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ABSTRACT 

A deployed machine learning-based malware detection model is effectively a black-box for an 

adversary whose objective is evading the model. In such a set- ting, the adversary has no access to 

details of the black-box except its prediction on a given input. With such limited leverage, the 

adversary has no choice but to explore avenues to infer the model’s decision boundary, based on 

which adversarial inputs are crafted to evade it. 

Inferring the best approximation of a black-box model’s decision boundary is a non-trivial 

exercise for which an exact solution is unattainable. This is because there are exponentially many 

combinations of model architectures, parameters, and training examples to explore. In this context, 

the adversary prefers an optimal strategy that yields the best approximation of the black-box with 

minimal effort. This thesis presents a novel adversarial approximation approach for a black-box 

malware detector. Beginning with publicly accessible input-set for the black-box model, our 

approach leverages the recent advances in image transformation for deep neural networks and 

transferability of knowledge from publicly available pre-trained models to obtain an acceptable 

approximation of a black-box malware detector. 

Experimental evaluation of our approach against a 93% black-box model trained on raw-byte 

sequence features of benign and malware Windows executables achieves up to 92% accurate 

approximator that leverages the Inception V3 pre- trained model. On a comparison dataset disjoint 

with the black-box’s and the approximator’s training sets, our approach achieved 90.1% similarity 

between the target black-box and the approximated model, showing the viability of our approach 

for approximation of black-box malware detectors with optimal effort. 
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CHAPTER 1: INTRODUCTION 

Recent advances in Machine Learning (ML), such as deep neural networks (DNNs) have been 

demonstrated to achieve impressive accuracy on typical vision tasks, such as image classification 

and object recognition. The success of DNNs inspired adoption in other do- mains such as machine 

translation, speech processing, healthcare, and malware detection [3]. Despite their impressive 

accuracy, DNNs and other traditional machine learning techniques such as logistic regression, 

support vector machines, and decision trees have also been shown to be vulnerable to (training-

time) poisoning —where an adversary modifies the decision boundary of a model and (test-time) 

evasion — where an adversary crafts an input that bypasses a model’s decision boundary [4]. At 

training-time, an adversary injects training examples with the purpose of skewing a model towards 

a desired class. Once a model is deployed, an adversary probes it with carefully perturbed input 

instances that are intended to cause the model make prediction mistakes. These subtly perturbed 

variations of input instances are called adversarial examples [5, 6]. 

The real-life potential consequences of poisoning and evasion attacks are worrisome. A malware 

detector could be evaded to result in attacks that slip under the radar and make their way to critical 

infrastructure (e.g., power grids, nuclear reactors) and services (e.g., banks, hospitals). A road-side 

traffic sign detector of an autonomous vehicle could be mislead to make the wrong decisions that 

lead to traffic accidents. A medical image classifier could be misguided via adversarial 

perturbations to give the wrong diagnosis. A voice- based home assistant could be tricked to 

execute adversary-induced actions (e.g., open door for intruder). All these examples of adversarial 
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attacks on deployed ML-models are consequential and will be even more so as machine learning 

continues to be pervasively deployed in safety-, security-, privacy-critical settings. 

Depending on the adversary’s knowledge, evasion attacks may be white-box, black- box, or 

gray-box. In a white-box setting, the adversary has access to model architecture, parameters, 

features and training set. In a black-box setting, the adversary only knows the output (e.g. label = 

‘benign’) for a given input (e.g., notepad.exe). Gray-box is an intermediate case where the 

adversary has some knowledge about model details. 

In a black-box setting, an adversary may leverage publicly available training examples to 

approximate the target black-box model to pave the way for crafting adversarial examples to evade 

it. Getting the best approximation of a target black-box model is a non- trivial exercise for which 

an exact solution is unattainable. What combination of model architectures, parameters, and 

training examples is effective enough for the best-effort ap- proximation of the black-box model? 

How can an adversary begin with zero knowledge about the internals of a black-box model and 

reach to an acceptable substitute model? What strategy works when all the adversary has access to 

is a small set of samples that the black- box can accept? Any attempt to answer these questions 

comes down to some form of an approximation strategy on the side of the adversary. 

To address the aforementioned questions, prior work has leveraged the notion of transferability 

[7, 8] in machine learning to approximate a black-box model. For instance, in the image domain, a 

substitute model is trained to fit a black-box image classifier, and the substitute model was then used 

in a white-box setting to craft adversarial examples [8] to evade the black-box model. In a similar 

vein, in [7], it is demonstrated that a generative adversarial network (GAN)-based model 

approximation enables crafting of adversarial examples that evade an API call-based malware 

detection model. 
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While prior work [7, 8, 9, 10] has explored interesting directions to approximate a black-

box model, this thesis focuses on adversarial approximation of a black-box malware detector 

with minimal efforts desirable for the adversary. In pursuit of answers the questions raised earlier, 

an average-skilled adversary may adopt a brute-force approach to explore numerous combinations 

of model architectures, parameters, features and training data. A skilled adversary, on the other 

hand, is more likely to prefer a strategy that yields the best approximation of the black-box model 

while minimizing efforts. This thesis argues that beginning with publicly accessible input-set for 

the black-box model, a skilled adversary can leverage the representation and knowledge of publicly 

accessible pre-trained models to obtain an acceptable approximation of the black-box model with 

optimal efforts. 

In particular, this thesis presents an adversarial approximation approach that leverages a curated 

training data of Windows executables (benign and malware), their equivalent image representation, 

and a pre-trained image classification model to approximate a black- box malware detector trained 

on byte-sequence features of executables. While prior work (e.g., [7, 8, 9]) mostly assumes similar 

feature sets for the black-box and the approximated model, this thesis, in the strict sense of black-

box setting (hence most challenging for the adversary), assumes different feature representations 

of the black-box and the approximated model. In addition, unlike prior work ([7, 8, 9, 10]), this 

work ensures no overlap among the training data for the black-box model, the approximator 

training data, and the comparison dataset used to evaluate the similarity of the approximated model 

to the black- box model. 

