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Abstract

Curb space management and traffic flow are two essential elements of the transportation
system that interact with each other and affect the overall system performance. With the growth of
new mobility operators and goods delivery, the demand for access to the curb space is increasing
rapidly. Thus, the traditional use of curb space for parking only is challenged, and it becomes
essential to manage the curb space effectively. Our study investigates the allocation of curb space
for various uses (i.e., parking, pick-up/drop-off, and loading/unloading) so that the overall
transportation system performance can be enhanced. We simulate the transportation system and
analyze the interactions between traffic flow and curb space usage by investigating the impact of
the allocated curb spaces for different uses on traffic congestion. We build an optimization model
to determine dynamic curb space allocation decisions that ensure smooth traffic flow. Our
objective is to maximize the cities’ profit of curb space allocation decisions and minimizing the
traffic delay. We further evaluate the value of dynamic curb space allocation policies over the
fixed allocation policies and find that the dynamic policy can result in improvements in traffic

delay.
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Chapter 1: Introduction

1.1 Introduction and Motivation

Curb spaces have evolved so rapidly with the arrival of new mobility services and increased
needs for goods delivery. Currently, curb spaces are not only used for parking but also used for
pick-up/drop-off zone of ride-sharing services, bike share or scooter parking racks, delivery zones
for online shopping companies, etc. Although due to the growing demand in ride-sharing services
(i.e., Uber, Lyft, Chariot), the need for curbside parking has decreased, the need for other users of
the curb spaces (i.e., pick-up, wait, drop-off) has risen. Further, the increasing demand in online
shopping, which was supposed to reduce traffic jams by reducing individual trips to the stores
(Hsiao, 2009), has resulted in an explosion in the trips made by delivery trucks (i.e., UPS, FedEx)
and their use of the curb spaces. Hence, the concerns about traffic congestion have arisen, and it
has found that cruising for parking spaces solely contribute to around 30% of the total traffic

congestion in business areas during the rush hour (Shoup, 2006).

Similarly, it has found that the overall traffic delay from pick-up and delivery activities
ranks third among all congestion-related events, indicating the magnitude of this traffic delay is
more severe than the expectation (Han, et al., 2005). Moreover, the illegal parking in cities (i.e.,
blockages of bus lanes, bicycle facilities, and crosswalks by double-parked vehicles) has escalated,

and it is reported that the delivery vans of companies such as FedEx and UPS have received



millions of dollars of parking tickets due to the illegal parking in 2016 (Figliozzi & Tipagornwong,
2016). Thus, the inefficient use of the curb spaces can cause a potential safety hazard for people,
traffic delays, and loss of city profits (Zalewski, et al., 2012), and it is very crucial for cities to

utilize the curb spaces efficiently.

To make the transportation system more reliable, cities across North America are shifting
curb spaces from solely parking lanes to flexible zones, where the use of the curb zones can vary
dynamically during the day. For example, these flexible zones could shrink, grow, or be assigned
to other purposes by considering varying demands for different usages. Some cities have adopted
policies that define the use of curb spaces. For example, the city of Seattle uses flexible zones and
assigns the curb spaces to different usages according to some predefined priorities. However, no
standard methodology exists for cities to assess the potential for dynamic curb space allocation
and the subsequent impacts of those changes. Also, despite the importance of curb space planning,
the consideration of dynamic use of the curb spaces during the day limits its large scale adoption.
In this thesis, we study the dynamic allocation of the curb spaces by the cities for different uses.
We consider three possible usages of the curb spaces (i.e., parking, pick-up/drop-off, and
loading/unloading). We address the benefits of dynamic curb space allocation by considering the
interaction between the traffic and the curb spaces, and we develop answers to the following

operational questions:

* Given the number of existing on-street parking spots inside a transportation network,
what is the optimal dynamic curb space allocation policy which considers the flexible assignment

of curb spaces for different uses (i.e., parking, pick-up/drop-off, and loading/unloading)?

» What is the value of dynamic curb space allocation policy in terms of vehicle traffic delay

and vehicle drove distance?



To address these questions, we first build a macroscopic simulation model to capture the
interaction between the transportation system and the curb space allocation policy. The
macroscopic simulation model allows us to analyze several curb space allocation scenarios for
different uses and observe the impacts of the model parameters (i.e., vehicle-free speed, traffic
demand, cruising time, etc.) on the overall traffic flow. Second, we build an integer programming
model by using the outputs of the macroscopic simulation model to determine the optimal dynamic
curb space allocation policy among different uses of the curb space (i.e., parking, pick-up/drop-
off, and loading/unloading). The objectives of the integer programming model are: (i) to maximize
the cities’ profit from parking, and (ii) to minimize the traffic delay. Due to the interactions in the
macroscopic simulation model, we obtain a non-linear objective function, which makes the
analyses further complicated. Hence, we propose two algorithms to solve the dynamic curb space
allocation model efficiently. Finally, in our study, we consider both the fixed curb space allocation
policy, in which the use of curb space is fixed over time and the dynamic allocation policy in which
the use of curb spaces can vary over time. We further compare both policies to analyze the value
of the dynamic curb space allocation implementation. We show that the flexible allocation of the

curb spaces can yield a decrease in the traffic delay within the network.

The remainder of this thesis is structured as follows: In Chapter 1.2, we review the relevant
literature. In Chapter 2, we describe our macroscopic simulation model and perform sensitivity
analysis to validate the simulation model. In Chapter 3, we present the optimization model and
perform numerical analysis to show our results from both macroscopic simulation and
optimization models by using the proposed algorithms. Finally, our conclusions are outlined in

Chapter 4.



1.2 Literature Review

In recent years, with the rapid growth of mobility services, the need for the effective use of
curb space has attracted several researchers. Some of them study how cities manage their curb
spaces and the existing approaches that are used for curb space management (Chang, 2009),
(Schaller, et al., 2011), (Zalewski, et al., 2012). Some propose new policies to find solutions for
mitigating traffic congestion. Among studies that focus on policy development in curb space
management (Shoup, 2006) points out that the congestion within a network is mostly caused by
parked vehicles and that the parking rate can be adjusted to decrease the traffic demand entering
the network and to control the traffic delay better. In another similar study, (Downs, 2004)
proposes policies to mitigate the traffic congestion, such as greatly expanding road capacity, using
intelligent transportation system devices to speed traffic flow, and greatly expanding public transit
capacity. These policies would be helpful if cities can afford the enormous cost and time for the
changes, for example, new urban planning to expand road capacity and include high-occupancy
vehicle lanes. However, most cities prefer a lower-cost strategy that takes a shorter time to see the
effect. Thus, it is more practical and efficient to provide solutions by utilizing the current resources
and allocating them efficiently for possible different uses. Researchers have also investigated
drivers’ parking and cruising behaviors and provided solutions related to parking fees and parking
duration to mitigate the congestion and traffic delay (Calthrop & Proost, 2006), (Chang, 2009),
(Lee, et al., 2017). However, these studies focus on high-level policies that are not necessarily

based on any methodological framework/model.

Another stream of literature that is relevant to our study is on economics and traffic

assignment. In this stream, studies investigate the interaction between parking and the traffic



system and analyze the equilibrium of curbside parking (Arnott & Rowse, 2009), (Anderson & De
Palma, 2004), (Arnott & Inci, 2006). Different from these studies, we consider the dynamics of
the traffic system (i.e., time-varying conditions). We further build an optimization model to
allocate the cities’ curb spaces effectively. The studies related to the curb space management are
almost solely about parking use, and few studies investigate other uses, such as pick-up/drop-off
and loading/unloading. How cities manage curb spaces for primary uses (e.g., parking,
loading/unloading) is studied by (Zalewski, et al., 2012). They propose three models related to
curb space management planning, price regulation, and community strategies to help cities in curb
space management policies and decision-making processes. Although the effect of the existing
curb space management policies and the use of curb space for loading are discussed in the paper,
no simulation models or optimization models are presented to further validate the efficiency of the

proposed curb space management policies.

Several studies build multi-agent traffic simulation models to investigate the dynamics of
the traffic system (Benenson, et al., 2008), (Chen & Cheng, 2010), (Schelenz, et al., 2014).
Although multi-agent traffic simulation models allow the inclusion of personal preferences, driver
behaviors, etc., they require detailed data for all specific conditions, and thus their results cannot
be easily generalized. Also, the integration of the multi-agent simulation models with the
optimization models would require more computational effort. More relevant to our study, (Cao
& Menendez, 2015) build a macroscopic simulation model that analyzes the interaction between
urban parking and the urban traffic systems and shows their effects on urban congestion. In a
follow-up study, (Cao, et al., 2017) present a case study of an area within the city of Zurich,
Switzerland, using their macroscopic simulation model and analyze the traffic performance

measures (i.e., traffic delay, total distance) within the network. Different from them, we consider



other uses of the curb space (i.e., pick-up/drop-off and loading/unloading) in addition to parking-
only use and investigate the optimal curb space allocation by building an optimization model on

the top of the macroscopic simulation model.



Chapter 2: The Simulation Model

This chapter comprises two main parts. First, we formulate our problem into different
scenarios and define the system events and transition events that are used to update the number of
vehicles in each time slice. Then we build the relationship between system events and transition
events for the simulation model. Second, we perform sensitivity analysis under the current curb
space management policy to observe how the parameters (i.e., vehicle speed, traffic demand
proportion, cruising time, etc.) affect the traffic flow. Then, we show the influence of assigning

some curb space for PD and LU uses to reduce the traffic delay.

2.1 Problem Formulation

In this section, we build on the study of Cao (Cao, et al., 2017) and develop a macroscopic
simulation model to investigate the interaction between the transportation system and curb space
allocation. Different from Cao (Cao, et al., 2017), we introduce additional system events by
introducing new curb space uses (i.e., pick-up/drop-off, loading/unloading). We consider a
relatively small urban area where all existing on-street public parking spaces are randomly
distributed, and all vehicles drive on one lane and in the same direction. Also, we assume that all

existing curb spaces are uniformly distributed, such that the drivers do not have a preference. We



use P, PD, and LU to denote the cases of parking, pick-up/drop-off, and loading/unloading,
respectively. A trip of a vehicle starts when a vehicle enters the urban network area, and it ends
when the vehicle leaves the urban area. We assume that trips are uniformly distributed after the

vehicles enter the network.

