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Minimax Particle Filtering for Tracking a Highly

Maneuvering Target

Jaechan Lim, Hun-Seok Kim, and Hyung-Min Park

Abstract

In this paper, we propose a new framework of particle filtering that adopts the minimax strategy. In the approach, we minimize

a maximized risk, and the process of the risk-maximization is reflected when computing the weights of particles. This scheme

results in the significantly reduced variance of the weightsof particles that enables the robustness against the degeneracy problem,

and we can obtain improved quality of particles. The proposed approach is robust against environmentally adverse scenarios,

particularly when the state of a target is highly maneuvering. Further, we can reduce the computational complexity by avoiding

the computation of a complex joint probability density function. We investigate the new method by comparing its performance to

that of standard particle filtering and verify its effectiveness through experiments. The employed strategy can be adopted for any

other variants of particle filtering to enhance tracking performance.

Index Terms

Bearing, minimax, particle filtering, range, risk, target tracking.

I. I NTRODUCTION

Conventional adaptive filters such as the adaptive Kalman filter can be applied to maneuvering target tracking [1]. In this

adaptive filter, two additional schemes exist beyond the standard Kalman filtering, i.e., maneuvering detection and adjusting

the state noise variance. This adaptive filter can be appliedto the problems of tracking a maneuvering target by white-noise

acceleration models. More recently, the interactive multiple model (IMM) EKF was proposed for tracking maneuvering targets

where the state model varies based on multiple constant turnmodels. IMM-EKF has been successfully applied for tracking
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a maneuvering target across various problems. Particle filtering (PF) was applied in the form of IMM that outperformed

conventional IMM-EKF, as shown in [2], [3]. PF was applied for solving this highly nonlinear-estimation-problem wherethe

particles are used to approximate the probability density function because we cannot compute the expected state with respect

to the posterior function in a closed-form.

PF has demonstrated powerful tracking performance in various dynamic state estimation problems, particularly when the state

system and measurement functions are nonlinear functions with respect to the “state.” Since its initial implementations in the

1990s, PF has become even more powerful owing to significant advancements in computing processors that enabled practical

implementations in various problems [4][5]. Further, various variants of PF have been proposed since its initial proposal,

such as auxiliary PF (APF) [6], regularized PF (RPF) [7], Kullback-Leibler divergence PF (KLDPF) [8][9][10], GaussianPF

(GPF) [11][12], and cost-reference PF (CRPF) [13][14][15]. The APF algorithm is the same as that of sequential importance

resampling PF (SIRPF) until the resampling process; thereafter, we go back to the previous time step and propagate the particles

again based on resampled particles. Standard PF (SPF) undergoes its inherent defect of particle impoverishment, and RPF was

particularly modified from SPF to overcome the problem. The primary feature of KLDPF is that the number of employed

particles is optimized adaptively based on a predefined error bound at every time step. GPF comprises a simple algorithm with

excellent performance that does not require resampling, which makes GPF robust against particle impoverishment phenomenon

that results from the resampling process. CRPF is applied with unknown noise statistical information, and is robust against

particle impoverishment because the employed proposal density is based on a Gaussian function as in GPF.

Theoretically, PF can show optimal performance with infinitely many particles in nonlinear problems, and outperforms various

sub-optimal approaches such as the extended Kalman filter and Kalman variants, with a reasonable number of particles.

Nevertheless, occasionally, we are not able to obtain satisfactory results by PF when the time-varying target state varies

drastically and highly maneuvers. One crucial factor for the non-ideal performance of PF is that degeneracy problem; that is,

after a few iterations, we have only one particle that has meaningful weight while all the other particles have almost zeros

weights, and the variance of the weights only increases overtime that eventually results in unsatisfactory performance of PF

[16]. To get over with the degeneracy problem, the resampling process is adopted that regenerate high-quality particles more

often; nonetheless, we also have a side effect of particle impoverishment by resampling that we may have all the same particles

within a few iterations, particularly when we have very small state noise. Therefore, the variance of the weights of particles

is crucial to obtain the successful performance of PF approaches. To this end, we adopt a minimax strategy by which we can

obtain significantly reduced the variance of the weights of particles that eventually results in robustness against maneuvering

target and improved tracking performance of PF approaches.In this framework, we maximize a predefined risk function on

This article is protected by copyright. All rights reserved.