We evaluated our approach against a 93% accurate Convolutional Neural Network (CNN) 

black-box model [3] trained on raw-byte sequence features. Our approximation approach obtained 

up to 92% accurate CNN on features transformed from bytes to images and trained based on the 
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Inception V3 [11] pre-trained model. On a comparison dataset disjoint with the black-box’s and 

the approximator’s training sets, our approach achieved 90.1% similarity between the black-box 

and the approximated model. The results indicate that, even if the target model is a black-box, a 

skilled adversary can still take advantage of publicly available training data and the underlying 

knowledge of pre-trained models (Inception V3 in this case) to successfully approximate the 

decision boundary of a black-box model. An intriguing observation of our results is that, even if 

the adversary ends up obtaining training samples that don’t overlap with the samples used to train 

the black-box model, the adversary can still achieve an acceptable approximation of the black-box 

model with minimal efforts. Another intriguing observation is even though prior work ([7, 8, 9]) 

assume and use the same feature representations for the black-box model and the approximated 

model, in our experiments, we intentionally explored the more challenging scenario for which the 

representation of the black-box is raw byte sequences and that of the approximated model is pixels. 

Interestingly, our approximation approach still managed to achieve above 90% similarity between 

the target black-box and the approximated model. 

The rest of this thesis is organized as follows. Chapter 2 presents background on machine 

learning with focus on deep learning and attack surface in the learning pipeline. In chapter 3, we 

present discussion of related work and comparison of this work with closely related ones. Our 

approach is presented in chapter 4. The experimental evaluations appear in chapter 5. Chapter 6 

concludes the thesis and highlights future research directions. 
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CHAPTER 2: BACKGROUND 

In this chapter, we briefly introduce machine learning focusing on deep learning, followed by 

an overview of the machine learning attack surface. 

2.1 Deep Neural Networks 

Deep learning is a type of machine learning that is used to teach a model made of layered 

neurons how to identify a specific objective.   A typical DNN has an input layer which   is 

comprised of neurons –functions that accept input, process them, and produce output. These 

neurons store values extracted from the input given to the model. For example, passing an image 

to a DNN would mean that these neurons will each store a part of the image be it a pixel or a small 

concentration of pixels, then these inputs are moved into  the hidden layers [12], interconnected 

neurons that will pass the information between each other and apply activation functions dictated 

by the engineers of the model.  Each move in these hidden layers is accompanied by a weight that 

is calculated by the previous layer which will affect the information sent forward. This keeps going 

until we reach the last layer called the output layer. 

The output layer will point us into the direction of the label it thinks our input is part of. 

Continuing with our image example, our input layer will have passed neuron information that 

represent the picture as a whole. This information will move through the hidden layers and get 

changed based on the weights that the network decided on during the training phase. This will help 

the model by the time it gets to the output layer to have a better idea of what label it thinks this image 
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is part of, and then apply the last activation function that will sum up the results of the last hidden 

layer and give us the prediction. These architectures can be very complicated depending on the 

specific task the DNN is used for, and one DNN architecture doesn’t fit all tasks. In this thesis, we 

use a type of DNN called Convolutional Neural Network (CNN). This type is widely used for 

image recognition and serves the purpose of this thesis. The main difference between a DNN and 

CNN is that DNNs are fully connected networks, meaning that the hidden layers are all connected 

where each neuron in a layer will feed information to at least one neuron in the next layer. Whereas 

CNNs are made up of both fully connected layers as well as convolutional layers –layers that help 

a CNN detect patterns in an input (the very reason why a CNN is very effective with images). Each 

one of the convolutional layers will have filters, these filters are defined with a size (say 3x3). Now, 

the filter will slide over the input picture and capture all 3x3 pixel windows available in the image, 

and the output will be the results of this scan placed on a new layer as seen in Figure 2.1. 

Figure 2.1: An illustration of how a convolutional layer filter works in a CNN 

(from [1]). 
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The filtering will happen in every convolutional layer in the model. When the input passes all 

of these layers it reaches a layer which flattens the results and pass it on to other layers which will 

begin the process of prediction as seen in Figure 2.2. 

Figure 2.2: An illustration of a CNN architecture (from [2]). 

2.2 Machine Learning Attack Surface 

In the machine learning pipeline, the attack surface extends from the training data to the 

prediction output of the model. The surface is usually examined with respect to adversarial goals 

and capabilities (knowledge) [4]. 

2.2.1 Adversarial Goals 

The adversary aims to violate the basic security properties of a machine learning system. These 

properties are confidentiality, integrity, and availability. When confidentiality is the target, the 

adversary typically aims to steal an already deployed model (e.g., intellectual property, top-secret 

business logic) [9]. For models trained on privacy-sensitive data (e.g., medical records), the 

adversary’s goal is to perform membership inference attacks [13, 14] so as to determine whether or 

not a target individual has participated in the training data. 
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Figure 2.3: Illustration for training-time poisoning and test-time evasion. 

An adversary aiming for integrity violations would have two broad targets –the training data or 

the deployed model (its predictions). By injecting training examples that advance the goals of the 

adversary, the resulting model after training could be made ready for future manipulations –this is 

called training-time poisoning [15]. For example, the adversary may carefully prepare inputs 

(training examples) that would change the decision boundary of the model in favor of the 

adversary’s goals (e.g., insert backdoor or trojan in models). Another common motivation for 

poisoning is to skew the model’s predictions towards a targeted or erroneous output that serves 

malicious intent (e.g., make malware to always bypass malware detection model). 

