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MEASURE FUNCTION PROPERTIES OF THE ASYMMETRIC
CAUCHY PROCESS

JOHN HAWKES

§1. Preliminaries. A Cauchy process in d-dimensional Euclidean space, Rd, is a
stochastic process, Xt(oj), with stationary independent increments and with a
continuous transition density, p(t, y — x) defined by

exp [i(z, y - x)]p(t, y - x)dy = exp [ - tip(z)], (1)

and

ifr(z) = \z\ j w(z,9)m(d6), (2)
s*

where w, the isotropic measure, is a probability measure on Sd, the unit sphere in
Rd, such that when d > 1 the support of m is not contained in any d — 1 dimensional
subspace. In (2) w is given by

O *

w(z, 9) = |(z, 0)1 + — (z, 0) log |(z, 0)1,

where z = z/|z|. It follows that for each t > 0 and y we have p(t, y) > 0 and that
for each f > 0 p(t, y) is a bounded and continuous function of y. X,(co) can be
considered as being a standard Markov process (for a full description of the definition
of such a process see Chapter 1 of [1]) and in particular we can assume that the sample
functions of Xt(co) are right continuous and have left limits. We can also assume that
Xt(co) enjoys the strong Markov property. We write Px and Ex for probabilities
and expectations conditional on XQ(co) = x, and we write P for Po.

If d = 1 the unit sphere consists of just two points and \p{z) is then given by

iKz) = |z|[l + i7isgn(z)log|z|], (3)

where h = 2p/n, fl = p — q,q = 1 — p and p is the mass put at {+1} by the isotropic
measure. It turns out that the sample function properties of Xt{(o) are largely
determined by whether, or not, h = 0, that is whether, or not, the distribution of
Xt{co) ~ Xo(co) is symmetric. For example, if h = 0,Xt(co) is neighbourhood recurrent;
whilst, if  h i= 0, Xt((a) is transient (see [5]). In [7] S. Orey showed that if h = 0
then single points are polar for X,((o). We recall that this means that if

then Px(Ty < oo) = 0 for all x. On the other hand he also showed that if  h = 2/n
then Px(Ty < oo) > 0 for all pairs (x, y). More recently in [8] S. C. Port and C.
Stone established the following surprising result.

PROPOSITION 1. Suppose h # 0. Then, for any y and all x, Px(Ty < oo) > 0
and PX(TX — 0) = 1, that is x is regular for {x}.

Let R(a>), G(oo) and Zx(co) be defined by R(co) = [x:x =  Xt(co), 0 < t < 1],
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G(co) = [(t, Xt(a>)) : 0 < t ^ 1], Zx(co) = [t: x = * » : 0 < * < 1],

and Z(co) = Z°(co).

Then K(a>), G(a>) and Z(co) are called the range, graph and zero set of Xt(co).
In [10] S. J. Taylor showed that, for the symmetric process, the exact measure

function of the range, by which is meant a measure function <f>  such that (j> — mR(co)
is finite and positive with probability one, is <j>(h)  = h log (1/ti) log log log (l/h).
In particular this implies that the range of the symmetric Cauchy process has zero
Lebesgue measure with probability one. In [9] the authors showed that the exact
measure function for the graph is cj)(h) = h. By Orey's result the zero set for the
symmetric process consists of at most one point so there is no problem.

Our object in this paper is to obtain Hausdorff measure results for the range,
graph and zero set in the case where Xt(a>) is asymmetric. The problem of obtaining
the exact measure functions of these sets is made difficult by the fact that we do not
have sufficiently accurate estimates for the distributions we need, nor can we fall
back on the scaling property which frequently simplifies matters. We thus content
ourselves with establishing the three theorems below.

Henceforth we let Xt(oS) be an asymmetric Cauchy process in the line. We suppose
that h > 0 (for otherwise we could just consider the process — Xt(co)), and we let
A denote Lebesgue measure.

THEOREM 1. For any x e R we have

PX{A[R(co)] > 0} = 1.

Since R(co) cz R, this implies that (j)(h) = h is the exact measure function for the
range ofXt(co).

The result by Port and Stone ensures that the zero set for the asymmetric process
is non-empty; however, it is very small. In fact a result by R. M. Blumenthal and
R. K. Getoor (p. 64 of [4]) ensures that the zero set has zero Hausdorff dimension.
We obtain the following result which is a kind of " logarithmic dimension " result
for the zero set.

THEOREM 2. Let <f>(h)  = (log (I//*))-*.  Then

(i) J / 0 < a < 1 4> — mZ(to) = oo, P almost surely;

(ii)  if ot. = 1 (j) — mZ(a>) < oo, P almost surely.

THEOREM 3. Let ij/(h) = h(log (1/A))~a. Then

(i) i/O < a < 1 \j/ — mG((o) = oo, P almost surely;

(ii)  if a, = 1 i// — mG(co) < oo, P almost surely.