3

Fig. 1. Target is tracked based on rangeR and bearingB in radar.

the condition that the risk is bounded over time; subsequently, we obtain the estimator that minimizes the maximized risk

function. Therefore, the bounded maximum risk is minimizedin this strategy to avoid the worst-case divergence from true

trajectories and provides more robust performance. In thisstrategy, the focus is directed to avoiding large errors rather than

merely minimizing errors in the problem where large errors exist due to large variations in the state. To accomplish thisgoal,

we follow the same criterion of minimum mean square error (MMSE) while using the possible maximum MSE as a risk

function to be minimized.

In this paper, we propose a new algorithm of minimax-PF (MPF), especially for tracking problems where a target state is

highly maneuvering. We show the outperforming results of the proposed MPF compared to standard PF. Further, we employ

the minimax strategy to IMM-PF and show its outperforming result over conventional IMM-EKF and IMM-PF. The proposed

approach can be adopted for any variants of PF to improve their tracking performances as shown in the experiments.

This paper is organized as follows. In Section II, we describe the problem formulation. In Section III, we describe the

proposed MPF. In Section IV, we assess the performance of theproposed MPF compared to non-minimax particle filers;

besides, we apply the minimax strategy to IMM-PF and comparethe performances of IMM-EKF, IMM-PF, and IMM-MPF.

Finally, we conclude and provide remarks in the last section.

II. PROBLEM FORMULATION

In this problem, we track the location and velocity of a single target in a two-dimensional space where a target is moving

with random acceleration based on range and bearing measurements. This problem is of interest in various applications such

as radar systems and is a paradigm for target tracking problems. We estimate the state of the target based on observations

measured at the origin of the coordinate system, as shown in Fig. 1(a). The moving direction of the target is subject to the
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acceleration that is determined by the process noise in the state equation. We denote the state and measurement byθ andz,

respectively, and the state equation is expressed as follows [17][18][19]:
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r, v, u, and(x, y) denote the location, velocity, acceleration, and coordinates, respectively.T is the sampling period, andk is

the discrete-time index. Therefore, the time-varying state is composed of four elements, i.e.,2-D location and2-D velocity. The

state of the location and the velocity are subjected to a random process ofuk. The range and bearing compose the measurement

equation, which is highly nonlinear, and described as follows:

zk = f (θk) + ǫk = [Rk Bk]
⊤ + ǫk, (3)

where

zk = [z1,k z2,k]
⊤
, f (θk) = [f1 (θk) f2 (θk)]

⊤
, (4)

the range

z1,k = zR,k = Rk + ǫR,k =
√

r2x,k + r2y,k + ǫR,k, (5)

the bearing

z2,k = zB,k = Bk + ǫB,k = arctan 2 (ry,k, rx,k) + ǫB,k, (6)

and the measurement noiseǫk = [ǫR,k ǫB,k]
⊤. arctan 2 (ry,k, rx,k) denotes the four-quadrant inverse tangent that acts onry,k

and rx,k element-wise to returnBk. We assume that a measurement noiseǫi for the measurementzi,k follows a zero-mean

white Gaussian:

ǫi,k ∼ N
(
0, σ2

i,k

)
for i = 1, . . . ,M, (7)
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whereM is the total number of employed measurements. In this case, the likelihood function with respect to onlyzi,k becomes

p(zi,k|θk) =
1

√

2πσ2
i,k

exp

{

− [zi,k − fi (θk)]
2

2σ2
i,k

}

. (8)

III. PROPOSEDAPPROACH

A. Minimax approach

In game theory, a minimax approach is employed as a solution for zero-sum-game problems [20][21]. We model the tracking

problem as a game where one player is the estimator that triesto obtain the accurate values of the time-varying state whereas

the other player is the environment that adds the noise to thestate and measurements to disturb the other player estimating

the state. In this approach, the cost function is designed based on the strategy that the probability of the maximum-expected-

point-loss is minimized regardless of the strategy of the opponent. Therefore, the expected point-loss becomes the risk that

is maximized before the minimization in the minimax strategy. The minimax approach minimizes its maximal risk among all

estimators, which can be described as follows:

inf
θ̂k

sup
ǫk

Rk

(

θk, θ̂k

)

, (9)

where “inf,” “ sup,” and R denote “infimum,” “supremum,” and risk, respectively.

