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Supplementary Information Text 

Current speed sensitivity.   

 

The bottom-ocean velocity field is generally poorly constrained.  Significant 

qualitative and quantitative variations exist across various model output products, e.g., 

compare the dissipation rates that are proportional to bottom kinetic energy in Figs. 9b and 

9c of Ref (1), and resolutions, e.g., compare Figs. 2a and 2c of Ref (2).  To get a sense of 

the sensitivity of the beta parameter (β) and dissolution rates to different bottom speed 

products, we compared the results obtained from the bottom kinetic energy field of a 1/25th 

degree global configuration of HYCOM, accounting for topographic internal lee-wave 

drag, with those obtained using a kinetic energy dataset from the same model without the 

“wave drag” effect, i.e., Fig. 3d and 3b of Ref. (3), respectively.  Here, internal lee-wave 

drag represents the interaction between the bottom flows and the underlying topography 

that are not simply due to bottom friction.  This drag is a momentum sink associated with 

internal lee-wave generation that arises from geostrophic flow impinging upon rough 

topography and topographic blocking.  The results from this comparison are shown in SI 

Appendix, Fig. S7.  Whereas the world-averaged bottom kinetic energy increases from 

0.0066 m2 s-2 using a model taking into account the wave-drag effect to 0.0171 m2 s-2 for a 

model neglecting this effect (i.e., a 2.6 folds increase), the resulting carbonate ion mass-

transfer coefficient (β) and calcite dissolution rate (r) are only moderately affected, as they 

rise from geometrically world-averaged values of β = 14 m yr-1 and r = 0.10 mol m-2 yr-1 

to β = 20 m yr-1 and r = 0.13 mol m-2 yr-1, respectively (a ~40 and 30% increase, 

respectively).  Thus, our dissolution model, although impacted by the uncertainty in the 

current speed dataset, tends to attenuate these discrepancies.  As shown in SI Appendix - 

Fig. S7, our results are not qualitatively affected by the initial bottom kinetic-model choice, 

as the loci of accelerated anthropogenically-driven dissolution are invariant whether or not 

the wave-drag effect is included in the initial kinetic energy model. 

 

We chose two different bottom current-speed products because it is necessary to 

put an upper limit on the sensitivity of the dissolution rate changes over time.  We focus 

on the relationship between bottom current-speed changes under a “climate change 

scenario” and the difference between the two bottom-current speed products used for this 

sensitivity analysis (i.e., with and without wave drag, see SI Appendix, Fig. S7).  We posit 

that a comparison of their spatial patterns and magnitudes can inform us about the level of 

uncertainty in our dissolution rate change estimates.  The focus here is on differences 

between each bottom current speed product because a bias that is consistent over time and 

space would approximately cancel out when considering its contribution to the changes in 

dissolution rates.  The difference between the bottom current-speed products used here is 

larger than the simulated bottom current-speed change in climate change simulations over 

time (see Fig. 3e of Ref (4)) and at similar locations (namely, the Southern Ocean and the 

North Atlantic Ocean).  This suggests that our estimates, based on the two bottom current 

speed products (with and without wave drag), can be used as an upper limit on the 

uncertainty of our dissolution rate change estimates. 
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 Anthropogenic CO2 dataset.   

 

We have tested the sensitivity of our dissolution rates to the choice of the DIC 

dataset.  Resolving or understanding the differences between various DIC datasets is 

beyond the scope of this paper, but we provide a comparison of the results described in the 

main text of this study, using the DIC dataset from Ref (5), with results obtained based on 

another DIC dataset from Ref (6).  Both datasets comprise DIC values for the present day, 

as well as pre-industrial DIC, allowing us to compute and compare Δ[CO3
2-]SW and Δr.  

First, we note that [CO3
2-]SW values computed with DIC from Ref (5), represented in Fig. 

2a-b, are slightly lower than those derived with DIC from Ref (6), in SI Appendix, Fig. 

S8a-b.  These differences are, however, not significant since they are within the error bars.  

Δ[CO3
2-]SW from Fig. 2c, using the DIC from Ref (5), reveals an anthropogenic [CO3

2-]SW 

decrease of 4-8 µmol kg-1 in most of the bottom waters of the Atlantic and near the Southern 

Ocean, and the presence of a small anthropogenic signal in most of the bottom waters in 

the Pacific.  On the other hand, Δ[CO3
2-]SW from SI Appendix - Fig. S8c, based on the 

alternative DIC dataset from Ref (6), shows an anthropogenic decrease in bottom [CO3
2-

]SW limited to shallow waters, along the Atlantic mid-ocean ridge and in the North Atlantic, 

while in most bottom waters, including those of the Indian and Pacific Oceans, no 

anthropogenic DIC seems to have been accumulated since the end of the pre-industrial era.  

