A Bi-Level Multi-Objective Approach for Web Service
Design Defects Detection

Soumaya Rebai®, Marouane Kessentini®, Hanzhang Wang”, Bruce Maxim?®

@ University of Michigan, Dearborn, Michigan, USA
beBay, San Jose, California, USA

Abstract

Context: Web services frequently evolve to integrate new features, update ex-
isting operations and fix errors to meet the new requirements of subscribers.
While this evolution is critical, it may have a negative impact on the quality
of services (QoS) such as reduced cohesion, increased coupling, poor response
time and availability, etc. Thus, the design of services could become hard to
maintain and extend in future releases. Recent studies addressed the problem
of web service design antipatterns detection, also called design defects, by either
manually defining detection rules, as combination of quality metrics, or gener-
ating them automatically from a set of defect examples. The manual definition
of these rules is time-consuming and difficult due to the subjective nature of
design issues, especially to find the right thresholds value. The efficiency of
the generated rules, using automated approaches, will depend on the quality of
the training set since examples of web services antipatterns are limited. Fur-
thermore, the majority of existing studies for design defects detection for web
services are limited to structural information (interface/code static metrics) and
they ignore the use of quality of services (QoS) or performance metrics, such as

response time and availability, for this detection process or understanding the

Email addresses: srebal@umich.edu (Soumaya Rebai), marouane@umich.edu (Marouane
Kessentini), hanzwang@ebay.com (Hanzhang Wang), bmaxim@umich.edu (Bruce Maxim)

Preprint submitted to Journal of BTEX Templates December 31, 2019

impact of antipatterns on these QoS attributes.Objective: To address these
challenges, we designed a bi-level multi-objective optimization approach to en-
able the generation of antipattern examples that can improve the efficiency of
detection rules. Method: The upper-level generates a set of detection rules
as a combination of quality metrics with their threshold values maximizing the
coverage of defect examples extracted from several existing web services and
artificial ones generated by a lower level. The lower level maximizes the num-
ber of generated artificial defects that cannot be detected by the rules of the
upper level and minimizes the similarity to well-designed web service examples.
The generated detection rules, by our approach, are based on a combination of
dynamic QoS attributes and structural information of web service (static inter-
face/code metrics). Results: The statistical analysis of our results, based on a
data-set of 662 web services, confirms the efficiency of our approach in detecting
web service antipatterns comparing to the current state of the art in terms of
precision and recall. Conclusion: The multi-objective search formulation at
both levels helped to diversify the generated artificial web service defects which
produced better quality of detection rules. Furthermore, the combination of
dynamic QoS attributes and structural information of web services improved
the efficiency of the generated detection rules.

Keywords: Search based software engineering, quality of services, services

design.

1. Introduction

Service-Oriented Computing (SOC) has emerged as an evolutionary paradigm
that is changing the way software applications are implemented, deployed, and

delivered to help industry meet their ever-more-complex challenges [I]. Nowa-

20

25

days, SOC is becoming widely accepted in industry such as FedEx EL Dropbox
EI, Google Maps EL eBayEI7 etc. The massive adoption of this paradigm and its
popularity are mainly due to the offered reusability, modularity, flexibility, and
scalability [2]. SOC utilizes services which are independent and portable pro-
gram units as fundamental elements to support rapid, low cost development of
heterogeneous and distributed systems [3].

Any successful deployed web services evolve over time to meet the new
changes in the requirements and/or to fix bugs. The continuous changes and
evolution of web services may create poor and bad design practices which are
generally called ”antipatterns” that can impact the performance and usability
of the web service [4]. Maintaining a good design quality is critical but it is
excessively expensive both in time and resources for the service providers.

To detect web service antipatterns, most of the existing studies consider
only the interface or code-level metrics of bad-designed web services [5] 6] [7
8]. Therefore, they enable developers to evaluate the quality of their service
using mainly static information extracted from the implementation details of the
interface and the services, such as coupling, cohesion, and number of operations.
However, it is widely known that the quality of service metrics such as the
response time and availability play a significant role in evaluating the overall
performance of a service-based system. Furthermore, most of these studies [5} [6]
7,18] are based on declarative rule specification. The detection rules are manually
defined to identify the key symptoms that characterize an interface design defect
using combinations of mainly quantitative metrics. For each possible interface

design defect, rules that are expressed in terms of metric combinations need

Thttp:/ /www.fedex.com/ca_english /businesstools/webservices
2https://www.dropbox.com/developers/core
3developers.google.com/maps/documentation /webservices
4https://developer.ebay.com/docs

30

35

40

45

50

55

high calibration efforts to find the right threshold value for each metric. In
addition, the translation of the symptoms into rules is not obvious because
several symptoms can described using multiple metrics and thresholds.

To address these challenges, few heuristic-based approaches are proposed to
generate design defects detection rules from defect examples [9] [10]. However,
such studies require a high number of interface design defect examples (data)
to provide efficient detection rules solutions. In fact, design defects are rarely
documented by developers which explains the need for an approach that is able
to generate artificial defects examples in order to improve the efficiency of detec-
tion rules. In addition, it is challenging to ensure the diversity of the examples
to cover most of the possible bad-practices. In addition, these heuristic-based
studies are still also limited to the use of structural metrics and did not consider
the impact of antipatterns on the performance of the services.

In this work, we start from the hypothesis that the generation of efficient web
service defect detection rules heavily depends on the coverage and the diversity
of the used defect examples. In fact, both mechanisms for the generation of
detection rules and the generation of defect examples are dependent. Thus, the
intuition behind this work is to generate examples of defects that cannot be de-
tected by some possible detection solutions and then adapting these rules-based
solutions to be able to detect the generated defect examples. These two steps
are repeated until reaching a termination criterion (e.g. number of iterations).
To this end, we propose, for the first time, to consider the web services de-
fects detection problem as a bi-level one [I1I]. Bi-Level Optimization Problems
(BLOPs) are a class of challenging optimization problems, which contain two
levels of optimization tasks. The optimal solutions to the lower level problem
become possible feasible candidates to the upper level problem. In addition,

we assume that an effective web service antipatterns detection process should

60

65

70

75

80

be based on a combination of dynamic QoS attributes and the structural infor-
mation of web service (static interface/code metrics). Several of Web services
antipatterns can negatively impact the QoS such as availability and response
time. For instance, a GOWS antipattern typically can include a large number
of operations which can reduce the response time dramatically. A GOWS web
service suffers, in general, from a low cohesion which may lead to a high response
time and a low availability due to the large number of calls between operations
at multiple web services.The use of response time quality attribute may help to
find the right threshold in terms of number of operations and cohesion level that
can truly impact the web service performance. Thus, the generated detection
rules can be more accurate.

In our approach, the upper level generates a set of detection rules, a com-
bination of static and dynamic metrics and QoS attributes, which maximizes
the coverage of the base of defect examples and the coverage of artificial defects
which are generated by the lower level and minimizes the size of a generated
rule. The lower level maximizes the number of generated artificial defects that
cannot be detected by the rules produced by the upper level and minimizes the
distance between the artificial defects and the base of bad-designed web services
examples. The advantage of our bi-level approach is that the generation of de-
tection rules is not limited to some defect examples that are hard to collect.
However, this approach allows the prediction of new defects that are different
from those in the base of examples. Furthermore, our problem requires a search
in a large space for a solution which balances different conflicting objectives to
generate rules suitable for different scenarios. Therefore, it would be appropri-
ate to consider a multi-objective search-based approach that finds a trade-off
between conflicting objectives in each level.

We applied and validated these rules on a benchmark of 662 real-world web

85

90

95

100

105

services from different application domains and five common web service an-
tipatterns.However, our proposed approach can be used in a generic way for
any other type of defect as long as a number of examples are available. Sta-
tistical analysis of our experiments shows the efficiency of our bi-level multi-
objective approach in detecting web service antipatterns, with a precision of 84%
and recall of 91%. The results confirm the outperformance of our bi-level pro-
posal compared to state-of-art web service design defects detection techniques
[9, 10, 2] and our previous work limited to mono-objective bi-level approach
using only structural metrics [8]. Thus, the validation confirmed our hypoth-
esis that the detection of antipatterns require a combination of structural and
performance metrics.

The remainder of this paper is organized as follows. Section 2 presents the
relevant background related to this research, the problem statement, a motiva-
tion example, and the challenges of the presented work. Section 3 describes our
approach overview and the problem adaptation. Empirical study and results
are provided in Section 4 while threats to validity are discussed in Section 5.
Section 6 is dedicated to related work. Finally, we conclude and provide our

future research directions in Section 7.

2. Background and Problem Statement

In this section, we present the most frequent types of design defects for
web services and the different types of metrics that can be used to evaluate
the quality of a services. Then, we will describe a motivating example for our

proposed approach.