When a vehicle enters the network the following cases can occur: (i) the vehicle can go
through traffic, (ii) the vehicle can search for a parking (P) spot, (iii) the vehicle can search for a
pick-up/drop-off (PD) spot, (iv) the vehicle can search for a loading/unloading (LU) spot.
We assume that only a proportion of traffic entering the network will look for curb space, the other
traffic will go through the network after driving for a certain distance. Also, vehicles that look for
a P/PD/LU spot may leave the network without accessing any curb space after cruising for a
specific time. More specifically, as illustrated in Figure 2.1 and Figure 2.2, we consider three

scenarios that can occur after a vehicle enters the network:

* Scenario 1: Vehicles that look for P/PD/LU spot enter the network and successfully access a

curb space (Figure 2.1).

* Scenario 2: Vehicles that look for P/PD/LU spot enter the network and then leave the network

after cruising for more than a certain time without accessing a curb space (Figure 2.2).

* Scenario 3: Vehicles that do not look for a curb space enter the network and go through the

network (Figure 2.2).



Figure 2.1 Illustration of all states and transition events for scenario 1
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Figure 2.2 Illustration of all states and transition events for scenario 2 & 3
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2.1.1 Definition of System Events and Transition Events

We define system events and transition events to describe the above three scenarios. Let
z € {P,PD, LU} denote the different types of curb space usage and J be the set of system events.

We use the following system events to simulate the vehicle movement:

1. Non-searching (ns): This state includes vehicles that are not searching for any spot. The

vehicles may have either just entered the network or just departed from the curb space.
2. Searching (S,): The vehicles in this state are cruising to find a curb spot z € {P, PD,LU}.

3. Stationary (w,): This state involves vehicles that have accessed a curb spot z € {P, PD, LU}.



4. Going through traffic (g): In this state vehicles do not enter the searching state and go

through the network.

During the simulation, we assume that there are t € T time periods. In order to capture the

changes in the number of vehicles, we define th to represent the number of vehicles in each system
event j € J = {ns,s,,w,, g} in time period t, and we define n; j+ to represent the number of

vehicles transitioning from system event j € J to system state j' € J in time period t. All system

events and transition events are defined in Table 2.1.

2.1.2 Update the Number of Vehicles in Each System Event

To capture the cumulative change of the number of vehicles in each system event, we build
the relationship between system events and transition events. During a given time slice ¢ (e.g., 1
min), we assume vehicles are driving at the same speed such that no overtaking is allowed in the
network. Vehicle speed does not influence the total number of occupied curb spaces because a
curb space always serves the first vehicle that passes by. Thus, we use the equations (2.1) - (2.4)

to calculate the number of vehicles in each system event j € J. We note that nf)’ ; denotes the
number of vehicles entering the network and nf'(_) denotes the number of vehicles leaving the

network. Equations (2.1) - (2.4) define the number of vehicles in the states of non-searching,
searching (i.e., for parking, for picking-up/dropping-off, for loading/unloading), stationary(i.e., P,

PD, LU), and going through traffic, respectively, in time period z.

10



In equation (2.1), the number of "non-searching" vehicles consist of vehicles that enter the
urban area and vehicles depart P/PD/LU, vehicles that start to search and all vehicles (no matter

vehicles have accessed P/PD/LU or not) that leave the area.

N = N nfAcHnGE D ke —nfk] —nfh —ni @D
z€{P,PD,LU}

In equation (2.2), the number of “searching” vehicles consists of vehicles that start to

search for P/PD/LU and vehicles that access P/PD/LU.

N, = N7t +npss, —nis, (2.2)
In equation (2.3), the number of P/PD/LU vehicles consists of vehicles that access

P/PD/LU and vehicles that leave from P/PD/LU.

N‘f/z = N‘f/;:l + ng;‘}vz - n‘EV_z}ns (23)
In equation (2.4), the number of vehicles that go through traffic consists of vehicles that
enter the area that go through it and vehicles that leave the area without P/PD/LU after driving for

a certain distance.

N = ni5h — i) 2.4

11
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2.1.3 Update the Number of Vehicles in Each Transition Event

In this section, we describe how we calculate the number of vehicles in each transition
event during time slice ¢. First, we describe the assumptions used in the simulation model. Second,
we describe the model inputs of the simulation model. Third, new variables are introduced to build
up the equations. Finally, we describe how we update the number of vehicles in each transition

event.

2.1.3.1 Assumptions

The network is assumed to be small and compact, and all existing parking spots are
uniformly distributed such that there is no difference to the drivers’ walking distance. Also, the

parking rate inside the network should be identical to avoid personal preference.

We assume the network size, the vehicle arrival rates, the vehicle P/PD/LU duration
distribution, the parking rate, and the number of existing on-street parking spots are known. We
only consider vehicles that are heading for on-street P/PD/LU in this thesis. Thus, the proportion
of vehicles that are heading for private parking, garage parking, and off-street parking are not

considered in this thesis.
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2.1.3.2 Model input

In Table 2.2, we define the inputs of the simulation model. For example, the length of the
urban network, the vehicle arrival rate, the existing number of on-street parking spots, and the

parking duration distributions are assumed to be known in the simulation model.

2.1.3.3 Intermediate variables

In order to capture the change in the number of vehicles between transitioning events

during a given time period, we introduce some intermediate variables, as shown in Table 2.2.

Table 2.2 Intermediate variable definition

Notation Definition

At The number of available P/PD/LU spots at the beginning of time period ¢

kt Average traffic density in time period ¢

vt Average travel speed in time period ¢

d* Maximum drive distance of a vehicle in time period ¢

st Spacing between vehicles that are searching for P/PD/LU at the beginning of time period ¢

3

m Maximum number of vehicles that can pass by the same spot on the network during time period ¢

. gt
d-. Remainder of the division % when d* > st

The number of curb spots available of type z in period ¢ (i.e., AL ) equals the number of
curb spots of type z minus the number of curb spots that are occupied in type z in period 7. We
define this relation by using Equation (2.5):

A, = A, — Ny, (2.5)

where AL < A,.
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Let L be the length of the traffic network. In Equation (2.6), we define the average traffic
density in period ¢ (k) as the division of the total number of vehicles on the road at the beginning
of time period ¢ by the length of the network.

it = Nyis + N§ + X seip ppiuy Ns,

: (2.6)

In Equation (2.7), v* denotes the average vehicle speed during time period ¢, and we
calculate it based on a triangular fundamental diagram (FD) (Daganzo & Newell, 1995). To this

end, we use k. and k; to denote the critical traffic density and the jam traffic density, respectively.

We define Q,,4, as the maximum traffic flow rate that can be adopted on the network. We consider
that congestion occurs if the traffic density for a given period is greater than the critical traffic

density.

To calculate the average vehicle speed, we compare the current traffic density with the jam
traffic density. For example, if k is not greater than k; (i.e., traffic density in time period ¢ is not
greater than the jam density), we assume a free speed in the network, and we will use the FD
methodology to update the travel speed during the time period ¢. Otherwise (i.e., if traffic density
in time period ¢ is greater than the jam density), we assume all vehicles are not able to move any
farther in the network, indicating zero vehicle speed. During a given time period ¢, we assume all
vehicles drive at the same speed such that no overtaking is allowed in the network, and curb space

is always occupied by the first vehicle that passes by.

Qmax kj
(1 —-—-), kt < k;
vt = kC - k] ( kt J

0, ki>k

(2.7)
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The maximum driven distance of a vehicle in time period ¢ (d?) is the multiplication of the
vehicle speed in time period ¢ by the length of the time period, and we define this relation through

Equation (2.8).

dt =vt-t (2.8)
To calculate the distance between two consecutive vehicles in time period ¢ (st), we divide

the length of the network by the number of vehicles searching for P/PD/LU spots as shown in

Equation (2.9).

st=— (2.9)

In Equation (2.10), we describe m®, which is the maximum number of vehicles that can
pass by the same curb space in the network during time period 7. We formulate mt by using the
maximum distance a vehicle can drive and the space between two consecutive vehicles in period

t. We note that all curb spaces on the network could potentially be visited by m® — 1 vehicles.

dt
mt = [;l (2.10)
In Equation (2.11), dt is formulated as explained by its definition when d* > st.

dt
dt =dt — [?| st (2.11)
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Assume a vehicle is located at x, at the beginning of a time slice ¢. The locations of the
vehicles behind it are x, — s¢, x, — 2+ s, ..., x, — m' - st. The maximum driven distance is from
x. — (mf — 1) - st to x, + dt. Thus, one of the vehicles behind the x, is not able to drive beyond
x. + dt. Since we assume identical vehicle speed within the network, vehicle located in x, —
mt - st is not able to drive beyond x, + dt. In other words, a maximum of m¢ vehicles can pass
by area within [x,, x. + d!], and a maximum of m* — 1 vehicles can pass by area within [x, +

dt, x, + st].

2.1.3.4 Enter the network

We first define the number of vehicles that enter the network (i.e., nf)’ns and nf)’g). We

consider that there is a probabilistic traffic demand that enters the network. Among those vehicles,
we assume that a § percentage of the vehicles will go through the traffic and leave the network
directly after driving a distance of l; during the time period ¢. The remainder of the vehicles (i.e.,
(1 — &) percentage of the vehicles) will search for a curb spot. More specifically, vehicles will
search for a P, PD, or LU spot with a percentage of a, 5, and y, respectively, where a + f +y
=1. However, we assume that if the vehicles cruise more than a certain time before entering the
searching state, they will leave the area instead. We consider that a, 8, y and § values are fixed

throughout the simulation.