 

To examine in further detail the differences between these two datasets, we have 

plotted depth profiles showing the anthropogenic DIC concentration along the 170°W 

meridian, between 0 and 60°S, for both datasets, along with a depth profile showing the 

bottom-water CFC-11 concentration along the same section.  CFC-11 is a non-reactive 

anthropogenic trace gas frequently used as an ocean tracer.  CFC-11 emission to the 

atmosphere was virtually nonexistent before the end of World-War II, much later than that 

of anthropogenic CO2 (~1950 vs ~1880).  There are certainly differences in air-sea 

equilibration times and solubility, but in general, anywhere CFC-11 is found in bottom 

waters there should be anthropogenic DIC as well.  As it can be seen in SI Appendix, Fig. 

S9, both DIC datasets show a northward progression of anthropogenic DIC in the bottom 

waters, but the magnitude of that increase varies.  In both cases, the patterns of the 

anthropogenic DIC distribution fit those of the CFC-11, also showing a clear northward 

progression through the bottom waters.  In addition, the dataset of Ref (6), that simulates 

anthropogenic DIC penetration from 1765 AD to 2011 AD, displays an anthropogenic DIC 

concentration of strictly zero for a large portion of the transect (between 2000 and 4000 m-

depth, 40 and 0°S), whereas some CFC-11 is found in that area for the year 2009 AD.  

Anthropogenic DIC from Ref (5) is generally higher, and present in concentrations above 

zero in the entire depth profile, which is closer to the CFC-11 data.  These observations 

support the assumption that the anthropogenic DIC dataset from Ref (5) is arguably more 

accurate than the dataset from Ref (6) for the purposes of the present study. 

 

Comparing Fig. 3c with SI Appendix - Fig. S8f, it can be seen that the loci of 

anthropogenic dissolution are unaffected by the choice of the anthropogenic DIC dataset, 

with a major anthropogenic dissolution flux observed in the North Atlantic, and the 

presence of several dissolution hot spots in the most southern latitudes.  Although Δr from 

Ref (6) is generally smaller than from Ref (5) and falls for the greater part within the error 
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bars, as shown in SI Appendix - Fig. S8f, some Δr values remain significant, such as the 

anthropogenic dissolution hotspots in the North and South Atlantic and in the Pacific.  In 

addition, the CCD in the North West Atlantic rises from 5402 ± 346 m for the pre-industrial 

to 5086 ± 185 m for today when anthropogenic DIC from Ref (5) is used, compared to a 

rise to 5127 ± 183 m using Ref (6).  These results are statistically identical.  Thus, although 

the magnitudes of the dissolution rates are impacted by the initial choice of the DIC dataset, 

our results and conclusions are not.  There is a clear indication for current anthropogenic 

dissolution of CaCO3 at the seafloor and a shoaling of CaCO3 marker horizons in the water 

column. 

 

 Basis for equation 2 and 3 of the text and DBL transport control of 

dissolution.   

 

References (15-18) included the full complement of equilibrium and transport 

constraints of the CO2-H2O-system in a CaCO3 diagenetic model.  The effect of this 

inclusion was primarily to increase the rate of dissolution of CaCO3 in sediments.  Thus, a 

model that neglects the CO2-system, as in earlier work by Refs (9) and (19), will under-

estimate the amount of sedimentary CaCO3 dissolution at a given ocean depth on the 

seafloor, an issue we will revisit below.   

 

Reference (20) reconsidered the controls on CaCO3 dissolution at the seafloor, 

including both the effects of a diffusive sublayer and reaction kinetics in the sediment.  

That paper based its analysis on the kinetic data in Ref. (21), which was the only study of 

CaCO3 dissolution kinetics in natural sediments under seafloor-like conditions, at least 

until Ref. (22).   

 

To establish the relative control of boundary layer effects versus sediment-side 

kinetics on CaCO3 dissolution in a sediment, Ref. (20) created a hybrid diagenetic model 

for the carbonate ion alone in both the sediment and the boundary layer (see below).  That 

paper does not include the full CO2 system for the reason stated above, i.e., it would make 

the dissolution in the sediment faster and thus promote boundary layer control.  With the 

Ref. (21) data, Ref. (20) could independently derive a mass transfer (rate) constant for 

dissolution in a bed of CaCO3 and from boundary-layer theory, calculate the benthic 

boundary layer (BBL) mass-transfer coefficient.  These results allowed Ref. (20) to 

determine which process (sediment-side kinetics versus BBL transport) controlled deep-

sea CaCO3 dissolution.  

