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ABSTRACT 32 

Identifying the traits that foster group survival in contrasting environments is important for 33 

understanding local adaptation in social systems.  Here we evaluate the relationship between the 34 

aggressiveness of social spider colonies and their persistence along an elevation gradient using 35 

the Amazonian spider, Anelosimus eximius. We found that colonies of A. eximius exhibit 36 

repeatable differences in their collective aggressiveness (latency to attack prey stimuli), and that 37 

colony aggressiveness is linked with persistence in a site-specific manner.  Less aggressive 38 

colonies are better able to persist at high-elevation sites, which lack colony-sustaining large-39 

bodied prey, whereas colony aggression was not related to chance of persistence at low-elevation 40 

sites. This suggests that low aggressiveness promotes colony survival in high-elevation, prey-41 

poor habitats, perhaps via increased tolerance to resource limitation. These data reveal that the 42 

collective phenotypes that relate to colony persistence vary by site, and thus, the path of social 43 

evolution in these environments is likely to be affected.  44 

Key words: Araneae, collective behavior, insect abundance, life history, multilevel selection 45 
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INTRODUCTION 46 

Although social evolution provides numerous benefits for group constituents (Krause & Ruxton, 47 

2002), social groups can also vary considerably in their success (ants: Gordon, 2013, social 48 

spiders: Aviles, 1986, honey bees: Watanabe, 2008). For a variety of social organisms, many or 49 

most of the social groups ever founded will swiftly end in their collective demise (Tibbetts & 50 

Reeve, 2003, Hahn & Tschinkel, 1997, Aviles & Tufino, 1998). In some taxa, even social groups 51 

in apparent good health can fall victim to colony extinction events (Pruitt, 2012). Thus, any 52 

feature that enables groups to persist in their environment is likely to foster their success. Social 53 

organisms provide an interesting case study for evolutionary ecologists, because trait differences 54 

occur at both the individual level and between groups, in terms of their collective traits (Jandt et 55 

al., 2014, Bengston & Jandt, 2014, Wray & Seeley, 2011). Like individual traits, a growing body 56 

of evidence conveys that group traits are often associated with group success (Shaffer et al., 57 

2016, Gordon, 2013, Wray et al., 2011), and that these links can vary between environments 58 

(Pruitt & Goodnight, 2014, Pruitt et al., 2018). Site-specific selection may therefore contribute to 59 

biodiversity by promoting intraspecific variation and local adaptation in group-level traits. 60 

 Social spiders are a useful model with which to explore the evolutionary ecology of 61 

group extinction events and collective behavior in general. This is because social spider groups 62 

emerge and disappear with high frequencies (reviewed in Aviles & Guevara, 2017). Social spider 63 

colonies are prone to ant attack (Keiser et al., 2015, Henschel, 1998), parasitism (Straus & 64 

Avilés, 2018, Vollrath, 1987), and fungal outbreak (Henschel, 1998). To avoid these fates, social 65 

spiders collectively catch prey, repair webs, raise offspring, and many spiders remain in the 66 

colony to breed (Aviles & Guevara, 2017, Bilde et al., 2007). Consequently, groups are inbred 67 

and composed of highly related individuals (Riechert & Roeloffs, 1993, Aviles, 1993, Henschel 68 
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et al., 1995), and group success is a major determinant of individuals’ inclusive fitness. Here, we 69 

explore the degree to which group behavior is linked with group persistence using a highly social 70 

spider, the Amazonian spider Anelosimus eximius (Araneae, Theridiidae).  71 

This species occurs across a range of habitat types from Panama to Argentina at varying 72 

elevations. We use this variation in elevation to examine whether the relationship between group 73 

behavior and persistence varies across habitat types and along an elevation gradient. In 74 

particular, we hypothesise that collective aggressiveness should be favored at sites with low prey 75 

availability (Pruitt et al., 2018). For A. eximius, low-elevation sites are reasoned to be resource 76 

and enemy rich because they harbor larger average prey sizes and higher ant densities at our 77 

study sites and the surrounding areas (Powers & Aviles, 2007, Guevara & Aviles, 2007, Guevara 78 