18



2.1.3.5 Start to search for P/PD/LU

After vehicles enter the network, they start to search for a P/PD/LU spot after driving a
distance I% during time period ¢. However, some vehicles leave the network without entering the
searching state after they cruise for a certain time, and they leave the network after driving for a
distance of I} during time period . We denote vehicle cruising time as CT in the following
equations. We formulate the number of vehicles that cannot enter the searching state in time period

t after cruising for a certain time through Equations (2.12) and (2.13), where ¢’ defines the

binary variables indicating whether these vehicles can drive the required distance to start searching.

t—CT
Phons = ) Mfyne Gusms A <l (2.12)
t'=1
where

j=t ,

, 1, > Z dt
¢ nsns ° j=t—CT (2-13)

0, otherwise

In Equation (2.12), nfl),ns consists of vehicles that entered the area in any time period t’ €
{1,...,t — CT}. In time period t" € [1, t — CT], the vehicles that satisfy the following conditions
cannot enter the searching state: (i) vehicles that do not drive the required distance I¢ and (ii)
vehicles that have cruised for a certain time. We define these conditions through the above
equations. We further formulate the number of vehicles that start searching for P/PD/LU spots

during time period ¢ after driving a certain distance I% with Equations (2.14) and (2.15).
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t—1
t” n 4
Mhos, = ) Myuebhss, A< (2.14)
t''=t-CT

where

imte1 imf—1 o ~
1, lg < j-ztll d’ and Z§=t" dl < lg 4+ dt1

(2.15)
0, otherwise

¢rlls,sz = {

In Equation (2.14), nfls'sz consists of vehicles that transit to a searching state in any time
period between t — CT and t — 1. We do not consider the vehicles that cruise more than the
cruising time CT. In the time period t" € [t — CT,t — 1], nf.’)"nsvehicles will search for P/PD/LU
spots after entering the area. Two conditions must be satisfied to enter searching state: (i) the
vehicles should drive a certain distance L£ to start searching, and (ii) they should not start searching
in previous periods. In Equation (2.15), ¢y, s, indicates whether nf’)”ns vehicles can drive the

distance I% within the cruising time CT.

2.1.3.6 Access P/PD/LU

Once vehicles drive enough distance to enter the searching state, they are able to access
any curb space as long as there is a vacancy. However, we keep track of only the number of
vehicles that can access curb space and not which vehicles. More specifically, we do not model
the exact location of each vehicle and each curb space. Our goal is to observe how the curb space
allocation decisions impact the overall traffic. Thus, we model the number of vehicles that access

curb space and the number of spots that are occupied at time period ¢.
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At the beginning of each time period, the number of vehicles searching for P/PD/LU spots
and the number of available curb spaces are calculated in Equation (2.2) and Equation (2.5)
respectively. We use the following two assumptions in the model: First, the locations of the
available curb space are random at the beginning of each time period. Second, the locations of
searching vehicles are uniformly distributed on the network at the beginning of each time period.
The first assumption ensures stochasticity of the parking availability. The second assumption
guarantees that the demand is homogeneously generated. The second assumption is necessary
because if vehicles are located mostly within a few streets, the other available curb spaces will not
be occupied even if they are vacant. Also, the model can provide an average amount of curb space
being taken, and this average value is meaningful only when all searching vehicles are uniformly

distributed in the network.

We use x to denote the curb space location. Assume a P/PD/LU spot is located at the
location x,, and the remaining P, PD, and LU spots are located at the location x,,, for u €
{1,2,3, ..., AL — 1} (i.e., there remain A} — 1 spots for each curb space use z). We consider that the
searching vehicles' initial positions are at the location x., for ¢ € {1,2,3, o N — 1}. Then, we
consider three different cases based on the relations between d?, s¢, and L to calculate the number
of searching vehicles that access a curb space for parking, picking-up/dropping-off, or
loading/unloading.

e Case l:ifdt € [0,st].

Under this scenario, the maximum driving distance of a vehicle (d*%) is shorter than the
spacing between two consecutive vehicles (st). Therefore, no two vehicles' trajectories will ever

overlap during a single time slice. As a result, a curb spot can be visited at most by one vehicle.

21



Then, there are two conditions to guarantee that this P/PD/LU spot at the location x, becomes

occupied during time slice t:

- Condition 1: The available spot at the location x, must be within the reach of a vehicle. x, €

t t
[xc, x. + d'] forany ¢ € [1, N |. The probability is Zlcviz1 ;c‘l'd %dxz.

- Condition2: There should not be any other curb spaces between x. and x,. The probability is
AL-1 xz1
Hxﬂzl (1 - fxc zdxﬂ)'
Thus, the probability of random P/PD/LU spots been taken during time slice ¢ is the product
of these two probabilities defined under Condition 1 and Condition 2. The average number of
P/PD/LU spots that are occupied during the time period ¢ equals the multiplication of the number

of available spots in each use (i.e., AL) by the product of these two probabilities. We define this

expression through Equation (2.16).

52 ¢ A1
. . Xc+d 1 Xz 1 216
nSZ'WZ:AZ'Zf deZ'II 1_J 7P (2.16)
c=1"%c xp=1 Xe

e Case2:ifdt € [st, L].

In this case, vehicles' trajectories can overlap, and a curb spot can be visited by more than
one vehicle (although it only accommodates the first one). We define the probability of a curb spot
at the location x, being occupied during time period ¢ through three sub-cases (i.e.,
mt > AL, mt = AL, m* < AY). We investigate the number of vehicles that transit from the

t

searching state to the stationary state for each curb use type z (i.e., N _,, = AY) for each sub-case

and describe the details below:
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- Sub-case 2.1: if m* > A. (i.e., the maximum number of vehicles that can pass by the same spot

on the network during time period ¢ is greater than the number of available spots in period ?).

In this case, according to Equation (2.9) and Equation (2.10), N§Z > m¢. Therefore, there
is more parking demand than supply (N§, > A.). Since any curb space in the network could be
potentially visited by m® — 1 vehicles (m* — 1 > AL), any available curb space can be taken by
one of these vehicles. More specifically, in this case, there are too many vehicles searching and
they drive a distance that is long enough to reach all available spots. Hence, all available curb spots
will be taken, and still, some vehicles will remain searching at the end of the time period ¢. Then,

the nf_,_ is written in Equation (2.17).

nt . = min{A;, Nstz} (2.17)
- Sub-case 2.2: if m* = At. (i.e., the maximum number of vehicles that can pass by the same spot

on the network during time period ¢ equals the number of available spots in period ?).

If x, € [x;, x. + dL], a number of m’ cars could drive by that P/PD/LU spot at x,. If

P/PD/LU spot is located within this area, it will be taken. The probability of a curb spot located

Xc+dh 1

. . . N
within this range and been taken is: ;. N i dx,.
c

If x, € [x, + d%, x. + st], anumber of m? — 1 car could drive by that P/PD/LU spot at

Xz. Denote P (ppt_1) as the probability of this curb spot not being taken, i.e., the probability that

all the vehicles that could reach the location x, park before arriving at x,. The probability of a

. ) ) Nt t1
curb spot located within this range and been taken is: }, ;C:;t T (1 - pf(nzmt_l)) dx,.
c T

Combing these two probabilities, N ,,_is written as Equation (2.18).
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=1 \xc +dt L
At_l 1 Zn X, 1 AE—l—Zn n—-1
p —z <f —dx) -(1—f —dx) -Hp | (2.19)
rew 7 (n— 1)st ? —(n—l)st ? . T
n=n Jj=1
Zj+1 Zj Xy 1 Zj+1_Zj
Zj+1 f (- 1)5tL f_(j_l)stzdxz 2.20
br; = CZj ' x, 1 1= x, 1 (2:20)
zj=j f_j.stzdxz f_j.stzdxz

In Equation (2.19), n stands for the number of vehicles that can potentially reach x,. Within
these n cars, the probability that the furthest vehicle (to x,) parks before it arrives at x, is shown
in term 1. The probability that the rest n — 1 vehicles all park before they arrive at x, is shown in

Equation (2.20).
- Sub-case 2.3: if mt < At.

Similar to sub-case 2.2. If x, € [x.,x. + dt], a number of m® cars can drive by that

P/PD/LU spot at x,. If a P/PD/LU spot is located within this area, it will be taken. The probability
C+dT
is: Z {fx . ( pf(nzmt)) dx,.

If x € [x, + d&, x. + st], anumber of m* — 1 car could drive by that P/PD/LU spot at x,.
Denote P (p-pt_y1) as the probability of this parking spot not being taken, i.e., the probability that

all the cars that could reach location x park before arriving at x,. The probability is:

NE, rxctsti

ZC:l xC+d1€ z ) (1 - pf(n:mt_l)) dxz

Combing these two probabilities, N ,,_is written as Equation (2.21).
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xc+st

Nf
°Z xetdy 1
nt, = Z{ fx (1= D) A2 + L T (1= Py pumisy) s 2.21)
c= c cTar

e Case3:ifdt € [L, oo].