 

The Ref. (20) model is based on the following assumptions: steady state, infinitely 

fast mixing of the solid phase of the sediment, constant porosity of the sediment, constant 

dissolution parameters, and linear dissolution kinetics (justified below), while ignoring 

explicit treatment of the effects of oxic organic matter decomposition.  While we know of 

no data that unambiguously demands a substantial role for organic matter oxidation in 

deep-sea CaCO3 dissolution, we will nevertheless return to this point later.    
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Linear kinetics characterize the Ref. (21) data, as shown in a plot of rate (moles 

released to the overlying water per unit area and unit time) versus the degree of 

undersaturation, as reproduced below (Fig. A1).  

 

          A                                                                                    B 

   
Figure A1.   Calcite dissolution rates from Ref. (21), as re-plotted in Ref. (20), as a 

function of the reported degree of undersaturation. 

 

 

These data are for real/natural deep-sea sediments (Fig. A1A) and beds of pure 

CaCO3 (Fig. A1B); the rates for these two materials are very similar.  Any argument that 

these data are anything but linear cannot be justified statistically.  From these data, it is 

possible to extract a linear sediment-side rate constant (mass-transfer coefficient) for 

CaCO3 dissolution in the bed as a function of the amount of CaCO3 in the sediment (Fig. 

A2).  

 
Figure A2.  Calculated ks values from the Ref. (21) data as re-analyzed in Ref. (20). 
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ks in Fig. A2 is the sediment-side rate constant for the kinetic processes within the 

sediment (combined dissolution and diffusion) that Ref. (20) used to characterize CaCO3 

dissolution in that model, and we derive its specific mathematical form below.    

 

Building upon linear dissolution kinetics (21-23), Ref. (20) used the following 

equations to describe the vertical distribution of dissolved and solid carbonate in sediments, 

as well as the “Clay” (non-carbonate) component of the solids.   

 
a) For dissolved CO3

2- 

 

        [A1] 

 

where  

 x is the depth into the sediment, with the origin at the sediment-water interface  

  and a positive sign convention downward into the sediment.   

    C is the carbonate ion concentration in the porewater 

 Cs is the carbonate ion concentration in the porewater at saturation with CaCO3 

 Dc is the diffusion coefficient for carbonate ion in porewater, tortuosity corrected 

 𝜑 is the porosity of the sediment 

 B is the weight fraction of the solids that is CaCO3   

 kc is the pseudo-homogeneous rate constant for CaCO3 dissolution in sediment  

         (units of inverse time).  It is not ks, but instead the product of the real  

         heterogeneous rate constant for dissolution per unit area of solid CaCO3  

         surface multiplied by the total CaCO3 surface area per unit volume of  

         solid sediment   

 

The first term in Eq. A1 accounts for diffusion in the porewaters, while the second 

term represents the source of dissolved carbonate from CaCO3 dissolution into the 

porewaters.   

 

b) For Calcite 

 

        [A2] 

 

where  

 FB is the flux (rain) of CaCO3 to the seafloor  

 w is the accumulation speed of the sediment 

 𝜌CaCO3 is the density of CaCO3 (in units compatible to those of C)  

 

c) For “Clay” (non-carbonate fraction of the solids) 

 

FM = (1-𝜑) w M          [A3] 
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where M is the mass concentration of “Clay” in the solids (kg m-3) and FM is the 

prescribed flux of “Clay” to the sediment-water interface (kg m-2 y-1).  

 

d) For Solid Volume Fraction 

 

           [A4] 

 

where 𝜌M is the mass density of the “Clay” (kg m-3).    

 

Boundary conditions on this system of equations are:  

 

         (A5) 

 

where C0 is the dissolved carbonate ion concentration at the sediment-water interface and 

β is the effective mass-transfer coefficient on the water side of the sediment, i.e., the 

boundary layer.  At depth in the sediment,  

 

         [A6] 

 

The solution to Eq. A1 is  

 

        [A7] 

 

where a1 and a2 are integration constants and  

 

          [A8] 

 

Equation A6 then immediately gives that 

 

a2 = 0           [A9] 

 

Equation A5 then gives that 

 

          [A10] 

 

The distribution of the solute in the diffusive boundary layer is linear,  

 

C(x) = a3 x + a4          [A11] 
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where a3 and a4 are further constants.   

 

The conditions on a3 and a4 are that C(0) = a4 and C(-δ) = C∞, where x = -δ is 

the top of the (diffusive) boundary layer.  The second condition gives  

 

          [A12] 

 

By matching Eqs. A7 and A11 at x = 0, there results an equation for the unknown 

concentration at the sediment-water interface, 

 

          [A13] 

 

B, the amount of CaCO3 in the sediment, is obtained from Eq. A2; specifically, with Eq. 