2.1. Web Services Design Defects

Web service interface defects are defined as bad design choices that can have

a negative impact on the interface quality such as maintainability, changeability,

110

115

120

125

130

comprehensibility and discoverability [13] which may impact the usability and
popularity of services [I4]. They can be also considered as structural character-
istics of the interface that may indicate a design problem that makes the service
hard to evolve and maintain, and trigger refactoring [15]. In fact, most of these
defects can emerge during the evolution of a service and represent patterns or
aspects of interface design that may cause problems in the further development
of the service. In general, they make a service difficult to change, which may
in turn introduce bugs. It is easier to interpret and evaluate the quality of the
interface design by identifying different defects definition than the use of tra-
ditional quality metrics. To this end, some studies defined different types of
web services design defects [16] [I5]. In our experiments, we focus on the eight
following web service defect types since they are the most frequent and severest
ones [I7], and also to be able to compare our detection approach to the state of

the art:

God object Web service (GOWS): implements a high number of operations

related to different business and technical abstractions in a single service.

o Fine-grained Web service (FGWS): is a too fine-grained service whose

overhead (communications, maintenance, and so on) outweighs its utility.

o Chatty Web service (CWS): represents an antipattern where a high num-

ber of operations are required to complete one abstraction.

e Data Web service (DWS): contains typically accessor operations, i.e., get-
ters and setters. In a distributed environment, some web services may

only perform some simple information retrieval or data access operations.

e Redundant PortTypes (RPT): is an antipattern where multiple portTypes
are duplicated with the similar set of operations. In fact, one of the

potential sources of RPT defects is the use of defective WSDL generation

135

140

145

150

155

160

tools as pointed out in [I3]. Another source of RPT is when developers
are adding new features in a rush without considering the reusability of

their implementation and architecture design (similar to code clones).

The web service antipatterns detection mechanism involves finding the frag-
ments of the design which violate some quality indicators. Table [1] describes all
the metrics that are used in this paper to cover bad quality symptoms. These
metrics are a combination of static, dynamic and performance metrics related

to the following abstraction levels of web services applications :

e Web service interface-level (WSDL) metrics: are mainly related
to the interface, message, operation and Port type. The list of WSDL
metrics are described in TabldI] from ALPS until RPT. In our approach,
we are considering the two WSDL versions 1.0 and 2.0 since they are both

supported by our parser in extracting the metrics.

e Web service code-level metrics: are the static information that we can
extract from the services code skeletons. The most widely-used code-level
metrics are those defined by Chidamber and Kemerer [I8] as described in
Table 1] (from Ca until CC). For all code-level metrics, we calculate the
average value for all the classes that implement the specific web service.
For instance , the depth of inheritance (DIT) represents the depth of
inheritance of a class and it is defined as the depth of the class in the
inheritance tree and the depth of a node of a tree refers to the length of
the maximal path from the node to the root of the tree. Thus, we parsed
the code to extract the calls by static analysis and also used relevant
keywords such as “extends” to confirm the nature of these calls. The
QoS metrics are more related to the execution of web services to calculate

response time, availability, etc.

165

170

175

180

185

e Quality of Service (QoS) metrics: we selected 9 popular metrics
(From Response until Documentation in Table , namely response, avail-
ability, throughput, successability, reliability, and latency are dynamic
metrics which measure the web service overall performance. Documenta-
tion and compliance are static metrics to measure the usability of the web
service interface. In our work, We extracted all these metrics from the

QWS dataset [19].

We selected these defect types in our experiments because they are the most
frequent, the hardest to detect [20,9], and cover different maintainability factors.
We have also several examples of these defects and we are able to compare the
performance of our detection technique to existing studies [8, [0, 12]. However,
the proposed approach in this paper is generic and can be extended to any type

of defect.

2.2. Motivating Fxample and Challenges

In the following, we introduce some issues and challenges related to the de-
tection of the web service defects. Overall, there is no general consensus on how
to decide if a particular design violates a quality heuristic. In fact, there is a dif-
ference between detecting symptoms and asserting that the detected situation is
an actual design defect. Another issue is related to the definition of thresholds
when dealing with quantitative information. For example, the GOWS defect
detection involves information such as the interface size as illustrated in Figure
[[] Although we can measure the size of an interface, an appropriate threshold
value is not trivial to define. An interface considered large in a given service/-
community of users could be considered average in another. Thus, it may not
be accurate to identify a GOWS defect based on structural information such as
the number of operations. Both structural and non-structural (QoS attributes)

factors are complementary when detecting a GOWS antipattern. The impact

Category

Metric Name

Definitions

Response Time to send a request and receive a response (ms)

Availability Number of successful invocation/total invocation (%)

Throughput Number of invocations for a given time (invokes/sec)

Successability Number of response/number of request messages (%)
QoS Metrics Reliability Ratio of number of error messages to total messages (%)

Compliance The extent to which a WSDL follows specification (%)

Best practices | The extent to which a service follows WS-I BAsic (%)

Latency Time taken for the server to process a given request (ms)

Documentation | Measure of documentation (i.e. description tags) in WSDL

ALPS Average length of port types signature

COH Cohesion

CcOouP Coupling

NAOD Number of accessor operations declared

NCO Number of CRUD operations

NOD Number of operations declared

NOPT Average number of operations in port types

NPT Number of port types

RAOD Ratio of accessor operations declared

ALOS Average length of operations signature

AMTO Average number of meaningful terms in operations names

. ANIPO Average number of input parameters in operations

Interface Metrics ANOPO Average number of output parameters in operations

NPO Average number of parameters in operations

ALMS Average number of message signature

AMTM Average number of meaningful terms in message names

NOM Number of messages

NPM Average number of parts per message

AMTP Average number of meaningful terms in port type names

NCT Number of complex types

NCTP Number of complex types parameters

NST Number of primitive types

RPT Ratio of primitive types over all defined types

Ca Afferent couplings

CAM Cohesion Among Methods of Class

CBO Coupling Between Object Classes

Ce Efferent couplings

DAM Data Access Metric

DIT Depth of Inheritance Tree

LCOM Lack of cohesion in methods

LCOM3 Lack of cohesion in methods
Code Metrics LOC Lines of Code

MFA Measure of Functional Abstraction

MOA Measure of Aggregation

NOC Number of Children

NPM Number of Public Methods

RFC Response for a Class

WMC Weighted methods per class

AMC verage Method Complexity

cC The McCabe’s cyclomatic complexity

Table 1: List of Web services metrics used

190

195

200

205

210

of the appearance of GOWS can be seen on the performance of services such as
response time and availability. Thus, these attributes can confirm a GOWS an-
tipattern rather than just relying on number of operations. In fact, it is always
challenging to define a threshold for the number of operations but a combina-
tion of both low QoS attributes and high number of operations will definitely
improve the accuracy of the GOWS detection rules. Programmers are mainly
interested to fix design defects impacting the quality of services and not those
who just violate some metrics such as coupling, cohesion and number of opera-
tions. However, existing studies are limited to the use of structural information
when detecting design defects.

Our GOWS motivating example was not only related to the size of the
interface but also other metrics such as low cohesion. The used Amazon service’s
interface suffers from low-cohesion and it is already classified in our dataset as a
GOWS antipattern, its high response time and low availability can be explained
by the low cohesion of operations and not only the size of the interface. If the
number of operations becomes high (like in most GOWS antipatterns) then the
response time and availability will be dramatically impacted. In practice, one
of the main reasons of services low availability is the high number of calls that
make some servers inaccessible/down.

The generation of detection rules requires a large defect example set to cover
most of the possible bad-practice behaviors. Defects are not usually docu-
mented by developers which results in lack of defects examples. Thus, it is
time-consuming and difficult to collect defects and inspect manually large web
services. In fact, unlike the bugs localization problem where bug reports data
are available to train the model, detecting web services antipatterns suffers from
the lack of documented defect examples which affects the efficiency of the gen-

erated detection rules. In addition, it is challenging to ensure the diversity of

11

215

220

225

« interface »
Tur PortType

+Help()
+GetAccountBalance()
+NotifyWorkersNotifyWorkers()
+GetRequesterStatistic()
+UpdateQualificationScore()
+GetQualificationScore()
+SearchQualificationTypes()
+UpdateQualificationType()
+GetQualificationRequests()
+GetQualificationType()
+GrantQualification()
+CreateQualificationType()
+SearchHITs()
+GetAssignmentsForHIT()
+RejectAssignment()
+ApproveAssignment()
+ForceExpireHIT()
+ExtendHIT()
+SetHITAsReviewing()
+GetReviewableHITs()
+GetHIT()

+DisableHIT()

+DisposeHIT()
+SendTestEventNotification()
+SetHITTypeNotification()
+RegisterHITType()
+CreateHIT()

_ Web service container Y,

Figure 1: God object Web service (GOWS) example.

the defect examples to cover most of the possible bad-practices then using these
examples to generate good quality of detection rules.

To address the above-mentioned challenges, we propose to consider the web
service defects detection problem as a bi-level multi-objective optimization prob-

lem.

3. Bi-level Multi-objective Optimization for Web services Defects De-

tection

8.1. Bi-level Multi-objective Optimization Technique

In this study, we considered the web services defect detection problem as a
bi-level multi-objective optimization problem where the optimal solution of the
lower level problem determines the feasible space of the upper level optimization
problem [I1, 2T]. In our adaptation, the upper level problem is the generation
of detection rules and the lower level problem is the generation of design defects

that may not be detected using the rules of the upper level solutions.

