dropping-off, or 

loading/unloading. 

• Case 1: if 𝑑𝑑𝑡𝑡 ∈ [0, 𝑛𝑛𝑡𝑡]. 

 Under this scenario, the maximum driving distance of a vehicle (𝑑𝑑𝑡𝑡) is shorter than the 

spacing between two consecutive vehicles (𝑛𝑛𝑡𝑡). Therefore, no two vehicles' trajectories will ever 

overlap during a single time slice. As a result, a curb spot can be visited at most by one vehicle. 
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Then, there are two conditions to guarantee that this P/PD/LU spot at the location 𝑥𝑥𝑧𝑧 becomes 

occupied during time slice t: 

- Condition 1: The available spot at the location 𝑥𝑥𝑧𝑧 must be within the reach of a vehicle. 𝑥𝑥𝑧𝑧 ∈

[𝑥𝑥𝑐𝑐, 𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑡𝑡] for any 𝑐𝑐 ∈ �1, 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 �. The probability is ∑ ∫ 1

𝐿𝐿
𝑚𝑚𝑐𝑐+𝑑𝑑𝑡𝑡

𝑚𝑚𝑐𝑐
𝑑𝑑𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡

𝑐𝑐=1 𝑥𝑥𝑧𝑧. 

- Condition2: There should not be any other curb spaces between 𝑥𝑥𝑐𝑐 and 𝑥𝑥𝑧𝑧. The probability is 

∏ �1 − ∫ 1
𝐿𝐿

𝑚𝑚𝑧𝑧
𝑚𝑚𝑐𝑐

𝑑𝑑𝑥𝑥𝜇𝜇�
𝐴𝐴𝑧𝑧𝑡𝑡−1
𝑚𝑚𝜇𝜇=1 . 

Thus, the probability of random P/PD/LU spots been taken during time slice t is the product 

of these two probabilities defined under Condition 1 and Condition 2. The average number of 

P/PD/LU spots that are occupied during the time period t equals the multiplication of the number 

of available spots in each use (i.e., 𝐴𝐴𝑧𝑧𝑡𝑡 ) by the product of these two probabilities. We define this 

expression through Equation (2.16). 

 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡 ⋅��

1
𝐿𝐿

𝑥𝑥𝑐𝑐+𝑑𝑑𝑡𝑡

𝑥𝑥𝑐𝑐
𝑑𝑑

𝑁𝑁𝑠𝑠𝑧𝑧
𝑡𝑡

𝑐𝑐=1
𝑥𝑥𝑧𝑧 ⋅ � �1−�

1
𝐿𝐿

𝑥𝑥𝑧𝑧

𝑥𝑥𝑐𝑐
𝑑𝑑𝑥𝑥𝜇𝜇�

𝐴𝐴𝑧𝑧𝑡𝑡−1

𝑥𝑥𝜇𝜇=1
 (2.16) 

• Case 2: if 𝑑𝑑𝑡𝑡 ∈ [𝑛𝑛𝑡𝑡, 𝐿𝐿]. 

In this case, vehicles' trajectories can overlap, and a curb spot can be visited by more than 

one vehicle (although it only accommodates the first one). We define the probability of a curb spot 

at the location 𝑥𝑥𝑧𝑧 being occupied during time period t through three sub-cases (i.e., 

𝑚𝑚𝑡𝑡 > 𝐴𝐴𝑧𝑧𝑡𝑡 ,𝑚𝑚𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡 ,𝑚𝑚𝑡𝑡 < 𝐴𝐴𝑧𝑧𝑡𝑡 ). We investigate the number of vehicles that transit from the 

searching state to the stationary state for each curb use type z (i.e., 𝑁𝑁𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡 ) for each sub-case 

and describe the details below: 
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- Sub-case 2.1: if 𝑚𝑚𝑡𝑡 > 𝐴𝐴𝑡𝑡. (i.e., the maximum number of vehicles that can pass by the same spot 

on the network during time period t is greater than the number of available spots in period t).  

In this case, according to Equation (2.9) and Equation (2.10), 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 > 𝑚𝑚𝑡𝑡. Therefore, there 

is more parking demand than supply (𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 > 𝐴𝐴𝑧𝑧𝑡𝑡  ). Since any curb space in the network could be 

potentially visited by 𝑚𝑚𝑡𝑡 − 1 vehicles (𝑚𝑚𝑡𝑡 − 1 ≥ 𝐴𝐴𝑧𝑧𝑡𝑡 ), any available curb space can be taken by 

one of these vehicles. More specifically, in this case, there are too many vehicles searching and 

they drive a distance that is long enough to reach all available spots. Hence, all available curb spots 

will be taken, and still, some vehicles will remain searching at the end of the time period t. Then, 

the 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡  is written in Equation (2.17). 

𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 = min�𝐴𝐴𝑧𝑧𝑒𝑒 ,𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡 � (2.17) 

- Sub-case 2.2: if 𝑚𝑚𝑡𝑡 = 𝐴𝐴𝑡𝑡. (i.e., the maximum number of vehicles that can pass by the same spot 

on the network during time period t equals the number of available spots in period t). 

If  𝑥𝑥𝑧𝑧 ∈ [𝑥𝑥𝑐𝑐,  𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡], a number of  𝑚𝑚𝑡𝑡 cars could drive by that P/PD/LU spot at 𝑥𝑥𝑧𝑧. If 

P/PD/LU spot is located within this area, it will be taken. The probability of a curb spot located 

within this range and been taken is: ∑ ∫ 1
𝐿𝐿

𝑚𝑚𝑐𝑐+𝑑𝑑𝑟𝑟𝑡𝑡

𝑚𝑚𝑐𝑐
𝑑𝑑𝑥𝑥𝑧𝑧

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡

𝑐𝑐=1 . 

If 𝑥𝑥𝑧𝑧 ∈ [𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡 , 𝑥𝑥𝑐𝑐 + 𝑛𝑛𝑡𝑡], a number of  𝑚𝑚𝑡𝑡 − 1 car could drive by that P/PD/LU spot at 

𝑥𝑥𝑧𝑧. Denote 𝑃𝑃𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡−1� as the probability of this curb spot not being taken, i.e., the probability that 

all the vehicles that could reach the location 𝑥𝑥𝑧𝑧 park before arriving at 𝑥𝑥𝑧𝑧. The probability of a 

curb spot located within this range and been taken is: ∑ ∫ 1
𝐿𝐿

𝑚𝑚𝑐𝑐+𝑛𝑛𝑡𝑡

𝑚𝑚𝑐𝑐+𝑑𝑑𝑟𝑟𝑡𝑡
∙ �1 − 𝑝𝑝𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡−1�� 𝑑𝑑𝑥𝑥𝑧𝑧

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡

𝑐𝑐=1 . 