In this case, each vehicle can drive around the whole network at least once, so all vehicles
will access curb space if there are enough curb spots. Otherwise, all curb space will be taken. nf_,,
is written as Equation (2.22).

nt ,,, =min{ A, N. } (2.22)

Since the computational cost of nf_,, is very large, so that we do some simplification and

approximation to lower the cost (Cao & Menendez, 2015). For example, the simplification of

case 1 is described as below:

c=NE, rxctdt q Ab-1 xz1
nt =At*z zf —dxz*l_[ (1—[ —dx)
2wz “ c=1 L xp=1 xc L*

¢ =Nt xe+dbl Xz | Xc a5-1
j— Z il —_ 2 Zc
= Ag* ey fxc L*(l L T L) * dx;

Il
b
N
*
INg
] |
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|
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|
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N
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=
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+
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=
(o}
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(2.23)

£\ A%
= —N * ((1 - %) -~ 1A5>
dt Aé
- (1 _7)

After simplification, we can further use the approximation methods proposed in paper

t
= *
Ng,

System dynamics of urban traffic based on its parking-related-states (Cao & Menendez, 2015) to
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simplify further nf ,, .In this paper, we do not show the approximation process because it is pretty

similar to that in the referring papers. Finally, n} ,, is written in Equation (2.24a) and Equation

(2.24b).
. vt s £\ ] L
st* 1—(1- L ,lfte O‘Ut*_Nstz
N 1\" NE wtat L L NS
N\f/z'i'N;Z Nst:_1+<1_N_§z> ]*ZOQN@ZN_‘E‘,ZZ*T ifte[vf*stz'?*Nst:]'ifN‘f’ZSNstz (2.24a)
L N
N Jifte|—= z,
nt _ Wz d [Ut ) Nstz 00]
SzWz

vtxt

N¢, * I

—(o-
0

L

2.1.3.7 Depart P/PD/LU

e ift €10 L
, €0, —F/———~
if -

L 7 t t
| N, 2 NG

(2.24b)

As we know the number of vehicles that access P/PD/LU in all previous time slices, we

can define the number of vehicles that transit from one of the stationary states to the non-searching

state. We use the probability distribution

function of the parking, picking-up/dropping-oft, and

loading/unloading durations. Equation (2.25) shows the number of vehicles that depart from

stationary state z in time period z.

t—1
t — E t'
Ny, ns = Ns,w, f
=1 (

(t+1-t")4

f(r)dt, (2.25)

t—t")-t

In Equation (2.25), nY,_,s consists of vehicles that accessed curb space in any time slice

between 1 and t — 1. Use t’ to denote such time slice, t’ € [1,t — 1]. Notice that the vehicles that
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access curb space during time slice ¢ are not included, as they already experience one transition
event during this time slice. The number of vehicles that accessed curb space in time slice t' is
nt_ ... The probability that these vehicles depart parking in time slice ¢ equals to the probability of

the parking duration being between (t — t) - t;and (t + 1 —t') - ¢, L. e., ((tt_+t1,;:l )'tlf(rz)d t,.

2.1.3.8 Leave the network

Vehicles that do not access the curb space (i.e., nf_)' g Nhsns)» OF that access and leave the
curb space (n‘ﬁ,z‘ns), will leave the network after driving a certain distance. We use lg and I to

denote the required distances that the vehicles need to drive to leave the network for different
system events. Then we define the number of vehicles leaving the network at time period ¢ with

Equations (2.26) - (2.28).

t—1
nfls,(-) = Z ng),g ' ¢f%(~) + Z (n‘a’z;ns ) ¢;Ls,(.)) + nrtls,ns ) ¢;Ls,(.) (2.26)
t'=1 z€{P,PD,LU}
where
" j=t—1 . j=t—1 . . o1
, 1, lsz d’andz dJ <1t +dt-
bg0) = g j=t! j=t g (2.27)
0, otherwise
t L = t t-1
, 1, 1 sz dfandz @<t +dt-
brs,) = " j=t! jet! ns (2.28)
0, otherwise
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ns,(.

As shown in Equation (2.26), n, ) consists of three parts, vehicles leave the network

without accessing P/PD/LU spots, vehicles leave the network after P/PD/LU, and vehicles leave

the network before they enter the “searching” state after a specific cruising time. qbé’(.) and qb;ls’(.)

are binary variables indicating whether these vehicles can leave the network at time slice ¢.

2.2 Numerical Study

In this section, we consider an urban traffic network located in downtown Detroit and
conduct numerical experiments to validate the efficiency of the proposed simulation model. We
select a network in the downtown Detroit area with a radius of 300 meters. In total, this network
consists of 260 on-street curb spaces for public use (Parkopedia.com, 2019). First, we calculate
the length of all streets inside this network that provide curb spaces for public use by using Google
Distance API and the data provided from the website Parkopedia.com (Parkopedia.com, 2019).
We further calculate the curb space width by using the Parking Area Design Report (WSDOT,
2003). Figure 2.3 displays the layout of the selected urban traffic network. This network contains
12 streets with a total length of 5.32 kilometers (calculated using the Google Distance API). We
assume that each street has two directions and one lane per direction on average. Then, the total
length of the network is 5.32 * 2 = 11.7 kilometers. Additionally, we study the rush-hour traffic in
the downtown area, and we assume that the critical traffic density is k. =25 veh/km/lane and jam

density is k;=55 veh/km/lane (Cao and Menendez 2015).
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Figure 2.3 Selected urban network in downtown Detroit area

F1anm ViUl Iy
Hall of Justice

We use the Regional Traffic Counts Database (SEMCOG, 2019) to estimate the
approximate number of vehicles that enter the network within a given time period. This database
provides the daily traffic of each street so that we can estimate the proportionate traffic demand of
the streets that are in the selected network. The average vehicle speed in Detroit is about 40 KPH
(kilometers per hour) without traffic, based on a Detroit city speed report (Kleint, 2011). We use
an average speed of 30 KPH by considering the traffic in the downtown area during rush hours.
We further perform sensitivity analysis on speed by using a speed range between 20 KPH and 40
KPH. Since all the existing on-street parking spots in the selected network are metered parking,
we consider the metered parking duration for our setting. Based on the studies in the literature
( (Adiv & Wang, 1987), (Gallo, et al., 2011), (Shoup, 2017)), we use gamma distribution to model
the duration for parking, pick-up/drop-off, and loading/unloading. We use similar parameter
values to those of the study of Adiv and Wang (Adiv & Wang, 1987), where the authors study
metered on-street parking behavior by using both historical data and survey data from downtown
Ann Arbor, Michigan. We include the figure of the probability distribution function of the parking
duration in Figure 2.4. We estimate parameters of the LU duration distribution based on a survey
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conducted in a study about commercial vehicles' parking duration in New York City and its
implications for planning (Schmid, et al., 2018). The duration of picking-up/dropping-off is
expected to be shorter than loading/unloading goods, in general. Thus, we assume a shorter PD

duration and estimate our parameters accordingly. All these known parameters related to the

Detroit area are described in Table 2.3.

Figure 2.4 Illustration of traffic heading for the parking following the gamma distribution

Parking Duration Distribution

Probability Density Function

0 50 100 150 200 250 300

Parking duration (minutes)

Table 2.4 Known parameters for the selected Detroit area

Notation | Definition Unit Value

L Length of network km 11.7

A The number of exist- 260
ing on-street parking
spots

k.. Traffic density veh /km/lane 25

k; Jam density veh/km/lane 55

Tp Parking duration. minute gamma(2.195,

18.225)
Tpd PD duration. minute gamma(1l, 8)
Tiu Lu duration. minute gamma(l, 15)
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2.2.1 Sensitivity Analysis

In this section, we conduct our numerical experiments to observe the change in the traffic
flow, traffic delay, and occupancy of curb space for different uses by considering several scenarios.
We assume that the curb space allocation for different uses is given, and we investigate the optimal
curb space allocation decisions in Chapter 3. In this section, we assume that the allocated curb
spaces are proportional to the average demand ratio considered in the model. To this end, we
consider that the percentages of the allocated curb spaces for parking, picking-up/dropping-off,
and loading/unloading are 70%, 20%, and 10% respectively. Current parking policy in Detroit is
static in this selected area, which means that the use of the curb space is fixed over time. Thus, we
consider only a static curb space allocation policy in this section. We simulate the traffic system
in Detroit for six hours (i.e., between 6:00 a.m. and 12:00 noon). We summarize the parameters
used in the numerical analysis in Table 2.4. Since the sum of the demand proportions of P, PD,
and LU should be equal to 1, we consider 18 combinations composed by &, , 8, y. For the traffic
demand, vehicle speed, and cruising time we consider three possible values. Hence, in total, we

analyze 18 = 33 = 486 instances for the sensitivity analysis.

2.2.2 Traffic Delay and Vehicle Driven Distance Calculation

In previous section, we have generated 486 instances with different parameters to analyze
how the traffic delay and vehicle driven distance changes under known curb space allocation

decisions. We use one instance here as an example on how we calculate the traffic delay and
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Table 2.5 Parameter setting for sensitivity analysis

Notation | Definition Unit Value Distribution
T Traffic demand entering the net- | veh [3500, 4500,
work. 6000]
] Traffic demand entering the net- | veh [0.5, 0.6, 0.7]
work and go through the network.
o Traffic demand entering the net- | veh [0.6, 0.7, 0.8]
work and headed to P.
0 Traffic demand entering the net- | veh [0.1, 0.2, 0.3]
work and headed to PD.
7y Traffic demand entering the net- | veh [0.1, 0.2, 0.3]
work and headed to LU.
v The free flow speed of network | km/h [20, 30, 40]
(with traffic flow)
T Cruising time min [5, 10, 15]
ly Distance that must be driven by | km [0, 0.5] uniform

a vehicle that goes through the
traffic before it leaves the area.
ls Distance that must be driven by | km [0, 0.5] uniform
a vehicle before it starts to search
for P/PD/LU.

L Distance that must be driven by | km [0, 0.5] uniform
a vehicle before it leaves the area
after leaving the stationary state.

s Distance that must be driven by | km [0, 0.5] uniform

a vehicle before it leaves the area.

vehicle driven distance. We use the medium parameter values from Table 2.4 to generate the
queuing diagrams for traffic heading for P, traffic heading for PD, traffic heading for LU, and
traffic goes through the network from Figure 2.5 — Figure 2.8. Notice that we do not assign any

curb space for PD or LU in this instance.