12

230

235

240

245

We start by describing the basic concepts of bi-level optimization, then we

introduce the multi-objective optimization technique.

8.1.1. Bi-level Optimization

Most studied real-world and academic optimization problems involve a sin-
gle level of optimization. However, in practice, several problems are naturally
described in two levels. Bi-level optimization problem (BLOP) also called two-
level optimization, is a specific type of optimization where one problem is nested
within another [I1} 21]. In such problems, we find a nested optimization prob-
lem within the constraints of the outer optimization one. The outer optimiza-
tion task is usually referred as the upper level problem or the leader problem.
The nested inner optimization task is referred as the lower level problem or
the follower problem, thereby referring the bi-level problem as a leader-follower
problem. The follower problem appears as a constraint to the upper level, such
that only an optimal solution to the follower optimization problem is a possible
feasible candidate to the leader one as described in Figure [3]

The problem contains two types of variables: (1) the upper-level variables

%, and (2) the lower-level variables x;. Formally, BLOP is defined as follows:

Definitionl. For the upper-level objective function F: R” x R™ — R and
lower-level objective function f : R™ x R™ — R, the bi-level problem is given

by:

min Fl(x,,
r, €EXy, 1 €XL (u,)

subject to x; € argmind{ f(xy, z1), gj(zy, ;) < 0,5 =1,...,J}
Gk(xu,xl) S O,k‘ = 1, ...,K

where G, : Xy x X, — R and g; : Xy x X, — R denote respectively the

13

250

255

260

265

upper and the lower level constraints. J is the population size at the upper
level, K is the population size at the lower level and n is the number of fitness
functions,

The study involved multiple objectives at the upper lever, and multiple
objectives at the lower level. Thus, the next section presents the Multi-objective
optimization technique.

Existing methods to solve BLOPs could be classified into two main families:
(1) classical methods and (2) evolutionary methods. The first family includes
extreme point-based approaches [22], penalty function methods [23] and trust re-
gion methods [24]. The main shortcoming of these methods is that they heavily
depend on the mathematical characteristics of the BLOP at hand. The second
family includes meta-heuristic algorithms that are mainly Evolutionary Algo-
rithms (EAs). Recently, several EAs have demonstrated their effectiveness in
tackling such type of problems thanks to their insensibility to the mathematical
features of the problem in addition to their ability to tackle large-size problem
instances by delivering satisfactory solutions in a reasonable time [25] [26] [27].

In our adaptation, each level is formulated as a multi-objective problem.
The next sub-section will give details about multi-objective optimization.

-

L ey, 2

Sixt, xy 1

Figure 2: The upper and lower levels of the Bi-Level process

14

(JapeaTh

jaaa) saddy

(a0 |0:]) 23] 23A07]

270

275

280

285

290

8.1.2. Multi-Objective Optimization

Multi-Objective search considers more than one objective function to be op-
timized simultaneously. Objective functions are used to evaluate the generated
solutions. It is hard to find an optimal solution that solves such problem because
the objectives to be optimized are conflicting. For this reason, a multi-objective
search-based algorithm could be suitable to solve this problem because it finds
a set of alternative solutions, rather than a single solution as result. One of the
widely used multi-objective search techniques is NSGA-II [28] that has shown
good performance in solving several software engineering problems [29].

A high-level view of NSGA-II is depicted in Algorithm [8] The algorithm
starts by randomly creating an initial population P, of individuals encoded using
a specific representation (line 1). Then, a child population Qg is generated from
the population of parents Py (line 2) using genetic operators (crossover and
mutation). Both populations are merged into an initial population Ry of size
N (line 5). Fast-non-dominated-sort [28] is the technique used by NSGA-II
to classify individual solutions into different dominance levels (line 6). Indeed,
the concept of non-dominance consists of comparing each solution x with every
other solution in the population until it is dominated (or not) by one of them.
According to Pareto optimality: “A solution x; is said to dominate another
solution zo, if x; is no worse than x5 in all objectives and x; is strictly better
than x5 in at least one objective”. Formally, if we consider a set of objectives

fi , 1 € 1..n, to maximize, a solution x; dominates s :

iff Vi, fi(r2) < fi(x1) and Jj | fj(z2) < fj(21)

The whole population that contains N individuals (solutions) is sorted using
the dominance principle into several fronts (line 6). Solutions on the first Pareto-
front PFj get assigned dominance level of 0 Then, after taking these solutions

out, fast-non-dominated-sort calculates the Pareto-front PF; of the remaining

15

295

300

305

Algorithm 1 High level pseudo code for NSGA-II

Create an initial population Py
Create an offspring population Qo
t=0
while stopping criteria not reached do
Ry =P, UQ:
F = fast-non-dominated-sort(R;)
Pii=0andi=1
while ‘ Pt+1 ‘ =+ ‘ Fz |< N do
Apply crowding-distance-assignment (F;)

10: Pt+]_ :Pt+1UFZ‘

11: t=1+4+1

12: end while

13: Sort(F;, < n)

14: Pt+1:Pt+1UFi[N—|Pi+1 H
15: Q¢4+1 = create-new-pop(Piy1)

16: t =t+1
17: end while

population; solutions on this second front get assigned dominance level of 1,
and so on. The dominance level becomes the basis of selection of individual
solutions for the next generation. Fronts are added successively until the parent
population P11 is filled with N solutions (line 8). When NSGA-IT has to cut off
a front PF; and select a subset of individual solutions with the same dominance
level, it relies on the crowding distance [28] to make the selection (line 9). This
parameter is used to promote diversity within the population. This front PF;
to be split, is sorted in descending order (line 13), and the first (N- |Pp41])
elements of PF; are chosen (line 14). Then a new population Q41 is created
using selection, crossover and mutation (line 15). This process will be repeated
until reaching the last iteration according to stop criteria (line 4).

Therefore, a bi-level multi-objective optimization problem involves two levels
of multi-objective optimization problems, each one implements an NSGA-II

algorithm with different set of objectives as described in the next subsection.

16

310

315

8.2. Approach Overview

two levels where both the leader and the follower have two objectives.

Figure 3: Bi-level Multi-Objective Web service defects detection overview

Bi-level Multi-Objective Web Services Defects Detection

Code
Analysis
Qos
Evaluation

Examples of
Web service I
Antipatterns

WsDL
Analysis

Upper Level:
Multi-Objective Search-Based
Algorithm (NSGA-II)

Maximize the
detection of service
antipatterns
> & Minimize the
detection of well-
designed services

Minimize the size
of generated rules

Code
Analysis

Analysis

Web Services
Antipattern
Detection Rules

Generated
Defects

Generation of new Defect Examples

Minimize the distance
of generated defects
from bad examples

Lower Level : Multi-Objective Search-Based Algorithm

(NSGA-II)

Minimize the coverage of
well-designed Web service
examples.

the number of generated rules.

17

Evaluation
WSDL

As Figureshows, our Bi-Level Multi-Objective (BLMO) approach includes

Examples of well-
designed Web
services

As described in Figure 3| the proposed approach takes as inputs two sets of
web service examples: (1) one set contains service antipattern examples and (2)
another has well-designed service examples. It extracts the metrics, previously
described, of each web service in the sets. Then, the upper level generates a
set of detection rules per solution. The detection rule generation process selects
randomly, from the list of possible metrics, a combination of quality metrics
and their threshold values to detect a specific antipattern type. Therefore, the
optimal solution is a set of detection rules that best detect the antipatterns of

the base of examples and those generated by the lower level while minimizing

320

325

330

335

340

345

The follower (lower level) uses well-designed web service examples to gener-
ate “artificial” design defects based on the notion of deviation from a reference
(well-designed) set of web services. The generation process of web services defect
examples is performed using a multi-objective heuristic search that maximizes
on one hand, the distance between generated web service defect examples and
reference examples and, on the other hand, maximizes the number of generated
examples that are not detected by the leader (detection rules).

In our bi-level multi-objective approach, the two levels are dependent and
therefore there is no parallelism. The upper level is executed for a number of
iterations then the lower level for another number of iterations. After that, the
best solution found in the lower level will be used by the upper level to evaluate
the detection rules, and then this process is repeated several times until reaching
a termination criterion such as the number of iterations. For each level, we
selected the ideal point from the Pareto front of solutions which corresponds to

the closest solution to the best possible values of the fitness functions.

3.8. Problem Formulation

3.8.1. Solution Representation
Each candidate solution in the upper level is a sequence of detection rules

where each rule is represented by a binary tree such that:

e The Root and each internal node represent a logic operator either ” AND”

or "OR” to connect other nodes.
e Each leaf node represents a quality metric and its corresponding threshold.