Combing these two probabilities, 𝑁𝑁𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡  is written as Equation (2.18). 
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 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡 ⋅���

1
𝐿𝐿

𝑥𝑥𝑐𝑐+𝑑𝑑𝑒𝑒
𝑡𝑡

𝑥𝑥𝑐𝑐
𝑑𝑑𝑥𝑥𝑧𝑧 + �

1
𝐿𝐿

𝑥𝑥𝑐𝑐+𝑛𝑛𝑡𝑡

𝑥𝑥𝑐𝑐+𝑑𝑑𝑒𝑒
𝑡𝑡

∙ �1− 𝑝𝑝𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡−1��𝑑𝑑𝑥𝑥𝑧𝑧�
𝑁𝑁𝑠𝑠𝑧𝑧
𝑡𝑡

𝑐𝑐=1
 (2.18) 

𝑝𝑝𝑓𝑓(𝑛𝑛) = � 𝐶𝐶𝑍𝑍𝑛𝑛
𝐴𝐴𝑧𝑧𝑡𝑡−1

𝐴𝐴𝑧𝑧𝑡𝑡−1

𝑍𝑍𝑛𝑛=𝑛𝑛

⋅ ��
1
𝐿𝐿

𝑥𝑥𝑧𝑧

−(𝑛𝑛−1)𝑛𝑛𝑡𝑡
𝑑𝑑𝑥𝑥𝑧𝑧�

𝑍𝑍𝑛𝑛
⋅ �1 −�

1
𝐿𝐿

𝑥𝑥𝑧𝑧

−(𝑛𝑛−1)𝑛𝑛𝑡𝑡
𝑑𝑑𝑥𝑥𝑧𝑧�

𝐴𝐴𝑧𝑧𝑡𝑡−1−𝑍𝑍𝑛𝑛

�����������������������������������������
⋅�𝑝𝑝𝑓𝑓𝑗𝑗

𝑛𝑛−1

𝑗𝑗=1

                (2.19) 

 𝑝𝑝𝑓𝑓𝑗𝑗 = � 𝐶𝐶𝑍𝑍𝑗𝑗
𝑍𝑍𝑗𝑗+1

𝑧𝑧𝑗𝑗+1

𝑧𝑧𝑗𝑗=𝑗𝑗

⋅ �
∫ 1

𝐿𝐿 𝑑𝑑𝑥𝑥𝑧𝑧
𝑚𝑚𝑧𝑧
−(𝑗𝑗−1)𝑛𝑛𝑡𝑡

∫ 1
𝐿𝐿 𝑑𝑑𝑥𝑥𝑧𝑧

𝑚𝑚𝑧𝑧
−𝑗𝑗∙𝑛𝑛𝑡𝑡

�

𝑧𝑧𝑗𝑗

⋅ �1 −
∫ 1

𝐿𝐿 𝑑𝑑𝑥𝑥𝑧𝑧
𝑚𝑚𝑧𝑧
−(𝑗𝑗−1)𝑛𝑛𝑡𝑡

∫ 1
𝐿𝐿 𝑑𝑑𝑥𝑥𝑧𝑧

𝑚𝑚𝑧𝑧
−𝑗𝑗∙𝑛𝑛𝑡𝑡

�

𝑧𝑧𝑗𝑗+1−𝑧𝑧𝑗𝑗

 (2.20) 

In Equation (2.19), n stands for the number of vehicles that can potentially reach 𝑥𝑥𝑧𝑧. Within 

these n cars, the probability that the furthest vehicle (to 𝑥𝑥𝑧𝑧) parks before it arrives at 𝑥𝑥𝑧𝑧 is shown 

in term 1. The probability that the rest 𝑛𝑛 − 1 vehicles all park before they arrive at 𝑥𝑥𝑧𝑧 is shown in 

Equation (2.20). 

- Sub-case 2.3: if 𝑚𝑚𝑡𝑡 < 𝐴𝐴𝑡𝑡. 

Similar to sub-case 2.2. If   𝑥𝑥𝑧𝑧 ∈ [𝑥𝑥𝑐𝑐 , 𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡], a number of 𝑚𝑚𝑡𝑡 cars can drive by that 

P/PD/LU spot at 𝑥𝑥𝑧𝑧. If a P/PD/LU spot is located within this area, it will be taken. The probability 

is: ∑ {∫ 1
𝐿𝐿

𝑚𝑚𝑐𝑐+𝑑𝑑𝑟𝑟𝑡𝑡

𝑚𝑚𝑐𝑐

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡

𝑐𝑐=1 ⋅ �1 − 𝑝𝑝𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡�� 𝑑𝑑𝑥𝑥𝑧𝑧. 

If 𝑥𝑥 ∈ [𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑟𝑟𝑡𝑡 , 𝑥𝑥𝑐𝑐 + 𝑛𝑛𝑡𝑡], a number of 𝑚𝑚𝑡𝑡 − 1 car could drive by that P/PD/LU spot at 𝑥𝑥𝑧𝑧. 

Denote 𝑃𝑃𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡−1� as the probability of this parking spot not being taken, i.e., the probability that 

all the cars that could reach location x park before arriving at 𝑥𝑥𝑧𝑧 . The probability is: 

∑ ∫ 1
𝐿𝐿

𝑚𝑚𝑐𝑐+𝑛𝑛𝑡𝑡

𝑚𝑚𝑐𝑐+𝑑𝑑𝑟𝑟𝑡𝑡
⋅ �1 − 𝑝𝑝𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡−1�� 𝑑𝑑𝑥𝑥𝑧𝑧

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡

𝑐𝑐=1 . 

Combing these two probabilities, 𝑁𝑁𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡  is written as Equation (2.21). 
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𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 = �{�

1
𝐿𝐿

𝑥𝑥𝑐𝑐+𝑑𝑑𝑒𝑒
𝑡𝑡

𝑥𝑥𝑐𝑐

𝑁𝑁𝑠𝑠𝑧𝑧
𝑡𝑡

𝑐𝑐=1
⋅ �1− 𝑝𝑝𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡��𝑑𝑑𝑥𝑥𝑧𝑧 + �

1
𝐿𝐿

𝑥𝑥𝑐𝑐+𝑛𝑛𝑡𝑡

𝑥𝑥𝑐𝑐+𝑑𝑑𝑒𝑒
𝑡𝑡

⋅ �1− 𝑝𝑝𝑓𝑓�𝑛𝑛=𝑚𝑚𝑡𝑡−1��𝑑𝑑𝑥𝑥𝑧𝑧                   (2.21) 

• Case 3: if 𝑑𝑑𝑡𝑡 ∈ [𝐿𝐿, ∞]. 

In this case, each vehicle can drive around the whole network at least once, so all vehicles 

will access curb space if there are enough curb spots. Otherwise, all curb space will be taken. 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡  

is written as Equation (2.22). 

 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 = 𝑚𝑚𝑒𝑒𝑛𝑛� 𝐴𝐴𝑧𝑧𝑡𝑡 ,𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡  � (2.22) 

Since the computational cost of 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡  is very large, so that we do some simplification and 

approximation to lower the cost (Cao & Menendez, 2015). For example, the simplification of 

case 1 is described as below: 

 

𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 =  𝐴𝐴𝑧𝑧𝑡𝑡 ∗� �

1
𝐿𝐿

𝑚𝑚𝑐𝑐+𝑑𝑑𝑡𝑡

𝑚𝑚𝑐𝑐

𝑐𝑐=𝑁𝑁𝑠𝑠𝑧𝑧
𝑡𝑡

𝑐𝑐=1
𝑑𝑑𝑥𝑥𝑧𝑧 ∗� �1 −�

1
𝐿𝐿

𝑚𝑚𝑧𝑧

𝑚𝑚𝑐𝑐
𝑑𝑑𝑥𝑥𝜇𝜇�

 𝐴𝐴𝑧𝑧𝑡𝑡−1

𝑚𝑚𝜇𝜇=1
 

                        =  𝐴𝐴𝑧𝑧𝑡𝑡 ∗ ∑ ∫ 1
𝐿𝐿

𝑚𝑚𝑐𝑐+𝑑𝑑𝑡𝑡

𝑚𝑚𝑐𝑐

𝑐𝑐=𝑁𝑁𝑠𝑠𝑧𝑧
𝑡𝑡

𝑐𝑐=1 ∗ �1 − 𝑚𝑚𝑧𝑧
𝐿𝐿

+ 𝑚𝑚𝑐𝑐
𝐿𝐿
�

 𝐴𝐴𝑧𝑧𝑡𝑡−1
∗ 𝑑𝑑𝑥𝑥𝑧𝑧  

               =  𝐴𝐴𝑧𝑧𝑡𝑡 ∗� �−
1

 𝐴𝐴𝑧𝑧𝑡𝑡
∗ ��1 −

𝑥𝑥𝑧𝑧
𝐿𝐿

+
𝑥𝑥𝑐𝑐
𝐿𝐿
�

 𝐴𝐴𝑧𝑧𝑡𝑡

� |𝑥𝑥𝑐𝑐 + 𝑑𝑑𝑡𝑡 ,𝑥𝑥𝑐𝑐  |�
𝑐𝑐=𝑁𝑁𝑠𝑠𝑧𝑧

𝑡𝑡

𝑐𝑐=1
 

             =  𝐴𝐴𝑧𝑧𝑡𝑡 ∗� �−
1

 𝐴𝐴𝑧𝑧𝑡𝑡
∗ ��1 −

𝑑𝑑𝑡𝑡

𝐿𝐿
�

 𝐴𝐴𝑧𝑧𝑡𝑡

− 1 𝐴𝐴𝑧𝑧𝑡𝑡��
𝑐𝑐=𝑁𝑁𝑠𝑠𝑧𝑧

𝑡𝑡

𝑐𝑐=1
 

                                         = −𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡  ∗ ��1 −

𝑑𝑑𝑡𝑡

𝐿𝐿
�

 𝐴𝐴𝑧𝑧𝑡𝑡

− 1 𝐴𝐴𝑧𝑧𝑡𝑡� 

                                         = 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡  ∗ �1 − �1 −

𝑑𝑑𝑡𝑡

𝐿𝐿
�

 𝐴𝐴𝑧𝑧𝑡𝑡

� 

(2.23) 

 

After simplification, we can further use the approximation methods proposed in paper 

System dynamics of urban traffic based on its parking-related-states (Cao & Menendez, 2015) to 
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simplify further  𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 . In this paper, we do not show the approximation process because it is pretty 

similar to that in the referring papers. Finally, 𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡  is written in Equation (2.24a) and Equation 

(2.24b). 

𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡 ∗ �1 − �1 −
𝑣𝑣𝑡𝑡 ∗ 𝑡𝑡
𝐿𝐿 �

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡

� , 𝑒𝑒𝑓𝑓𝑡𝑡 ∈ �0,
𝐿𝐿

𝑣𝑣𝑡𝑡 ∗ 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 �

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡 + 𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡 �
𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 − 1 + �1 −

1
𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 �

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡

� ∗ 𝑙𝑙𝑜𝑜𝑔𝑔𝑁𝑁𝑤𝑤𝑧𝑧𝑡𝑡
𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡 ∗

𝑣𝑣𝑡𝑡 ∗ 𝑡𝑡
𝐿𝐿 , 𝑒𝑒𝑓𝑓𝑡𝑡 ∈ �

𝐿𝐿
𝑣𝑣𝑡𝑡 ∗ 𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡 ,
𝐿𝐿
𝑣𝑣𝑡𝑡 ∗

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 � , 𝑒𝑒𝑓𝑓𝑁𝑁𝑤𝑤𝑧𝑧

𝑡𝑡 ≤ 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡           (2.24𝑎𝑎)

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡                                                                , 𝑒𝑒𝑓𝑓 𝑡𝑡 ∈ �

𝐿𝐿
𝑣𝑣𝑡𝑡 ∗

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 ,∞�

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡 ∗ �1 − �1 −
𝑣𝑣𝑡𝑡 ∗ 𝑡𝑡
𝐿𝐿

�
𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡

� , 𝑒𝑒𝑓𝑓𝑡𝑡 ∈ �0,
𝐿𝐿

𝑣𝑣𝑡𝑡 ∗ 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 �

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 �1 + �1 −

1
𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡 �

𝑁𝑁𝑤𝑤𝑧𝑧
𝑡𝑡

∗ 𝑙𝑙𝑜𝑜𝑔𝑔𝑁𝑁𝑠𝑠𝑧𝑧𝑡𝑡
𝑣𝑣𝑡𝑡 ∗ 𝑡𝑡
𝐿𝐿 �                       , 𝑒𝑒𝑓𝑓  𝑡𝑡 ∈ �

𝐿𝐿
𝑣𝑣𝑡𝑡 ∗ 𝑁𝑁𝑛𝑛𝑧𝑧

𝑡𝑡 ,
𝐿𝐿
𝑣𝑣𝑡𝑡�  , 𝑒𝑒𝑓𝑓 𝑁𝑁𝑤𝑤𝑧𝑧

𝑡𝑡 ≥ 𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡

𝑁𝑁𝑛𝑛𝑧𝑧
𝑡𝑡                                                   , 𝑒𝑒𝑓𝑓 𝑡𝑡 ∈ �

𝐿𝐿
𝑣𝑣𝑡𝑡 ,∞�

                                (2.24𝑏𝑏)

 

 

 

2.1.3.7 Depart P/PD/LU 

 

 As we know the number of vehicles that access P/PD/LU in all previous time slices, we 

can define the number of vehicles that transit from one of the stationary states to the non-searching 

state. We use the probability distribution function of the parking, picking-up/dropping-off, and 

loading/unloading durations. Equation (2.25) shows the number of vehicles that depart from 

stationary state z in time period t. 

 𝑛𝑛𝑤𝑤𝑧𝑧,𝑛𝑛𝑛𝑛
𝑡𝑡 = �𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧

𝑡𝑡′
𝑡𝑡−1

𝑡𝑡′=1

⋅ � 𝑓𝑓(𝜏𝜏𝑧𝑧)𝑑𝑑
�𝑡𝑡+1−𝑡𝑡′�⋅𝑡𝑡𝑙𝑙

(𝑡𝑡−𝑡𝑡′)⋅𝑡𝑡𝑙𝑙
𝑡𝑡𝑧𝑧 (2.25) 

 In Equation (2.25), 𝑛𝑛 𝑤𝑤𝑧𝑧,𝑛𝑛𝑛𝑛
𝑡𝑡  consists of vehicles that accessed curb space in any time slice 

between 1 and 𝑡𝑡 − 1. Use 𝑡𝑡′ to denote such time slice, 𝑡𝑡′ ∈ [1, 𝑡𝑡 − 1]. Notice that the vehicles that 



27 
 

access curb space during time slice t are not included, as they already experience one transition 

event during this time slice. The number of vehicles that accessed curb space in time slice 𝑡𝑡′ is 

𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 . The probability that these vehicles depart parking in time slice t equals to the probability of 

the parking duration being between (𝑡𝑡 − 𝑡𝑡) ⋅ 𝑡𝑡𝑙𝑙 and (𝑡𝑡 + 1 − 𝑡𝑡′) ⋅ 𝑡𝑡𝑙𝑙, 𝑒𝑒. 𝑒𝑒. ,∫ 𝑓𝑓(𝜏𝜏𝑧𝑧)𝑑𝑑
�𝑡𝑡+1−𝑡𝑡′�⋅𝑡𝑡𝑙𝑙

(𝑡𝑡−𝑡𝑡′)⋅𝑡𝑡𝑙𝑙
𝑡𝑡𝑧𝑧. 