& Aviles, 2015). High aggressiveness is often needed to capitalize on rare prey capture 79 

opportunities and fend off enemies (Riechert, 1993b). Prey biomass does not show a consistent 80 

trend with elevation (Guevara & Aviles, 2007, Powers & Aviles, 2007), but reduced prey size is 81 

particularly salient for social spiders, because large prey are vital for the maintenance of large 82 

social spider colonies (Yip et al., 2008). Further, ants are often major predators of social spiders 83 

(Henschel, 1998, Purcell & Aviles, 2008). By contrast, we predict that less aggressive colonies 84 

will be favored in high-resource and enemy-rich environments, like lowland rainforests (Purcell 85 

& Aviles, 2008). Thus, we predict that selection on collective aggressiveness will mimic the 86 

usual patterns observed in solitary spiders and other taxa, where low resources favor heightened 87 

aggression and responsiveness towards prey (Riechert, 1993a, Magurran & Seghers, 1991, 88 

Dunbrack et al., 1996). If this is so, then it would hint that theory developed for behavioral 89 

evolution in solitary organisms can be redeployed to correctly predict patterns of selection 90 

occurring at the level of collective traits. 91 
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 92 

MATERIALS AND METHODS 93 

 94 

Focal species and sites: 95 

We measured collective foraging aggressiveness in colonies of A. eximius across the Ecuadorian 96 

Amazon in Oct.-Nov. 2017. A. eximius colonies build basket-shaped nests with large sheet and 97 

tangle capture webs where they hunt collectively. We observed colonies at three sites on 98 

highway e45 near Archidona (n=14; S 0˚ 46.214, W 77˚ 46.604), highway e20 towards Coca 99 

(n=10; S 0˚ 43.421, W 77˚ 39.993), and near the Iyarina lodge (n=9; S 1˚ 4.027, W 77˚ 37.228). 100 

We further sampled two sites: roadsides, forest interiors, and waterways in the Yasuní National 101 

Park (n=16; S 0˚ 40.862, W 76˚ 23.152) and waterways near the Cuyabeno Wildlife Reserve 102 

(n=21; S 0˚ 1.921, W 76˚ 12.851). 103 

 104 

Collective aggressiveness: 105 

We measured colonies’ aggressiveness by placing dummy prey (1cm sections of dead leaf) 4cm 106 

from the rim of the nest basket, and vibrating it with a handheld vibratory device until spiders 107 

emerged and seized the dummy prey (Pruitt et al., 2017), between 1000-1600 hours. We 108 

recorded the latency of the first spider to contact the dummy and the number of spiders moving 109 

towards the dummy at this time. If spiders did not contact the dummy within 600s, we terminated 110 

the trial and recorded the latency as 600. We subtracted the attack latency from 600 to obtain an 111 

aggression index where higher scores correspond to higher aggressiveness (hereafter referred to 112 

as “aggressiveness”). We repeated these tests every day for four days on a subset of colonies at 113 

Archidona (n=11), Iyarina (n=4), and Yasuní (n=10), to assess the repeatability of colony 114 
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aggressiveness. For all other analyses, only the first measurement was used. For the remaining 115 

colonies, aggressiveness was only measured once due to logistical constraints. Latency to attack 116 

prey and the number of spiders recruiting to an attack are a common measure of foraging 117 

aggressiveness in solitary and social spiders (Riechert & Hedrick, 1993, Pruitt et al., 2013, Kralj-118 

Fiser & Schneider, 2012, Kralj-Fiser et al., 2012), and it tightly linked with prey capture success 119 

and foraging performance in several species of group-living spiders (Kamath et al., 2018, Pinter-120 