For example, the following rule of Fig. []states that a web service s satisfying
the following combination of metrics is considered as a GOWS defect:
As described in Figure [5 the generated structure of defects, in the lower

level, is represented as a vector where each element is a (metric, threshold)

18

Algorithm 2 Upper level algorithm

1: Inputs: Quality of web service metrics M, web services defect examples base B,
Well-designed web services base D, Number of best upper solutions that are consid-
ered for lower level optimization nbs, Upper population size N1, Lower population
size N2, Upper number of generations G1, Lower number of generations G2

2: Output: Best detection rule BDR

3: Begin

4: Py Initialization(N, M)

5: for each DB, in Py do

6: BCSo <+ NSGA — IIW SDefectsGeneration(DRo,D,N2,G2);
7: BRy + Ewvaluations(DRo,B,BCSo);

8: end for

9t 1

10: while t<G1 do

11: Q¢ < Variation(Ps—1)

12: for each DR; in Q: do

13: DR; = UpperEvaluations(DR;,B);

14: end for

15: for each of the best nbs rules DR; in Q; do
16: BCS; + NSGA — IIW SDefectsGeneration(DR¢,D,N2,G>);
17: DR + EvaluationsUpdate(DRy,BCSy);

18: end for

19: U; <Py UQt;

20: Piy1 + EnvironmentalSelection(N1,U:);

21: ttt1;

22: end while

23: BDR <« IdealPointSelection(P;);

24: END

element that characterizes the generated artificial web service defect.

3.3.2. Fitness Functions

At the upper level, we aim to optimize two fitness functions. The first one
is formulated to maximize the coverage of web services defect examples (input)
and the coverage of the generated artificial web service defects by the lower level.
The second fitness function is formulated to minimize the size of the generated

rule. Thus, the fitness functions at the upper level are defined as follows:

Precision (SR, WSDE+AWSD)+ Recall(SR, WSDE+AWSD)
? (1)

Mazimize fupper,1 =

Minimize fupper,2 = size(DetectionRules)

19

Algorithm 3 Lower level algorithm: NSGA-ITWSDefectsGeneration

1: Inputs: Upper level detection rule UDR, Well-desiged web service examples base
D, Population size N, number of generations G
Output: Best artificial web service defects BCS
Begin
Py + Initialization(N, D);
Py + Evaluation(Py,D,UDR);
t+1;
while t<G do
Q¢ + Variation(Pi—1)
Q¢ = Evaluation(Q¢,D,UDR);
Ut (—Pt UQt;
Piy1 < EnvironmentalSelection(N,Uy);
t +t+1;
: end while
: BCS < IdealPointSelection(P,);
: END

_= = e = e

R1: IF (NOD=>16 AND COH=0.4 AND Lat>26 AND CBO=>8.2) OR
(NOD=>25 AND Laf>145 AND NPT>1 AND Ava<0.7 OR COH<0.5)
THEN GodObjectService(s) .

/ i
B~
o Root S

Yo TS

IAND) IAND)

A S

T T T T

=" Internal Node ™, Pl ety
IAND) (AND) (AND) [OR)
___x\\ /.___,.’\\ /\.__< /\.__,3\\

[noD=15| [cot<o.4| [Laros | [cBO»8.2| [NOD=25 | /QNQ [ava<0.7 | [com<o.s)|

Leaf Node [NPT=1 | [Late145 |

Figure 4: Solution Representation at the Upper Level.

where: WSDE is the abbreviation for WS Defect Examples, AW SD is the ab-
breviation for Artificial WS Defects and SR is the set of generated detection rules
(solution).

At the lower level, for each solution of the upper level, an NSGA-IT is ex-
ecuted to generate the best set of artificial defects that cannot be detected by
the detection rules of the upper level. Two objective functions are formulated
at the lower level to maximize the number of un-detected artificial defects that

are generated and minimize the distance with web services antipatterns. More

20

355

360

365

NOD=9 | COH=0.2 NPT=0.2 A CBO=0.2 __ NSsT=0.2

Figure 5: Solution Representation at the Lower Level.

formally, the two objectives are expressed as follows:

M
Minimize fiower,1 = Z(ArtificialDefects(i) — Average(RAE(1)))
i=1 ©)

Minimize fiower,2 = countdefects(DR, AD)

where RAFE is the abbreviation for References Antipatterns Examples, DR is the
detection rules defined at the upper level, AD is the generated artificial defects and
M is the number of metrics used to compare between artificial defects and the poor
Web services examples. The first fitness function calculates the distance between the
artificial defects and the ones in our base of examples to make sure that they are
different. Thus, M is not restricted based on the type of antipatterns because we do
not want our artifical examples to be restricted to limited behavior of antipatterns.
In our proposed approach, we are not generating detection rules only based
on the QoS properties but we are including code-level metrics and interface
metrics as well. Our benchmark/dataset contains web services along with their
code-level , interface and QoS metrics and anti-patterns. The training data/ex-
amples guided the bi-level algorithm, via the fitness functions. to identify/gen-
erate the patterns and relationships between the different metrics and the anti
pattern type. Since the fitness functions are mainly based on coverage criteria
thus we can confirm that the best detection rules can be generalized on a large

number of web services.

21

370

375

380

385

390

8.8.3. Change Operators

For the upper level, the mutation operator can be applied to a leaf node
(metric), or to an internal node (logical operator) in our tree representation.
It starts by randomly selecting a node in the tree. Then, if the selected node
is a leaf (metric), it is replaced by another metric or another threshold value.
Each metric has a maximum and minimum values which represent the range
from where the change operator selects a threshold value. However, if it is an
internal node (AND-OR), it is replaced by a new function. For the lower-level,
the mutation operator consists of randomly changing a metric in one of the
vector dimension.

Regarding the crossover at the upper level, two parents are selected, and a
sub-tree is picked on each one. Then, the crossover operator swaps the nodes and
their relative sub-trees from one parent to the other. The crossover operator
can be applied to only parents having the antipatterns type to detect. Each
child thus combines information from both parents.

The crossover operator allows creating two offspring Child1 and Child2 from
the two selected parents Parentl and Parent2, where the first x elements of
Parent1 become the first x elements of Child2. Similarly, the first x elements of

p2 become the first x elements of Childl.

4. Validation

In order to evaluate our approach for detecting antipatterns using the pro-
posed bi-level multi-objective (BLMPO) approach, we conducted a set of ex-
periments based on an existing benchmark[19]. Each experiment is repeated 30
times, and the obtained results are subsequently statistically analyzed with the
alm to compare our multi-objective bi-level proposal with a variety of existing

web service antipatterns detection approaches. In this section, we first present

22

400

405

410

415

our research questions and then describe and discuss the obtained results.

4.1. Research Questions

We defined the following research questions for our empirical study:

e RQ1. To what extent does the proposed approach detect various types of
web service antipatterns based on a combination of structural and dynamic
(QoS) metrics? It is important to quantitatively assess the completeness

and correctness of our BLMO detection approach based on QoS and multi-

objective search.

¢ RQ2. How does BLOP perform compared to existing web service an-
tipatterns detection algorithms not using QoS metrics and multi-objective
search? This research question is helpful to evaluate the benefits of the
use of a multi-objective algorithm at both levels since we will compare our
approach to our previous work based on a bi-level mono-objective algo-
rithm (BLOP)[8]. Furthermore, we compared our approach with another
mono-level search based approach [9] and an existing deterministic ap-
proach, SODA-W [12] which is not based on heuristic search. SODA-W
is based on manually defined rules(including threshold values) to detect
web service antipatterns. Both approaches are limited to the use of struc-

tural metrics thus they are useful to evaluate the benefits of considering

dynamic quality of services attributes.

e RQ3. To what extent the detection of Web service antipatterns based on
a combination of QoS and structural metrics can be useful and relevant
for practitioners? We collected the opinions of developers about our tool

and their perception of the importance of several of detected web service

antipattern types.

23

420

425

430

435

4.2. Experimental Settings

To evaluate the performance of the proposed approach, we used existing
benchmarcks of referencen number [19] to build our final dataset which consists
of 662 good and bad web services desing. These web services (1) have different
sizes, (2) originate from various application categories such as financial, science,
travel, weather, etc, (3) have available source code, and (4) belonging to different
development teams. These web services are retrieved from the QWS dataset
then filtered to eliminate the ones which are not running anymore to be used
by subscribers. We extract their interface file and code skeleton. Then, we
manually inspected and validated the antipatterns of these services.

We considered the different antipattern types described in Section 2. Table
shows the distribution of these antipatterns in the 662 web services. We
used a 10-fold cross validation procedure. In fact, the 10-fold cross validation
means that we split our data into 10 training data sets and 1 evaluation data
set. For each fold, one category of services (evaluation data) is evaluated using
the remaining nine categories (training data) as training examples. Then, we
repeated the process ten times. We use the two measures of precision and
recall to evaluate the accuracy of our approach and to compare it with existing
techniques. Precision denotes the ratio of true antipatterns detected to the
total number of detected antipatterns, while recall indicates the ratio of true

antipatterns detected to the total number of existing antipatterns.

Antipatterns # Distribution
types services
GOWS 237 36%
FGWS 179 27%
CWS 39 5%
DWS 119 18%
RPT 113 17%

Table 2: Anti-pattern occurrences within the 662 Web Services.

24

440

445

450

455

460

465

To answer RQ1, we use both recall and precision to evaluate the efficiency
of our approach in identifying antipatterns. We investigated the web service
defect types that were detected to find out whether there is a bias towards the
detection of specific web service defect types.