 

2.1.3.8 Leave the network 

 

 

Vehicles that do not access the curb space (i.e., 𝑛𝑛(.),𝑔𝑔
𝑡𝑡 ,𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛

𝑡𝑡 ), or that access and leave the 

curb space (𝑛𝑛𝑤𝑤𝑧𝑧 ,𝑛𝑛𝑛𝑛
𝑡𝑡 ), will leave the network after driving a certain distance. We use 𝑙𝑙𝑔𝑔𝑡𝑡  and 𝑙𝑙𝑛𝑛𝑛𝑛𝑡𝑡  to 

denote the required distances that the vehicles need to drive to leave the network for different 

system events. Then we define the number of vehicles leaving the network at time period t with 

Equations (2.26) - (2.28). 

𝑛𝑛𝑛𝑛𝑛𝑛,(.)
𝑡𝑡 = ��𝑛𝑛(.),𝑔𝑔

𝑡𝑡′ ⋅ 𝜙𝜙𝑔𝑔,(.)
′ + � �𝑛𝑛𝑤𝑤𝑧𝑧,𝑛𝑛𝑛𝑛

𝑡𝑡′ ⋅ 𝜙𝜙𝑛𝑛𝑛𝑛,(.)
′ �

𝑧𝑧∈{𝑃𝑃,𝑃𝑃𝑃𝑃,𝐿𝐿𝐿𝐿}

+ 𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛
𝑡𝑡′ ⋅ 𝜙𝜙𝑛𝑛𝑛𝑛,(.)

′ �                   (2.26)
𝑡𝑡−1

𝑡𝑡′=1

 

where 

 𝜙𝜙𝑔𝑔,(.)
′ = �1, 𝑙𝑙𝑔𝑔𝑡𝑡 ≤� 𝑑𝑑𝑗𝑗  𝑎𝑎𝑛𝑛𝑑𝑑 � 𝑑𝑑𝑗𝑗 ≤ 𝑙𝑙𝑔𝑔𝑡𝑡 + 𝑑𝑑𝑡𝑡−1

𝑗𝑗=𝑡𝑡−1

𝑗𝑗=𝑡𝑡′

𝑗𝑗=𝑡𝑡−1

𝑗𝑗=𝑡𝑡′

0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑛𝑛𝑒𝑒
 (2.27) 

 𝜙𝜙𝑛𝑛𝑛𝑛,(.)
′ = �1, 𝑙𝑙𝑛𝑛𝑛𝑛𝑡𝑡 ≤� 𝑑𝑑𝑗𝑗  𝑎𝑎𝑛𝑛𝑑𝑑 � 𝑑𝑑𝑗𝑗 ≤ 𝑙𝑙𝑛𝑛𝑛𝑛𝑡𝑡 + 𝑑𝑑𝑡𝑡−1

𝑗𝑗=𝑡𝑡−1

𝑗𝑗=𝑡𝑡′

𝑗𝑗=𝑡𝑡−1

𝑗𝑗=𝑡𝑡′

0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑛𝑛𝑒𝑒
 (2.28) 
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As shown in Equation (2.26),  𝑛𝑛𝑛𝑛𝑛𝑛,(.)
𝑡𝑡  consists of three parts, vehicles leave the network 

without accessing P/PD/LU spots, vehicles leave the network after P/PD/LU, and vehicles leave 

the network before they enter the “searching” state after a specific cruising time. 𝜙𝜙𝑔𝑔,(.)
′  and 𝜙𝜙𝑛𝑛𝑛𝑛,(.)

′  

are binary variables indicating whether these vehicles can leave the network at time slice t. 

 

2.2 Numerical Study 

 

In this section, we consider an urban traffic network located in downtown Detroit and 

conduct numerical experiments to validate the efficiency of the proposed simulation model. We 

select a network in the downtown Detroit area with a radius of 300 meters. In total, this network 

consists of 260 on-street curb spaces for public use (Parkopedia.com, 2019). First, we calculate 

the length of all streets inside this network that provide curb spaces for public use by using Google 

Distance API and the data provided from the website Parkopedia.com (Parkopedia.com, 2019). 

We further calculate the curb space width by using the Parking Area Design Report (WSDOT, 

2003). Figure 2.3 displays the layout of the selected urban traffic network. This network contains 

12 streets with a total length of 5.32 kilometers (calculated using the Google Distance API). We 

assume that each street has two directions and one lane per direction on average. Then, the total 

length of the network is 5.32 * 2 = 11.7 kilometers. Additionally, we study the rush-hour traffic in 

the downtown area, and we assume that the critical traffic density is 𝑘𝑘𝑐𝑐 = 25 veh/km/lane and jam 

density is 𝑘𝑘𝑗𝑗=55 veh/km/lane (Cao and Menendez 2015). 
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Figure 2.3 Selected urban network in downtown Detroit area 

 

We use the Regional Traffic Counts Database (SEMCOG, 2019) to estimate the 

approximate number of vehicles that enter the network within a given time period. This database 

provides the daily traffic of each street so that we can estimate the proportionate traffic demand of 

the streets that are in the selected network. The average vehicle speed in Detroit is about 40 KPH 

(kilometers per hour) without traffic, based on a Detroit city speed report (Kleint, 2011). We use 

an average speed of 30 KPH by considering the traffic in the downtown area during rush hours. 

We further perform sensitivity analysis on speed by using a speed range between 20 KPH and 40 

KPH. Since all the existing on-street parking spots in the selected network are metered parking, 

we consider the metered parking duration for our setting. Based on the studies in the literature 

( (Adiv & Wang, 1987), (Gallo, et al., 2011), (Shoup, 2017)), we use gamma distribution to model 

the duration for parking, pick-up/drop-off, and loading/unloading. We use similar parameter 

values to those of the study of Adiv and Wang (Adiv & Wang, 1987), where the authors study 

metered on-street parking behavior by using both historical data and survey data from downtown 

Ann Arbor, Michigan. We include the figure of the probability distribution function of the parking 

duration in Figure 2.4. We estimate parameters of the LU duration distribution based on a survey 
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conducted in a study about commercial vehicles' parking duration in New York City and its 

implications for planning (Schmid, et al., 2018). The duration of picking-up/dropping-off is 

expected to be shorter than loading/unloading goods, in general. Thus, we assume a shorter PD 

duration and estimate our parameters accordingly. All these known parameters related to the 

Detroit area are described in Table 2.3. 

Figure 2.4  Illustration of traffic heading for the parking following the gamma distribution 

 

Table 2.4 Known parameters for the selected Detroit area 
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2.2.1 Sensitivity Analysis 

 

In this section, we conduct our numerical experiments to observe the change in the traffic 

flow, traffic delay, and occupancy of curb space for different uses by considering several scenarios. 

We assume that the curb space allocation for different uses is given, and we investigate the optimal 

curb space allocation decisions in Chapter 3. In this section, we assume that the allocated curb 

spaces are proportional to the average demand ratio considered in the model. To this end, we 

consider that the percentages of the allocated curb spaces for parking, picking-up/dropping-off, 

and loading/unloading are 70%, 20%, and 10% respectively. Current parking policy in Detroit is 

static in this selected area, which means that the use of the curb space is fixed over time. Thus, we 

consider only a static curb space allocation policy in this section. We simulate the traffic system 

in Detroit for six hours (i.e., between 6:00 a.m. and 12:00 noon). We summarize the parameters 

used in the numerical analysis in Table 2.4. Since the sum of the demand proportions of P, PD, 

and LU should be equal to 1, we consider 18 combinations composed by 𝛿𝛿,𝛼𝛼,𝛽𝛽, 𝛾𝛾. For the traffic 

demand, vehicle speed, and cruising time we consider three possible values. Hence, in total, we 

analyze 18 ∗  33 = 486 instances for the sensitivity analysis. 