In Figure 2.5 — Figure 2.8, we illustrate the change in the cumulative number of vehicles
that transit between system events over time for different use cases. For example, Figure 2.5
illustrates the change in the cumulative number of vehicles that transit between system events over
time for parking use. The total number of vehicles that enter the network (i.e., the line “Enter the
area"), that start searching for a parking spot (i.e., the line “Start searching for parking"), that leave

the area after cruising for a certain time before entering the searching state (i.e., the line “Leave
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the area without parking (resp. pick -up/drop-off)"), that access the curb space (i.e., the line
“Access parking (resp. pick-up/drop-off)"), that depart the curb space after parking (resp. pick-
up/drop-oft) (i.e., the line “Depart parking"), and that leave the network after parking (resp. pick-
up/drop-o0) (i.e., the line “Leave the area after parked"). Through Figure 2.5, we can calculate the
average traffic delay and average vehicle driven distance. The area between the two curves is the
total time vehicles spend within that state. The non-searching vehicle time contains two areas, the
area between the curve "Enter the area" and "Start searching for parking" and "Leave the area
without parking", and the area between the curve "Depart parking" and the curve "Leave the area
after parked". The total non-searching parking delay equals the total time vehicles spend in the
"non-searching" state minus the total time vehicles spend in the "non-searching" state when there
has no congestion (i.e., the total time go through traffic vehicles spend when there is no congestion

ZEI:l nt,, 1y . . .
g 22 W99 the average travel speed remains free speed v). However, since we assume vehicles

in searching for parking will access parking once there is available parking spot, the searching

t
% Ns,wy

. L dt . . o .
vehicle time is ra— The searching delay will be the same as searching time. Notice that the

traffic go through the network does not experience all the transition events, they leave the network
after driving for a certain distance after entering the area. Thus, the total delay of traffic go through
the network is the area between curve "Enter the area" and the curve "Leave the area" as shown in
Figure 2.8. Thus, if there is congestion, this area should be greater than 0. The driven distance
calculation in the “non-searching” state is based on the required distances we define (i.e., total

driven distance for traffic go through the network Y£,_; nf') g’ l;’). While the driven distance in

the searching state is Y nf_,, - d°*.
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In Table 2.5, we present the minimum, average, and maximum traffic delay for different
states among all scenarios (486 instances) under the current curb space management policy (assign
all curb space for parking use only). We note that we let all vehicles leave the network even after
the simulation ends. As shown, the total traffic delay per vehicle ranges from 586 to 910 minutes.
The average delay time of searching for a curb space ranges between 93 and 305 minutes, while
the delay time in the non-searching state ranges from 0.76 to 132 minutes. This varying range
shows that it is important to have an efficient and dynamic curb space allocation policy that can

change over time as a response to varying demand.

Table 2.6 Average vehicle time and traffic delay ofa =1, f =0, y =0, § = 0.5

Average Delay Time Per Vehicle (minutes)
Scenario | Non-searching state | Searching for | Searching for | Searching for | Total
Parking Pick-up/ Loading/
Drop-off Unloading
Minimum 0.76 40.75 257.26 288.05 586.83
Average 61.9 93.33 272.08 305.14 732.45
Maximum 131.53 182.11 280.05 317.11 910.8

In Table 2.6, we present the minimum, average, and maximum values of average driven
distance among all scenarios under the current curb space allocation policy. As shown in the table,
we observe that among 486 scenarios, the minimum average driven distance is 2.05 kilometers
and the maximum average driving distance 157.39 kilometers. The delay time and the driven

distance are highly related to the allocated curb space for different uses.

Table 2.7 Average driven distance of a =1, § =0, y =0, § =0.5

Average Driven Distance (km)

Non-searching state | Searching for | Searching for | Searching for | Total
P state PD state LU state
Minimum 0.09 0.26 0.78 0.91 2.05
Average 0.17 1.06 6.13 10.21 17.57
Maximum 0.25 6.29 50.29 100.56 157.39
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CUMULATIVE NUMBER OF VEHICLES

Figure 2.5 The number of vehicles transitioning between states (Parking case)
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CUMULATIVE NUMBER OF VEHICLES

Figure 2.6 The number of vehicles transitioning between system events (PD case)
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CUMULATIVE NUMBER OF VEHICLES
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Figure 2.7 The number of vehicles transitioning between states (LU case)
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Figure 2.8 The number of vehicles transitioning between states (Through traffic case)
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In Table 2.7, we present the minimum, average, and maximum trac delay for different
states among all scenarios after we have assigned some curb space for PD and LU uses. As shown,
the average delay per vehicle is from 70.52 to 561.91, the average delay time of searching for a
curb space ranges between 32.81 and 111.09 minutes, while the delay time in the non-searching
state ranges from 0.88 to 113 minutes. This varying range also shows that it is important to have
an efficient and dynamic curb space allocation policy that can change over time as a response to

varying demand.

In Table 2.8, we present the minimum, average, and maximum values of average driven
distance among all scenarios. As shown, the minimum average driving distance is 8.88 kilometers

and the maximum average driving distance 548.3 kilometers. The delay time and the driven
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distance are highly related to the allocated curb space for different uses. Hence, as a next step, we

investigate efficient ways of allocating the curb space for different uses.

Table 2.8 Average vehicle time and traffic delay of « = 0.7, § = 0.2, y = 0.1, § = 0.5

Average Delay Time Per Vehicle (minutes)
Scenario | Non-searching state | Searching for | Searching for | Searching for | Total
Parking Pick-up/ Loading/
Drop-off Unloading
Minimum 0.88 42.48 10.57 16.59 70.52
Average 36.52 111.09 32.81 36.82 217.24
Maximum 113.58 183.53 93.87 170.94 561.91

Table 2.9 Average driven distance of « = 0.7, £ = 0.2, y = 0.1, § = 0.5

Average Driven Distance (km)
Non-searching state | Searching for | Searching for | Searching for | Total
P state PD state LU state
Minimum 0.11 1.13 3.4 4.23 8.88
Average 0.21 7.8 37.47 T1.78 117.27
Maximum 0.28 21.92 175.38 350.72 548.3
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Chapter 3: The Optimization Model

This chapter compromises three main parts. First, we build an optimal curb space allocation
model and proposed two algorithms to solve the problem within half an hour quickly. Second, we
compare the efficiency of the proposed algorithms with the non-linear solver’s results. Third, we

validate the efficiency of the proposed algorithms further using different starting points.

3.1 Model Formulation

In this section, we build a curb space allocation model by integrating the outputs of the
simulation model. We develop an optimization model to allocate the curb space optimally among
three different uses (i.e., P, PD, and LU). Given the total number of existing curb spaces, our goal
is to maximize the total profit of an urban traffic network by allocating the available spaces for P,
PD, and LU uses over time. First, we consider a static use of curb space by assigning a fixed
allocation for parking, pick-up/drop-off, and loading/unloading. In practice, the curb space
allocation strategies of cities are mostly static, where the use of the curb spaces is fixed. Indeed,

currently, most of the curb spaces are used for solely parking.

To this end, we define p,, as the unit profit obtained from the parked vehicles and ¢, as the

unit cost of traffic delay. We further use a* to denote the total traffic delay in time period ¢ due to
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the congestion. We note that we calculate the traffic delay through the simulation model, and the
traffic delay varies as the curb space allocation for different uses changes. In our optimization
model, we use A,, which is the fixed number of curb spots allocated for curb use type z, as the
decision variable of the model. Let M, be the total curb space available. Then the optimization

model for the static curb use can be defined as follows:

17

max F(4,) = Z N;-p,—0ct-cq 3.1
t=1

S.t. Z AZ = MA (32)
z€{p,pd,lu}

A, =0, vz € {p,pd,lu},t €T (3.3)

In the above model, Equation (3.1) represents the objective function, which is the profit
obtained from the curb space allocation decisions over all periods. The first term represents the
profit earned from the parked vehicles over all periods, while the second term is the total cost due
to the traffic delay. In constraint (3.2), we ensure that the total allocated spots for different uses
should be equal to the total available curb space spots. Finally, constraint (3.3) defines the non-

negativity constraints.

We further consider that the allocated curb spaces can be flexible and can change during
the day by considering the demand of different curb uses. Hence, we define h € H to represent

the number of epochs where the number of allocated curb space for a different type of uses can

change in each epoch 4. We redefine the time as follows: t € {1,2, ...,%,% + 1, ...,%, e ITI}.

Then, our dynamic curb space allocation model can be defined as follows:
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(h+1)ZL

|7]-1 H]
max F(A}) = Z Z Ni-p,—at-cy (3.4)
h=0 ,_ |7
t—1+hm
s.t. E A} =M,  VheH (3.5)
z€{p,pd,lu}
Al >0, Vze{p,pdlu},heH (3.6)

where A? represents the number of allocated curb space for the curb use z in epoch 4. The dynamic
curb space allocation model is similar to the static model. More specifically, equation (3.4) is used
to define the profit function. Constraint (3.5) states that the allocated curb spots in each epoch
equal to the total available capacity, and constraint (3.6) defines the non-negativity. The dynamic
model allows the curb space allocation policy can change over time. This flexibility can ensure
that the traffic delay within a specific time interval can be minimized as well as the curb space can

be utilized to the most extent.

3.2 Heuristic Policy

The above curb space allocation model is challenging to solve as it requires the traffic delay
output of the simulation model for all different curb space use configurations (4,) to find the
optimal setting. In our model, as the number of time periods and the number of available curb spots
increase, it becomes intractable to compute the optimal objective function and find the optimal
allocation policy. In this section, to address computational and practical challenges, we describe
the simplistic curb space allocation heuristic 1 (CSAH1) and curb space allocation heuristic 2

(CSAH2). To this end, we consider w € (2 iterations. Let A%, z € {p, pd, lu} be the capacity of
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node k at iteration £. We further define A(F) to represent the change in the objective function as

follows:
A (F(Ap Ay, As)) = F(Ap Ay AL) = F(4y = LAy + 1,4,) Yz € {pd,lu},z' € {pdlu\z (3.7

Then, we define the curb space allocation heuristic 1 as follows:

Algorithm 1 Curb Space Allocation Heuristic (CSAH1)

w =04, «MyApg < 0,4, <0

while z A7 < M, do
z€{p,pd,lu}
Calculate A (F(A“), ‘Z",,A‘Z‘))) vz € {pd,lu},z' € {pd,lu}\z
it 4 (F(45,A%,42)) <0, Vz€ {pd,lu},z' € {pd, lu}\z then

break
end if

z* = argmax, A (F(A“), (;I,A‘Z‘))),VZ € {pd,lu},z' € {pd, lu}\z
APTT < AQ — 1, AP < AL + 1,
while 2 (F(Ag,A2,42)) > 0, Vz € {pd, lu}\z" do
AP« AY — 1, AP < A + 1
end while
w<—w+1

end while
A, « A

In the curb space allocation heuristicl (CSAH1), we assume all the current curb space are
assigned to parking use. Then we calculate 4 (F (Ap, Ay, Az)) at each step and find the value of

increasing the capacity of curb use type z' € {pd, lu} by one. We increase the allocated capacity

of curb use type with the highest gain. We continue increasing the capacity by one for the same
curb use till the increasing does not provide the sufficient gain (i.e., 4 (F (A“’, A%, A‘Z")) > 0). The

algorithm stops when the allocated capacity reaches the available capacity or when adding one
more capacity for all appointments yields a negative profit gain. In CSAHI1, we only consider

checking the first derivative in the stopping criteria. We further consider adding more condition to
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the stopping criteria in CSAH2, where we consider checking both the first derivative and the

second derivative.