Once a model is deployed, an adversary may also target the model’s integrity and probe it with 

carefully perturbed input instances that are intended to cause the model make prediction mistakes –
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this is called test-time evasion. Figure 2.3 illustrates training-time poisoning (top box) and test-time 

evasion (bottom box). These subtly perturbed variations of input instances are called adversarial 

examples [5, 6, 10, 16, 17, 18] (e.g., see “Target” sample in the bottom box of Figure 2.3). In image 

classifiers, an adversarial example could be crafted by applying minimal perturbation to produce 

visually imperceptible image, that can cause the model to make the wrong predictions (e.g., perturb 

a stop sign to be detected as a yield sign while it still looks like a stop sign to the human eye). For 

a malware classifier, an adversarial example could be created taking a malware sample that has 

been correctly classified as malware, and minimally perturbing it so that the classifier now 

mistakenly classifies it as benign. Note in the case of the malware, the perturbation need not break 

the malicious behavior of the sample. 

Another adversarial target is the availability of ML model or the system that deploys it. The 

specific goal in this case is similar to classic Denial of Service (DoS) attacks. By over- whelming a 

deployed model (e.g, a remote prediction API) with a flood of prediction re- quests, the adversary 

can effectively deny access to legitimate users of the model. Imagine a remote medical image 

classifier used by physicians from multiple countries. If the classifier falls victim of a DoS attack, 

patients who depend on the results of the classifier would suffer. This threat model has become 

more relevant with the emerging Machine Learning as-a-Service (MLaaS) paradigm. Similar to 

distributed-DoS, adversaries can conspire to launch a coordinated DDoS attack against MLaaS 

platforms such as Amazon’s ML1 and Google’s Cloud Prediction API2. 

 

 

                                                      
1 https://aws.amazon.com/machine-learning 
2 https://cloud.google.com/ai-platform/ 

https://aws.amazon.com/machine-learning
https://cloud.google.com/ai-platform/
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2.2.2 Adversarial Capabilities 

Whether the adversary’s goal is training-time poisoning, test-time evasion, model stealing, 

membership inference, or DoS, the success of the attacks depend on adversarial capabilities what 

the adversary knows (has access to). The adversary may have different levels of knowledge about 

the training data, learning algorithm, model parameters/hyper- parameters, and feature set [4]. The 

more the adversary knows about the model details, the easier the attack, and vice-versa. In general, 

the adversarial knowledge can have three scenarios –white-box, black-box, and gray-box. 

In a white-box (full knowledge) setting, the adversary knows the training data, details of the 

learning algorithm (e.g., whether it is SVM or DNN), parameters (e.g., weights  and biases of a 

neural network), feature set (e.g., pixels for images, bytes for executable binaries, characters for 

natural language text). This setting is the easiest for the adversary, while the most exposing for the 

model. 

In a black-box (zero/minimal knowledge) setting, the adversary has no (very limited) 

knowledge about the model.  Typically the adversary only knows the prediction results  of inputs. 

We note that the adversary may know a few more details that anyone would know. For example, 

the task the model is trained on (e.g., image classification, malware detection), possible features 

(e.g., pixels for images, API calls for executable binaries), and some training samples (e.g., access 

to a public image database or malware corpus). This is the most difficult setting for the adversary 

due to lack of access to the learning algorithm, model parameters, and features. One common 

strategy to fill the knowledge gap is for the adversary to repeatedly query the black-box model and 

use its prediction output as ground truth to train a substitute model that approximates the black-

box model. This thesis operates in the black-box setting and for malware detector trained on raw 

bytes of Windows executables. 
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A gray-box (partial knowledge) setting is when the adversary has partial knowledge about the 

model, training data, and features. For instance, the adversary may only know a subset of training 

set and has some guess about features. 
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CHAPTER 3: RELATED WORK 

This chapter discusses related work on black-box adversarial approximation of machine 

learning models, both in the image classification and malware detection domain. 

3.1 Black-Box Approximation for Image Classifiers 

A closely related work from the vision domain that we drew inspiration from is by Papernot et 

al. [12], where the goal is to use substitute models to approximate a CNN black-box model, and 

craft adversarial examples to evade the black-box. In this work, the authors assume that the 

adversary knows only two things: the original labelling of a sample that will be passed to the black-

box and the black-box’s labeling of the samples. The substitute model is trained by passing a batch 

of data based on the labeling of the black-box. Then they apply the Jacobian augmentation 

algorithm to synthetically generate more training examples for the next training iteration. 

Sρ+1 = →−x  + λρ · sin(Jf [O(→−x )] : →−x ESρ) ∪ Sρ (3.1) 

Equation 3.1 is explained in [8], where they draw from the training procedure used in [12] to 

apply on multiple architectures. They apply Equation 3.1 to their training set as follows.  Sρ and 

Sρ+1 are the old set and the new set of data, →−x is the sample being used, λ is what defines the 

augmentation step size and O are the labels from the last training session of the substitute model. 

The way [8] and [12] differ is that [8] used a periodical step size or a different λ each time they 

notice that the current augmented training set is not improving the outcome. 
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3.2 Black-Box Approximation for Malware Detectors 

In terms of malware detectors approximation, the main work that motivated this thesis is by 

Hu and Tan [7]. Like [12] and [8], this work also goes beyond approximation to craft adversarial 

examples based on an approximated black-box model. This work assumes that the only thing the 

adversary knows about the black-box is the type of features it uses. In our case, we assume a threat 

model where the adversary knows nothing about the details of the black-box. In addition, our 

approach differs from [7] in the assumption about the underlying feature representations of training 

examples (Windows executables). While [7] assumes the same (API calls precisely) feature 

representation of the black-box and the substitute, in our work we make no assumption about the 

similarity or difference of the black-box and the substitute model. 

Related to [7], [19] adopts Equation 3.1 to synthesize training examples to approximate a target 

black-box malware detector based on API call features. Like [8] and [7], [12] also crafts adversarial 

examples to evade the black-box model it approximates. Next, we make approach-level 

comparisons between our work and these closely related works. 

3.3 Comparison with Related Work 

Table 3.1 shows multi-criteria comparison of this work with the state of the art in black- box 

adversarial approximation of machine learning models both in the image and malware domain. Our 

comparison is based on assumptions about features, model architecture, initial training set size, and 

dataset overlap between among black-box and substitute model. 