 

2.2.2 Traffic Delay and Vehicle Driven Distance Calculation 

 

In previous section, we have generated 486 instances with different parameters to analyze 

how the traffic delay and vehicle driven distance changes under known curb space allocation 

decisions. We use one instance here as an example on how we calculate the traffic delay and 
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Table 2.5 Parameter setting for sensitivity analysis 

 

vehicle driven distance. We use the medium parameter values from Table 2.4 to generate the 

queuing diagrams for traffic heading for P, traffic heading for PD, traffic heading for LU, and 

traffic goes through the network from Figure 2.5 – Figure 2.8. Notice that we do not assign any 

curb space for PD or LU in this instance. 

In Figure 2.5 – Figure 2.8, we illustrate the change in the cumulative number of vehicles 

that transit between system events over time for different use cases. For example, Figure 2.5 

illustrates the change in the cumulative number of vehicles that transit between system events over 

time for parking use. The total number of vehicles that enter the network (i.e., the line “Enter the 

area"), that start searching for a parking spot (i.e., the line “Start searching for parking"), that leave 

the area after cruising for a certain time before entering the searching state (i.e., the line “Leave 
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the area without parking (resp. pick -up/drop-off)"), that access the curb space (i.e., the line 

“Access parking (resp. pick-up/drop-off)"), that depart the curb space after parking (resp. pick-

up/drop-off) (i.e., the line “Depart parking"), and that leave the network after parking (resp. pick- 

up/drop-o) (i.e., the line “Leave the area after parked"). Through Figure 2.5, we can calculate the 

average traffic delay and average vehicle driven distance. The area between the two curves is the 

total time vehicles spend within that state. The non-searching vehicle time contains two areas, the 

area between the curve "Enter the area" and "Start searching for parking" and "Leave the area 

without parking", and the area between the curve "Depart parking" and the curve "Leave the area 

after parked". The total non-searching parking delay equals the total time vehicles spend in the 

"non-searching" state minus the total time vehicles spend in the "non-searching" state when there 

has no congestion (i.e., the total time go through traffic vehicles spend when there is no congestion 

is  
∑ 𝑛𝑛(.),𝑔𝑔

𝑡𝑡′ ∙𝑙𝑙𝑔𝑔𝑡𝑡′𝑡𝑡
𝑡𝑡′=1

𝑣𝑣
, the average travel speed remains free speed v). However, since we assume vehicles 

in searching for parking will access parking once there is available parking spot, the searching 

vehicle time is 
∑𝑛𝑛𝑠𝑠𝑧𝑧,𝑤𝑤𝑧𝑧

𝑡𝑡 ∙𝑑𝑑𝑡𝑡

𝑣𝑣𝑡𝑡
. The searching delay will be the same as searching time. Notice that the 

traffic go through the network does not experience all the transition events, they leave the network 

after driving for a certain distance after entering the area. Thus, the total delay of traffic go through 

the network is the area between curve "Enter the area" and the curve "Leave the area" as shown in 

Figure 2.8. Thus, if there is congestion, this area should be greater than 0. The driven distance 

calculation in the “non-searching” state is based on the required distances we define (i.e., total 

driven distance for traffic go through the network ∑ 𝑛𝑛(.),𝑔𝑔
𝑡𝑡′ ∙ 𝑙𝑙𝑔𝑔𝑡𝑡′𝑡𝑡

𝑡𝑡′=1 ). While the driven distance in 

the searching state is ∑𝑛𝑛𝑛𝑛𝑧𝑧,𝑤𝑤𝑧𝑧
𝑡𝑡 ∙ 𝑑𝑑𝑡𝑡. 
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In Table 2.5, we present the minimum, average, and maximum traffic delay for different 

states among all scenarios (486 instances) under the current curb space management policy (assign 

all curb space for parking use only). We note that we let all vehicles leave the network even after 

the simulation ends. As shown, the total traffic delay per vehicle ranges from 586 to 910 minutes. 

The average delay time of searching for a curb space ranges between 93 and 305 minutes, while 

the delay time in the non-searching state ranges from 0.76 to 132 minutes. This varying range 

shows that it is important to have an efficient and dynamic curb space allocation policy that can 

change over time as a response to varying demand.  

Table 2.6 Average vehicle time and traffic delay of 𝛼𝛼 = 1, 𝛽𝛽 = 0, 𝛾𝛾 = 0, 𝛿𝛿 = 0.5 

 

In Table 2.6, we present the minimum, average, and maximum values of average driven 

distance among all scenarios under the current curb space allocation policy. As shown in the table, 

we observe that among 486 scenarios, the minimum average driven distance is 2.05 kilometers 

and the maximum average driving distance 157.39 kilometers. The delay time and the driven 

distance are highly related to the allocated curb space for different uses.  

Table 2.7 Average driven distance of 𝛼𝛼 = 1, 𝛽𝛽 = 0, 𝛾𝛾 = 0, 𝛿𝛿 = 0.5 
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Figure 2.5 The number of vehicles transitioning between states (Parking case) 
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Figure 2.6 The number of vehicles transitioning between system events (PD case) 
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Figure 2.7 The number of vehicles transitioning between states (LU case) 
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 Figure 2.8 The number of vehicles transitioning between states (Through traffic case) 

 

In Table 2.7, we present the minimum, average, and maximum trac delay for different 

states among all scenarios after we have assigned some curb space for PD and LU uses. As shown, 

the average delay per vehicle is from 70.52 to 561.91, the average delay time of searching for a 

curb space ranges between 32.81 and 111.09 minutes, while the delay time in the non-searching 

state ranges from 0.88 to 113 minutes. This varying range also shows that it is important to have 

an efficient and dynamic curb space allocation policy that can change over time as a response to 

varying demand.  

In Table 2.8, we present the minimum, average, and maximum values of average driven 

distance among all scenarios. As shown, the minimum average driving distance is 8.88 kilometers 

and the maximum average driving distance 548.3 kilometers. The delay time and the driven 
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distance are highly related to the allocated curb space for different uses. Hence, as a next step, we 

investigate efficient ways of allocating the curb space for different uses. 

Table 2.8 Average vehicle time and traffic delay of 𝛼𝛼 = 0.7, 𝛽𝛽 = 0.2, 𝛾𝛾 = 0.1, 𝛿𝛿 = 0.5 

 

Table 2.9 Average driven distance of 𝛼𝛼 = 0.7, 𝛽𝛽 = 0.2, 𝛾𝛾 = 0.1, 𝛿𝛿 = 0.5 
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Chapter 3: The Optimization Model 

  

 This chapter compromises three main parts. First, we build an optimal curb space allocation 

model and proposed two algorithms to solve the problem within half an hour quickly. Second, we 

compare the efficiency of the proposed algorithms with the non-linear solver’s results. Third, we 

validate the efficiency of the proposed algorithms further using different starting points. 

 

3.1 Model Formulation 

 

In this section, we build a curb space allocation model by integrating the outputs of the 

simulation model. We develop an optimization model to allocate the curb space optimally among 

three different uses (i.e., P, PD, and LU). Given the total number of existing curb spaces, our goal 

is to maximize the total profit of an urban traffic network by allocating the available spaces for P, 

PD, and LU uses over time. First, we consider a static use of curb space by assigning a fixed 

allocation for parking, pick-up/drop-off, and loading/unloading. In practice, the curb space 

allocation strategies of cities are mostly static, where the use of the curb spaces is fixed. Indeed, 

currently, most of the curb spaces are used for solely parking. 

