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THE LARGE SIEVE

H. L. MONTGOMERY AND R. C. VAUGHAN

1. Statement of results. Let S(x) be a trigonometric polynomial,
M + N

S(x) = 2 ane{nx), (1.1)
M+l

where N > 0 and M are integers, the an are arbitrary complex numbers, and
e(x) — e2nix. In its basic form, the large sieve of Linnik and Renyi is an inequality
of the form

R M + N

]T|S(x,)|2< A(N,S)^\af. (1.2)
r = l M + l

Here the xr are arbitrary real numbers which are distinct modulo 1, and 8 is a measure
of their spacing,

8 = min | |JC, - *J , (1.3)

where the minimum is taken over all possible pairs r, s with r ^ s, and ||x|| denotes
the distance from x to the nearest integer. The factor A(N,S) must depend on both
N and 8. In fact A(N,8) > N, for if an = 1 for all n and xt = 1, then the sum on
the left is > JV2, while the sum on the right is equal to N. On the other hand,

1 R M + N

0 f = l M + l

If it happens that the xr are equally spaced then 8 = R'1, so we deduce that
A(N,8) > (T1.

THEOREM 1. Let S(x) and 8 be as in (1.1) and (1.3), respectively. Then
R M + N

2 \S(x,)\2 < (N + S-1) 2 kl2- (1.4)
r = l M + l

Moreover, if
8r = mm\\xr-xs\\ (1.5)

[MATHEMATIKA 20 (1973), 119-134]



120 H.  L.  MONTGOMERY AND R.  C.  VAUGHAN

for all r, then
R M + N

M+l

The inequality (1.4) contains several previous formulations of the large sieve. In
particular, Gallagher [6], Bombieri and Davenport [2] (see also Ming-Chit [17]) and
Bombieri [1] showed that nN + d'1,! max (JV,^"1), and N + 28'1, respectively,
are permissible expressions for A(N,S). Moreover, Bombieri and Davenport [3]
have given examples in which A(N,S) = N + 8~l — I, so that (1.4) is extremely
sharp.

The weighted sieve (1.6) is fundamentally more delicate than (1.4). The weights
are particularly useful in arithmetic applications, because the Farey fractions are
irregularly spaced.

COROLLARY 1. Let JV be a set of Z integers in an interval [M + 1, M + N].
For each prime p let co(p) denote the number of residue classes modulo p which contain
no element of Jf. Then

Z < IT1, (1.7)
where

L = y (N + iqzy1 ti{qf U " ^ , (1 • 8)
£-1 p\q p - CO{p)
qtiz

andz is an arbitrary positive number.

This sharpens Corollary 4.3 of Montgomery [19], which was derived in an
awkward manner. The advantage of Corollary 1 over earlier results is that the error
term occurs as the term \qz, instead of cz2. This leads to significant improvements
when the co(p) are small.

As an illustration of Corollary 1, we consider the Brun-Titchmarsh upper bound
for the number of primes in a segment of an arithmetic progression. Let n(x, k, I)
be the number of primes p ^ x with p = / (modfc). Then Klimov [11] has shown
that Selberg's method gives

a,)
for k < ^JV. Bombieri and Davenport [2], using the large sieve, obtained a second
proof of this. Subsequently van Lint and Richert [13] (see also Uchiyama [26]), by
more precisely estimating the error terms in Selberg's method, were able to replace
the log log (N/k) in (1.9) by unity. (Selberg [24], [25] had much earlier stated such a
result, without detailed proof.) Bombieri [1] gave a new proof of this sharper result,
using a complicated weighted large sieve. In particular he showed that

7t(M + JV) - n{M) < 2N/(logN - 3).

Corollary 1 enables us to obtain the following improved estimates which have no
error terms.
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THEOREM 2. Let x and y be positive real numbers, and let k and I be relatively prime
positive integers. Then

Mx+y,k,l)-n{x,k,l)< mlyg(y/k) (1-10)

provided only that y > k. Moreover, there is a constant c such that if y > ck, then

nix + y, k, I) - n(x, k, 1) < l \ (1.11)
<j)(k)(i  + log iylk))

As a particular case of the above we note that if M > 0 and N > 1, then

n(M + N) - n(M) < 2N/logN. (1.12)

From this we shall deduce

COROLLARY 2. If M > 0 and N > 1 are integers, then

n(M + N) - n{M) < 2TC(JV). (1.13)

There is a long standing conjecture that

n(M + N) < 7c(M) + n(N)

for M > 1, JV > 1. However, Hensley and Richards [10] have cast doubt on this
by showing that it is not consistent with the well known conjecture concerning the
existence of prime ^-tuples. It may be that (1.12) is essentially best possible.