Features compares assumptions about features of the black-box and the substitute (e.g., same, 

different). While prior work [8, 7] assumed similar features for both the black-box and the 

substitute model, in this work we consider the more challenging scenario where the black-box is 

trained based on raw-byte sequences of Windows executables, whereas the substitute is based on 
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pixels of the image representations of the raw bytes. Table 3.1 shows that features used for training 

the substitute in [7] are the same as the ones the black-box was trained on. Similarly, [12] uses 

images on an image recognition black-box which is vaguely similar, whereas the rest are 

completely different from the Black Box they are trying to approximate. 

Model architecture captures assumptions about model architecture for the black-box and the 

substitute model (e.g., same, different). Unlike most prior work [7, 9, 8, 12], we make no 

assumption about the similarity of model architectures for the black-box and the substitute, our 

current implementation of our approximation strategy uses CNN for both. It is worth noting that 

most prior work leverage the popular adoption of DNNs for malware detection to make an 

assumption of the same, i.e., DNN, architecture for the black-box and the substitute model. 

Initial set size compares assumptions on availability of initial set to begin approximation 

(e.g., limited, enough, big). In [8], the assumption is that training data is scarce and hence the 

adversary explores augmentation techniques to generate more training samples to train the 

substitute. In [7], the approach assumes an adversary has collected enough samples to train a 

substitute. In this work, we explore both cases where the adversary has access to a limited initial 

set and the case when the adversary has prepared enough samples to explore adversarial 

approximation opportunities. 

Data overlap examines whether dataset used for the black-box, the substitute, and 

comparison of black-box with substitute have overlap (e.g., overlap, disjoint). In this work, we use 

disjoint datasets for training the black-box, approximation of the substitute, and comparison of 

the black-box with the substitute. Doing so ensures the effectiveness of the substitute model 

approximated with a completely new dataset. In the closely related works we review here [7, 12, 

9, 19], there is no explicit statement on whether or not the datasets are completely disjoint from 
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the black-box (that is the reason why we mark “N/A” for related work and “disjoint” for our work 

in the last row of Table 3.1). 

 

Table 3.1: Comparison with closely related work. 

 [7] [12] [9] [19]  This work 

Features same same* different different different 

Model architecture different same* different different same* 

Initial set size big enough enough enough limited/big 

Data overlap N/A N/A N/A N/A disjoint 
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CHAPTER 4: APPROACH 

This chapter presents the threat model, problem formulation, challenges, and details of our 

approach. 

4.1 Threat Model, Problem, and Challenges 

Threat Model: In this work, we operate under a specific threat model with a specific adversarial 

goal and capabilities. The adversary’s goal is to approximate the decision boundary of a deployed 

malware detector (let’s call it B). The adversary doesn’t know B’s architecture, parameters, 

features, or training set. The adversary only knows that B accepts Windows executables as input 

and returns labels (benign or malicious) as output. It is as- summed that the adversary has access 

to a seed-set of benign and malicious PEs but can’t tell whether or not the PEs in the seed-set 

intersect with B’s training set. Moreover, the adversary knows the task for which B is trained 

(malware detection in our case). 

Problem Formulation: Given a deployed malware detection model, B, under the threat model 

stated earlier, the adversary’s goal is to find B’s approximation, S, with minimal number of 

interactions with B. The ultimate goal of the adversary is to use S (i.e., B’s approximation) in a 

white-box setting to mount evasion attacks against B. A white-box setting gives the adversary the 

leverage to manipulate the internals of S so as to infer B’s vulnerabilities to evasion attacks (e.g., 

to craft adversarial examples). An approximation of B could also allow the adversary to steal the 

model (e.g., if B is an intellectual property or some top-secret business logic). 
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Challenges: The following are the challenges tackled by this work: 

• Challenge-1: Where does the adversary start with the approximation? A natural direction 

would be to use a brute-force strategy on combinations of learning algorithms, feature 

sets, and training sets. However, this strategy yields infinitely large number of 

possibilities to explore (hence time-consuming for the adversary). 

• Challenge-2: How does the adversary expand an initial seed-set of samples that B 

accepts? 

• Challenge-3: How does the adversary ensure that the approximation is 

progressing in the right direction (getting close to B)? 

4.2 Approach Overview 

Figure 4.1 depicts an overview of our black-box adversarial approximation approach. Given a 

black-box model B trained on raw byte features of executables in the black-box training set, the 

adversary collects benign and malware executables from public sources to maintain the 

approximator training set. The adversary then uses B as an oracle to label samples in the 

approximator training set (details in Section 4.3.1). Next, the labeled approximator set is 

transformed from raw bytes to image representation to make it ready for the adversarial 

approximation (details in Section 4.3.2). The adversarial approximation step uses the labeled-and-

transformed approximator set to systematically approximate B. The approximation begins by 

training an initial approximator model S on the labeled-and-transformed approximator set and S is 

refined until it achieves acceptable accuracy (details Section in 4.3.3). Using a separate dataset 

disjoint with the approximator training set, the last stage of the approach compares the similarity 

between B and S (details in Section 4.3.4). The key insight is that a higher similarity score for B 

and S is an indication of the effectiveness of the approach in Figure 4.1   
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Figure 4.1: Approach overview. 

For the sake of presenting an end-to-end approximation framework, Figure 4.1 includes the 

black-box training at the beginning. In practice, the adversary doesn’t have access to the black-box 

model. It is also worth noting that the three datasets shown in Figure 4.1 are assumed to be disjoint 

in order to illustrate a truly black-box setting (the most challenging for the adversary). Again, in 

reality, the adversary has no easy way to determine if the substitute training set or the model 

similarity comparison set have intersection among themselves or with the black-box training set. 

In our approach, taking advantage of the fact that we trained our own black-box model, we made 

sure that these three sets are dis- joint in order to bring the scenario close to a true black-box setting. 