To this end, we define 𝜌𝜌𝑝𝑝 as the unit profit obtained from the parked vehicles and 𝑐𝑐𝑑𝑑 as the 

unit cost of traffic delay. We further use 𝜎𝜎𝑡𝑡 to denote the total traffic delay in time period t due to 
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the congestion. We note that we calculate the traffic delay through the simulation model, and the 

traffic delay varies as the curb space allocation for different uses changes. In our optimization 

model, we use 𝐴𝐴𝑧𝑧, which is the fixed number of curb spots allocated for curb use type z, as the 

decision variable of the model. Let 𝑀𝑀𝐴𝐴 be the total curb space available. Then the optimization 

model for the static curb use can be defined as follows: 

 𝑚𝑚𝑎𝑎𝑥𝑥     𝐹𝐹(𝐴𝐴𝑧𝑧) = �𝑁𝑁𝑝𝑝𝑡𝑡
|𝒯𝒯|

𝑡𝑡=1

⋅ 𝜌𝜌𝑝𝑝 − 𝜎𝜎𝑡𝑡 ⋅ 𝑐𝑐𝑑𝑑 (3.1) 

 𝑛𝑛. 𝑡𝑡.  � 𝐴𝐴𝑧𝑧
𝑧𝑧∈{𝑝𝑝,𝑝𝑝𝑑𝑑,𝑙𝑙𝑙𝑙}

= 𝑀𝑀𝐴𝐴          (3.2) 

 𝐴𝐴𝑧𝑧 ≥ 0, ∀𝑧𝑧 ∈ {𝑝𝑝,𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑡𝑡 ∈ 𝒯𝒯   (3.3) 

In the above model, Equation (3.1) represents the objective function, which is the profit 

obtained from the curb space allocation decisions over all periods. The first term represents the 

profit earned from the parked vehicles over all periods, while the second term is the total cost due 

to the traffic delay.  In constraint (3.2), we ensure that the total allocated spots for different uses 

should be equal to the total available curb space spots. Finally, constraint (3.3) defines the non-

negativity constraints. 

We further consider that the allocated curb spaces can be flexible and can change during 

the day by considering the demand of different curb uses. Hence, we define ℎ ∈ ℋ to represent 

the number of epochs where the number of allocated curb space for a different type of uses can 

change in each epoch h. We redefine the time as follows: 𝑡𝑡 ∈ �1,2, … , |𝒯𝒯|
|ℋ| , |𝒯𝒯|

|ℋ| + 1, … , 2⋅|𝒯𝒯|
|ℋ| , … , |𝒯𝒯|�. 

Then, our dynamic curb space allocation model can be defined as follows: 
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 𝑚𝑚𝑎𝑎𝑥𝑥    𝐹𝐹(𝐴𝐴𝑧𝑧ℎ) = � � 𝑁𝑁𝑝𝑝𝑡𝑡
(ℎ+1) |𝒯𝒯|

|ℋ|

𝑡𝑡=1+ℎ |𝒯𝒯|
|ℋ|

|ℋ|−1

ℎ=0

⋅ 𝜌𝜌𝑝𝑝 − 𝜎𝜎𝑡𝑡 ⋅ 𝑐𝑐𝑑𝑑 (3.4) 

 s.t. � 𝐴𝐴𝑧𝑧ℎ
z∈{p,pd,lu}

= 𝑀𝑀𝐴𝐴, ∀ℎ ∈ ℋ   (3.5) 

 𝐴𝐴𝑧𝑧ℎ ≥ 0, ∀𝑧𝑧 ∈ {𝑝𝑝,𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙},ℎ ∈ ℋ   (3.6) 

where 𝐴𝐴𝑧𝑧ℎ represents the number of allocated curb space for the curb use z in epoch h. The dynamic 

curb space allocation model is similar to the static model. More specifically, equation (3.4) is used 

to define the profit function. Constraint (3.5) states that the allocated curb spots in each epoch 

equal to the total available capacity, and constraint (3.6) defines the non-negativity.  The dynamic 

model allows the curb space allocation policy can change over time. This flexibility can ensure 

that the traffic delay within a specific time interval can be minimized as well as the curb space can 

be utilized to the most extent. 

 

3.2 Heuristic Policy 

 

 

The above curb space allocation model is challenging to solve as it requires the traffic delay 

output of the simulation model for all different curb space use configurations (𝐴𝐴𝑧𝑧) to find the 

optimal setting. In our model, as the number of time periods and the number of available curb spots 

increase, it becomes intractable to compute the optimal objective function and find the optimal 

allocation policy. In this section, to address computational and practical challenges, we describe 

the simplistic curb space allocation heuristic 1 (CSAH1) and curb space allocation heuristic 2 

(CSAH2). To this end, we consider 𝜔𝜔 ∈ 𝛺𝛺 iterations. Let 𝐴𝐴𝑧𝑧𝜔𝜔 , 𝑧𝑧 ∈ {𝑝𝑝,𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙} be the capacity of 
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node k at iteration t. We further define 𝛥𝛥(𝐹𝐹) to represent the change in the objective function as 

follows: 

Δ �𝐹𝐹�𝐴𝐴𝑝𝑝,𝐴𝐴𝑧𝑧′ ,𝐴𝐴𝑧𝑧�� = 𝐹𝐹�𝐴𝐴𝑝𝑝,𝐴𝐴𝑧𝑧′ ,𝐴𝐴𝑧𝑧� − 𝐹𝐹�𝐴𝐴𝑝𝑝 − 1,𝐴𝐴𝑧𝑧′ + 1,𝐴𝐴𝑧𝑧� ∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧        (3.7) 

Then, we define the curb space allocation heuristic 1 as follows: 

Algorithm 1 Curb Space Allocation Heuristic (CSAH1) 
𝜔𝜔 = 0,𝐴𝐴𝑝𝑝 ← 𝑀𝑀𝐴𝐴,𝐴𝐴𝑝𝑝𝑑𝑑 ← 0,𝐴𝐴𝑙𝑙𝑙𝑙 ← 0 

 while � 𝐴𝐴𝑧𝑧𝜔𝜔
𝑧𝑧∈{𝑝𝑝,𝑝𝑝𝑑𝑑,𝑙𝑙𝑙𝑙}

≤ 𝑀𝑀𝐴𝐴 do  

          Calculate 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧′
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔��  ∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧 

          if 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧′
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� ≤ 0, ∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧  then 

                    break 
          end if 
          𝑧𝑧∗ = 𝑎𝑎𝑒𝑒𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥𝑧𝑧′𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧′

𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� ,∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧 
          𝐴𝐴𝑝𝑝𝜔𝜔+1 ← 𝐴𝐴𝑝𝑝𝜔𝜔 − 1,𝐴𝐴𝑧𝑧∗

𝜔𝜔+1 ← 𝐴𝐴𝑧𝑧∗
𝜔𝜔 + 1, 

          while 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧∗
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� > 0,   ∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧∗ do  

                    𝐴𝐴𝑝𝑝𝜔𝜔+1 ← 𝐴𝐴𝑝𝑝𝜔𝜔 − 1,𝐴𝐴𝑧𝑧∗
𝜔𝜔+1 ← 𝐴𝐴𝑧𝑧∗

𝜔𝜔 + 1 
          end while 
          𝜔𝜔 ← 𝜔𝜔 + 1 
end while 
𝐴𝐴𝑧𝑧 ← 𝐴𝐴𝑧𝑧𝜔𝜔 

 

In the curb space allocation heuristic1 (CSAH1), we assume all the current curb space are 

assigned to parking use. Then we  calculate 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝,𝐴𝐴𝑧𝑧′ ,𝐴𝐴𝑧𝑧�� at each step and find the value of  

increasing the capacity of curb use type 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙} by one. We increase the allocated capacity 

of curb use type with the highest gain. We continue increasing the capacity by one for the same 

curb use till the increasing does not provide the sufficient gain (i.e., 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧∗
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� > 0). The 

algorithm stops when the allocated capacity reaches the available capacity or when adding one 

more capacity for all appointments yields a negative profit gain. In CSAH1, we only consider 

checking the first derivative in the stopping criteria. We further consider adding more condition to 
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the stopping criteria in CSAH2, where we consider checking both the first derivative and the 

second derivative.  