To answer RQ2, we evaluated on the effectiveness of BLMO compared to
existing approaches using the precision (PR) and recall (RC) measures. All three
approaches are tested on the same benchmark described in Table |2 to ensure
a fair comparison.The distribution of antipatterns type means the number of
services containing at least one instance of that type of antipattern divided by
the total number of analyzed services. We have also evaluated the execution
time (T) required by the different approaches.

To answer RQ3, we conducted a post-study survey with developers to un-
derstand what types of web services antipatterns are important for them in
practice and how useful our detection tool. To this end, we asked 48 software
developers, including 29 professional developers working on the development
of services-based application and 19 graduate students from the University of
Michigan. The experience of these subjects on web development and web ser-
vices ranged from 2 to 16 years. All the graduate students have an industrial
experience of at least 2 years with large-scale systems especially in automotive
industry.

An often-omitted aspect in metaheuristic search is the tuning of algorithm
parameters. In fact, parameter setting influences significantly the performance
of a search algorithm on a particular problem. The stopping criterion was set to
100,000 fitness evaluations for all search algorithms in order to ensure fairness
of comparison. We used a high number of evaluations as a stopping criterion
since our bi-level approach requires involves two levels of optimization. Each

algorithm was executed 30 times with each configuration and then comparison

25

470

475

480

485

490

between the configurations was performed based on precision and recall using
the Wilcoxon test. The Wilcoxon signed-rank test is a non-parametric statisti-
cal hypothesis test used to compare two related samples, matched samples, or
repeated measurements on a single sample to assess whether their population
mean ranks differ (i.e. it is a paired difference test). In our case, it was used
due to the randomness of the meta-heuristic algorithms and to ensure that their
out-performance is not random but consistent on 30 independent runs. Addi-
tionally, the other parameters value were fixed by trial and error and are as
follows: (1) crossover probability = 0.4; mutation probability = 0.7 where the
probability of gene modification is 0.1. For our bi-level approach, both lower-
level and upper-level are run each with a population of 20 individuals and 30
generations. It should be noted that the lower-level routine is not called for
all upper-level population members. To control, the high computational cost of
our bi-level approach, only ns% of the best upper-level population members are
allowed to call the lower-level optimization algorithm. Based on a parametric
study, the value of 5% for ns is found to be adequate empirically in our ex-
periments. For our experiment, we generated up to 100 artificial web service
antipatterns from deviation with the best of examples.

Since metaheuristic algorithms are stochastic optimizers, they can provide
different results for the same problem instance from one run to another. For
this reason, our experimental study is performed based on 30 independent sim-
ulation runs for each problem instance, and the obtained results are statistically
analyzed by using the Wilcoxon rank sum test [30] with a 95% confidence level
(o = 5%). The Wilcoxon signed-rank test is a non-parametric statistical hy-
pothesis test used when comparing two related samples to verify whether their
population mean-ranks differ or not. The latter verifies the null hypothesis HO

that the obtained results of two algorithms are samples from continuous distri-

26

495

500

100

o ||‘|I ||“| |||‘I ||“| |||‘I

GOWS FGWS CW5 DWS5 RPT

[I T R]
0D o000 o000

mPR-ELMO mPR-BELOF mFPR-GF mPR-30DA-W mPR-RS

Figure 6: Median precision on 30 runs for the 10-folds of the 662 web services using the
different detection techniques with a 95% confidence level.

100

0 ||||| ||||I ||||I ||||| |||||
s DWs RPT

GOWS FGWS oW

[I T R - R)
-

mRC-BLMO wmRC-BLOP wmRC-GP mRC-S0DA-W wmRC-RS

Figure 7: Median recall on 30 runs for the 10-folds of the 662 web services using the different
detection techniques with a 95% confidence level.

butions with equal medians, as against the alternative that they are not, H1. In
this way, we could decide whether the outperformance of BLMO over one of each

of the other detection algorithms (or the opposite) is statistically significant or

just a random result.

4.8. Results and Discussions

4.3.1. Results for RQ1

The results for the first research question RQ1 are presented in Figures [f]
and [7} The obtained results show that our BLMO approach is able to detect
most of the expected antipatterns in the different web services with a median

precision higher than 90%. Thus, our technique does not have a bias towards

27

Table 3: Web services used in the empirical study.

average average average

Category services antipatterns NOD NOM NCT
Financial 121 52 31.73 57.31 22.14
Science 58 19 12.49 17.14 98.72
Search 49 21 9.66 18.94 28.43
Shipping 72 17 17.28 27.76 23.42
Travel 81 22 21.07 33.13 131.12
Weather 73 18 11.63 17.16 8.24

Media 33 19 11.8 16.4 32.29
Education 52 15 12.73 16.23 32.46
Messaging 63 20 9.18 13.36 18.25
Location 83 22 6.89 29.73 11.15
All 662 139 14.18 27.3 48.6

160
140

120

100
B0
50
40
20

0

T-BLMO T-BLOP T-GP T-S50DA-W T-RS

Figure 8: Median execution time on 30 runs for the 10-folds of the 662 web services using the
different detection techniques.

28

505

510

515

520

525

the detection of specific web service antipattern types. As described Figures
[6] and we had an almost equal accuracy distribution of each Wev service
antipattern types. Having a relatively good distribution of antipattern is useful
for developers to make the right decisions about the quality of services. Overall,
all the five web service antipatterns types are detected with good precision and
recall scores in the different systems (an average of 91%). This ability to identify
different types of antipatterns underlines a key strength to our approach. Most
other existing tools and techniques rely heavily on the notion of size and static
information to detect antipatterns. This is reasonable considering that some
antipatterns like the GOWS are associated with the notion of size (number of
operations). For web service antipatterns like RPT, however, the notion of size
is less important, and this makes this type of anomaly hard to detect using
structural information. This also confirms that the use of the dynamic quality
of service attributes helped to achieve good results in detecting antipatterns.
The highest precision value for GOWS (93%) can be explained by the fact
that these web service antipatterns are the easiest to detect due to their struc-
ture. For the web services antipattern type DWS, the precision is the lowest
one (88%), but is still an acceptable score. These antipatterns are likely to be
difficult to detect using metrics alone and may require interactions with the
user. Sometimes developers have a reason why a Web service is too small such
as they wanted to make sure that specific operations are loosely coupled to
other services for security reasons. Thus, it is difficult to consider the context
of specific requirements in static and dynamic rules. Similar observations are
valid for the recall. The obtained results indicate that our approach is able to
achieve an average recall of 89%. Thus, the quality of the detection rules are
good for almost all the web service defect types considered in our experiments.

Thus, we can conclude that our BLMO multi-objective approach detects well all

29

530

535

540

545

550

555

the types of considered antipatterns based on a combination QoS and structural

metrics(RQ1).

4.8.2. Results for RQ2

The goal of the second research question is to investigate how well BLMO
performs against random search (RS), our previous mono-objective bi-level work
[8], an existing mono-level and single-objective approach (GP) [9] where only
defect examples are used (without the consideration of the lower-level algo-
rithm), and an existing detection tool (SODA-W) [31] not based on computa-
tional search. All these existing work did not consider the use of dynamic quality
of service metrics and they are limited mainly to the interface level static met-
rics. The Random Search is implemented as a sanity check to justify the need
for intelligent search. It has the same structure of our BLOP approach but
without the selection and change operators and it is mainly based on random
generation of solutions at both levels.

Figures [6] and [7] report the average comparative results on 30 runs with 95%
as confidence level using the Wilcoxon rank sum test.The confidence level is
the threshold to determine if the results are statistically significant or not. RS
(random search at both levels using the same fitness functions) did not perform
well when compared to BLMO both in terms of precision and recall achiev-
ing average less than 50% on the majority of different web service antipattern
types. The main reason could be related to the large search-space of possible
combinations of metrics and threshold values to explore, and the diverse set of
web service defects to detect. Furthermore, the results achieved by BLMO are
also better than the mono-objective bi-level and mono-level approaches [9] [§] in
terms of both precision and recall. In fact, the mono-objective genetic program-
ming technique have an average between 74% and 79% of precision and recall

however BLOP (mono-objective bi-level) has better scores with an average of

30

560

565

570

575

580

more than 84% of precision and recall on most of the different web services.
Thus, both techniques have lower precision and recall than BLMO. These re-
sults confirm that an intelligent search is required to explore the search space
and that the use of the mutli-objective search at two levels along with the QoS
attributes improved the obtained detection results.

While SODA-W shows promising results with an average precision of 76%
and recall of 73%, it is still less than BLMO in all the five considered defect
types. We conjecture that a key challenge with SODA-W is that it simpli-
fies the different notions/symptoms that are useful for the detection of certain
antipatterns. Indeed, SODA-W is limited to a smaller set of WSDL interface
metrics comparing to our approach. In an exhaustive scenario, the number of
possible antipatterns to manually characterize with rules can be large and hard
to generalize, and rules that are expressed in terms of metric combinations need
substantial calibration efforts to find the suitable threshold value for each met-
ric. However, our approach needs only some examples of defects to generate
detection rules.