Bombieri and Davenport [2] used the large sieve to show that if a given L-f unction
L(s,Xi) has a " Siegel zero ", then the numbers

.n)X(n), (1.14)

with x # Xo> a r e n o t usually very large. However, their result does not conflict with
our expectation that ij/(N,x) is of order (N logg)* on average. We use the sharper
bound (1.6) to prove the following theorem. As a consequence, we show below that
if there is a " Siegel zero ", then \I/(N, x) is o((N logq)^) on average.

THEOREM 3. / / I/J(N,X) is given by (1.14) and W = ^ N * , then for every
sufficiently large N

(log ) 2 , W(N,x)\2 <N2logN. (1.15)

Here Y,x* denotes a sum over all primitive characters x modulo q.

The term q = 1 consisting solely of the principal character contributes
%N2 log N + o(N2) to the left hand side of (1.15). Furthermore, if  L(s,Xj) has a
"Siegel zero", where Xi is a primitive character modulo q, and q1 = N5, then
IlKW. Vi)l  > (1 —S)N. Hence Xi contributes at least (£ - 2(5) N2 log N. As a
consequence one would have

V V W(.N,x)\2 < 5N2logN. (1.16)
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It is plausible that this is false if 5 is sufficiently small.
We prove Theorem 1 and Corollary 1 in the next section. In §§3-6 we prove

Theorem 2. The proof is subdivided as follows. We first of all establish (1.11). Then
we collect some elementary estimates which enable us to demonstrate (1.10) when
y/k is sufficiently large. Finally we show that (1.10) follows from the sieve of
Eratosthenes when y/k is small. We derive Corollary 2 in §7, and in §8 we prove
Theorem 3.

2. Proofs of Theorem 1 and Corollary 1. Theorem 1 follows easily from the
lemmas below. Of these, Lemma 1 is a standard result (see Hellinger and Toeplitz
[9], or Hardy, Littlewood, and Polya [8], Theorem 288). Lemma 2 is a recent dis-
covery; it is Theorem 1 of Montgomery and Vaughan [20].

LEMMA 1. Suppose that [cm] is an arbitrary R x N matrix and A is such that

Nv
A,n~ 1

R

"V
r = l r = l

for all sets of complex numbers vr. Then

2
r = l

Nv̂
 rn n

n = l

for all sets of complex numbers wn.

We note that the above is self-dual, so that in fact the two inequalities are
equivalent.

LEMMA 2. Suppose that the premises of Theorem 1 hold, and that the numbers ur

are arbitrary. Then
RR R

I
r = l s =

y> urus csc n(xr — xs)
r = l

and
R R

(2.1)

(2.2)
r = l

Here csc x = (sinx) %.
To prove (1.4) we appeal to Lemma 1 with crn = e((M + ri)xr). It thus suffices

to show that

»r e(nxr)

2 R

(2.3)

Similarly, if we take crn = (N + §5r~
1)"*e((M + n)xr), then (1.6) is a consequence
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of the inequality
M + N

r = l

( 2 - 4 )

This approach to the large sieve has been discussed recently by Elliott [5], Matthews
[14], [15], [16], and by Kobayashi [12].

To prove (2.3) we square out the left hand side. The diagonal terms contribute
the amount

r-l

The non-diagonal terms may be written

R R M + N

sVrDs 2-, e(n(Xr-Xs)), (2.5)
r = l s = l

and the inner sum is

li(e((M + i)(x r - x,)) - e((M + N+ $)(xr - xs))) esc n(xr - xs).

We now use (2.1) twice, once with ur = vre((M + %)xr), and once with

ur = vr

This gives (2.3). The proof of (2.4) is the same, except that we use (2.2) in place of
(2.1).

To prove Corollary 1 we take our xr to be the numbers a/q, where 1 < a < q,
(a,q) = 1, and q < z. Ifa'/q' ^ a/q, then

Hence, by (1.6),

a
q

JZ)~

a'
q'

i

0 = 1

1
> qq' >

\S(a/q)\2 t

1
qz '

M + N

n = M +

(2• 6)

We use X' to denote a sum in which the variable of summation is restricted to those
values which are coprime to q. Now let an be 1 or 0 according as n is or is not a
member of Jf. Then, on the hypothesis of Corollary 1, we have (Montgomery [18])

0 = 1

We now combine (2.6) and (2.7), and note that the right hand side of (2.6) is Z.
This proves (1.7).