Note, however, that in the adversarial approximation, our approach operates in line with the threat 

model stated earlier. 

4.3 Approach Details 

In this section, present the details of our approach and justify our choices with respect   to the 

threat model and the challenges stated earlier. We will first discuss the labeling of the 

approximation set, followed by how we transform the samples in the approximation set to fit our 

approach goals. Next, we explain the core component of our approach, the adversarial 

approximation. Finally, we describe the similarity comparison component. 
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4.3.1 Labeling of Approximation Set 

An implicit question in Challenge-1 is “given a potential set of benign and malware exe- 

cutable samples, how does the adversary label them towards effective approximation?”. To tackle 

this challenge, a naive labeling approach would be to take the “ground truth” labels that the 

samples come with. Had our end goal been training a malware detector, this naive labeling 

approach would have sufficed for training a typical binary classifier for malware detection. Our 

goal, however, is to approximate a black-box malware detector. In other words, we expect our 

labeling strategy to guide our approximation strategy towards B. 

Given a set of samples x(1), ..., x(n) and a hypothesis function h learned by B, by query- ing B 

as h(x(i)), we obtain y(i) (i in [1, n]) as labels. The y(i)’s may or may not match the ground truth 

labels. If B misclassifies some x(i)’s, the misclassified x(i)’s will not match the ground truth 

counter-parts. What should be done with the misclassified samples in the approximator training 

set? The alternatives we have are a) drop the misclassified x(i)’s and explore approximation with 

the correctly labeled x(i)’s, b) reinstate labels to ground truth labels and proceed with 

approximation, or c) take the labels assigned by B for what they are. Alternative a) is no different 

from training the approximator without querying B. Alternative b) tries to “cor- rect” the 

“imperfections” of B (note that if we pursue this path, “correct” could mean lower accuracy because 

we are essentially changing the underlying distribution of B). Alternative c) is the most realistic for 

our threat model, because it takes B for what it is and uses labels returned by B’ (i.e., the y(i)’s) to 

prepare the labeled approximation set.  It is worth noting that alternative c) tackles Challenge-3 

by guiding the adversarial approximation strategy in the right direction. 
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4.3.2 Approximation Set Transformation 

Given our black-box threat model, the adversary doesn’t know what features are used to train 

B. To address Challenge-1, the adversary may pursue different possibilities of features used to 

train malware detectors based on executables. However, the space of possible features is 

exponentially large. For example, if we only consider static analysis-based features of a given 

executable sample, we end up with numerous possible features such as meta-data, DLL imports, 

byte sequences, and so on. Similarly, considering the dynamic analysis-based features results in 

several candidate feature sets such as API/system call traces, instruction sequences, and call 

graphs. Therefore, such a strategy of feature guessing would be neither effective nor preferred by 

a skilled adversary simply because it is resource-intensive. 

A strategy we propose in this approach is to transform the raw byte representation of each 

executable to an image representation (pixel values precisely), analogous to taking a photograph 

of the executable’s raw bytes. The main rationale here is that instead of fishing for the best 

combination of a set of features to train the approximator, it is more plausible to capture the whole 

executable’s bytes via image representations such that the learning algorithm is able to “see” and 

learn from all the distinguishing features of an executable in one place (i.e., the image). Past work 

has also explored the viability of bytes-to-pixels conversion for malware detection [20, 21]. 

Another equally important rationale for bytes- to-pixels transformation is the public accessibility 

of acceptably accurate pre-trained image classification models (e.g., Inception V3 [11]) which, by 

the notion of transfer learning [8] could feed knowledge to the approximator. 

To realize the bytes-to-pixels transformation, we leverage BinViz [22], a library that provides 

algorithms to transform the binary executables into a colored canvas, such that the colors (pixel 

intensities) represent the bytes in the executable, and these color intensities are used as the features 
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to train the approximator. In this work, we use two types of image representation, the Entropy (EN) 

representation and the Color Hilbert (CH) representation. CH scans the bytes of a binary 

executable, and assigns color based on the value of each byte. The assigned colors are then mapped 

on a canvas of a chosen dimension. EN uses Equation 4.1 (originally proposed by [23]) to compute 

the randomness of bytes in a specific location of the executable:      

− ∑ 𝜌𝑖

𝑛

𝑖=1

𝑙𝑜𝑔2𝜌𝑖        (4.1) 

 

where pi refers to the probability of appearances of a byte value i, and n is the number of possible 

values (n = 256 for possible byte values). The values provided by the algorithm are given a color 

from bright pink to black. An example that illustrates EN and CH representation for a benign 

executable is shown in Figure 4.2 (a) and 4.2 (b), respectively. Similarly, 4.3 (a) and 4.3 (b) show 

the EN and CH representations of a malware executable. Notice the clear visual difference between 

benign and malware samples, which seems to support our rational of mapping bytes to pixels. 

Looking at the CH representation we would hope that the combination of these colors in the images 

serves best to give the model a clear idea of some features that can be used to learn from. As for 

the EN representation, we can see that the focus is more on areas instead of specific pixels, which 

we would like to evaluate how it would affect our training since it is not as detailed as the CH 

representation. In Chapter 5, we will evaluate the utility of the image representations by examining 

the approximator’s accuracy. Next, we describe how the canvas is filled out with colors. 
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    (a)  (b)  

Figure 4.2: EN and CH rendering of a benign executable (02Mi-cro Card 

Reader Driver 3.11.exe). 

    (a)  (b)  

Figure 4.3: EN and CH rendering of a malware executable 

(Trojan.GenericKDZ.58985). 