A14,  

 

      [A14] 

 

where (24,25)  

 

          [A15] 

 

and, ks is then defined as,  

 

         [A16] 

 

The burial speed w is obtained by combining and manipulating Eqs. A3, A4 and 

A14, 

 

      [A17] 

 

Equation A14 can be solved (numerically) to predict a CaCO3 profile with ocean 

depth.  When coupled with Equation A15, it also reveals that if ks << 𝛽, the gradient in 

carbonate ion is in the porewaters and dissolution and diffusion within the sediment control 

the rate, whereas, if ks >> 𝛽 the rate is controlled by boundary layer transfer and the 

porewaters are essentially saturated.   
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We are now in a position to show that the CaCO3-depth profiles in the oceans can 

be reproduced with this model.  That can be done with Eqs A14-A17, if we supply values 

for the constants, where we focus on ks and 𝛽.  ks is given in Fig A2 above, which is the 

experimentally-derived rate constants.  𝛽 can be calculated as given in the Methods (also 

Ref. 27).  Note that the CaCO3 dissolution papers from the 1990s largely used kc, and thus 

the implied ks, as an adjustable parameter; for example, Refs (28 -36) all do this.  These 

authors did this to explain observed pH profiles, which could not be accounted for with 

laboratory determined ks or kc values from sources other than Ref. (21).  In other words, 

they lowered the value of kc until they got a reasonable fit of the pH.  That strategy is 

entirely based on circular logic and is thus self-fulfilling.  

 

We can, however, assume that ks << 𝛽 or ks >> 𝛽 or use k* from Eq. A15 and thus 

show what a CaCO3 depth profile would look like under sediment-side control, mass 

transfer control in the boundary layer or an intermediate scenario given by Eq. A15.  Figs. 

A3A and A3B below show examples of these predicted CaCO3 depth profiles for the North 

Eastern Atlantic and the Equatorial Pacific.     

 

From Fig. A3 results, we can see that: 

 

(1) The case of k* = ks, i.e., sediment-side kinetic control.  Using the unaltered laboratory 

determined rate constant ks from Ref. (21), we do not reproduce most of the data in the NE 

Atlantic or any of the data in the Equatorial Pacific.  Note that the same is true no matter 

what general area of the oceans you choose.   

 

(2) The case of k* = 𝛽, i.e., boundary-layer mass-transfer control.  Using the calculated 

effective mass-transfer coefficient for the boundary layer, the predictions match the data 

admirably, except for the tail, at very low CaCO3 content.  The same is true no matter what 

area of the oceans you choose. 

 

(3) Finally, using the exact k* from Eq. A15.  The green line captures the data trends 

including the tail.  The same is true no matter what area of the oceans you choose.  Note, 

however, that the k* = 𝛽 prediction agrees with this more precise prediction within the 

error in the data, except at the tail.  Ref. (20) has further shown that the amount of CaCO3 

preserved in the tail is of not consequence to a CaCO3 budget.  The tail in this case is caused 

by the lack of enough CaCO3 in the sediment to saturate the porewaters.   

 

Figures A3A and A3B show that seabed CaCO3 dissolution is largely controlled by 

mass transfer across the boundary layer.  Inclusion of the full dissolved CO2 system, i.e., 

adding equilibrium and transport of bicarbonate ion and aqueous CO2, would increase the 

dissolution rate and raise all the predicted profiles to slightly higher depths.  That makes 

the kinetic-controlled case an even worse predictor of the actual profiles.    

 

Some investigators, in the past, have argued that the laboratory rates are somehow 

flawed and are much lower in situ.  There is no evidence to support this contention; these 

opinions appear to be simply statements of belief.  Keir's experiments were carried out with 

seawater and natural sediments.  To invoke an identified retarding/inhibition effect that 
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occurs in the ocean but not the laboratory is baseless.  (Yes, there were no macrofauna in 

the lab case, but digestion of CaCO3 hurries its dissolution.)    

 

Can Keir's rate be reproduced to establish their validity?  Reference (22) redid the 

Keir experiments, but with better stirring control.  Keir's results did not indicate any real 

difference between natural and synthetic calcite.  Reference (22) found that the rate of 

dissolution of a CaCO3 bed was: 

 

(1) a linear function of the degree of undersaturation, just as in Fig. A1 of the Ref. (21) 

data, as shown by Fig. A4 below, 

(2) had similar dependence of the rate on the CaCO3 content of the bed (Fig. A2), as 

shown by Fig. A5 below.  Note, the interface area-normalized sediment-side rate 

constant (yet another form of rate constant!) derived in Ref. (22) (14.3 ± 1.5 mol 

m-2 yr-1) is only slightly higher to that obtained from a fit to Ref. (21) calcite 

dissolution experimental results (10.5 ± 1.5 mol m-2 yr-1). 

(3) finally, the rate of dissolution is demonstrably dependent on the stirring rate of the 

overlying water at lower stirring speeds, as shown by Fig. A6 below, which is not 

possible with sediment-side kinetic control.  The higher stirring rates are far beyond 

any mixing that could occur in the oceans.    