Wollman et al., 2017, Pruitt & Riechert, 2011). 121 

 122 

Habitat measurements and persistence: 123 

Immediately following aggressiveness assays, we also recorded habitat characteristics and 124 

marked colonies with aluminium tree tags. First, we recorded colony elevation and GPS 125 

coordinates (Garmin eTrex 30x). We assessed carnivorous ant presence by measuring latency of 126 

ant recruitment to 35g of tuna within 2m of the web (Hoffman & Avilés, 2017), placed on the 127 

forest floor beneath the colony. A subset of colonies was run through two such ant-baiting tests, 128 

and microhabitat differences in ant recruit speed were found to be consistent through time even 129 

within a specific site (r = 0.86, 95% CI: 0.57-0.96, p < 0.0001, n = 21). Faster ant recruitment 130 

times were taken as evidence that the microhabitat immediately around the focal colony had a 131 

greater risk of attack by predatory ants. Finally, as an exploratory measure, the canopy cover 132 

over each colony was estimated using the iPhone application Canopyapp (Davis et al., 2018). 133 

We estimated the volume of web baskets by measuring the size of the smallest possible 134 

orthotope that contained the basket, by first approximating the shape of each web (e.g., square 135 

base, circle base) and then taking the necessary measurements to compute the web volume. Web 136 

volume increases approximately linearly with group size in A. eximius (Yip et al., 2008, Powers 137 
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& Aviles, 2007). To determine colony survival, we returned in Oct. 2018, eleven months later, 138 

and recorded whether the colony contained any remaining living individuals. This time interval 139 

corresponds to ~2 generations of A. eximius (Vollrath, 1982).  All  aluminum tags were then 140 

removed. 141 

 142 

Statistical methods: 143 

We could not satisfactorily fit a generalised linear model simultaneously evaluating the influence 144 

of elevation, aggression and colony size on persistence. Moreover, neither colony aggression nor 145 

elevation could satisfactorily be transformed towards normality. Finally, aggressiveness was not 146 

repeatable within sites, r = 0 (95% CI: 0.0 - 0.157, p = 0.500), indicating that colonies’ behavior 147 

within each site are relatively independent. Therefore, we compared the elevation, 148 

aggressiveness, and web size of colonies that either persisted or not using Mann-Whitney U-149 

tests. We assessed the correlation between elevation and aggressiveness, and aggressiveness and 150 

colony size using Spearman rank correlations. We took the log of basket volume as our index of 151 

colony size.  152 

To determine whether the relationship between colony persistence and aggression 153 

depended on the elevation of the colony, we split the data into “high” elevations (above 740m, 154 

25 colonies) and “low” elevations (below 450m, 43 colonies). This split demarcates a natural 155 

break in our sampling distribution. We then compared the aggressiveness of colonies that 156 

persisted or not in each dataset separately using Mann Whitney-U tests. To determine how 157 

canopy cover and the presence of predator ants varied with elevation, we performed Spearman 158 

rank correlations between elevation and each of canopy cover and the latency for ants to arrive at 159 

the tuna bait. There were 71 focal colonies in total. However, three colonies did not have 160 
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elevations recorded. Four colonies had no web size measurements, owing to their residing in 161 

relatively inaccessible microhabitats (e.g., suspended over cliffs). Otherwise, sample sizes for 162 

each group in each comparison are given below. The repeatability of colonies’ aggressiveness 163 

and number of attackers were assessed by fitting linear a mixed model with either 164 

“aggressiveness”  or “number of attackers” as the response variable, and then “colony ID”, 165 

“site”, and “trial iteration” as random effects, using the rptR package (Stoffel et al., 2017). This 166 

allows us to estimate the intra-class correlation coefficient of colony ID, while accounting for 167 

variance explained by site and trial iteration. We estimated 95% confidence intervals on 168 

repeatability estimates by running the linear mixed model though 1000 bootstrap iterations. As 169 

mentioned above, we aimed to measure 25 colonies across three sites four times each, although 170 

three colonies only received three measurements, giving 97 measurements across 25 colonies in 171 

total to assess repeatability. We only assessed the role of behavioural traits in survival if we 172 

recovered a repeatability estimate that differed significantly from zero. 173 

 174 

RESULTS 175 

 176 

Aggressiveness was repeatable, r = 0.26 (95% CI: 0.01 - 0.47, p < 0.01), but the number of 177 

attackers was not, r = 0.14 (95% CI: 0 - 0.33, p = 0.04). Therefore, we only consider 178 

aggressiveness hereafter. The influence of aggressiveness on persistence depended on elevation. 179 