 

To fill out the canvas of the image, we leveraged a well-known mapping technique called 

Hilbert curve [24], which makes sure that if two bytes are close to each other in the executable 

they should be close to each other in the image representation as well. This insight is essential in 

preserving the semantic structure of the executables when mapping bytes form the byte-space to 

the corresponding pixels in the color-space. This aspect of the Hilbert curve provides the 
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approximator model an accurate representation of the executable file so that it explores the 

discriminating utility of all possible features. The next question would be, how does the Hilbert 

curve function? Intuitively, the idea of Hilbert curve3 is to find a line to fill a canvas that will keep 

the points which are close to each other on that line at the same distance when it fills the needed 

space. This, in our case, keeps the features of the executables intact since separating them would 

lead to breaking the semantics of a string of bytes which represents a part of our feature set in the 

images we would like to generate. 

4.3.3 Adversarial Approximation 

The adversary has two broad choices for adversarial approximation, brute-force or systematic. 

A brute-force strategy, where by the adversary keeps trying a combination of approximation 

dataset, feature set, model architecture, and model parameters until an acceptable approximator is 

trained. A systematic strategy would minimize the space of exploration of the numerous 

combinations to maximize the chance of obtaining an acceptable approximator with minimal effort. 

Next, we describe these two options and justify why a systematic approximation approach is more 

desirable for the adversary. 

4.3.3.1 Brute-Force 

The idea of brute force stems from the fact that the adversary doesn’t know what the best 

combination of approximation dataset, feature set, model architecture, and model parameters. As 

a result, the adversary tries potentially infinite possibilities until an S close enough to B is obtained. 

Applying this approach is unreasonably tiresome and is such a waste of time. The number of tries 

and hours the adversary will have to sink in to get to their goal is very large, and will defeat the 

                                                      
3 https://www.youtube.com/watch?v=3s7h2MHQtxc 
 

https://www.youtube.com/watch?v=3s7h2MHQtxc
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purpose of the attack since by the time any significant ap- proximation advances can be made, B 

might have been retrained and the process will have to start all over again. For the adversary, it 

comes down to timeliness and approximation effectiveness (quickly obtain S close enough to B) 

with minimal effort, which motivates a systematic approximation strategy. 

4.3.3.2 Systematic 

On the one hand, the adversary races against time and limited resources (e.g., training ex- 

amples). On the other hand, the adversary has access to pre-trained and acceptably accurate models 

for images (e.g., Inception V3 [11]). To obtain an acceptably accurate approxi- mation of the black-

box model, the adversary takes advantage of the advances in image classification models to quickly 

train a candidate approximator on the transformed features of the executables at the disposal of the 

adversary. Notice doing this cuts the effort on feature engineering down to zero because the 

candidate approximator (e.g., a CNN) would automatically learn the features from its training data. 

However, training the candidate approximator based on a pre-trained model highly de- pends on 

the presence of a large corpus of training examples, but the adversary may not have the leverage 

to collect relevant training examples. This challenge is specially true when one attempts to collect 

benign executables from the wild. We observe that, while it is relatively easy to obtain a dataset of 

hundreds of thousands of malware executables from malware repositories, it takes weeks and 

sometimes months to collect benign executables due to the lack of publicly curated benign 

executables dataset. 

To address the scarcity of training examples, the adversary exploits the notion of data 

augmentation, which aims to synthesize minimally manipulated yet semantically intact variants of 

an image representation of samples (executables in our case) [8, 12]. Intu- itively, augmentation 

involves slightly altering an image while keeping the main features of the image intact. Applying 
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augmentation methods (e.g., slight rotation, flipping) in vi- sion tasks (e.g., object detection) is 

relatively easier because as long as the augmentation method doesn’t visually alter the object, the 

model can still detect it. In our approach, however, augmentation needs to be done with care 

because augmentation methods that work fine in the vision domain may not necessarily apply to 

the malware domain due to strict domain-specific constraints, i.e., malware behavior should 

remain intact when ap- plying augmentation. In the process of slightly altering an executable’s 

image, we don’t want to end up with a mutated image that semantically diverges from the original 

image representation of the executable. 

Due to the need to preserve an executable’s behavior, we carefully choose the augmentation 

methods for our approximation strategy. In particular, we selected flipping and rotation to 

synthesize semantically equivalent variants of the training examples. These two augmentation 

methods are proved to keep the original structure intact [12]. Figures 4.4 and 4.5, respectively, show 

flipping and rotation of a benign and malware sample in our dataset. Through augmentation, we 

managed to increase our approximator training set by three-fold (details in Section 5.2.2). The 

impact, on the approximator’s accuracy, of extending the initial approximator training set through 

augmentation is evaluated in Section 5.3.2. Note that the use of augmentation to expand the training 

data directly addresses Challenge-2. 
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(a)  (b)  

(c)  

Figure 4.4: Augmentation example of a benign executable (02Mi-cro Card Reader 

Driver 3.11.exe) (a): original EN, (b): flipped CH, (c):  rotated   EN. 

4.3.4 Similarity Comparison 

Once the approximator is trained with an acceptable accuracy, its true effectiveness can only 

be assessed when compared with the black-box model on a separate dataset, disjoint with both the 

training set of the black-box and the approximator. 

Algorithm 1 shows the pseudo-code for the similarity comparison of B and S. The similarity 

score is the percentage of matching predictions between B and S. The higher the similarity score, 

the closer S is to B, which means S effectively mirrors the decision boundary of B. The adversary 
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can then probe S for further attacks in a white-box setting. Attacks that succeed on S, would, by 

transitivity, work on B. This is the essence of having an accurate approximate model which would 

be used as a substitute for the black-box. By crafting adversarial examples using techniques such 

as the Fast Gradient Sign Method [5], the adversary can now transitively re-target the black-box 

using the approximated model, S, as a surrogate. 

(a)  (b)  

(c)  

Figure 4.5:Augmentation example of a malware executable 

(Trojan.GenericKDZ.58985). (a): original CH, (b): flipped EN, (c): rotated CH. 
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B 

S 

← 

 

Algorithm 1 Similarity comparison between black-box (B) and approximator (S). 