Since our proposal is based on bi-level optimization, it is important to eval-
uate the execution time (T). It is evident that BLMO requires higher execution
time than RS, BLOP, GP,and SODA-W since BLMO has an optimization algo-
rithm to be executed at the lower level. To reduce the computational complexity
of our BLOP adaptation, we selected only best solutions (10%) at the upper
level to update their fitness evaluations based on the coverage of artificial web
service antipatterns that are generated by the optimization algorithms executed
at the lower level for every selected solution. All the search-based algorithms
under comparison were executed on machines with Intel Xeon 3 GHz processors
and 8 GB RAM. As described in Figure [8] all the existing studies were faster

than BLMO. However, the execution for BLMO is reasonable because the al-

31

585

590

595

600

605

610

gorithm is executed only once then the generated rules will be used to detect
antipatterns. There is no need to execute BLMO again except in the case that
the base of examples (training set) will be updated with a high number of new
web service antipattern examples.

One of the advantages of using our BLMO adaptation is that the developers
do not need to provide a large set of examples to generate the detection rules. In
fact, the lower-level optimization can generate examples of web service defects
that are used to evaluate the detection rules at the upper level. The existing
mono-level work of Ouni et al. [9] (GP) require a higher number of defect
examples than BLMO to generate good quality of detection rules. We can
conclude, based on the obtained results that our BLMO approach outperforms,
in average, the state of the art web service antipatterns detection techniques

that are not using multi-objective search and QoS metrics (response to RQ2).

4.3.3. Results for RQ3

Subjects were first asked to fill out a questionnaire containing five questions.
The questionnaire helped to collect background information such as their role
within the company, their programming experience, their familiarity with web
services. The first part of the questionnaire includes questions to evaluate the
relevance of some detected web service antipatterns by BLMO using the follow-
ing scale: 1. Not at all relevant; 2. Slightly relevant; 3. Moderately relevant;
and 4.Extremely relevant. If a detected antipattern is considered relevant then
this means that the developer considers that it is important to fix it. The sec-
ond part of the questionnaire includes questions for those antipatterns that are
considered at least “moderately relevant”. We asked the subjects to specify
their usefulness based on the following options: 1. web services selection; 2.
Quality assurance; 3. Bug prediction; 4. Effort prediction; and 5. Refactor-

ing opportunities. The questionnaire is completed anonymously thus ensuring

32

615

620

625

630

635

confidentiality and this study were approved by the IRB at the University of
Michigan: “Research involving the collection or study of existing data, docu-
ments, records, pathological specimens, or diagnostic specimens, if these sources
are publicly available or if the information is recorded by the investigator in such
a manner that participants cannot be identified, directly or through identifiers
linked to the participants”.

During the entire process, subjects were encouraged to think aloud and to
share their opinions, issues, detailed explanations and ideas with the organizers
of the study (one graduate student and one faculty) and not only answering the
questions. A brief tutorial session was organized for every participant around
web services antipatterns and quality of services to make sure that all of them
have a minimum background to participate in the study. The instructions indi-
cate also that the developers need to inspect the source code and the interfaces
to evaluate the detected web service antipatterns and their relevance and not by
evaluating the quality metric values. In addition, all the developers performed
the experiments in a similar environment: similar configuration of the comput-
ers, tools and facilitators of the study. These sessions were also recorded as
audio and the average time required to finish all the questions was 2 hours.

We evaluated, first, the relevance of a set of 30 detected web service antipat-
terns (6 instances from each type of antipattern) by the participants. Figure |§|
illustrates that only less than 17% of detected antipatterns are considered not
at all relevant by the developers. Around 68% of the antipatterns are consid-
ered as moderately or extremely relevant by the different participants, and this
confirms the importance of the detected web service antipatterns for developers.

To better evaluate the relevance of the detected web service antipatterns,
we investigated the types of antipatterns that developers perhaps consider them

more or less important than others (e.g. RPT, GOWS, etc.). Figure |10 sum-

33

640

645

Relevance of detected Web Service Antipatterns

m Mot at alirelevant m Shghtly relevant = Maoderately relevant m Extremely relevant

Figure 9: The relevance of detected web service antipatterns.

RPT

W Not at all relevant

H 5lightly relevant

H Moderately relevant
FGWS W Extremely relevant

WS Antipattern types
5

GOWS

1
0% 50% 100%
Relevance

Figure 10: Relevance of different types of web service antipattern.

marizes our findings. It is clear that the detected GOWS are considered very
relevant for developers. One of the reasons can be the impact of large num-
ber of operations on the performance of the services (response time, availability,
etc.). In addition, it is very difficult for users to select a relevant operation when
the interface contains a very large number of operations. Another interesting
observation is that RPT antipatterns are not considered very relevant by devel-
opers. It is hard for developers to decide about the relevance of some types of
antipattern without checking manually some of the detect ones and understand
their possible impact. Thus, we did this post-study questionnaire to ask the
developers after using the tool and checking some of the results. It may inform
future research about which antipattern types to prioritize.

It is also important to evaluate the usefulness of the detected web service

34

650

655

660

665

r
>

» Web s=rvices selection m Quality assurance ® Bug prediction

m Effort prediction = Refactor ing opportunities

Figure 11: The usefulness of web service antipatterns for developers

antipatterns from the developers perspective. Thus, we asked the participants
to justify the usefulness of the code-smells ranked as moderately or extremely
relevant. Figure [T1] describes the obtained results. The main usefulness is re-
lated to web services selection, refactoring guidance and quality assurance. In
fact, most of the participants we interviewed found that the detected antipat-
terns give relevant advices about where refactorings should be applied to fix
operations and portTypes. In addition, they found that the web service an-
tipatterns detection process is much more helpful than the traditional analysis
of quality metrics to find refactoring opportunities. They consider the use of
traditional quality metrics for Quality Assurance as a time consuming process,
and it is easier to interpret the results of detected antipatterns and apply the
appropriate refactorings to improve the overall quality of the web services.

We summarize briefly in the following the feed-back of the participants dur-
ing the think aloud sessions. Most of the participants mention that the detection
rules generated by our bi-level multiobjective approach represents a faster solu-
tion than manual assessment of the quality of web services. The manual tech-
niques represent a time consuming process to calibrate the metrics threshold or
the combination of metrics to identify a maintainability issue manually. The

participants found the detection rules useful to maintain a good quality of the

35

670

675

680

685

690

design of web services. In addition, the developers liked the flexibility to modify
the rules (metrics or thresholds) if required. Some possible improvements for our
detection techniques were also suggested by the participants. Some participants
believe that it will be very helpful to extend the tool by adding a new feature
to rank the detected web service antipatterns based on several criteria such as
risk, cost and benefits. They believe that current web service quality assessment
tools do not provide any support to estimate the risk, cost and benefits of fixing
some maintainability issues.

To conclude, the developers found the use of QoS and multi-objective search
efficient to detect web service antipatterns and found most of the detected types

relevant (answer to RQ3)

5. Threats to Validity

Several factors may bias our empirical study. These factors can be classified
in three categories: construct, internal and external validity. Construct validity
concerns the relation between the theory and the observation. Internal valid-
ity concerns possible bias with the results obtained by our proposal. Finally,
external validity is related to the generalization of observed results outside the
sample instances used in the experiment.

One possible construct validity threat arises because although we considered
several well-known web services design defect types, we must further evaluate
the performance and ability of our bi-level technique to detect other defect
types. A construct threat can also be related to the corpus of manually detected
web service design defects since developers do not all agree if a candidate is a
defect or not. We will ask some new experts to extend the existing corpus and
provide additional feedback regarding the detected antipatterns. In addition,

the recall score is challenging to calculate by the developers of our experiments

36

695

700

705

710

715

720

and requires additional participants to check its accuracy. A limitation related
to our experiments is the difficulty to set the thresholds for some of existing
state of the art techniques. In fact, we used the default thresholds used by these
techniques that can have an impact on the quality of the results. The evaluation
of detected web service defects for some participants is mainly based on the
definitions of the antipatterns and the examples that we provided during the
pilot study. However, the definition of antipatterns is subjective and depends on
the programming behavior of the participants thus this can affect the accuracy
of the detection results.

A construct threat is related to the fact that our detection results depend on
the examples of antipatterns and well-designed web services. In addition, the
generation of artificial web services can lead to several non-useful examples
(generated by the lower-level). Additional constraints should be defined to
better guide the search at a lower level to refine the generation of artificial web
service examples. The same observation is valid for the used change operators at
both the upper and lower levels that can generate invalid rules and antipattern
examples (e.g. redundancy) may be avoided by the definition of additional
constraints.

We take into consideration the internal threats to validity in the use of
stochastic algorithms since our experimental study is performed based on 30
independent simulation runs for each problem instance, and the obtained results
are statistically analyzed by using the Wilcoxon rank sum test with a 95%
confidence level. The parameter tuning of the different optimization algorithms
used in our experiments creates another internal threat that we need to evaluate
in our future work by additional experiments to evaluate the impact of upper
and lower levels’ parameters on the quality of the results.