We define the curb space allocation heuristic 2 as follows:

Algorithm 2 Curb Space Allocation Heuristic (CSAH2)
w =04, «MyApg < 0,4, <0
while z A7 < M, do
z€{p,pd,lu}
Calculate A (F(A“), ‘Z",,A‘Z‘))) vz € {pd,lu},z' € {pd,lu}\z
it 4 (F(45,4%,42)) <0, Vz€ {pd,lu},z' € {pd, lu}\z then

break
end if

z* = argmax, A (F(A“), (;I,A‘Z‘))),VZ € {pd,lu},z' € {pd, lu}\z

APTT < AQ — 1, AP < AL + 1,

while 4 (F(A9, 4%, 42)) < A (F(AY = 1,A% + 1,42)), Vz € {pd, lu}\z" do
AP« AY — 1, AP < A + 1

end while

wewtl

end while
A, « A

CSAH?2 is similar to CSAHI, but unlike curb space allocation heuristic 1 where we only
check the first derivative, we review both the first derivative and the second derivative while

updating the capacity in CSAH2. Thus, we continue increasing the capacity by one for the

same curb use till the increasing does not provide the sufficient gain (i.e., A (F (A“’,A;)*, A‘Z")) <

A (F (A‘;,) — 1,45 + 1, Ag’)) ). The algorithm stops when the allocated capacity reaches the

available capacity or when adding one more capacity for all appointments yields a negative profit

gain.
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3.3 Numerical Analysis

This section comprises three main parts. First, we describe our parameter setting and
present the results of the optimization model for diverse scenario for the small case. Second, we
describe our parameter setting and present the results of the optimization model for diverse
scenario for the Detroit case. Third, we further validate the efficiency of the proposed heuristics

using different starting points.

The unit profit from the parked vehicles and unit cost of traffic delay are given before the
optimization of the dynamic curb space allocation decision. On-street parking fees vary depending
on the region. For example, the on-street parking fee in Detroit ranges between $1/h and $2/h
(ParkDetroit.us, 2019). However, the selected traffic network has the same parking fee which is
$2/h. Hence, we use a fixed parking rate (i.e., $0.025/min) in the optimization model. We further
use $0.217/min as a delay cost, which is defined and described in detail in the “INRIX Global

Traffic Scorecard” (Cookson & Pishue, 2018).

3.3.1 Parameter Setting and Optimized Results for the Small Case

In this section, we investigate how curb space spots should be allocated among different
uses. Considering the scale of the considered urban network, it is not tractable to solve the large-
scale setting optimally for varying settings. Hence, in order to examine the efficiency of the
proposed algorithm according to the optimal solution, we first consider a small setting. In the small

setting, we consider a small urban network with a total network length of 1 km and total simulation
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time of three hours. Since the network is small, we further adjust the demand in the network and
consider two different values for the demand (i.e., 600 and 800). We summarize the parameters
that are different from the real setting in Table 3.1. Similar to the sensitivity part, a + f+ y =1
yields 4 combinations. We have two different values for § and traffic demand which also yields 4
combinations. We notice that we consider a flexible curb space allocation policy that the total time
length will be split into 4 epochs. Thus, in total, we have 64 instances with different parameter

settings for the small case. The parameter values of the small case are listed in Table 3.1.

Table 3.1 Parameters used in the optimization model for small case

Notation

Definition

Unit

Value

L

Total network length

km

1

7

Total time length

hour

3

Demand

Traffic demand enter-
ing the network.

veh

600; 800

Traffic demand enter-
ing the network and
go through the net-
work.

veh

0.5: 0.7

Traffic demand enter-
ing the network and
headed to P.

veh

0.6; 0.8

Traffic demand enter-
ing the network and
headed to PD.

veh

0.1; 0.2: 0.3

Traffic demand enter-
ing the network and
headed to LU.

veh

0.1; 0.2: 0.3

The free flow speed of
network (with traffic
flow)

km/h

30

cT

Cruising time

min

We first solve the optimal curb space allocation for all instances of the small case using a
nonlinear solver (Scipy package in Python) and the proposed algorithm. We note that we also
enumerate the potential solutions to find the optimal solution. Since the nonlinear solver gets the

optimal solution faster than the enumeration, we used nonlinear results in the comparison. In Table
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3.2, we present the average process time of the algorithms and the average percent objective gap.
We calculate the percent objective difference between different algorithms by using the following

formula:

Objective Value of the Optimal Solution — Objective Value of the CSAH1/CASH2

P t Objecti = 3.8
ercent Ubjective ap Objective Value of the Optimal Solution (3.8)

We note that we do not limit the run time of the nonlinear solver for the small case and we
output the optimal curb space allocation decision. The comparison results for the small-scale setting are
shown in Table 3.2. According to our results, the proposed algorithm is ten times faster than the NLS
solution for both CSAH1 and CSAH2. The percent objective gap between the NLS solution is -0.59% for
both CSAHI1 and CSAH2, which indicates that the proposed algorithms have good performance for small-

scale settings. The CSAH1 and CSAH?2 can reach a better solution more time-efficient compared

to the NLS.

Table 3.2 Comparison of the proposed and the optimal solutions for the small case

Optimal | CSAH1 | CSAH2
Average process time (min.) | 38.86 3.33 3.52
Average % objective gap - 0.59% | 0.59%

3.3.2 Parameter Setting and Results for the Detroit Case

As a next step, to examine the efficiency of the proposed algorithms, we also include a
Detroit case. We consider the large-scale setting defined in Table 3.3. Same as the small case, we
have 64 instances for the Detroit case. For all instances defined, we compare the solution of the

nonlinear solver (NLS) with the proposed algorithm solution. It takes a long time to solve the
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problem (usually more than three hours) using the existing nonlinear solver. Thus, we use the

proposed algorithms to obtain a near-optimal solution within half an hour quickly.

Table 3.3 Parameters used in the optimization model for the Detroit case

Notation | Definition Unit| Value
L Total network length | km 11.6
T Total time length hour 6

Demand Traffic demand enter- | veh | 4500; 6000
ing the network.
) Traffic demand enter- | veh 0.5; 0.7
ing the network and
go through the net-
work.

« Traffic demand enter- | veh 0.6; 0.8
ing the network and
headed to P.

15} Traffic demand enter- | veh | 0.1; 0.2; 0.3
ing the network and
headed to PD.

5 Traffic demand enter- | veh | 0.1; 0.2; 0.3
ing the network and
headed to LU.

v The free flow speed of | km/h 30
network (with traffic
flow)

cT Cruising time min 10

We note that we limit the run time of the nonlinear solver to around one hour for each
instance and report the best results obtained. The comparison results for the large-scale setting are
shown in Table 3.4. According to our results, the CSAH2 is three times faster than the NLS
solution, the CSAH1 is two times faster than the NLS solution. The percent objective gap between
the NLS solution is 1.18% and 5.47% for CSAH2 and CSAHI respectively, which indicates that
the CSAH2 has better performance for large-scale settings than CSAH1. The CSAH2 can reach a

better solution more time-efficient compared to the NLS.

48



Table 3.4 Comparison of the proposed and the optimal solutions for the large-scale setting

Optimal | CSAH1 | CSAH2
Average process time (min.) | 63.29 32.22 13.99
Average % objective gap - 5.27% | 1.18%

3.3.3 Other Optimization Results

We further investigate the average traffic delay that is obtained by using the NLS and the
CSAHI1 and CSAH2 for the large-scale setting. In Table 3.5, we compare the average vehicle delay
time in different system events for the NLS, the CSAH1, the CSAH2, and a fixed-allocation policy
(FAP), which is discussed in Chapter 2 (i.e., 70% for parking, 20% for pick-up/drop-off, and 10%
for loading/unloading). For the NLS, the CSAH1, and the CSAH2, we consider both the static and
the dynamic curb space allocation policies in comparison. We calculate the percent change in the

average traffic delay with respect to FAP and use the following equation for calculation:

p ¢ Obiecti __ Vehicle Delay of the Proposed Policy — Vehicle Delay of the FAP 1.9
ercent Ubjectiveap = Vehicle Delay of the Proposed Policy 39

As shown in Table 3.5, the total average delay time per vehicle in the FAP is greater than
the NLS, CSAHI1, and CSAH2. The NLS results in lower traffic delay in all system events
compared to the FAP. The CSAH1 and CSAH2 both yields lower traffic delay than the FAP in
some system events. In addition, we see that the dynamic curb space allocation policy yields lower
average traffic delay per vehicle than the static curb space allocation policy for NLS, CSAH1, and

CSAH2.
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To analyze the benefit of the dynamic allocation policy with respect to the static allocation
policy, we also compare the average objective function values over all instances in Table 3.6. We
find that the dynamic allocation policy yields higher profit than the static policy by more than 20%
for NLS, CSAHI, and CSAH2 on average, indicating the benefit of the dynamic curb space

allocation policy.