In §2 we prove Theorem 1 whilst in §3 we reduce the truth of Theorems 2 and 3
to the truth of two simpler propositions, which we prove in §4 and §5 respectively.

§2. The idea of the proof is very simple but we must take care with the measurability
difficulties. We first establish some lemmas.

LEMMA  1.1. Px(Ty < 1) > Ofor all pairs (x, y).
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00

Proof. Let g(x) = p(t,x)dt, then (see [8]) there is a positive constant c
such that 0

Px(Ty < co) = cg(y - x).
Now

Px(Ty < 1) ̂  Px(Ty < oo) - PX(X, = y for some t 2* 1)
oo 00

= c I p(t, y - x)di - c I dzp(l,z - x) J p(s,y -z)ds,
0 R 0

by the Markov property,
I

= c J p(t,)'-x)rf/  > 0,
o

and the lemma is proved.

LEMMA  1.2. Suppose that <j>  is a measure function. Then

(i) Px((j) - mR(co) > 0) > 0 implies Px(<j)  - mR(co) > 0) = 1

and Px((f) — mR{(o) < oo) > 0 implies Px{<j>  — mR(co) < oo) = 1;

(ii)  Px((j) - mG(co) > 0) > 0 implies Px(<j>  - mG(co) > 0) = 1

and Px(<f>  - mG(co) < oo) > 0 implies Px{<$>  — mG(a>) < oo) = 1.

Proof. The first implication is proved in [2; Theorem9.1] for the case where
<f>(h)  = h". The proof does not depend on the particular choice of 4> and the argument
involved also serves to prove the rest of the lemma.

LEMMA 1.3. Let 38 be the class ofBorel subsets ofR and let I(y, (o) be the indicator
function of R(co). Then I(y, co) is measurable with respect to the a-field 3$x!F (see
[I]  for the definition of &).

Proof. It is sufficient to show that I~l{0) e 3Sy.^. Now

/-'(O) = [(y,a>):ytR(a)].

Let Bn be an enumeration of those open intervals with rational endpoints, then

= |J Bnx[co:R(a))<=BH'),

so that it is sufficient to show that

[co : R(co) <= Bn
c]  e J*\

Since X,(co) is right continuous with left limits we have

R(co) = [x: x = Xt-(co) or X,(a>) 0 < t < 1],
and hence

[co : R(co) <= Bn
c]  = f) [co: Xr(a>) e B / ] .

r rational

Each set in the intersection on the right is in SF and so the lemma is proved.
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Proof of Theorem 1. Since R(co)\R(co) is at most countable we have

A[K(co)]  = AfR(co)] = f I(y, co)dy,
R

and

ExA[R(co)] = j Px(dco) J I(y,co)dy.
R

Fubini's Theorem and Lemma 1.3 show that this is

j dy j I{y, co) Px(dco).

Now
jl(y, co) Px(dco) = Px[R(co) n {y} # $\

> Px[X t(co) = y for some (, 0 < t < 1]

> 0,

by Lemma 1.1. Hence Ex A [R(co)] is positive and Px{A [R(co)] > 0} > 0. Theorem 1
now follows from Lemma 1.2.

§3. Let (p be a measure function with $(2/i) = 0{\)(j>(h), £ be a plane set and
\jj{h) = /;</>(/*). If A is a measurable subset of the x axis and Ex — [y : (x, y) e E]
is such that

(j> — mEx > p for all x e A,

we have \j/ — m{E) ^ kpA(A) for some absolute constant k, greater than zero.
This is proved by Marstrand in [6] for the case where cf>(h) = h" and the proof extends
to cover this case.

Now let n = [( — x, co): c/> - tnZx(io) = oo]. Then n e 38 x. 3F, see [3; p. 314].
Let nx = [co: cj) - mZx(to) = oo] and nl0 = [x: <f> — mZx(oj) = oo]. Now by the
right continuity of the paths we have

X-j v((O)(co) = x, P almost surely on (T .̂ < oo),

so if cj) is a measure function with P[<f> —  mZ(co) = oo] > 0 then the strong Markov
property and the independent increment property imply that

P[co : 4> - mZx(co) = oo, Tx(co) < 1] > 0 for each x.

Thus P[nx] > 0 for each x and hence Ax P(n) > 0 and PlAinJ > 0] > 0. Let
Q, = [co : A(nm) > 0]. If co e Q we can apply the result in the last paragraph to the
set G((o) to show that if cj> also satisfies cj>(2h) = 0{\)cf>(h) and if \l/(fi) = h4>(h) then

i/f — mG(co) = oo.

Thus P[\jj — mG(co) = oo] > 0 and hence, by Lemma 1.2, P[\l/ — mG(co) = oo] = 1.
It is clear that our problem reduces to proving the following two propositions.