B. Minimax particle filtering (MPF)

In the minimum mean square error (MMSE) criterion of Bayesian estimation, the following mean square error is defined as

the risk function to be minimized:
∫ (

θk − θ̂
MMSE
k

)2

p(θ0:k|z1:k)dθk (10)

to obtain the following MMSE:

θ̂
MMSE
k =

∫

θkp(θ0:k|z1:k)dθk, (11)

where the square error,
(

θk − θ̂
MMSE
k

)2

is defined as the cost function in this MMSE estimator. Similarly, in PF,

RPF
k =

N∑

jp=1

[(

θ
jp
k − θ̂

PF
k

)2

ω
jp
k

]

, where
N∑

jp=1

ω
jp
k = 1 (12)

is the risk function that we minimize, whereN is the number of employed particles,jp is the particle index,ωjp
k is the weight

of the particlejp at time stepk, andθjp
k is the particle with the indexjp; therefore, we obtain

θ̂
PF
k =

N∑

jp=1

ω
jp
k θ

jp
k , (13)
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because

∂RPF
k

∂θ̂
PF
k

= −2

N∑

jp=1

θ
jp
k ω

jp
k + 2θ̂

PF
k

N∑

jp=1

ω
jp
k , (14)

and (13) makes (14) zero.

To formulate the minimax strategy for PF, from (12), we describe a new risk function with respect to each particle as follows:

RMPF
k =

N∑

jp=1

G
(

RMPF,jp
k

)

=

N∑

jp=1

[(

θ
jp
k − θ̂

MPF
k

)2

ω
jp
k

]

. (15)

In the proposed minimax-PF, we adopt a minimax strategy to the computations of the weights of particles. In particular, we

select only one measurement that may incur the highest risk.That is, forM measurements, we use only use one measurement

that provides the minimum weight rather than the maximum weight. Therefore, to apply this approach, multiple measurements

are required otherwise the approach becomes identical to that of regular PF.

According to (15), onlyωjp
k is the factor that affects the magnitude of the risk, and the weight can be associated with a

measurement as follows:

ω
jp
k ∈

{

ω
jp
1,k, ω

jp
2,k, . . . , ω

jp
M,k

}

, (16)

where, for example,ωjp
1,k is the weight of the particleθjp

k computed based on only the measurementz1,k. The argumenti is

determined with respect to each particle. Therefore, in minimax-PF, we maximize the risk with respect to each particle by

associating the minimum weight to a particle amongM weights. Subsequently, we maximize the following total risk:

RMPF,Max
k =

N∑

jp=1

[(

θ
jp
k − θ̂

MPF
k

)2

ω
jp
ip,k

]

, (17)

where the association between the measurement indexip and the particlejp is determined by

ip = argmin
i∈{1,...,M}

ω
jp
i,k, (18)

and the estimate of MPF at time stepk:

θ̂
MPF
k =

N∑

jp=1

ω
jp
ip,k

θ
jp
k . (19)

At every time step, for the computation of the weight of everysingle particle, we may select a different single measurement

that devalues the particle as low as possible.

The MPF algorithm is summarized in Table I where only the boldfaced steps, i.e.,(b) ∼ (d), of computing the weights

of particles are different from those of a standard PF. Applying the proposed minimax strategy to any variants of PF is

straightforward because it only requires modifying the step of computing the weights of particles.
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TABLE I

ALGORITHM OF MINIMAX -PFFOR SIRPF. ONLY THE STEPS, WHICH ARE BOLDFACED, I .E., (b) ∼ (d), OF COMPUTING THE WEIGHTS OF PARTICLES ARE

DIFFERENT FROM THOSE OFSPF.

• Initialization

for jp = 1, . . . , N

Particles are generated:θ
jp
0

∼ p (θ0), and assign weights:ω
jp
0

= 1/N .

end

• Recursive update

for k = 1, . . . , K(total time steps),

for jp = 1, . . . , N ,

(a) Generate particles from a proposal densityq(·): θ
jp
k

∼ q
(

θk|θ
jp
k−1

, zk

)

.

