
ON THE DIMENSION OF A GRAPH

PAUL ERDOS, FRANK HARARY and WILLIAM T. TUTTE

Our purpose in this note is to present a natural geometrical definition
of the dimension of a graph and to explore some of its ramifications. In
§1 we determine the dimension of some special graphs. We observe in §2
that several results in the literature are unified by the concept of the
dimension of a graph, and state some related unsolved problems.

We define the dimension of a graph 0, denoted dim 0, as the minimum
number n such that G can be embedded into Euclidean re-space En with
every edge of O having length 1. The vertices of G are mapped onto
distinct points of En, but there is no restriction on the crossing of edges.

1. Some graphs and their dimensions. Let Kn be the complete graph
with n vertices in which every pair of vertices are adjacent (joined by an
edge). The triangle K3 and the tetrahedron Kt are shown in Figure 1.
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Fig. 1.

The dimension of Kz is 2 since it may be drawn as a unit equilateral
triangle. But clearly, dimiT4 = 3 and in general dim Kn = n—1.

By Kn — x -we mean the graph obtained from the complete graph Kn

by deleting any one edge, x. For example K3 — x and Kt — x are shown
in Figure 2.
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Fig. 2.

From this figure, we see at once that dim (Ks — x) = 1 and that
dim (K4 — x) = 2 since it can be drawn as two equilateral triangles with the
same base. By a similar construction it is easy to show that in general
dim (#„-:*;) = n - 2 .

The complete bicoloured graph Knh n has m vertices of one colour, n of
another colour, and two vertices are adjacent if and only if they have
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different colours. We shall see how to determine the dimension of Kmn

for all positive integers m and n. In Figure 3 are shown three of these
graphs, each of which we will see has a different dimension.

K l , 4 : K,
2,4- 3 ,3 '

Fig. 3.

Which of the graphs Kmn have dimension 2? Since K11 = K2,
dimJK'l j l =l, and as shown in Figure 3, dimisT14 = 2. Obviously, for
every n>l, dimisTlj,v = 2. There is also one other complete bicoloured
graph with dimension 2, namely the rhombus K2> 2. Again from the figure,
we see that d im2̂ 4 = 3 and in general that dim.K2 n = 3 when n^3.
Finally, it is easy to show that the dimension of every other graph Km n

not already mentioned in this paragraph is 4, including the famous 3 houses-
3 utilities graph K3t 3. The proof is due to Lenz, as mentioned in a paper
by Erdos [2], and proceeds as follows.

Let {«J be the m vertices of the first colour and let {«,,•}  be the n vertices
of the second colour. We assign coordinates in Ei to ui=(xi,yi, 0, 0)
and Vj = (0, 0, z}, w>3) in such a way that xf + y*2 = £ and z? + w? = f. Then
every distance c£(wi; w3) = l, proving the assertion.

In the next two illustrations of the dimension of a graph we use the
operations of the " join" and the "product" of two graphs G1 and 6r2.
Let V1 and F2 be their respective vertex sets. The join Gx + O2 of two
disjoint graphs contains both of them and also has an edge joining each
vertex of Gx with each vertex of G2. The cartesian product Gx x Gz of Gx

and G2 has Fxx F2 as its set of vertices. Two vertices u= (u1; u2) and
v = (vv v2) are adjacent in Gx x G2 if and only if ux = vx and u2 v2 is an edge
of G2 or u2 = v2 and ux vx is in Gv Let Pn denote the polygon with n sides.
By the wheel with n spokes is meant the graph Pn + Kx; see Figure 4,

Kg. 4.

What is the dimension of a wheel ? We already have one example since the
smallest wheel P3 + Kx = Kt has dimension 3. From Figure 4, we see that
dim (P4 + Kx) = dim (P6 + Kx) = 3 and that dim (P6 + Kx) = 2. By making
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expeditious use of the unit sphere, the reader can verify that for all n > 6,
dim (Pn + K1) = 3. Thus we observe that the dimension of the n-spoked
wheel is 3 except for "the odd number 6 ".