For the selection threat, the subject diversity in terms of profile and ex-

37

725

730

735

740

745

perience could affect our study. We mitigated the selection threat by giving
written guidelines and examples of antipatterns already evaluated with argu-
ments and justification. Additionally, each group of subjects evaluated different
antipatterns from different systems using different techniques/algorithms. Ran-
domization also helps to prevent the learning and fatigue threats. Only few
antipatterns per system were randomly picked for the evaluation. Diffusion
threat is related to the fact that most of the subjects are from the same univer-
sity, and the majority know each other. However, they were instructed not to
share information about the experience before a certain date.

External validity refers to the generalization of our findings. In our study,
external threat to validity concerns mainly the employed defect types and the
studied web services. We considered five types of web service antipatterns which
constitute a wide representative set of standard and most frequent defects. Like-
wise, we have selected 662 real world web services belong to different application
domains, offer diverse functionalities, have different sizes and were developed by

different companies.

6. Related Work

Web service antipatterns detection is a newly emerging area, therefore, few
works addressed this problem using different techniques [32, 33| 34}, 35}, [36] [37]
38, 39 40, [4T], (42, [43] 44]. These techniques range from guidelines to fully
automatic detection.

In 2003, Dudney et al. [45] have written the first book related to this topic.
The catalog consists of 52 antipatterns in SOA, and especially in the area of
Web-services. The main problem of the web service antipatterns definitions in
this catalog is its informal definition.

More recently, Rotem-Gal-Oz et al. [I5] have provided the symptoms of

38

750

755

760

765

770

some additional SOA antipatterns also informally. Furthermore, Kral et al.
[16] have described seven ”popular” SOA antipatterns which violate the SOA
principles but they did not discuss their detection. In another study, M. Hirsch
et al. [40] have introduced a catalog of WSDL-based web services discoverability
antipatterns.

Likewise, Torkmani et al. [47] have presented a repository of 45 general
antipatterns in SOA. They have introduced a new method based on check lists
to identify and detect antipatterns of SOA in service-oriented development. The
goal of this work is a comprehensive review of these antipatterns that will help
developers to work with a clear understanding of patterns in phases of software
development and so avoid many potential problems. Other similar works are
proposed by Rodriguez et al. [48, [49] and J. L. Ordiales Coscia et al. [50] who
provided a set of guidelines for service providers to avoid bad practices while
writing WSDLs. Based on some heuristics, the authors detected eight bad
practices in the writing of WSDL for web services. The heuristics are simple
rules based on pattern matching. Mateos et al. [51] have proposed an approach
to prevent antipattern during the phase of WSDL documentation generation.

Moha et al. [I7] have proposed a rule-based approach called SODA for
the specification and detection of antipatterns on a service-based SCA system
(Service Component Architecture). Each antipattern is specified with rule cards,
which are sets of rules that use specific metrics. However, the proposed approach
is restricted to SCA. Later, Palma et al. [31] extended this work by proposing the
SODA-W approach inspired from SODA to specify and detect SOA antipatterns
in web services. Indeed, authors used the relevant properties of web service-
specific antipatterns to extend their previous domain-specific language (DSL).
They performed detection for ten antipatterns. However, SODA-W is limited

to a smaller set of WSDL interface metrics.

39

775

780

785

790

795

800

Search-Based Software Engineering (SBSE) uses a computational search ap-
proach to solve optimization problems in software engineering [52]. After the
formulation of software engineering task as a search problem, by defining it in
terms of solution representation, fitness function, and solution change opera-
tors, many search algorithms can be applied to solve that problem. The use of
bi-level search technique was only used in [2I]. However, this study is limited
to detecting code smells in JAVA programs using static metrics and did not
consider the use of multi-objective algorithms.

Recently, some search-based approaches to address web service antipatterns
detection have been proposed [7, 9, 8, [I0]. Ouni et al. [7] introduced a novel
search-based approach to detect web service anti patterns including the god ob-
ject web service, fine-grained web service, ambiguous web service, Data service
and Chatty service. Using genetic programming approach, authors generate
detection rules based on a combination of metrics and threshold values. How-
ever, the proposed approach is limited to only web service interface-level metrics
(WSDL) and cannot consider all web service antipattern symptoms. The same
authors [9] extended their previous work in different ways. Firstly, they pro-
posed a novel automated approach for web service antipattern detection as a
cooperative parallel optimization problem. Secondly, they extended their initial
metric suite by including web service code-level metrics and web service dy-
namic metrics to better uncover potential antipattern symptoms. Thirdly, they
extend their base of web service antipattern examples by incorporating three
more antipatterns namely Redundant PortTypes, CRUDy Interface and Maybe
It is NotRPC and finally, they extended the evaluation of the approach. As
result, the experimental evaluation performed better than the previous work.

The main novelty of our approach is related to the consideration of both

static and dynamic metrics to detect antipatterns unlike existing work limited

40

805

810

815

820

825

to static ones. Furthermore, our work considered the generation of defects while
existing work are limited to the manual definition of rules or the generation of

rules from a small set of examples.

7. Conclusions and Future Work

We proposed, in this paper, a bi-level multi-objective approach for the web
service antipatterns detection problem. In our approach adaptation, the upper
level generates a set of detection rules which are a combination of QoS, Inter-
face, and code level metrics, using two conflicting fitness functions. The first
objective is to maximize the coverage of both the base of defect examples and
artificial defects generated by the lower level and to minimize the coverage of
well-designed web service examples. The second objective is to minimize the
size of a detection rule. The lower level generates artificial defects that cannot
be generated by the upper-level detection rules which will help to generate fitter
rules.

We implemented our proposed approach and evaluated it on a benchmark
of 662 web services and several common web service antipattern types. The
empirical study shows that proposed bi-level multi-objective optimization ap-
proach outperforms our previous multi-objective approach, bi-level approach
and other state-of-the-art approaches. As part of our future work, we are plan-
ning to explore the use of bi-level for the automated repair of detected an-
tipatterns.Additionally, we may consider other techniques such as the concept
of generative adversarial networks [53] in generating the artificial defects. We
will also work on the prioritization of detected defects due to the large number
of potential issues that need to be fixed when improving the quality of Web
services. For example, we can evaluate the impact of detected defects on the

overall quality of service as a way to rank the identified antipatterns. Addi-

41

830

835

840

845

850

tionally, an empirical study about the impact of different antipatterns on QoS

(maintainability, changeability, comprehensibility, discoverability) is considered

as part of our future work.

References

References

1]

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented
computing: a research roadmap, International Journal of Cooperative In-

formation Systems 17 (02) (2008) 223-255.

E. Newcomer, G. Lomow, Understanding SOA with Web services, Addison-

Wesley, 2005.

M. P. Papazoglou, Service-oriented computing: Concepts, characteristics
and directions, in: Web Information Systems Engineering, 2003. WISE
2003. Proceedings of the Fourth International Conference on, IEEE, 2003,

pp. 3-12.

J. Krél, M. Zemlicka, Popular SOA Antipatterns, in: Computation World:
Future Computing, Service Computation, Cognitive, Adaptive, Content,

Patterns, 2009, pp. 271-276.

D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny, Cohesion-Driven
Decomposition of Service Interfaces Without Access to Source Code, IEEE

Transactions on Services Computing 8 (JUNE) (2015) 1-18.

D. Romano, M. Pinzger, Analyzing the evolution of web services using
fine-grained changes, in: IEEE International Conference on Web Services

(ICWS), 2012, pp. 392-399. ldoi:10.1109/ICWS.2012. 29\

42

http://dx.doi.org/10.1109/ICWS.2012.29

855

860

865

870

[7]

[10]

[15]

A. Ouni, R. Gaikovina Kula, M. Kessentini, K. Inoue, Web service antipat-
terns detection using genetic programming, in: Proceedings of the 2015
on Genetic and Evolutionary Computation Conference, GECCO’15, ACM,

2015, pp. 1351-1358.

H. Wang, M. Kessentini, A. Ouni, Bi-level identification of web ser-
vice defects, in: International Conference on Service-Oriented Computing,

Springer, 2016, pp. 352-368.

A. Ouni, M. Kessentini, K. Inoue, M. O Cinneide, Search-based web service
antipatterns detection, IEEE Transactions on Services Computing PP (99).

doi:10.1109/TSC.2015.2502595.

H. Wang, M. Kessentini, T. Hassouna, A. Ouni, On the value of quality
of service attributes for detecting bad design practices, in: Web Services

(ICWS), 2017 IEEE International Conference on, IEEE, 2017, pp. 341-348.

J. F. Bard, Practical bilevel optimization: algorithms and applications,

Vol. 30, Springer Science & Business Media, 2013.

F. Palma, N. Moha, G. Tremblay, Y.-G. Guéhéneuc, Specification and de-
tection of soa antipatterns in web services, in: European Conference on

Software Architecture, Springer, 2014, pp. 58-73.

J. L. O. Coscia, C. Mateos, M. Crasso, A. Zunino, Refactoring code-first
web services for early avoiding wsdl anti-patterns: Approach and compre-

hensive assessment, Science of Computer Programming 89 (2014) 374-407.