PROPOSITION 2. / / 0 < a < 1 and <f>(h) = (log (1/A))~a then

P[cp - mZ(co) = oo] = 1.

PROPOSITION 3. lf\i>{h) = h (log (l/h))'1 then P[\j/  - mG(co) < oo] = 1.
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§4. Since Xt(co) has 0 regular for {0} it follows that there exists a local time at
zero in the sense of Blumenthal and Getoor [4]. Their arguments show that the
measure function properties of the zero set of Xt((o) are the same as those of the
range of the subordinator, T,(co), whose subordinator exponent, g(A), is given by

and

+ V]-1 = J exp(-Xt)p(t,O)dt,
o

00

y-1 = j p(t,0)dt.

Let Ft(x) be the distribution of Tt(co) - T0(a>). We shall need a reliable estimate
for the behaviour of Ft(x) as x and t tend to zero. As a first step we prove

LEMMA 2.1.

... nh2 ,
g(A) ~ log A as A -> +oo.

2p

Proof. From (1) we obtain

and, as noted in [8], we also have x2p(l,x) bounded and p(l,x) ~ 2p/x2 as
x -v +oo. Let

_ log A 1
= A ' = A log A '

and consider

gW + y JJ
oo T S

T s o
Now

= J + J + J = h + h + h, say. (4)

and, putting y = —h log t,

T ^ exp(-Ar)

Now

and
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Now, as A -> oo,

h~^h2 I
s

dt
t(logt)2 nh2 log 2 + log log A " K)

Equations (4)-(7) combine to prove the lemma.

LEMMA  2.2. There exist positive constants A and k such that, whenever
0 < 2x < t < 1,

F,(x)  ̂ Ax"'.

Proof. Since g(X) and log A are continuous and bounded away from zero on
A > 2, Lemma 2.1 shows that there is a positive constant k such that g(X) ^ k log X
if  A > 2.

Now

exp (—Xx) Ft(x) < exp (—Xx) Ft{dx)
o

00

< f ex (

Therefore

Ft(x) < exp[Ax-/g(A)]

< exp [Xx - tk log A], if  A ̂  2.

Now put A = t/x. Then, if  0 < 2x < t < 1, we have A > 2, and so

Ft(x) < exp [( - tk log ( + kt log x]

= exp [t - tk log f J xkt.

The first term in the product is bounded for 0 < t < 1 so the lemma is proved.

LEMMA  2.3. Leth(t) = exp [-r ll*]  and<j)(h) = (log (l/h))~x where0 < a < 1.
P(a, co) = inf (S : Ts(co) > a).

(i)liminf-5&>  1 P

and

(i) lira inf ';,./ > 1 P almost surely,
t->o "(t)

P(a, co)
(ii)  lim sup —77-— < 1 P almost surely.

Proof. Let rt = 2"9 for each integer q, and let A9 be the event

Then, by Lemma 2.2, X! P(Aq) < co, so that by the Borel Cantelli Lemma
4=1

P(lim sup A) = 0 and hence

lim inf — r ' * \ ) > 1 P almost surely.
«-co h(rq)
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Since T, and h{t) are monotonic increasing te [rq+lrq) implies that

J K g ) _> Trq + 1(co)
h(t) " A(r,) '

and hence

P almost surely. The lemma now follows from the observations that h[cj>(t)]  = t
and [co : P(a, co) > r] = [co:  Tr(co) < a].

LEMMA 2.4. Suppose that F is a measure defined on real Borel sets and that E
is a Borel set such that for every x e E and some measure function \jj  we have

F[x, x + h]
hmsup —— < k < oo.

&o \l>(h)

Then kij/ - m(E) > F(E).

Proof. This is Lemma 4 of [11].

Proof of Proposition 2. Define

P(t, a, co) = inf [S : Tt+S(co) - Tt(q>) > a].

Let 4>(h) = (log (1/h))-*, 0 < a < 1, and let

n = \(t, co) e [0, 1] x Q : lim sup

Then n e 3$ x &. Let

nt = \co : lim sup P(t, a, co)/cj)(a) ^ 1 ,
L o-o ]

be the f-section of n and let

n<» = \t • 0 < t < 1» l™ sup P((, a,
L o

be the co-section of n. Then, since T, has stationary independent increments,
P(t, a, co) and P(0, a, co) have the same distribution and so, by Lemma 2.3,
P(n,) = 1 for all t, 0 < t < 1. Fubini's Theorem now applies to show that for P
almost all co, nae <M and A(?O = 1. Now take one of these co. Then, if

Aa = [x: x = Tr(tt>) for some t e nm],

Am is a Borel set. Consider the measure Fm, defined on the Borel subsets B, of R, by
FO(B) = A[t:  Tt(co) e B]. Then Fa(AJ = A(«J = 1 and

Fo[T t(a>), T,(co) + h] = P(t, h, co),

\f x e Am then x = Tt(co) for some t e 7rm and hence

hmsup — '- < 1.
»o <p(fl)
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Now by Lemma 2.4 we have (j) - mAm ^ Fa(Aa) = 1. Since this is true for any a
with 0 < a < 1 and since Aa <=  T([0, 1], co) we have

4> — mT([0, 1], co) = oo P almost surely,
and hence

(j> — mZ(co) = oo P almost surely.