 

1: matches ← 0 

2: for i = 1 → num comparison samples do 

3: y(i) ← blackbox(x(i)) 

4: y(i) ← approximator(x(i)) 

5: if y(i) == y(i) then 

B S 

6: matches matches + 1 

7: end if 

8: end for 

   9: similarity score ← matches/num comparison samples  
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CHAPTER 5: EVALUATION AND RESULTS 

This chapter presents the dataset, experimental setup, and evaluation results of our approach. 

5.1 Dataset 

Our dataset shown in Table 5.1 is collected from two sources. The benign executables are 

collected from a free Windows software store4, while the malware executables are obtained from 

VirusShare5. These two sources are widely used by prior work [3, 25, 16, 7, 19] for adversarial 

examples generation or and malware detection. Overall, we collect 61, 330 executables with 52% 

benign and 48% malware. 

The collection of malware executables is fairly easy due to a continuously curated repository 

of malware executables maintained by sites such as VirusShare and VirusTotal6. The collection of 

benign executables is more challenging due lack of publicly curated benign executables. To curb 

this challenge, we resorted to websites that give access to a huge amount of freeware. We 

implemented a crawling script to automatically download benign executables which account for 

52% the dataset shown in Table 5.1. 

 

 

                                                      
4 https://download.cnet.com/s/software/windows/?licenseType=Free 
5 https://virusshare.com 
6 https://www.virustotal.com/gui/ 

 

https://download.cnet.com/s/software/windows/?licenseType=Free
https://virusshare.com/
https://www.virustotal.com/gui/
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Table 5.1: Summary of datasets used. 

Dataset Benign Malware Total 

Black-Box Training Set 20, 000 20, 000 40, 000 

Approximator Training Set 8, 000 8, 000 16, 000 

Similarity Comparison Set 1 2, 556 766 3, 316 

Similarity Comparison Set 2 1, 349 665 2, 014 

  Total 61, 330  

5.2 Setup 

Our experimental setup consists of a CNN black-box, B, trained on a portion of the dataset; an 

approximation model, S, trained on a separate portion of the training set; and a compar- ison step 

that uses yet another separate chunk of the dataset to evaluate how close S is to 

B. In what follows, we describe the details of our setup for B and S. 

5.2.1 Black-Box Model Training 

B is trained on 20K benign and 20K malware executables. The model is based on MalConv [3]. 

For the sake of quick reproduction, we use the same architecture in MalConv with some tweaks 

needed to fit our hardware limitations (NVIDIA 1080 with 8GB of memory). MalConv is based on 

raw bytes of an executable, and the algorithm reads the first megabyte of each executable, turn it 

into an array and use that array with others in batches to train the model. 

Due to memory limitations on hardware, instead of reading 1MB (as was done in the original 

MalConv), we fed only 1/3MB of each executable to our custom CNN. After suc- cessfully training 

our model, we got an accuracy of 93% which is acceptable for use since the data set used in [3] to 

achieve an accuracy of 98% was about 100K. Also, given the fact we truncated 2/3MB of the byte 
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features used in MalConv, the accuracy we obtained is acceptable to set the black-box model as 

the target for adversarial approximation. 

5.2.2 Approximate Model Training 

The approximation model we used is Inception V3 [11]. There are a couple of reasons to go 

with this specific architecture. First, the fact that our approach is going to rely on image recognition, 

and Inception V3 is known to be a great way to achieve that goal. Second, the prospect of using a 

widely available and acceptably accurate pre-trained model for anyone to use is in favor of the 

constraints the adversary has on collecting enough training samples for the approximation and come 

up with an effective model architecture tuned to adversarial goals. Third, when using Inception V3 

we are only retraining the last layer of an already pre-trained model which not only saves us a lot 

of time, but also gives us confidence in the accuracy of the final model because of transferability. 

First, on the 16K (8K benign + 8K malware) approximation training set labeled by B, we use 

the two types of image representations we obtained from the transformation: Color Hilbert and 

Entropy representation, to separately test which representation achieves better approximation 

accuracy. We then followed the following steps to do our intensive training: 

Progressive: We train S progressively on 4K, 8K, 12K, and 16K executables separately, and 

then compare the results we obtained from both Color Hilbert and Entropy represen- tations. This 

step is to emulate what an adversary would do since they will be actively collecting data, they will 

surly attempt to retrain their model each time they get more training examples until an acceptable 

accuracy is obtained or the training data is exhausted. 

Augmentation-Based: In this step, we focus on the augmentation of the approximator training 

dataset. The goal here is emulating an adversary with scarce training data and aims to expand to 

more training data with less time. In particular, the augmentation methods discussed in Section 
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4.3.3 are tested in practice. We begin with the 8K executables for each label (16K overall) and 

employed (a) rotation (by 90 degrees), (b) flipping, and (c) rotation + flipping to obtain twice as 

much (32K) for rotation and flipping each, and three times (48K) by merging the samples 

synthesized by rotation and flipping, with the original 16K samples we started with. The next 

section discusses the effectiveness evaluation of the augmentation techniques. 

5.3 Results and Discussion 

We present the results in three parts. We will first evaluate the effectiveness of the progressive 

training of S. Next, we examine the effectiveness of the augmentation methods. Lastly, we 

compare the similarity of B with candidate approximators. 

5.3.1 Progressive Accuracy of Approximated Model 

Figure5.1 shows the training accuracy and validation accuracy of each progressive step  in 

training S with the Color Hilbert representation. When examine the results in Figure 5.1, it can be 

seen that the difference between training and validation accuracy narrows  as the model progresses 

with more training data, which is an indication of the real-life effectiveness of the model on 

training examples it has never seen during training. We pick the model trained on 16K data points 

as our first approximator model. 

Similarly, Figure5.2 shows the progressive training of S using the Entropy representation. 