 

The results summarized above constitute our evidence for a (largely) water-side 

mass-transfer control on deep-sea CaCO3 dissolution on the ocean floor. 
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 A          B 

   
Figure A3.  Predicted CaCO3 distribution profiles with Eq. A14, as modified from 

Ref. (20).  Note (Zcc)p in the right-hand diagram indicates the depth of the (potential) 

CCD if dissolution is completely controlled by DBL mass transfer (27), while (Zcc)10 

indicates the standard estimated depth for the CCD assuming it corresponds to the depth 

where the CaCO3 content of the sediment falls to 10%.      

 

 

 
 

Figure A4.  Steady-state ISA-normalized calcite dissolution rate as a function of the 

steady-state undersaturation state (1 −Ωc).  The color of each point represents the 

stirring speed used during the dissolution experiments.  Uncertainties are represented by 

error bars on both the saturation state and the dissolution rate.  The red and the black 

solid lines are, respectively, the linear bivariate fit to the experimental dissolution data 

obtained in unstirred, i.e., Eq. 7a in Ref. (22), and stirred reactors, Eq. 8b in Ref. (22), 

and the dashed lines describe the standard errors for each model.  Taken from Ref. (22). 
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Figure A5.  The apparent ISA-normalized rate constants (k, with error bars) as a 

function of the calcite content (B) of the sediment disks. The circles are rate constants 

from experiments carried out under quiescent conditions and the triangles are rate 

constants from experiments in stirred (74 rpm) reactors.  The solid lines are standard 

power regression models and their equations are displayed above each data group with 

uncertainties, represented by the dashed lines, on both the slope and the order of 

dependence on the calcite weight fraction.  The white squares are dissolution rate 

constants derived from experiments carried out by Ref. (21) on natural deep-sea calcitic 

sediments.  Taken from Ref. (22). 

 

 
 

Figure A6.  Indiana limestone calcite dissolution rates as a function of the stirring 

speed.  The labels indicate the measured steady-state saturation state with respect to 

calcite (Ωcalcite) in the bulk seawater for each experiment.  Taken from Ref. (22). 
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Justification of the assumption of porewater saturation.   

 

The importance of the DBL limitation on the CaCO3 dissolution at the seafloor has 

been emphasized by several research groups in the past (9, 19-22, 37).  As explained in 

Ref. (24), if the DBL resistance on the dissolution flux of calcite from a sediment is much 

greater than the internal resistance, i.e., the sum of the kinetic and diffusional resistance 

within the porewaters, the overall reaction rate is controlled by mass transfer through the 

DBL. This is the case when kS >> β.  Under this “external diffusion regime”, the 

concentration at the interface must be near [CO3
2-]eq. This scenario corresponds to Fig. 6-

5c in Ref. (24). Because the mass transfer coefficient β is primarily a function of the flow 

characteristics, the reaction rate is determined by the hydrodynamics and not by kinetics of 

reactions occurring at the interface or within the sediments.  Thus, the CaCO3 dissolution 

rate at the seafloor should be controlled by diffusion through the DBL if [CO3
2-]SW in the 

porewaters is equal or close to [CO3
2-]eq, a situation that can be achieved if the dissolution 

kinetics of the individual CaCO3 grains within the sediment are fast.  

 

The calcite dissolution rates derived from laboratory experiments where calcite 

grains are kept in suspension in a reactor, e.g., Refs (38-41), thus free of any diffusion 

limitation, are consistently orders of magnitude higher than the dissolution rates from 

experiments performed on sediments subject to the presence of a DBL, e.g., Refs (20-22), 

when the considered dissolving surface area is the same.  As noted in Ref. (24), because a 

typical 1 mm-thick DBL is ~100 thicker than the boundary layer around 10 μm particles, 

and because the specific surface area of natural calcitic particles is very large, the internal 

resistance of deep-sea sediments is significantly lower than their external resistance, due 

to the presence of a DBL above the interface.  Thus, diffusion through the DBL is by far 

the slowest step in the kinetics of calcite dissolution at the seafloor, and [CO3
2-]SW should 

tend towards [CO3
2-]eq at the interface, as the porewaters would be saturated with respect 

to calcite. 

 

Although Ref. (28) reported calcite dissolution within the first cm of deep-sea 

sediments, this dissolution may be due to metabolic processes, or experimental bias caused 

by the introduction of microelectrodes through the sediment-water interface.  Ref. (42) 

showed that early micro-electrodes, inserted into sediments from the water-side of the SWI, 

measured deeper O2 penetration in sediments than electrodes inserted from below and 

moved upward.  The microelectrodes inserted from the water-side caused overlying water 

to penetrate the sediment to some extent; if this afflicted the Ref. (28) study, then 

undersaturated overlying waters may have been introduced into the sediment, leading to 

dissolution at depths where no dissolution was occurring previous to electrode insertion.  