We define the curb space allocation heuristic 2 as follows: 

Algorithm 2 Curb Space Allocation Heuristic (CSAH2) 
𝜔𝜔 = 0,𝐴𝐴𝑝𝑝 ← 𝑀𝑀𝐴𝐴,𝐴𝐴𝑝𝑝𝑑𝑑 ← 0,𝐴𝐴𝑙𝑙𝑙𝑙 ← 0 

 while � 𝐴𝐴𝑧𝑧𝜔𝜔
𝑧𝑧∈{𝑝𝑝,𝑝𝑝𝑑𝑑,𝑙𝑙𝑙𝑙}

≤ 𝑀𝑀𝐴𝐴 do  

          Calculate 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧′
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔��  ∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧 

          if 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧′
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� ≤ 0, ∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧  then 

                    break 
          end if 
          𝑧𝑧∗ = 𝑎𝑎𝑒𝑒𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥𝑧𝑧′𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧′

𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� ,∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}, 𝑧𝑧′ ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧 
          𝐴𝐴𝑝𝑝𝜔𝜔+1 ← 𝐴𝐴𝑝𝑝𝜔𝜔 − 1,𝐴𝐴𝑧𝑧∗

𝜔𝜔+1 ← 𝐴𝐴𝑧𝑧∗
𝜔𝜔 + 1, 

          while 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧∗
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� ≤ 𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 − 1,𝐴𝐴𝑧𝑧∗

𝜔𝜔 + 1,𝐴𝐴𝑧𝑧𝜔𝜔�� ,   ∀𝑧𝑧 ∈ {𝑝𝑝𝑑𝑑, 𝑙𝑙𝑙𝑙}\𝑧𝑧∗ do  
                    𝐴𝐴𝑝𝑝𝜔𝜔+1 ← 𝐴𝐴𝑝𝑝𝜔𝜔 − 1,𝐴𝐴𝑧𝑧∗

𝜔𝜔+1 ← 𝐴𝐴𝑧𝑧∗
𝜔𝜔 + 1 

          end while 
          𝜔𝜔 ← 𝜔𝜔 + 1 
end while 
𝐴𝐴𝑧𝑧 ← 𝐴𝐴𝑧𝑧𝜔𝜔 

 

CSAH2 is similar to CSAH1, but unlike curb space allocation heuristic 1 where we only 

check the first derivative, we review both the first derivative and the second derivative while 

updating the capacity in CSAH2. Thus, we  continue  increasing  the  capacity  by  one  for the 

same curb use till the increasing does not provide the sufficient gain (i.e., Δ �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 ,𝐴𝐴𝑧𝑧∗
𝜔𝜔 ,𝐴𝐴𝑧𝑧𝜔𝜔�� ≤

𝛥𝛥 �𝐹𝐹�𝐴𝐴𝑝𝑝𝜔𝜔 − 1,𝐴𝐴𝑧𝑧∗
𝜔𝜔 + 1,𝐴𝐴𝑧𝑧𝜔𝜔�� ). The algorithm stops when the allocated capacity reaches the 

available capacity or when adding one more capacity for all appointments yields a negative profit 

gain. 
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3.3 Numerical Analysis 

 

This section comprises three main parts. First, we describe our parameter setting and 

present the results of the optimization model for diverse scenario for the small case. Second, we 

describe our parameter setting and present the results of the optimization model for diverse 

scenario for the Detroit case. Third, we further validate the efficiency of the proposed heuristics 

using different starting points. 

The unit profit from the parked vehicles and unit cost of traffic delay are given before the 

optimization of the dynamic curb space allocation decision. On-street parking fees vary depending 

on the region. For example, the on-street parking fee in Detroit ranges between $1/h and $2/h 

(ParkDetroit.us, 2019). However, the selected traffic network has the same parking fee which is 

$2/h. Hence, we use a fixed parking rate (i.e., $0.025/min) in the optimization model. We further 

use $0.217/min as a delay cost, which is defined and described in detail in the “INRIX Global 

Traffic Scorecard”  (Cookson & Pishue, 2018). 

 

3.3.1 Parameter Setting and Optimized Results for the Small Case 

 

In this section, we investigate how curb space spots should be allocated among different 

uses. Considering the scale of the considered urban network, it is not tractable to solve the large-

scale setting optimally for varying settings. Hence, in order to examine the efficiency of the 

proposed algorithm according to the optimal solution, we first consider a small setting. In the small 

setting, we consider a small urban network with a total network length of 1 km and total simulation 
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time of three hours. Since the network is small, we further adjust the demand in the network and 

consider two different values for the demand (i.e., 600 and 800). We summarize the parameters 

that are different from the real setting in Table 3.1. Similar to the sensitivity part, 𝛼𝛼 +  𝛽𝛽 +  𝛾𝛾 = 1 

yields 4 combinations. We have two different values for 𝛿𝛿 and traffic demand which also yields 4 

combinations. We notice that we consider a flexible curb space allocation policy that the total time 

length will be split into 4 epochs. Thus, in total, we have 64 instances with different parameter 

settings for the small case. The parameter values of the small case are listed in Table 3.1.  

Table 3.1 Parameters used in the optimization model for small case 

 

We first solve the optimal curb space allocation for all instances of the small case using a 

nonlinear solver (Scipy package in Python) and the proposed algorithm. We note that we also 

enumerate the potential solutions to find the optimal solution. Since the nonlinear solver gets the 

optimal solution faster than the enumeration, we used nonlinear results in the comparison. In Table 
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3.2, we present the average process time of the algorithms and the average percent objective gap. 

We calculate the percent objective difference between different algorithms by using the following 

formula: 

Percent Objective ap =
Objective Value of the Optimal Solution − Objective Value of the CSAH1/CASH2

Objective Value of the Optimal Solution                   (3.8) 

We note that we do not limit the run time of the nonlinear solver for the small case and we 

output the optimal curb space allocation decision. The comparison results for the small-scale setting are 

shown in Table 3.2. According to our results, the proposed algorithm is ten times faster than the NLS 

solution for both CSAH1 and CSAH2. The percent objective gap between the NLS solution is -0.59% for 

both CSAH1 and CSAH2, which indicates that the proposed algorithms have good performance for small-

scale settings. The CSAH1 and CSAH2 can reach a better solution more time-efficient compared 

to the NLS. 

Table 3.2 Comparison of the proposed and the optimal solutions for the small case

 

 

3.3.2 Parameter Setting and Results for the Detroit Case 

 

 

As a next step, to examine the efficiency of the proposed algorithms, we also include a 

Detroit case. We consider the large-scale setting defined in Table 3.3. Same as the small case, we 

have 64 instances for the Detroit case. For all instances defined, we compare the solution of the 

nonlinear solver (NLS) with the proposed algorithm solution. It takes a long time to solve the 
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problem (usually more than three hours) using the existing nonlinear solver. Thus, we use the 

proposed algorithms to obtain a near-optimal solution within half an hour quickly.  