At high elevations, persisting colonies were less aggressive (mean = 505.12 ± 32.63 SE, n = 19) 180 

compared to colonies that vanished (mean = 592.32 ± 1.59 SE, n = 6; Fig. 1; Wilcox test, W = 2, 181 

p < 0.001). At low elevations, colonies that persisted appeared more aggressive (mean = 582.84 182 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Anonymized et al. 10 

 

± 3.50 SE, n = 27) than colonies that vanished (mean = 566.17 ± 9.96 SE, n= 16), but this 183 

difference was not significant (W = 272, p = 0.17). 184 

Elevation did not influence colony persistence. The mean elevation of colonies that 185 

persisted and vanished was 584m and 479m respectively (Fig. S1; n = 46 & 22 respectively, 186 

Wilcox test W = 570, p =0.40). Colony web size did not predict persistence; colonies that 187 

persisted were no larger than those than did not. Medians (means are highly biased by a few 188 

large value) of volume were 143,918 cm3 for colonies that persisted and 90,450cm3 for colonies 189 

that vanished, but the median logged values are 11.87 and 11.41 respectively (Fig. S1; n = 46 & 190 

21 respectively, Wilcox test, W = 554, p = 0.34).  191 

Colonies’ aggressiveness was not related to their web size (Fig. S2; n = 67, Spearman 192 

rank correlation, S = 47550, rho = 0.05, p = 0.69), but colonies were more aggressive at lower 193 

elevations (Fig. S2; n = 68, Spearman rank correlation, S = 65398, rho = -0.25, p = 0.04).  194 

Higher elevations were associated with reduced canopy cover (Spearman rank 195 

correlation, S = 66623, rho = -0.33, p = 0.01) and the slower recruitment of ants (Spearman rank 196 

correlation, S = 21568, rho = 0.26, p = 0.05). 197 

 198 

DISCUSSION 199 

 200 

Understanding the forces that enable some groups to persist and proliferate when others crash or 201 

disband is helpful for predicting how social evolution proceeds in contrasting environments. For 202 

many social animals, this can be thought of as a kind of group-level viability selection.  Colonies 203 

of the Amazonian social spider A. eximius undergo variation in selection on aggressiveness 204 

between low and high elevations. At odds with our a priori predictions, less aggressive colonies 205 
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outperform their aggressive rivals at resource-poor high elevations (Fig. 1). The opposite trend 206 

emerges at low elevations, although it was not statistically significant. Given this pattern of 207 

selection, one might predict that high elevation A. eximius should be less aggressive overall, 208 

either because of local adaptation or via on-going viability selection against aggressive colonies. 209 

Consistent with this prediction, we observed that colonies of A. eximius at higher elevation do 210 

indeed exhibit lower aggressiveness than their low-elevation counterparts (Fig. S2B). In 211 

aggregate, this conveys that site-specific selection on colony aggressiveness could play a role in 212 

generating geographic variation in colony behavior, akin to patterns observed in solitary species 213 

(Drummond & Burghardt, 1983, Magurran & Seghers, 1991, Riechert, 1993a, Walsh et al., 214 

2016).  215 

 The mechanisms underlying the success of non-aggressive colonies at high elevation 216 

remain elusive. We predicted that low-resource conditions would favor colonies with swifter 217 

foraging responses because, in trap-building predators, foraging is a time-sensitive opportunity. 218 

Thus, colonies at high elevations should maximize on the limited foraging opportunities that are 219 

available to them (Powers & Aviles, 2007, Guevara & Aviles, 2007). This is often the case for 220 

individual-level aggressiveness (Riechert, 1993a, Magurran & Seghers, 1991, Dunbrack et al., 221 