(b) Compute the weights with respect to each measurement:ω
jp
i,k

= p(zi,k|θ
jp
k
) for i = 1, . . . ,M

assuming we employ prior density,q
(

θk|θ
jp
k−1

, zk

)

= p
(

θk|θ
jp
k−1

)

, as the proposal density.

(c) Normalize the weights with respect to each measurement:ω̄
jp
i,k

=
ω
jp
i,k

∑
N
jp=1

ω
jp
i,k

for i = 1, . . . ,M .

(d) Select the minimum weight amongM weights for each particle:

ω
jp
k

= ω̄
jp
ip,k

, where ip = argmin
i∈{1,...,M}

ω̄
jp
i,k

.

end

(e) Normalize the weights:̄ω
jp
k

=
ω
jp
k

∑
N
jp=1

ω
jp
k

.

(f) Compute the estimate:̂θ
MPF
k =

∑N
jp=1

ω̄
jp
k

θ
jp
k

.

(g) Resample the particles [16].

end

IV. PERFORMANCEASSESSMENT

In this section, we assess the performance of the proposed minimax-PFs by comparing to that of regular PFs. We consider

SIRPF first for a regular PF. Regarding the state noises, we first specify a parameterξ and randomly generate a noise variance

to be “ξ · U (0, 1),” whereU (0, 1) is the standard uniform distribution. Subsequently, random noise is generated by a Gaussian

distribution that has zero mean with the generated varianceof ξ · U (0, 1). We performed experiments with two kinds ofξ in

terms of magnitude to represent low and high maneuvering targets, respectively. We denote scenarios bySS andSL for small

and large values ofξ, respectively. Fig. 2 shows an illustrative example of two trajectories of a target where two significantly

different magnitudes ofξ are employed. Withξ = 10 for the state noise, the trajectory of the target labeled asT -1 shows

highly maneuvering. On the contrary, a run withξ = 0.1 results in the trajectory labeled asT -2 that shows significantly less

maneuvering compared toT -1 during the same elapsed time.

For the measurement noises, we useζ that plays the same role asξ of the state noise. We have twoζs for range and
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Fig. 2. An illustrative example of two trajectories of a target with ξ = 0.1 and10 for the state noise during the same elapsed time. It is highlymaneuvering

with ξ = 10, i.e. T -1.

bearing measurements, i.e.ζR and ζB , respectively. We selectξ = 10−3, ζR = 10−4, and ζB = 10−5 for SS and ξ = 1,

ζR = 5× 10−3, andζB = 5× 10−4 for SL The number of total time stepsK = 100. We performed500 experiments to obtain

the mean square error (MSE) of distance (MSED) and mean distance error (MDE) for each location over time. The initial

state is generated with a known variance.

The MDE and MSED of SPF, MPF, and Cramér-Rao lower bound (CRLB) are compared in Fig. 3. Figs. 3(a) and 3(b)

show the results underSS (ξ=0.1). Figs. 3(a) and 3(b) show that the performance of SPF and MPF is similar in this low

maneuvering scenario while MPF shows marginally better performance than PF. The result withξ = 1 is shown in Figs. 3(c)

and 3(d) where we have significantly maneuvering trajectories, and MPF shows better performance than PF.

Based on (12), we computed the risk function for both PF frameworks, and the mean values over500 runs are shown in

Figs. 4-5. Fig. 4 shows that the risk by MPF is much higher thanthat of SPF. For comparison purposes, Fig. 5 shows the

mean-risk of PFwmax in addition to those of MPF and SPF. In PFwmax framework, the minimum risk is adopted for each particle

as opposed to the case of MPF. The resulting mean-risk of PFwmax is not bounded and it diverges significantly such that we

cannot perform a minimization to obtain an estimate. Although we did not show results, the estimation performance of PFwmax

is unduly poor, which is not acceptable. In the following subsections, we assess the performance of the minimax versionsof

PF approaches for other variants, such as APF, RPF, and KLDPF.
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(b) MSE of distance withξ = 0.1.
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(d) MSE of distance withξ = 1.

Fig. 3. Performance comparison between SIRPF and MPF. Trajectories manifest significant maneuvering whenξ = 1. 500 runs were performed with500

particles. Comparison with Cramér-Rao lower bound (CRLB)was performed, as derived in the appendix.