Table 3.3 Parameters used in the optimization model for the Detroit case 

 

We note that we limit the run time of the nonlinear solver to around one hour for each 

instance and report the best results obtained. The comparison results for the large-scale setting are 

shown in Table 3.4. According to our results, the CSAH2 is three times faster than the NLS 

solution, the CSAH1 is two times faster than the NLS solution. The percent objective gap between 

the NLS solution is 1.18% and 5.47% for CSAH2 and CSAH1 respectively, which indicates that 

the CSAH2 has better performance for large-scale settings than CSAH1. The CSAH2 can reach a 

better solution more time-efficient compared to the NLS. 

 

 



49 
 

Table 3.4 Comparison of the proposed and the optimal solutions for the large-scale setting 

 

 

3.3.3 Other Optimization Results 

 

We further investigate the average traffic delay that is obtained by using the NLS and the 

CSAH1 and CSAH2 for the large-scale setting. In Table 3.5, we compare the average vehicle delay 

time in different system events for the NLS, the CSAH1, the CSAH2, and a fixed-allocation policy 

(FAP), which is discussed in Chapter 2 (i.e., 70% for parking, 20% for pick-up/drop-off, and 10% 

for loading/unloading). For the NLS, the CSAH1, and the CSAH2, we consider both the static and 

the dynamic curb space allocation policies in comparison. We calculate the percent change in the 

average traffic delay with respect to FAP and use the following equation for calculation: 

Percent Objective ap =
Vehicle Delay of the Proposed Policy− Vehicle Delay of the FAP

Vehicle Delay of the Proposed Policy                   (3.9) 

As shown in Table 3.5, the total average delay time per vehicle in the FAP is greater than 

the NLS, CSAH1, and CSAH2. The NLS results in lower traffic delay in all system events 

compared to the FAP. The CSAH1 and CSAH2 both yields lower traffic delay than the FAP in 

some system events. In addition, we see that the dynamic curb space allocation policy yields lower 

average traffic delay per vehicle than the static curb space allocation policy for NLS, CSAH1, and 

CSAH2. 
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To analyze the benefit of the dynamic allocation policy with respect to the static allocation 

policy, we also compare the average objective function values over all instances in Table 3.6. We 

find that the dynamic allocation policy yields higher profit than the static policy by more than 20% 

for NLS, CSAH1, and CSAH2 on average, indicating the benefit of the dynamic curb space 

allocation policy. 

Table 3.5 Comparison of average vehicle delay time 

 

 

3.2.4 Proposed Algorithm Starting Point Validation 

 

In previous section, we proposed algorithms to solve the problem efficiently using a x = 

260, y = 0, z = 0 (x is parking spot, y is PD spots, and z is LU spots) starting point. The reason for 

selecting this starting point is that we can infer vehicles that heading for parking is the most based 

on the provided parameters (in real-world networks, we usually have the most vehicles seeking a 

parking spot compared with PD and LU). Thus, it is reasonable to select x = 260, y = 0, z = 0 as 

the starting point for both nonlinear solver and the proposed algorithms. However, we also prove 

the efficiency of the proposed algorithm using different starting points, when the most traffic 

heading for PD and when the most traffic is heading for LU.  
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In this section, we randomly select 8 instances out of the 64 instances from Chapter 3.3.2 

to do the validation. Recall that we assume at least 60% of traffic is heading for parking in previous 

sections. Thus, we assume at least 60% is heading for PD or LU while we are using x = 0, y = 260, 

z = 0 as the starting point and x = 0, y = 0, z = 260 as the starting point respectively.  

Table 3.6 Comparison of objective value 

 

In Table 3.7, we present the starting point validation result for the small case. The 

percentage gap from NLS is 0.59% for both CSAH1 and CSAH2 while validating x = 260, y = 0, 

z = 0 starting point, however, their CPU time is10X faster than NLS. While validating x = 0, y = 

260, z = 0 starting point, both CSAH1 and CSAH2 outperform NLS in CPU time and solution 

efficiency. While validating x = 0, y = 0, z = 260 starting point, it is obvious that CSAH1 has a 

better solution than CSAH2 in solution efficiency, but the solving speed of CSAH2 is 8 times 

faster than CSAH1. 
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Table 3.7 Starting point validation for the small case 

 

In Table 3.8, we present the starting point validation result for the Detroit case. As we can 

see, a significant drop in CPU time for the proposed algorithms for starting point x = 0, y = 260, z 

= 0 and x = 0, y = 0, z = 260 compared with NLS. CSAH2 yields a better solution with a 2.3 times 

faster solving speed than NLS while validating x = 260, y = 0, z = 0 starting point. Both CSAH1 

and CSAH2 perform slightly better than NLS by -0.39%, but CSAH1 is more efficient in CPU 

time while validating x = 0, y = 260, z = 0 starting point. CSAH1 performs better in CPU time and 

percentage gap from NLS while validating x = 0, y = 0, z = 260 starting point. Therefore, we 

conclude that the proposed algorithms are robust in both CPU time and solution quality in solving 

the small case and real-world case. 

Table 3.8 Starting point validation for the Detroit case 
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Chapter 4: Conclusion and Discussion 

 

Curb space management for different uses is essential for smooth traffic, especially during 

rush hours in urban areas. A dynamic curb space allocation for different usages ensures a flexible, 

less costly traffic compared with fixing the curb space for parking use only or fixing the different 

usages of curb space all the time. The numerical results demonstrate that the dynamic curb space 

allocation outperforms the static curb space allocation in both small urban network settings and 

large urban network settings. This dynamic curb space allocation policy also contributes to 

reducing the traffic delay caused by those vehicles that are heading for PD/LU spots. Moreover, 

the demand for a smart city planning that includes an intelligent curb space planning is growing 

as the development of ride-sharing and autonomous vehicles. Thus, it is necessary to utilize the 

curb space for multiple uses and apply the dynamic curb space allocation along with time changes. 

In this study, we build a transportation system simulation model to analyze the interaction 

between traffic delay and other parameters (i.e., vehicle speed, traffic demand, cruising time, etc.).  

We also observe how the traffic delay changes when we assign all curb space for parking use and 

assign the curb space for P, PD, and LU uses. Then we use the simulation outputs as inputs to build 

an optimization model that maximizes the total profit (maximal parking revenue and minimal 

traffic delay). Since it overall takes more than three hours for existing nonlinear solvers to obtain 

the optimal solutions, thus, we proposed algorithms to obtain a near-optimal solution efficiently.  

We compare its performance with the nonlinear solver’s. It shows that the proposed algorithm is 
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a more practical procedure that outperforms the existing nonlinear solver in both CPU time-saving 

and percentage gap from the nonlinear solver. The proposed algorithms require much less 

computational efforts but yield an even better result than nonlinear solver. We further show that 

the proposed algorithms are an efficient way to solve real-world instances in a reasonable time. 

While there is more traffic heading for parking than PD/LU,  Algorithm 1 takes about 32 minutes 

to solve the Detroit case with a 5.27% gap different from the nonlinear solver’s solution while 

Algorithm 2 takes about 19 minutes to solve the Detroit case with a1.18% gap different from the 

nonlinear solver’s solution on average. It is indicating that Algorithm 2 is a more efficient approach 

to solve real-world instances. 

As part of future research, first, we can let a proportion of vehicles that are searching for 

curb space leave the network after they have spent a specific time in the searching state. Second, 

the solutions given using the optimization model does not indicate which exact spot should be 

assigned for which use, it only provides an overview of how to efficiently allocate the curb space 

for different uses that reduce the traffic delay. Thus, we can extend the existing models or build a 

new model to determine which spots are assigned for which use in real-world implementations. 

As a third extension, we can include the parking rate as a variable in the model instead of a known 

value, such that the parking rate also changes along with time changes. 
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Appendix 
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 Table A1: Solution details of the nonlinear solver
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Table A2: Solution details of CSAH2
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