Besides, we also note that Ref. (28) did not measure calcite dissolution directly but, instead, 

computed this dissolution based on porewater chemistry, assuming a reaction order of 4.5 

(following the results of Ref. (39) obtained under very different hydrodynamic conditions, 

i.e., particles in suspension) and fitting a dissolution rate constant to these data.  Thus, we 

do not believe that the study of Ref. (28) provides any evidence invalidating the concept 

of calcite dissolution in sediments occurring primarily at the SWI.  In fact, compelling 

evidence has been brought following the publication of Ref. (28) to support the theory of 

external diffusion regime for calcite dissolution at the seafloor.  Several studies concluded 
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that calcite dissolution must primarily take place at or just below the sediment-water 

interface (before the grains get buried) rather than in the underlying mixed zone, in order 

to explain the observed distribution calcite radiocarbon ages in sediment profiles, e.g., 

Refs. (43-45).  Similarly, Ref. (22) measured no discernable depth-gradient in the calcite 

content of synthetic calcite-rich sediment disks undergoing dissolution at the end of the 

dissolution experiments.  

 

Consequently, abundant theory and data support the strong dependency between 

bottom-current speed and the calcite dissolution rate at the SWI that is being supported in 

our study, suggesting that for most of the calcitic sediments at the seafloor, porewater 

[CO3
2-] near the sediment-water interface is equal or close to [CO3

2-]eq, and that the 

dissolution reaction of calcite at the seafloor is mostly water-side transport controlled.  
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Supplementary figures and tables 

 

 
 

Fig. S1.  Bottom-water distribution of the GLODAPv2.2016b variables used in the 

computation of [CO32-]SW. (a) depth of the deepest resolved layer of GLODAPv2.2016b 

considered to be bottom waters, (b) temperature (T), (c) practical salinity (Sp) , (d) total 

alkalinity (TA), (e) soluble reactive phosphate (SRP) concentration, (f) dissolved 

inorganic silica (DSi) concentration, (g) current and (h) pre-industrial dissolved inorganic 

carbon (DIC) concentrations. 
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Fig. S2.  (a) Global-scale CaCO3 content of surficial sediments and (b) sediment-side 

CO3
3- mass-transfer coefficient computed using Eq. 10. 
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Fig. S3.  Diffusive boundary layer thickness as a function of the bottom-current velocity. 

(a) Current speed resolved by the 1/25th degree HYCOM simulation, averaged over the 

final year of its run and over the bottom 500 meters, (b) diffusive boundary layer 

thicknesses at the sediment-water interface and (c) water-side CO3
2- mass-transfer 

coefficient.   
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Fig. S4.  Impact of temperature and current velocity on the water-side CO3
2- mass-

transfer coefficient and the DBL thickness. (a) Shear velocity (u*) as a function of the 

current velocity (U) at the outer edge of the bottom boundary layer, according to the 

equation derived in this study (in blue) and to the empirical equation from Csanady in ref. 

(8). (b) DBL thickness (zDBL) as a function of the shear velocity(u*) for 5 different 

empirical models (9-13) and comparison with observation-based DBL thicknesses from 

Santschi et al. in Ref. (14). (c) Water-side CO3
2- mass-transfer coefficient (β) as a 

function of the current velocity (U) at various temperatures. (d-f) Plots representing the 

entirety of the data on the seafloor, where each black point represents one 1°x1° value. 

Each plot is associated with a histogram on each of its axes showing the relative 

distribution of the data over the range observed at the seafloor. 
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Fig. S5.  Relative control from the sediment-side (kS) or water-side (β) mass-transfer 

coefficients on the overall CO3
2- mass transfer coefficient (k*). 
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Fig. S6.  Geographical boundaries of the 11 regions used to estimate the CCD from the 

calcite contents of sediments (Xcalcite). The Southern Ocean, the Arctic Ocean, and all 

depths shallower than 300 m are not included in our CCD estimates.   
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Fig. S7.  Sensitivity of the dissolution rate model to two different initial kinetic energy 

distribution models. Impact of the “wave drag” effect on (a) the water-side CO3
2- mass-

transfer coefficient (β), (b) the current calcite dissolution rates at the sediment-water 

interface (r), and (c) the difference between pre-industrial and current calcite dissolution 

rates below 300 m (Δr = current r – pre-industrial r). Uncertainties are indicated by the 

red outline on the color bars, corresponding to one standard deviation, equal to 0.05 mol 

m yr-1 for r and to 0.07 mol m yr-1 for Δr. 
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Fig. S8.  Bottom-water [CO3
2-] and calcite dissolution rates estimated from an alternate 