The n-cube Qn is denned as the cartesian product of n copies of K2;
see Figure 5. Since Qt = K2, dim Qx — 1. Since Q% = K2 2 = P4, dim Q2 = 2.

Fig. 5.

The 3-cube Q3 is drawn twice in Figure 5. Its first appearance might
suggest that its dimension is 3. But its second depiction (in which two
pairs of edges intersect) shows that dim.Q3 = 2. Similarly, for all n> 1,

A modest generalization of this observation asserts that for any
graph G, dim (OxK2) equals dimCr, if dim 0^2, and equals
if d im£ = 0 or 1.

Kg. 6.

The well-known Petersen graph is shown in Figure 6. What is its
dimension? It is easy to see (especially after seeing it) that the answer
is 2; see Figure 7.

Fig. 7.
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By the way, note that the dimension of any tree is at most 2. A cactus
is a graph in which no edge is on more than one polygon. Since the defini-
tion of dim 0 allows edges to intersect, it is easily seen that the dimension
of any cactus is at most 2.

In this section we have evaluated the dimension of a few special graphs.
But for a given graph G, we know of no systematic method for determining
the number dim G. Thus the calculation of the dimension of a given graph
is at present in the nature of mathematical recreation.

2. Some theorems on dimension. In the theorems of this section we
use the following concepts: the girth of a graph, the chromatic number
of a graph, and the chromatic number of a Euclidean space. The girth
of a graph G is the number of edges in its smallest polygon (if  any). The
chromatic number x{@) of G is the least integer n such that the vertices of
G can be coloured using n colours so that no two adjacent vertices have
the same colour. The chromatic number x(En) °f a Euclidean space En

is the smallest number of point sets into which En can be partitioned so
that in no set does the distance 1 occur.

THEOREM 1. For any graph G, dim (?^2x(C?).

The proof of this theorem is a simple generalization of the argument
used in §1 to establish that dimi?m n ^ 4; see [2]. The next two theorems
do not deal with the dimension of a graph, but will  be used in later proofs.

THEOREM 2. (Erdos [1]). There exists a graph with arbitrarily high
girth and arbitrarily high chromatic number.

THEOREM 3. (Erdos [4]). If G is a graph with n vertices and girth
greater than C log n, for G sufficiently large, then x($) < 3.

COROLLARY. Under the above hypothesis, dim G < 6.

It is possible that the above hypothesis implies d imG^3 or even
dim (? < 2, but we could not decide this question.

THEOREM 4. (Erdos [3]). Among all graphs with n vertices, q edges,
and dimension 2k or 2k + 1,

lim max-V =*( 1 —t-

The following question was posed by Erd5s [2]: What is the maximum
number of edges among all graphs of dimension d which have n vertices?
The next theorem gives the answer for d — 4.

THEOREM 5. (Erdos, unpublished). Among any n points of E4 the
distance 1 between pairs of points can occur at most n + [%2/4] times, and this
number can be realized if n = 0 (mod 8).
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We now turn to some results concerning the chromatic number of a
Euclidean space. The brothers Moser [6] called for a proof of the inequality

>  3. Hadwiger [5] found the following inequalities.

THEOREM 6. 4

COROLLARY. If dim G = 2, then x{G) ̂  7.

Klee (unpublished) proved the next theorem.

THEOREM 7. For every positive integer n, x(^n) is finite.

This result has some consequences for the dimension of a graph, but
they are not as sharp as Theorem 1.

COROLLARY 1. / / dim Cr is large, so is

COROLLARY 2. There exist graphs with arbitrarily high dimension and
girth.

One might think that a graph of sufficiently high dimension must
contain a complete subgraph Kn of specified order n > 2. That this is not
necessarily so follows from the last corollary.

Unsolved problems.
I. Call a graph G critical of dimension n if dim G = n and for any proper

subgraph H, diva.H<n. For example, Kn+1 is critical of dimension n.
Characterize the critical n-dimensional graphs, at least for n = 3 (this is
trivial for n = 2).

II. Let G have n vertices and assume that every subgraph H with k
vertices has dimension at most m. How large can dimC be? (For
chromatic number instead of dimension, Erdos investigates this in [4].)
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