Thus Proposition 2 is proved.

§5. We start by proving a simple lemma.

LEMMA  3.1. Let {Xt} be a sequence of mutually independent random variables
and let {yj also be mutually independent random variables. Suppose that for each x
and i we have

P(X, < x) «S P(Yt < x).

Then for any n and x we have

fi r, < * ) .

Proof. It suffices to consider the case where n — 2. Let Gt(x) = P(Yt < x)
and F((x) = P(Z; < x). Then

,+X2 <x)= j F2(x-y)F1(dy)
R

< J G2(x-y)F1(dy)
R

= I F,(x - y)G2(dy), integrating by parts..
R

< f G1(x-y)G2(dy)
k

+ Y2< x),

and the lemma is proved.

Proof of Propositon 3. It follows from (1) that, for each r > 0,

rX,(a>) and Xrt((o) + rth logr have the same P distribution. (8)

Now take e0 such that 0 < e < s0 implies that 1 + h log (1/e) < log (1/e) (note
0 < h < 2/jr). For any e we define a sequence {<r k

c} of stopping times as follows

<r0
£ a 0,

V = inf [t  > « { - ! : \X t - Xa* kJ > e log (1/e)],

< = mi" [**.%  <^l-i + £ log (1/e)].

The strong Markov property now applies to show

{ak' — ol-i) are independent identically distributed random variables. (9)
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Take c and e with 0 < c < e < e0, then

P « < c) = p(sup|*,| > £ log (1/e))

= p|sup(l/e)|Z(|>log(l/e)j

= pjsup \XU-, + (tie) h log (l/e)| > log (1/e)}, by (8),

= P ( sup \XS + Sh

Now S  ̂ 1 implies

(co : \XS + Sh log (l/e)| > log (1/e)) c (co : |XS| + Sh log (1/e) > log (1/e))

c (co : |* s| > 1).

Thus we have

P(ffl« < c) < ^( /up j^s l > l ) = ^(t i 1 < (c/e))

= P ^ / < (c/e))
and so, by (9),

P(ak*  - ff|_x < c) < P ^1 - ^ ^ < (c/e)).

Let//t = min [{ak
l — al^^, 1] then the Hk are independent and identically distributed

and for each x, k and e < e0 we have

P(ak'-a\^ <ex)< P(Hk < x)

(for x < 1 put x = (c/e), for x > 1 use the definition of Hk).
Let m = EHt be the expectation of Hu so that m > 0, and define

Se = min [fc : ok ^ -J/M].
Now

and so, by Lemma 3.1,

P(eSe > 1) < -Ppjftf* < $m\. (10)

By the definition of m and the weak law of large numbers the right-hand side of (10)
tends to zero as e tends to zero. So we can find a sequence, en, decreasing to zero
such that

P(enSCn > 1) < 2-".

By the Borel Cantelli Lemma we now have

limsupeB5£n < 1, (11)

P almost surely.
Let G'(co) = l(t, Xt((o)): 0 < t < \ni\ be the graph of Xt(co) up to time \m.

We now cover G' by the sets Ak where
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Each of these has diameter less than 3e log (1/e), and Sc of these cover G'. If
\j/(h) = h^ogil/h))'1 we have

\l/(3e log (1/e)) ~ 3e as e -»• 0. (12)

Since
\j/ - mG' ^ lim inf S£^ ( 3 E log (1/e),

e-»0

(11) and (12) combine to show that \jj-mG' (<o)<3 P almost surely.
By the independent increment property we now have

\ji - mG(co) < 12/777,

P almost surely, which proves Proposition 3.

Remarks. 1. If X,((o) is an asymmetric Cauchy Process in Rd then its projection
onto some linear subspace will be an asymmetric Cauchy Process on that line. The
methods of §4 would apply to give a lower bound for the measure of the graph.
We could then use the d-dimensional equivalent of (8) to obtain an upper bound.
We can thus show that the conclusions of Theorem 3 are valid in higher dimensions.

2. We could improve our arguments in §4 to show that, if

logloglog(l//i)
log (1/h) '

then <j) —  mZ(co) > 0, P almost surely, and since this is the best result that the
methods of that section would give, it seems likely that this is the exact measure
function of the zero set. We would also expect that the exact measure function for the
graph (and the range in dimensions ^ 2) is

h log log log (1 IK)

log (I/A) '
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