DIC dataset from ref. (6). The panels on the left depict (a) pre-industrial bottom-water 

[CO32-]SW, (b) current bottom-water [CO32-]SW and (c) difference between pre-industrial 

and current bottom-water [CO32-]SW (Δ[CO32-]SW = current bottom-water [CO32-]SW minus 

pre-industrial bottom-water [CO32-]SW), below 300 m. The panels on the right represent 

(d) pre-industrial, (e) current calcite dissolution rates (r) at the sediment-water interface, 

and (f) the difference between pre-industrial and current calcite dissolution rates below 

300 m (Δr = current r  minus pre-industrial r), i.e., the anthropogenic CO2-driven calcite 

dissolution rate. Uncertainties are indicated by the red outline on the color bars, 

corresponding to one standard deviation, equal to 16.9 µmol kg-1 for Δ[CO32-]SW, to 0.05 

mol m yr-1 for r and to 0.07 mol m yr-1 for Δr. 
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Fig. S9.  Anthropogenic tracers penetration in the ocean bottom waters. Concentration 

profiles along the 170°W meridian, in the southern hemisphere and below 1000m, of (a) 

anthropogenic DIC from ref (6), (b) anthropogenic DIC from refs (5,7) and (c) CFC-11 

(note that 2 different contour intervals are used, 0.05 and 0.01 for low concentration 

areas). The solid red lines in the left panels represent the anthropogenic DIC detection 

limit that we set to 4 µmol kg-1, below which an anthropogenic DIC addition would not 

be considered significant, and the red dashed lines delimit the areas where no 

anthropogenic DIC is found, i.e., its estimated concentration is strictly zero.  
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Table S1.  Regional averages of pre-industrial and current calcite marker horizons 

and dissolution rates.  

  Pre-industrial values (ca. 1800 AD)  Current values (2002 AD) 

  CCD 

(m) 
CSD 

(m) 
r 
(mol  

m-2 yr-1) 

global r 
(x1012 mol 

yr-1) 

 CCD 

(m) 
CSD 

(m) 
r 
(mol  

m-2 yr-1) 

global r 
(x1012 mol 

yr-1) 
North West Atlantic  5402 

± 346 (n=26) 

4866 

± 180 

0.02 

± 0.03 

0.1 

± 0.2 

 5086 

± 185 
4524 

± 206 
0.05 

± 0.03 

0.3 

± 0.2 

North East Atlantic  5402 

± 441 (n=7) 

4756 

± 174 

0.02 

± 0.02 

0.1 

± 0.1 

 5253 

± 178 

4592 

± 203 

0.02 

± 0.02 

0.1 

± 0.1 

Western Equatorial 
Atlantic 

 4896 

± 363 (n=5) 

4187 

± 234 

0.06 

± 0.03 

0.3 

± 0.2 

 4767 

± 215 
4040 

± 248 
0.07 

± 0.03 

0.3 

± 0.2 

Eastern Equatorial 
Atlantic 

 5926 

± 155 (n=8) 

4542 

± 205 

0.03 

± 0.03 

0.2 

± 0.2 

 5853 

± 161 

4446 

± 212 

0.03 

± 0.03 

0.2 

± 0.2 

South West Atlantic  4407 

± 569 (n=15) 

3573 

± 299 

0.05 

± 0.02 

0.7 

± 0.3 

 4180 

± 280 

3288 

± 334 

0.07 

± 0.02 

1.0 

± 0.3 

South East 
Atlantic 

 4491 

± 475 (n=5) 

3834 

± 269 

0.08 

± 0.05 

0.9 

± 0.6 

 4358 

± 251 
3667 

± 287 
0.10 

± 0.05 

1.1 

± 0.6 

North 
Pacific 

 4422 

± 990 (n=24) 

2910  

± 388 

0.09 

± 0.06 

3.2 

± 2.2 

 4386  

± 293 

2861 

± 395 
0.09 

± 0.06 

3.2 

± 2.2 

Western Equatorial 
Pacific 

 4671 

± 400 (n=19) 

3101 

± 360 

0.14 

± 0.05 

3.1 

± 1.0 

 4641 

± 269 
3056 

± 366 
0.14 

± 0.05 

3.1 

± 1.0 

Central Equatorial 
Pacific 

 4432 

± 386 (n=18) 

3178 

± 349 

0.19 

± 0.06 

3.2 

± 1.0 

 4412 

± 276 
3152 

± 353 
0.20 

± 0.06 

3.3 

± 1.0 

Eastern Equatorial 
Pacific 

 3895 

± 377 (n=10) 

2781 

± 408 

0.09 

± 0.04 

0.7 

± 0.3 

 3876 

± 331 

2756 

± 412 

0.09 

± 0.04 

0.7 

± 0.3 

South West Pacific  4320 

± 308 (n=32) 