A. Auxiliary Particle Filter

APF was initially introduced in [22] as a variant of SIRPF. Weadopted the algorithm based on [16]. In this variant, the

algorithm is the same to SIRPF except for the resampling process. Specifically, APF returns to the previous time step after

the resampling particles and then propagates the particlesagain for the next time step. We usedξ = 10−3, ζR = 10−4, and

ζB = 10−5 for SS andξ = 10−2, ζR = 10−3, andζB = 10−4 for SL in the experiments.

The results are shown in Fig. 6 where MAPF outperforms APF even under the scenario ofSS .
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Fig. 4. Mean-risk over500 runs with500 particles in log-scale based on (12). Results regarding only rx are shown, and those of the remaining elements are

similar to those ofrx. Mean-risk for SIRPF and MPF forξ = 0.1 and10. The same values ofξR = 0.1 andxiB = 0.001 are applied for both scenarios.

B. Regularized PF

In the regularized particle filtering (RPF), PF was modified to resolve the particle impoverishment problem [23]. RPF employs

a kernel density that perturbs the state of a particle to achieve the diversity of the particle states. Specifically, the posterior

density is approximated in RPF as follows:

p(θk|z1:k) ≈
M∑

i=1

ω
jp
k Γκ

(

θk − θ
jp
k

)

(20)

whereΓκ (θ) =
1

κn
θ
Γ
(
θ

κ

)
is the rescaled kernel density for any kernel bandwidthκ > 0, andnθ is the dimension of the state

parameterθ. The optimal choice of the kernel is theEpanechnikovkernel; however, it can be replaced by the Gaussian kernel

[24]. Subsequently, the associated optimal bandwidth is

κopt = AN
− 1

n
θ
+4 , whereA =

(
4

nθ + 2

) 1
n
θ
+4

. (21)

In this study, we usenθ = 4 with N = 500 particles to perform experiments and compare the performances of RPF and

minimax-RPF (MRPF). We usedξ = 10−3, ζR = 10−4, andζB = 10−5 for SS andξ = 1, ζR = 0.1, andζB = 10−2 for SL

in the experiments. The results are shown in Fig. 7, where MRPF outperforms RPF even under the scenario ofSS , as shown

in Figs. 7(a) and 7(b). Under both scenarios, MRPF outperforms RPF.
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Fig. 5. Mean-risk over500 runs with three measurements and500 particles in log-scale based on (12). Results regarding only rx are shown, and those of

the remaining elements are similar to those ofrx. Mean-risk of PFwmax is not bounded and diverges over time steps where we use the maximum weight for

particles in PFwmax.

C. KLDPF

A primary feature of KLDPF is that the number of employed particles is optimized adaptively based on a predefined error

bound at every time step [8]. While it may not show better performance than SPF, the number of employed particles is

dynamically adjusted to reduce redundant particles and also unnecessary computations accordingly. We adopt the KLDPF

algorithm introduced in [9] with an error bound of0.01. The initial number of employed particles is250 and the maximum

number of particles is bounded by500. The probability bound is0.01; the bin size is1/2×
√
δuk

× 4 as suggested in [9],

where1/2 is from A2; δuk
is the variance of the state noise with respect tovx or vy. Although KLDPF adaptively optimizes

the number of particles at every time step, the algorithm inherently requires a higher computational cost than those of other

PF variants.

We usedξ = 10−3, ζR = 10−4, andζB = 10−5 for SS andξ = 10, ζR = 0.1, andζB = 10−3 for SL in the experiments.

MKLDPF outperforms KLDPF in both scenarios as shown in Fig. 8. Fig. 9 shows the mean number of the employed particles

for the scenarios of highly maneuvering target tracking, where MKLDPF requires marginally more number of particles than

that required by regular KLDPF.
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Fig. 6. Performance comparison between APF and MAPF.500 runs were performed with500 particles.

D. Comparison with Interactive Multiple Model Filters

Finally, we adopt the minimax strategy to the interactive multiple model (IMM) particle filtering. A conventional IMM-

extended Kalman filter (EKF) evaluation is compared to the IMM-minimax-PF (IMM-MPF) approach in this experiment. We

refer to [25] and [3] for IMM-EKF and IMM-PF, respectively. The results are shown in Fig. 10 where IMM-MPF outperforms

IMM-PF and IMM-EKF. We usedξ = 0.1, ζR = 10−2, andζB = 10−2 in the experiments.