M. P. Singh, M. N. Huhns, Service-oriented computing - semantics, pro-

cesses, agents, Wiley, 2005.

A. Rotem-Gal-Oz, SOA Patterns, Manning Publications, 2012.

43

http://dx.doi.org/10.1109/TSC.2015.2502595

875

880

885

890

895

[16]

[17]

[19]

[20]

[21]

22]

[23]

J. Kral, M. Zemlicka, Crucial service-oriented antipatterns, International

Journal On Advances in Software 2 (1) (2009) 160-171.

N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc,
B. Baudry, J.-M. Jézéquel, Specification and detection of soa antipatterns,

in: Service-Oriented Computing, Springer, 2012, pp. 1-16.

S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design,

IEEE Transactions on software engineering 20 (6) (1994) 476-493.
E. Al-Masri, Q. H. Mahmoud, The qws dataset (2008).

D. Athanasopoulos, A. Zarras, Fine-grained metrics of cohesion lack for
service interfaces, in: IEEE International Conference on Web Services

(ICWS), 2011, pp. 588-595. doi:10.1109/ICWS.2011.27.

D. Sahin, M. Kessentini, S. Bechikh, K. Deb, Code-smell detection as a
bilevel problem, ACM Trans. Softw. Eng. Methodol. 24 (1) (2014) 6:1-
6:44. |doi:10.1145/2675067.

URL https://doi.org/10.1145/2675067

W. Candler, R. Townsley, Linear two-level programming problem., COMP.
& OPER. RES. 9 (1) (1982) 59-76.

E. Aiyoshi, K. Shimizu, Hierarchical decentralized systems and its new
solution by a barrier method., IEEE Transactions on Systems, Man and

Cybernetics (6) (1981) 444-449.

B. Colson, P. Marcotte, G. Savard, An overview of bilevel optimization,

Annals of operations research 153 (1) (2007) 235-256.

K. Deb, A. Sinha, An efficient and accurate solution methodology for bilevel
multi-objective programming problems using a hybrid evolutionary-local-

search algorithm, Evolutionary computation 18 (3) (2010) 403-449.

44

http://dx.doi.org/10.1109/ICWS.2011.27
https://doi.org/10.1145/2675067
https://doi.org/10.1145/2675067
https://doi.org/10.1145/2675067
http://dx.doi.org/10.1145/2675067
https://doi.org/10.1145/2675067

900

905

910

915

920

[26]

[27]

[28]

[29]

[31]

F. Legillon, A. Liefooghe, E.-G. Talbi, Cobra: A cooperative coevolutionary
algorithm for bi-level optimization, in: Evolutionary Computation (CEC),

2012 IEEE Congress on, IEEE, 2012, pp. 1-8.

A. Koh, A metaheuristic framework for bi-level programming problems
with multi-disciplinary applications, in: Metaheuristics for Bi-level Opti-

mization, Springer, 2013, pp. 153-187.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii, Evolutionary Computation, IEEE
Transactions on 6 (2) (2002) 182-197.

M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engineering:
Trends, techniques and applications, ACM Computing Surveys (CSUR)
45 (1) (2012) 11.

F. Wilcoxon, S. Katti, R. A. Wilcox, Critical values and probability levels
for the wilcoxon rank sum test and the wilcoxon signed rank test, Selected

tables in mathematical statistics 1 (1970) 171-259.

F. Palma, N. Moha, G. Tremblay, Y.-G. Guéhéneuc, Specification and
detection of soa antipatterns in web services, in: Software Architecture,

Springer, 2014, pp. 58-73.

M. Kessentini, H. Sahraoui, M. Boukadoum, Example-based model-
transformation testing, Automated Software Engineering 18 (2) (2011) 199—
224.

M. Kessentini, A. Bouchoucha, H. Sahraoui, M. Boukadoum, Example-
based sequence diagrams to colored petri nets transformation using heuris-
tic search, in: European Conference on Modelling Foundations and Appli-

cations, Springer, Berlin, Heidelberg, 2010, pp. 156-172.

45

925

930

935

940

945

[34]

[36]

[37]

[41]

M. Kessentini, H. Sahraoui, M. Boukadoum, M. Wimmer, Search-based de-
sign defects detection by example, in: International Conference on Funda-
mental Approaches to Software Engineering, Springer, Berlin, Heidelberg,

2011, pp. 401-415.

A. ben Fadhel, M. Kessentini, P. Langer, M. Wimmer, Search-based detec-
tion of high-level model changes, in: 2012 28th IEEE International Confer-
ence on Software Maintenance (ICSM), IEEE, 2012, pp. 212-221.

M. Kessentini, M. Wimmer, H. Sahraoui, M. Boukadoum, Generating
transformation rules from examples for behavioral models, in: Proceedings
of the Second International Workshop on Behaviour Modelling: Foundation

and Applications, ACM, 2010, p. 2.

S. Kalboussi, S. Bechikh, M. Kessentini, L. B. Said, Preference-based many-
objective evolutionary testing generates harder test cases for autonomous
agents, in: International Symposium on Search Based Software Engineer-

ing, Springer, Berlin, Heidelberg, 2013, pp. 245-250.

M. Kessentini, R. Mahaouachi, K. Ghedira, What you like in design use to

correct bad-smells, Software Quality Journal 21 (4) (2013) 551-571.

A. Ouni, R. Gaikovina Kula, M. Kessentini, K. Inoue, Web service antipat-
terns detection using genetic programming, in: Proceedings of the 2015 An-
nual Conference on Genetic and Evolutionary Computation, ACM, 2015,

pp. 1351-1358.

U. Mansoor, M. Kessentini, B. R. Maxim, K. Deb, Multi-objective code-
smells detection using good and bad design examples, Software Quality

Journal 25 (2) (2017) 529-552.

U. Mansoor, M. Kessentini, M. Wimmer, K. Deb, Multi-view refactoring of

46

950

955

960

965

970

[43]

[44]

[45]

[46]

class and activity diagrams using a multi-objective evolutionary algorithm,

Software Quality Journal 25 (2) (2017) 473-501.

M. W. Mkaouer, M. Kessentini, M. 0. Cinnéide, S. Hayashi, K. Deb, A ro-
bust multi-objective approach to balance severity and importance of refac-
toring opportunities, Empirical Software Engineering 22 (2) (2017) 894—
927.

A. Ouni, M. Kessentini, K. Inoue, M. O. Cinnéide, Search-based web service
antipatterns detection, IEEE Transactions on Services Computing 10 (4)

(2017) 603-617.

M. Fleck, J. Troya, M. Kessentini, M. Wimmer, B. Alkhazi, Model trans-
formation modularization as a many-objective optimization problem, IEEE

Transactions on Software Engineering 43 (11) (2017) 1009-1032.

B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, D. Osborne, J2EE Antipat-
terns, John Wiley; Sons, Inc., 2003.

M. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos, A. Zunino, Spotting
and removing wsdl anti-pattern root causes in code-first web services using
nlp techniques: A thorough validation of impact on service discoverability,

Computer Standards & Interfaces 56 (2018) 116-133.

M. A. Torkamani, H. Bagheri, A Systematic Method for Identification of
Anti-patterns in Service Oriented System Development, International Jour-

nal of Electrical and Computer Engineering 4 (1) (2014) 16-23.

J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino, Best practices for de-
scribing, consuming, and discovering web services: a comprehensive toolset,

Software: Practice and Experience 43 (6) (2013) 613-639.

47

975

980

985

[49]

[50]

[51]

[52]

J. M. Rodriguez, M. Crasso, A. Zunino, M. Campo, Automatically detect-
ing opportunities for web service descriptions improvement, in: Software

Services for e-World, Springer, 2010, pp. 139-150.

J. L. Ordiales Coscia, C. M. Mateos Diaz, M. P. Crasso, A. O.
Zunino Suarez, Anti-pattern free code-first web services for state-of-the-

art java wsdl generation tools.

C. Mateos, J. M. Rodriguez, A. Zunino, A tool to improve code-first web
services discoverability through text mining techniques, Software: Practice

and Experience 45 (7) (2015) 925-948.

M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engineer-
ing: Trends, techniques and applications, ACM Computing Surveys 45 (1)
(2012) 1-61.

Gan: A beginner’s guide to generative adversarial networks.

URLhttps://skymind.ai/wiki/generative-adversarial-network-gan

48

https://skymind.ai/wiki/generative-adversarial-network-gan
https://skymind.ai/wiki/generative-adversarial-network-gan

	Introduction
	Background and Problem Statement
	Web Services Design Defects
	Motivating Example and Challenges

	Bi-level Multi-objective Optimization for Web services Defects Detection
	Bi-level Multi-objective Optimization Technique
	Bi-level Optimization
	Multi-Objective Optimization

	Approach Overview
	Problem Formulation
	Solution Representation
	Fitness Functions
	Change Operators

	Validation
	Research Questions
	Experimental Settings
	Results and Discussions
	Results for RQ1
	Results for RQ2
	Results for RQ3

	Threats to Validity
	Related Work
	Conclusions and Future Work