Table 3.5 Comparison of average vehicle delay time

Policies Non-scarching | Searching for | Searching for Searching for Total Percent
state (min.) P state (min.) | PD state (min.) | LU state (min.) | (min.) |gap from
FAP
FAP 50.38 126.66 38.79 49.04 264.86 -
Optimal-Static 22.90 95.48 21.45 23.93 163.76 | -61.74%
Optimal-Dynamic 22.34 94.40 20.93 24.12 161.79 | -63.71%
CSAHI-Static 27.68 92.78 60.30 26.57 207.34 | -27.75%
CSAHI1-Dynamic 26.85 92.85 45.22 25.82 190.73 | -38.87T%
CSAH2-Static 24.40 88.56 50.89 60.50 224.35 | -18.06%
CSAH2-Dynamic 23.74 88.41 45.26 54.10 211.52 | -25.22%

3.2.4 Proposed Algorithm Starting Point Validation

In previous section, we proposed algorithms to solve the problem efficiently using a x =
260,y =0, z =0 (x is parking spot, y is PD spots, and z is LU spots) starting point. The reason for
selecting this starting point is that we can infer vehicles that heading for parking is the most based
on the provided parameters (in real-world networks, we usually have the most vehicles seeking a
parking spot compared with PD and LU). Thus, it is reasonable to select x =260, y =0,z =0 as
the starting point for both nonlinear solver and the proposed algorithms. However, we also prove
the efficiency of the proposed algorithm using different starting points, when the most traffic

heading for PD and when the most traffic is heading for LU.
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In this section, we randomly select 8 instances out of the 64 instances from Chapter 3.3.2
to do the validation. Recall that we assume at least 60% of traffic is heading for parking in previous
sections. Thus, we assume at least 60% is heading for PD or LU while we are using x =0, y =260,

z = 0 as the starting point and x = 0, y = 0, z = 260 as the starting point respectively.

Table 3.6 Comparison of objective value

Nonlinear Objective CSAHI Objective CSAH2 Objective
Instance | Static [ Dynamic | %gap Static Dynamic | Y%gap Static Dynamic | %gap
from from from
static static static

1 27725.15 | 21808.96 -27.13% 98621.51 93048.63 -5.99% 26911.56 22383.16 -20.23%
2 126305.21 | 125117.64 -0.95% 135340.83 | 132955.97 -1.79% 142682.19 | 131521.52 -8.49%
3 26700.69 | 21904.61 -21.90% 26810.62 21921.17 | -22.30% 26831.03 21975.80 -22.09%
4 122348.67 | 121634.45 -0.59% 126350.87 | 125280.89 -0.85% 135975.23 | 132273.04 -2.80%
H 26148.11 22810.09 -14.63% 26736.61 22184.65 -20.52% 26275.35 21365.69 -22.98%
6 119836.88 | 117488.48 -2.00% 120767.64 | 117980.74 -2.36% 118363.63 | 125472.69 5.67%
7 9022.24 6271.51 -43.86% 9025.84 6246.43 -44.50% 9040.10 6246.76 -44.72%
8 16055.15 | 12152.60 -32.11% 16110.75 12183.18 -32.24% 16194.80 12276.40 -31.92%
9 9156.22 6380.95 -43.49% 9101.01 6317.88 -44.05% 9134.96 6376.33 -43.26%
10 15994.82 | 12103.54 -32.15% 15960.27 12139.90 -31.47% 15978.67 12170.38 -31.29%
11 9343.97 6570.47 -42.21% 9231.60 6438.21 -43.39% 9263.96 6472.63 -43.13%
12 15962.87 | 12313.72 -29.63% 15829.32 12063.72 -31.21% 15975.74 12282.07 -30.07%
13 94633.79 | 92885.79 -1.88% 94899.87 93111.19 -1.92% 95168.51 93364.28 -1.93%
14 142442.13 | 141200.34 -0.88% 145669.25 | 141300.21 -3.09% 147893.42 | 145370.64 -1.74%
15 12888.04 9347.77 -37.87% 12917.93 9379.90 -37.72% 12917.93 9404.64 -37.36%
16 26157.54 | 20241.65 -29.23% 20112.18 20340.56 | -23.46% 25260.82 20576.94 -22.76%

Average | -22.53% Average | -21.68% Average | -22.44%

In Table 3.7, we present the starting point validation result for the small case. The
percentage gap from NLS is 0.59% for both CSAH1 and CSAH2 while validating x = 260, y = 0,
z = 0 starting point, however, their CPU time is10X faster than NLS. While validating x =0, y =
260, z = 0 starting point, both CSAHI and CSAH2 outperform NLS in CPU time and solution
efficiency. While validating x = 0, y = 0, z = 260 starting point, it is obvious that CSAH]1 has a
better solution than CSAH2 in solution efficiency, but the solving speed of CSAH2 is 8 times

faster than CSAHI.
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Table 3.7 Starting point validation for the small case

Nonlinear

CSAHI1

CSAH2

Starting point

CPU time

CPU time

Ytime saving

Yogap from

CPU time

Ytime saving

Yogap [rom

(seconds) | (seconds) nonlinear | (seconds) nonlinear
(260, 0, 0) 2331.6 199.8 -1066.97% 0.59% 201 -1060.00% 0.59%
(0, 260, 0) 1660.25 544.75 -204.77% -0.86% 797.38 -108.21% -4.48%
(0, 0, 260) 1491.75 797.38 -87.08% -1.48% 189.63 -686.68% 3.25%

In Table 3.8, we present the starting point validation result for the Detroit case. As we can

see, a significant drop in CPU time for the proposed algorithms for starting point x =0, y = 260, z

=0andx =0, y=0,z=260 compared with NLS. CSAH?2 yields a better solution with a 2.3 times

faster solving speed than NLS while validating x = 260, y = 0, z = 0 starting point. Both CSAH1

and CSAH?2 perform slightly better than NLS by -0.39%, but CSAHI is more efficient in CPU

time while validating x =0, y = 260, z = 0 starting point. CSAH1 performs better in CPU time and

percentage gap from NLS while validating x = 0, y = 0, z = 260 starting point. Therefore, we

conclude that the proposed algorithms are robust in both CPU time and solution quality in solving

the small case and real-world case.

Table 3.8 Starting point validation for the Detroit case

Nonlinear CSAH1 | CSAH2 |
Starting point | CPU time | CPU time | %time saving | %gap from | CPU time | %time saving | %gap from
(seconds) | (seconds) nonlinear | (seconds) nonlinear
(260, 0, 0) 3797.4 1933.2 -96.43% 5.27% 1139.4 -233.28% 1.18%
(0, 260, 0) 3695.4 1981.88 -86.46% -0.39% 2958.13 -24.92% -0.39%
(0, 0, 260) 2887.38 2283.13 -26.47% -0.39% 3571.75 19.16% -0.38%
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Chapter 4: Conclusion and Discussion

Curb space management for different uses is essential for smooth traffic, especially during
rush hours in urban areas. A dynamic curb space allocation for different usages ensures a flexible,
less costly traffic compared with fixing the curb space for parking use only or fixing the different
usages of curb space all the time. The numerical results demonstrate that the dynamic curb space
allocation outperforms the static curb space allocation in both small urban network settings and
large urban network settings. This dynamic curb space allocation policy also contributes to
reducing the traffic delay caused by those vehicles that are heading for PD/LU spots. Moreover,
the demand for a smart city planning that includes an intelligent curb space planning is growing
as the development of ride-sharing and autonomous vehicles. Thus, it is necessary to utilize the

curb space for multiple uses and apply the dynamic curb space allocation along with time changes.

In this study, we build a transportation system simulation model to analyze the interaction
between traffic delay and other parameters (i.e., vehicle speed, traffic demand, cruising time, etc.).
We also observe how the traffic delay changes when we assign all curb space for parking use and
assign the curb space for P, PD, and LU uses. Then we use the simulation outputs as inputs to build
an optimization model that maximizes the total profit (maximal parking revenue and minimal
traffic delay). Since it overall takes more than three hours for existing nonlinear solvers to obtain
the optimal solutions, thus, we proposed algorithms to obtain a near-optimal solution efficiently.

We compare its performance with the nonlinear solver’s. It shows that the proposed algorithm is

53



a more practical procedure that outperforms the existing nonlinear solver in both CPU time-saving
and percentage gap from the nonlinear solver. The proposed algorithms require much less
computational efforts but yield an even better result than nonlinear solver. We further show that
the proposed algorithms are an efficient way to solve real-world instances in a reasonable time.
While there is more traffic heading for parking than PD/LU, Algorithm 1 takes about 32 minutes
to solve the Detroit case with a 5.27% gap different from the nonlinear solver’s solution while
Algorithm 2 takes about 19 minutes to solve the Detroit case with al.18% gap different from the
nonlinear solver’s solution on average. It is indicating that Algorithm 2 is a more efficient approach

to solve real-world instances.

As part of future research, first, we can let a proportion of vehicles that are searching for
curb space leave the network after they have spent a specific time in the searching state. Second,
the solutions given using the optimization model does not indicate which exact spot should be
assigned for which use, it only provides an overview of how to efficiently allocate the curb space
for different uses that reduce the traffic delay. Thus, we can extend the existing models or build a
new model to determine which spots are assigned for which use in real-world implementations.
As a third extension, we can include the parking rate as a variable in the model instead of a known

value, such that the parking rate also changes along with time changes.
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Table A1l: Solution details of the nonlinear solver

Optmized time slot

Instances | Objective value | Parking spot | PD spot |LU spot Total demand Proportion CPU time

1 27725.15 210.55 50 5.06 (0, 360) 4500 (0.6, 0.3, 0.1, 0.5)

2 6164.01 205.56 (0, 120) 4500 (0.6, 0.3, 0.1, 0L.5)

3 14783.98 210.19 (1: 4500 (0.6, 0.3, 0.1, 0.5)

1 560.98 206.54 11.09 4500 5, 0.3, 0.1, 0.5)

i 126305.21 154.86 62,57 (0, 360) GOO0 5, 0.3, 0.1, 0.5)

i 8.28 179.19 58 5 (0, 1200 G000 5, 0.3, 0.1, 0L.5)

7 %] 156.08 61.52 12.10 (120, 240) G000 j, (. , (L5)

8 GO026.83 1586.96 59,49 13.54 (240, 360) GOO0 3, 1.2 ,

9 26700.69 214.90 26.36 18.7: (0, 360) 4500 3, 0. L (L

10 HOBT. 50 200,49 (0, 120) 4500 3, (). L (.

11 14534.66 215.84 (120, 240) 4500 3, (). , (L

12 217.07 (240, 360) 4500 3, 0.2 , (.