E. Discussion

The proposed MPF was derived based on the same criterion as a Bayesian method that minimizes MSE, except for the main

difference that the proposed approach adopts the maximum risk among various options of risk functions. Unlike conventional
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Fig. 7. Performance comparison between RPF and MRPF.500 runs were performed with500 particles.

Bayesian-MMSE-PF approaches where the weight of each particle is computed based on joint probability density (i.e., usually

multiplication of likelihood functions of all measurements assuming white Gaussian noise), the proposed minimax approach

selects the minimum weight based on a single measurement foreach particle. We obtain the estimate based on these weights

that are selected to minimize the maximized risk. This strategy enables the significantly reduced variance of the weights of

particles. We can obtain improved quality of particles by the reduced variance, and eventually improve the tracking performance.

Therefore, the proposed minimax strategy makes the filter robust against the degeneracy problem of standard PF approaches.

The proposed approach is computationally efficient becauseit does not require computing a joint probability for the weight

of a particle. Computation of joint probability based on multiple measurements typically undergoes substantial computational

load owing to additional multiplications.
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(c) Mean distance error withξ = 10.
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Fig. 8. Performance comparison between KLDPF and MKLDPF. The initial number of particles is200 with a maximum of500 particles.

We compared the performances of all minimax-PF approaches together. The results are shown in Figs. 11 and 12 underSS

andSL scenarios, respectively. We usedξ = 10−3, ζR = 10−4, andζB = 10−5 for SS andξ = 1, ζR = 0.1, andζB = 10−2

for SL in the experiments. All minimax PFs show similar performance under the scenario ofSS while both MAPF and MRPF

show similarly better performance compared to the other twoapproaches under the scenario ofSL.

We also computed the mean-variance of the weights of particles during the previous experiments for all minimax-PFs. Figs.

13 show the mean variances of each minimax-PF under both scenarios ofSS andSL. The results show that we can obtain

significantly reduced variances by minimax-PFs compared toregular PFs regardless of the scenarios.

We obtained normalized estimation error squared (NEES) andaverage NEES (ANEES) for all particle filtering approaches

concerning both regular and minimax versions. We usedξ = 10−3, ζR = 10−4, andζB = 10−5, which is close to the scenario
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Fig. 9. The number of employed particles with500 maximum particles in KLDPF, two measurements, andξ = 10.
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Fig. 10. Mean distance error comparison of IMM-EKF, IMM-PF,and IMM-MPF underSS , whereσuω is the noise variance of the turn rate.

of SS in the experiments. Based on [26], NEES and ANEES are defined,respectively, as follows.

χr =
(

θr − θ̂r

)⊤

P−1
r

(

θr − θ̂r

)

(22)

χ̄r =
1

LR

R∑

r=1

χr, (23)

This article is protected by copyright. All rights reserved.



16

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

MKLD-PF
MPF
MRPF
MAPF

Fig. 11. Results of MDE for minimax approaches underSS . All show similar performance.
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Fig. 12. Results of MDE for MPF approaches underSL. MAPF and MRPF show similarly better performance than the other two.

where r is the index of a run,L is the dimension of the stateθ, P is the estimator-provided error covariance,R is the

number of runs, respectively. According to [26], ANEES is recommended for testing whether an estimator should be rejected

as not credible or is optimistic or pessimistic. The closer to 1 the ANEES is, the more credible the estimator. If ANEES is

much greater than 1, the actual estimation error is much larger than what the estimator believes (i.e., the estimator is unduly
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(b) Mean-variance: APF and MAPF.
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(d) Mean-variance: KLDPF and MKLDPF.

Fig. 13. Mean-variance of the weights of particles. The results are shown from at the time step 20 for PF, RPF, and KLDPF forclear visibility.

optimistic); if ANEES is much smaller than 1, the actual estimation error is much smaller than what the estimator believes (i.e.,

the estimator is unduly pessimistic). Fig. 14 shows the result of ANEES for four of all particle filtering methods concerning

both regular and minimax versions. The results are underSS and various sizes of variances of initial values. The ANEES

depends on the noises and the magnitude of the variance of theinitial values; however, most results show more or less around 1

with small noises that we applied in these 300 runs. In our case,L = 4. Most of the approaches are somewhat too pessimistic,

i.e. the actual estimation error is much smaller than what the estimator believes.