Here, the trend persists, where we see a very high training accuracy across the board but as we 

train on bigger data sets we get a more efficient model (validation accuracy is close to training 

accuracy). This leads us to the same conclusion we made earlier and we choose the model trained 

on 16K data points as our representative for this batch of models. These results are not surprising 

since it is intuitive to see that the more data we trained our model on the better it will be at doing 
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its job. Obviously, the accuracy values could get higher with bigger data sets but since we are 

limited to these original images we can only train with what we have at the time of this 

evaluation. 

 

Figure 5.1: Training and validation accuracy for progressive training of S with 

Color Hilbert representation. 

 

Figure 5.2: Training and validation accuracy for progressive training of S with 

Entropy representation. 

5.3.2 Augmentation Effectiveness 

Now that we have exhausted all of our original approximator training set, let us shift our focus 

to evaluating the effectiveness of the augmentation algorithms discussed earlier.First, let us start 

with the flipped images added to our approximator training set. As stated earlier, the flipping 
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augmentation doubles our training set. The results are split into two figures, Figure5.3 (for Color 

Hilbert) and Figure 5.4 (for Entropy). From Figure 5.3, it can be seen that it doesn’t show much 

improvement over the results from Figure 5.1 and 5.2. This doesn’t mean that the augmentation 

strategy is not useful, but it gives us visibility into the effectiveness of the specific 

representation+augmentation we used. More importantly, we could expand more on this and try 

different combinations to examine if doing so would give us better results. Our conclusion is our 

experiments demonstrate the viability of this strategy since the time it takes to produce these 

augmented images is much shorter than collecting new data to expand the data set. 

Figure 5.3: Approximation results for Color Hilbert representation with image 

flipping augmentation (32K_F_CH) and rotation augmentation (48K_FR_CH). 
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Figure 5.4: Approximation results for Entropy representation with image flipping 

augmentation (32K_F_EN) and rotation augmentation (48K_FR_EN). 

In Figure 5.4, however, we see a slightly different trend. In particular, we notice a small 

improvement when using the flipped images with our original set. This could be attributed to the 

different features in the picture representation of entropy that the model looks to train from.  

However, we see a small drop of accuracy when we add the rotated images. In general, the 

accuracy values obtained for the augmentation methods are overall acceptably comparable to the 

progressive training presented earlier. More importantly, the augmentation methods can be done 

fast and hence will help fill the data scarcity gap for the adversary. 

5.3.3 Similarity Comparison 

Finally, using algorithm 1, we compare the similarity of the black-box model with the candidate 

approximators obtained earlier. As shown in Table 5.2, we have 6 approximators, the first 2 from the 

progressive approximation and the last 4 obtained through the augmentation methods. The 

comparison of these approximators with the black-box is done on a separate comparison set, 

disjoint with the black-bot training set and the approximator training set. 
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Table 5.2: Comparison results between the black-box and the approximator. 

Approximation Method Similarity (black-box, approximator) 

16K using Color Hilbert (CH) 80.5 

16K using Entropy (EN) 89.7 

32K using CH and flipped 80.6 

32K using EN and flipped 89.6 

48K using CH flipped and rotated 79.8 

48K using EN flipped and rotated 90.1 

On average, our approach achieved 85.5% similarity score, with the highest similarity score of 

90.1% (on the largest dataset obtained through flipping and rotation of entropy rep- resentations). 

When we compare Color Hilbert and Entropy approximators, the Entropy- based approximators 

outperformed Color Hilbert by about 9%. Comparing the different augmentation methods, it 

depends on the color representation, i.e., whether we use Color Hilbert or Entropy. The entropy-

based representations consistently outperformed the Color Hilbert representations for all the 

augmentation techniques. As we discussed in Section 4.3.2, this difference is attributable to the 

different canvas coloring methods used in the respective representations (Color Hilbert and 

Entropy). 

Finally, Figure 5.5 shows the details of similarity scores for the 6 approximators split into 

malware, benign, and overall. Having a malware detection rate higher than the benign detection 

rate serves us best, since our goal is to be able to identify malware identified as so by the black-

box. From the figure, it can be seen that the split shows that Entropy-based approximators tend to 

match the black-box more on malware, while Color Hilbert-based approximators match the black-

box more on the benign predictions. Again, this variation is rooted in the canvas coloring methods. 
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Figure 5.5: Similarity comparison results split into benign and malware for all 

approximated models with respect to the black-box. 
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C HAPTER 6: CONCLUSION AND FUTURE WORK 

This thesis presented a novel adversarial approximation approach for a black-box malware 

detector. Beginning with publicly accessible input-set for the black-box model, our approach 

leverages the recent advances in image transformation (using Entropy and Color Hilbert) and the 

notion of transferability (using Inception V3’s pre-trained model) to effectively approximate a 

black-box malware detector. 

Our experimental evaluations suggested two intriguing insights. Firstly, even if the adversary 

obtains training samples that don’t overlap with the black-box model’s training set, our results 

show that the adversary can still achieve an acceptable approximation of the black-box model with 

minimal efforts. Secondly, even in the challenging scenario for which the representation of the 

black-box is different from that of the approximated model, interestingly, our approximation 

approach still managed to achieve above 90% similarity between the target black-box and the 

approximated model. In addition, we demonstrated the effectiveness of our approach for the case 

where the adversary has access to limited training examples (using augmentation), and also the 

opposite case, where the adversary has enough training examples (progressive training). Overall, 

the results that we got are very promising, and our experimental setup can be reproduced by other 

researchers to  explore more about the attack surface of black-box machine learning models. 

One avenue for future work is a more thorough exploration of augmentation techniques. In our 

case, we carefully picked the specific augmentation methods in the interest of pre- serving the 

semantics of the samples. We believe there is more to explore on the pros and cons of various 

augmentation techniques such as color blurring. Another avenue worth ex- ploring is applying our 
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approach to other model architectures (e.g., Recurrent Neural Nets, Support Vector Machines, 

Logistic Regression) to see the cross-architecture transferability of our adversarial approximation 

technique ([8] has more details on this aspect for multiple model architectures in the vision domain). 
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