13 193.97 (10, 360) G000 3, (). L (.

14 194.03 (0, GOO0 3, (). (.5

15 5 194.43 (12 G000 3, 0.2 (0.5

16 59236.03 193.45 (240, 360) G000 j, 0.2, L (L

T 26148.11 218.33 (0 4500 3, 0.1, (.

18 216.49 (0, 4500 5, 0.1, (0.5

19 215,19 (120, 2 4500 5, 0.1, (.f JH28
20 201.78 (240, 360) 4500 } (.5 3806
21 191.55 (0, 360) 6000 4000
22 200.99 (0, 120) 6000 3942
23 201.52 (120, 240) 6000 3995
24 53T18.69 198.76 (240, 360) 6000 4010
25 9022.24 (0, 360) 4500 3810
26 354132 (0, 120) 4500 3822
27 3533.52 (120, 240) 4500 ) 3801
28 -805.33 (240, 360) 4500 7) 5690
29 16055.15 (0, 360) 6000 7l 3882
30 1954. 62 213.52 (0, 120) G000 7)

31 d (120, 240) 6000 7)

32 (240, 360) 6000 7l

33 (0, 360) 1500 7)

3 4500 7)

35 4500 7l

36 4500 7)

37 6000 7)

38 6000 7l

39 6000 .7)

40 6000 5, (.2 0.7}

41 ¢ 7 4500 i 001 0.3, 0.7)

12 4483 4500 i, 001, 0.3, 0.7)

43 JHBE. 46 (120, 240) 4500 i 001 0.3, 0.7)

14 -466.34 (240, 360) 1500 (0.6, 0.1, 0.3, 0.7)

15 28 10, 360) 6000 (0.6, 0.1, 0.3, 0.7)

1 3 333 .4 (0, 120) 6000 (0.6, 0.1, 0.3, 0.7)

17 T800.76 227.06 (120, 240) G000 (0.6, 0.1, 0.3, 0.7)

18 -2 215.49 (240, 360) G000 (0.6, 0.1, 0.3, 0.7)

) 33503 10, 360) 1500 (0.8, 0.1, 0.1, 0.5)

50 ] (0, 120) 1500 (0.8, 0.1, 0.1, 0.5)

il 6 7120, 210) 1500 (0.8, 0.1, 0.1, 0.5)

52 i 4 (240, 360) 4500 (0.8, 0.1, 0.1, 0.5)

i 210.83 (0, 360) G000 (0.8, 0.1, 0.1, 0.5)

i 210.90 (0, 120) G000 (0.8, 0.1, 0.1, 0.5)

55 208.91 (120, 240 G000 (0.8, 0.1, 0.1, 0.5)

i 220.64 (240, 360) G000 (0.8, 0.1, 0.1, 0.5)

57 245.42 (0, 360) 4500 (0.8, 0.1, 0.1, 0.7)

5& 244.22 (0, 120) 4500 (0.8 0.1, 0.1, 0.7)

i) (284,12 245.99 (120, 240) 4500 (0.8, 0.1, 0.1, 0.7)

G0 -1049.12 248.97 5. (240, 360) 4500 (0.8, 0.1, 0.1, 0.7)

(il 26157.54 221.39 .8 (0, 360) G000 (0.8 0.1, 0.1, 0.7)

62 2 239.59 3.08 (0, 120) G000 (0.8, 0.1, 0.1, 0.7)

3 14019.80 243.00 10.32 G.68 (120, 240 G000 (0.8, 0.1, 0.1, 0.7)

(i 344.43 244.71 .81 8.48 (240, 360) G000 (0.8 0.1, 0.1, 0.7)
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Table A2: Solution details of CSAH2

Optmized time slot

Instances | Objective value | Parking spot | PD spot | LU spot Total demand Proportion CPU time
1 26911.56 206 42 12 (0, 360) 4500 (0.6, 0.3, 0.1, 0.5) 1529
2 6167.58 206 45 il (0, 120) 4500 (0.6, 0.3, 0.1, 0.5) 2064
3 15140.26 206 42 12 (120, 240) 4500 (0.6, 0.3, 0.1, 0.5) 1482
4 206 42 12 (240, 360) 4500 (0.6, 0.3, 0.1, 0.5) 1164
5 239 18 3 (0, 360) 6000 (0.6, 0.3, 0.1, 0.5) 740
] 185 60 15 (0, 120) 6000 (0.6, 0.3, 0.1, 0.5) 1795
7 55853.63 218 36 6 (120, 240) 6000 i, 0.3, 0.1, 0.5) 1209
] 33260.04 218 36 6 (240, 360) 6000 0. 0.5) 1212
9 215 27 18 (0, 360) 1500 (.5 0.5) 1382
10 209 33 18 (0, 120) 1500 0. , 0.5) 1792
11 215 27 18 (120, 240) 1500 , 0. 0.5) 1433
12 1439.62 24 21 (240, 360) 1500 i, 0. , 0.5) 1484
13 135075.23 18 6 (0, 360) 6000 i, (. , 0.5) 1157
14 115895.61 39 27 (0, 120) 6000 i, (. , 0.5) 2208
15 5552658 18 6 (120, 240) 6000 i, (. , 0.5) 1129
16 64A850.85 18 6 (240, 360) 6000 i, (. 2, 0.5) 1018
7 26275.35 12 27 (0, 360) 4500 i, (0. , 0.5) 1172
18 5850.01 18 27 (0, 120) 1500 0. 3, 0.5 1749
19 14235.91 12 27 (120, 240) 1500 0. 3, 0.5) 1218
20 1 77 9 30 (240, 360) 1500 i, (. 3, 0.5) 1208
21 118363.63 18 36 (0, 360) 6000 ] 3, 0.5) 2129
22 11340.99 18 36 (0, 120) 6000 3, 0.5)

23 51421.35 ] 18 (120, 240) 6000 , 0.5) 956G

24 62710.35 ] 18 (240, 360) 6000 3, 0.5) 1252

25 9040.10 27 i (0, 360) 1500 L 0.7) 1142

26 3542,12 30 [i (0, 120) 1500 L 0.7) 1269

27 : 27 [§ (120, 240) 1500 ,0.7) 087

28 15 i (240, 360) 4500 L 0.7) 676

29 16194.80 33 9 (0, 360) 6000 L0.7) 1231

30 4960, 54 39 £l (0. 120) 6000 ,0.7) 1371

41 4 33 Y (120, 240) 6000 ,0.7) 1277

32 -919.58 21 9 (240, 360) 6000 ,0.7) 820
33 0134, 96 18 12 (0, 360) 1500 L 0.7) 1022
34 348420 21 12 (0, 120) 1500 .2, 0.7) 1202
35 3548, 42 18 12 (120, 240) 1500 2,0.7) 875
36 -656.39 12 12 (240, 360) 4500 2, 0.7) 885
37 ! 24 15 (0, 360) 6000 2, 0.7) 1322
38 27 15 (0, 120) 6000 2, 0.7) 1443
39 21 15 (120, 240) 6000 2, 0.7) 983
40 15 15 (240, 360) 6000 2, 0.7) 840
41 9 18 (0. 360) 1500 3,0.7) 905
42 12 18 (0, 120) 1500 3, 0.7) 1070
43 ] 18 (120, 240) 1500 3, 0.7) 941
A4 [i 18 (240, 360) 1500 (0.6, 0.1, 0.3, 0.7) 450
45 12 24 (0, 360) 6000 (0.6, 0.1, 0.3, 0.7) 1221
A6 15 24 (0, 120) 6000 (0.6, 0.1, 0.3, 0.7) 1361
7 12 24 (120, 240) 6000 (0.6, 0.1, 0.3, 0.7) 1188
18 -4 [i 24 (240, 300) 6000 (0.6, 0.1, 0.3, 0.7)

19 O5168.51 12 ] (0, 360) 1500 (0.8, 0.1, 0.1, 0.5)

50 9619.98 18 9 (0, 120) 1500 (0.8, 0.1, 0.1, 0.5)

51 39079.10 12 i (120, 240) 1500 (0.8, 0.1, 0.1, 0.5)

52 44665.19 12 ] (240, 360) 1500 (0.8, 0.1, 0.1, 0.5)

53 147893.42 3 3 [0, 360) 6000 (0.8, 0.1, 0.1, (0.5)

54 1494728 12 12 (0, 120) 6000 (0.8, 0.1, 0.1, (.5)

55 (1543.99 3 3 (120, 240) 6000 (0.8, 0.1, 0.1, (0L5)

5 (387930 3 3 (240, 300) 6000 (0.8, 0.1, 0.1, 0.5)

57 12017.93 9 [i (0, 360) 1500 (0.8, 0.1, 0.1, 0.7)

58 12 [i (0, 120) 1500 (0.8, 0.1, 0.1, 0.7)

59 9 [i (120, 240) 1500 (0.8, 0.1, 0.1, 0.7)

i -1028.80 i i (240, 360) 1500 (0.8, 0.1, 0.1, 0.7) 520
fil 2526082 9 9 (0, 360) 6000 (0.8, 0.1, 0.1, 0.7) 609
[ H8UT.38 15 il (0, 120) 6000 (0.8, 0.1, 0.1, 0.7) 880
(i 14172.11 9 ] (120, 240) G000 (0.8, 0.1, 0.1, 0.7) 605
fid 507.44 9 [ (240, 360) 6000 (0.8, 0.1, 0.1, 0L.7) (12
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