1996). Further, it is easier for single spiders to monopolize small prey items (Sharpe & Avilés, 222 

2016), which could motivate them to be more aggressive at high elevations. However, it is 223 

perhaps equally plausible that low-resource conditions could favor reduced aggressiveness. If 224 

more aggressive colonies engage in more infighting, exhibit higher metabolic rates, or are 225 

otherwise more susceptible to starvation, then selection may favor less aggressive colonies under 226 

low resource conditions because it enables them to persist through times of resource scarcity. 227 

This mode of competition is often referred to as Tilman’s R* Rule (Tilman, 1982). Consistent 228 
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with this hypothesis, there is evidence that both aggressive social Anelosimus (Lichtenstein & 229 

Pruitt, 2015) and Stegodyphus (Lichtenstein et al., 2017) are more susceptible to starvation, and 230 

that non-aggressive Stegodyphus colonies can outperform their rivals when resources fall below 231 

a critical level (Pruitt et al., 2019). Alternatively, smaller average prey sizes at high elevation 232 

sites might merely not require the same levels of aggressiveness to subdue than the larger prey of 233 

low elevation sites. More detailed work within sites is needed to tease apart the mechanisms 234 

responsible for this among-site result.  235 

 One potential mechanism was the abundance of enemies. We found that ants recruited 236 

more quickly to tuna baits at lower elevations, consistent with Hoffman and Avilés (2017). This 237 

suggests that the threat of predation from ants, or perhaps the degree of indirect resource 238 

competition from ants, will be higher at lower elevations. Either of these could select for higher 239 

aggressiveness (or, at least, against docility) in social spiders, which are more frequently attacked 240 

by ants at low-elevation sites (Purcell & Aviles, 2008, Hoffman & Avilés, 2017), and this may 241 

help to explain the patterns of selection that we observed. We also observed reduced canopy 242 

cover at higher elevations. While this seems unlikely to directly influence spider colony survival, 243 

it may influence the availability of prey (i.e. decreased cover may decrease the number of flying 244 

invertebrates) or increase web damage costs, and thus, have consequences for the benefits of 245 

colony aggression. 246 

 At odds with previous work, group size was not a significant predictor of colony 247 

persistence in our field data on A. eximius. The formation of larger coalitions is frequently 248 

associated with reduced group failure rate in social arthropods, and this fact is thought to 249 

underlie the formation of social life history trajectories like foundress coalitions in wasps and 250 

ants (Fewell & Page, 1999, Seppa et al., 2002, Tibbetts & Reeve, 2003, Miller et al., 2018). 251 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Anonymized et al. 13 

 

Group size dependent survival has also been documented in a number of social (Bilde et al., 252 

2007, Aviles & Tufino, 1998) and transitionally social species of spiders (Lichtenstein et al., 253 

2018). We reason that this discrepancy between findings is because colonies of the smallest size 254 

classes (one to a few dozen spiders) are largely missing from our data set, and the persistence 255 

benefits of increasing group size are most pronounced at the smallest colony sizes (Lichtenstein 256 

et al., 2018, Aviles & Tufino, 1998).   257 

 In summary we detected a site-specific relationship between colony aggressiveness and 258 

persistence in a social spider. Furthermore, we found a cline in aggression with elevation that 259 

suggests that the selective benefits to reduced aggression at higher elevations are strong enough 260 

to promote appropriate fit between colony traits and the habitats in which they reside. 261 

 262 
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ethics approval. Field studies were conducted under research permit N°23-17 IC-FAU-264 

DNB/MA.  265 
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Figures & Supplementary Figures: 414 

 415 

Figure 1. The aggressiveness of colonies that either survived or died, at low (< 450m) or high 416 

(>740m) elevation sites. Aggression was 600 minus the latency to attack (maximum 600 417 

seconds) hence is unitless. 418 

 419 
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