V. CONCLUSION

In this paper, we proposed a new PF framework for highly maneuvering target tracking. The minimax strategy was adopted

in this framework that results in the significantly reduced variance of the weights of particles and in robustness against
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Fig. 14. ANEES with the scenario ofSS .

the degeneracy problem of regular PF approaches. The robustness made it possible to overcome the difficulty in tracking a

highly maneuvering target where particularly the state noise variance is large. We verified the effectiveness of the proposed

MPF by experiments in various scenarios, and showed that MPFoutperforms non-minimax PF approaches. The proposed

minimax strategy can be adopted for any other variants of PF provided that multiple measurements are available including

sensor-networks-environment. The computational complexity in MPF was reduced because the computation of complex joint

probability density function was avoided in the proposed algorithm. We further showed that the minimax strategy is effective

in the form of IMM-PF, and minimax IMM-PF outperformed IMM-PF and conventional IMM-EKF.
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APPENDIX

The variance of any unbiased estimate,θ̂ is bounded as follows:

Var(θ̂t) ≥
[
I−1(θ)

]

tt
, (24)

where I is the Fisher information matrix,θ is a vector state, andt is the element index. When the measurement noise is

Gaussian and the measurement is given by

z ∼ N (f(θ),Cv(θ)) , (25)

we can obtain

[I(θ)]tl =
[
∂f(θ)

∂θt

]⊤

Cv
−1(θ)

[
∂f(θ)

∂θl

]

+
1

2
tr

[(

Cv
−1(θ)

∂Cv(θ)

∂θt
Cv

−1(θ)
∂Cv(θ)

∂θl

)]

. (26)

For three measurements,f(θ) = [f1 f2 f3]
⊤ = [R B M ]⊤, and the covariance matrixCǫ(θ) = diag

(
σ2
ǫR σ2

ǫB σ2
ǫM

)
where

diag (·) denotes a diagonal matrix,

σ2
ǫfi

= fi
2 · 10(−SNRz1

/10), (27)

where SNRz1, SNRz2, and SNRz3 represent the SNRs for the corresponding measurements, andare computed as follows:

SNRzi = 10 log10

[

fi
2

σ2
ǫfi

(θ)

]

. (28)

The Fisher information is a4× 4 matrix, and[I(θ)]11 and [I(θ)]22 are the corresponding elements forrx andry , respectively.

From (26),

[I(θ)]11 = R−4 ·
[

2r2x +
rx

2

10(−SNRz1
/10)

+
r2y · 10(SNRz2

/10)

[arctan 2(ry , rx)]
2 +

2r2y

[arctan2(ry , rx)]
2

]

+
10(SNRz3

/10)

rx2
+

2

rx2
, (29)

and

[I(θ)]22 = R−4 ·




2r2y +

ry
2

10(−SNRz1
/10)

+
r2x · 10(SNRz2

/10)
[

arctan
(

ry
rx

)]2 +
2r2x

[

arctan
(

ry
rx

)]2




+

10(SNRz3
/10)

ry2
+

2

ry2
. (30)

Similarly, we can compute the remaining elements; subsequently, we obtain CRLB as follows:

Var(r̂x) ≥
[
I−1(θ)

]

11
, Var(r̂y) ≥

[
I−1(θ)

]

22
. (31)

When using only two measurements of range and bearing, we canobtain the lower bound, similarly. For example,[I(θ)]11 can

be obtained by removing the last two terms in (29). If CRLB forthe distance estimation, i.e.
√

r2x + r2y is to be computed, we

can use vector parameter CRLB for transformations, and is easily derived as follows [27]. If we defineα = h(θ) =
√

r2x + r2y,

CRLB is derived as

Var(α̂) ≥ ∂h(θ)

∂θ
I−1(θ)

∂h(θ)⊤

∂θ
, (32)
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where a Jacobian matrix∂h(θ)∂θ is described as

∂h(θ)

∂θ
=

[

∂h(θ)
∂θ1

∂h(θ)
∂θ2

· · · ∂h(θ)
∂θL

]

=

[

rx√
r2x+r2y

ry√
r2x+r2y

0 0

]

(33)
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