3232 

± 341 

0.11 

± 0.06 

4.2 

± 2.2 

 4239 

± 287 
3105 

± 359 
0.12 

± 0.06 

4.6 

± 2.2 

South East Pacific  4036 

± 195 (n=9) 

3114 

± 359 

0.08 

± 0.05 

1.5 

± 0.9 

 3967 

± 308 
3032 

± 370 
0.09 

± 0.05 

1.7 

± 0.9 

Philippine Basin  4077 

± 312 (n=7) 

2864 

± 395 

0.10 

± 0.07 

0.5 

± 0.3 

 4047 

± 316 

2825 

± 401 

0.10 

± 0.07 

0.5 

± 0.3 

Western Indian Ocean  4765 

± 300 (n=6) 

3459 

± 312 

0.12 

± 0.04 

1.6 

± 0.5 

 4747 

± 245 
3414 

± 318 
0.13 

± 0.04 

1.7 

± 0.5 

Central Indian Ocean  4439 

± 674 (n=6) 

3490 

± 309 

0.10 

± 0.06 

0.9 

± 0.6 

 4403 

± 261 
3445 

± 315 
0.11 

± 0.06 

1.0 

± 0.6 

Eastern Indian Ocean  5214 

± 346 (n=7) 

3458 

± 313 

0.16 

± 0.04 

2.5 

± 0.7 

 5134 

± 231 
3344 

± 328 

0.19 

± 0.04 

2.9 

± 0.7 

Southern Indian 
Ocean 

 4346 

± 533 (n=8) 

3473 

± 312 

0.07 

± 0.05 

1.4 

± 0.9 

 4130 

± 288 

3212 

± 345 

0.10 

± 0.05 

2.0 

± 0.9 

Pre-industrial CCD (calcite compensation depth) estimated from carbonate content of 

surficial sediments, current CCD, pre-industrial and current CSD (calcite saturation 

depth) computed from GLODAPv2.2016b data, regional averages of the calcite 

dissolution rate (mol m-2 yr-1) and global rates (x1012 mol yr-1). Also reported are the 

standard deviations associated with each horizon and the number (n) of data points from 

the dbSEABED database used to derive pre-industrial CCD from the calcite contents of 

the sediments. 
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Table S2. Equations used for the computation of standard deviations. 

Variable  Standard deviation 

 

F 

  

𝜎𝐹 = 𝑘∗√(
𝐾𝑠𝑝

∗

[𝐶𝑎2+]
)

2

𝑒
𝐶𝐶𝐷 𝜌 𝑔

𝑝𝑐 (
𝜎𝐶𝐶𝐷 𝜌 𝑔

𝑝𝑐
) √(

𝜎𝐾𝑠𝑝
∗

𝐾𝑠𝑝
∗ )

2

+ (
𝜎𝑆𝑝

𝑆𝑝
)

2

+ 𝜎[𝐶𝑂3
2−]𝑆𝑊

2 

r 
 

 

a. 𝜎𝑟 = 𝜎𝐹  

b. 𝜎𝑟 = 𝑘∗√[𝐶𝑂3
2−]𝑒𝑞

2
((

𝜎𝐾𝑠𝑝
∗

𝐾𝑠𝑝
∗ )

2

+ (
𝜎𝑆𝑝

𝑆𝑝
)

2

) + 𝜎[𝐶𝑂3
2−]𝑆𝑊

2 

c.  𝜎𝑟 = √𝜎𝐹
2 + (𝑘∗)2 ([𝐶𝑂3

2−]𝑒𝑞
2

((
𝜎𝐾𝑠𝑝

∗

𝐾𝑠𝑝
∗ )

2

+ (
𝜎𝑆𝑝

𝑆𝑝
)

2

) + 𝜎[𝐶𝑂3
2−]𝑆𝑊

2)   

Δr  
𝜎𝛥𝑟 = √𝜎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟

2 + 𝜎𝑝𝑟𝑒𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑟
2  

 

[CO3
2-]SW  

𝜎[𝐶𝑂3
2−]𝑆𝑊

= √𝜎𝑇𝐴
2 + 𝜎𝐷𝐼𝐶

2   

  

Δ[CO3
2-]SW  𝜎𝛥[𝐶𝑂3

2−]𝑆𝑊
= √𝜎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝐶𝑂3

2−]𝑆𝑊
2 + 𝜎𝑝𝑟𝑒𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 [𝐶𝑂3

2−]𝑆𝑊
2  

 

This table reports the formulas used to compute the standard deviation associated with 

each computed variable. For r, the standard deviation was derived using either equations 

a, b or c reported in this table, depending on the equation used to define r, Eqs. 12, 13 and 

14, respectively.  
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