3. Proof of (1.11). We require the following lemma.
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LEMMA  3. Let u and v be any positive real numbers. Then

q q
(9. *) = 1

Proof. We multiply the sum on the left by

Mr) 2 k

r\k

to obtain a sum which clearly includes all the terms in the sum on the right.
To prove (1.11) we take

M . pUi] p.l,
and

[*±jpiL]  _ M. (3.2)

Let JT be the set of those integers n for which M < n < M + N, kn + I is prime,
and kn + I > z. Then a>(p) > 1 whenever p ^ z and p X k. Thus by Corollary 1,

n(x + y, k, I) - n(x, k,l) ^ IT1 + n(z) (3.3)
where

L = J ( ^ + ^ ) -1AI (9 ) 2 / ^ (9 ) . (3-4)

We suppose, as we

Then by Lemma 3,

where

may,

n(x

(«, k) = 1

that

+ »*, ! ) - %{x,k,T) <
kN

' <t>(k)J

(3

(3

•5 )

.6)

Ward ([27], (2.2) with M = 1) showed that

= log ^ + y

as D -> oo. On summing by parts we see that

j = logz + r + y ' o g p , r iog2 +
- ^ p(p - 1)

p

as z -»oo, and so by (3.5),

J =
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as N -+ oo. Moreover y > 0-577,

V ,OgP
u > 0-737

(see Rosser and Schoenfeld [21]), log 2 < 0-694, and -J log f < 0-203, so that

J > | l o g N +0-417

for N larger than an effectively computable constant. This with (3.6) completes the
proof of (1.11).

Recently A. Selberg (unpublished) succeeded in using elementary techniques to
obtain a bound like (1.11), but with f replaced by f.

4. Elementary lemmas. The lemmas below contain little that is new. They are,
however, essential to our proof of (1.10).

LEMMA 4. For every positive real x,

1 , , , , , „ , , ""O K*) ix
•— = 4 log x + iy + + log 2 + A log 3 — > < —
r ^—i x I t

«!6

where 9 = 9(x) satisfies \9\ < 1, and {y} = y — [>].

Proof. We have

(4.1)
r £-i t £-i n

rsSx r|6 n«(x/()
(r, 6) = 1

By the Euler-Maclaurin expansion (see, for instance, Theorem 421 of Hardy and
Wright [8]),

We take y = (x/t) and insert this in (4.1) to obtain our result.

LEMMA 5. If z is real and positive, then

/ v(q)2l<l>(<l)  ^ l°gz + 7 + i log 2 + J log 3 — A(z, 6 ) z- 1 •

where

 ̂ ' (4.2)
m\k t\k
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Proof. We note that

- 2^7 2
\6 ^fm|6 q^z m\6 f

(«, 6) = m (r,6)=l

Let s(n) denote the largest squarefree divisor of n, s(n) = T\P\nP- Then

2 M>o2/<«r)= 2 / x ( r ) 2 r " 1 j j ( 2 p " * ) = 2 1/r^ 2 1/r-
(r, 6) = 1 (r, 6) = 1 (r, 6) = 1 (r,6) = l

Thus

^ 2 I-
g<z m|6

(r,6) = l

To estimate the inner sum we appeal to Lemma 4 with x = z/w. This gives the
required lower bound.

LEMMA  6. Let A(z, k) be given by (4.2). Then A(z, 6) < 3.

Proof. From (4.2) it is clear that A(z, k) is periodic with period k2 as a function
of z, A(z,k) = -4([z], A:) + {z}  for squarefree A:, and A(—z,k) = — v4(z,A:) when
k > 1 and z is not an integer. Also, if p Jf I, then

A{z, pi) = 4(z, /) + —l — Aizlp, 0 - —L- A(zlp2,1).
p-\ p-\

From this last identity we deduce that

su
p — \ z

It is easily seen that sup |v4(z, 2)| = 1. Hence sup |,4(z, 6)| < 3. In fact sup A(z, 6) = f,
Z 2 Z

as one will find by direct calculation.

LEMMA 7. Suppose that z ^ 6. T/ien

l-07. (4.3)

Proof. We suppose initially that z ^ 100. By Lemma 6 we have
A(z,6)z~1 < 0-03. The lemma then follows from Lemma 5 on noting that y > 0-577,
i log2 > 0-346, £ log3 > 0-183, ^-z~2 < 0-005.

To establish the lemma when 6 < z < 100 we make a direct calculation. We
first note that the right hand side of (4.3) is increasing when Q < z < < 2 + l , Q a n
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integer. Then, on writing

B(Q) =

we see that it suffices to show that B(Q) > 1-07 when 6 < Q < 100.
We give below a table of values of B(Q). We, the authors, have independently

computed B(Q) for 6 < Q < 100, while Professor Weinberger of the University of
Michigan has made a corroboratory calculation with the aid of an IBM 3600/67
computer. The numbers displayed below lie between B(Q) - 10~4 and B(Q). We
note that B(Q) > B(Q — 1) - Q'1; this together with the values given below make
it clear that B(Q) > 1-07 whenever 6 < Q < 100.

B(Q) B{Q)

5
6
7
8
9

10
12
14
16
18
20
22
24
26
28

0-9582
1-3040
1-3372
1-2194
1-1140
1-2687
1-2017
1-3086
1-3084
1-2597
1-2151
1-3075
1-2696
1-2760
1-2045

30
35
40
45 ]
50 1
55
60 ]
65 1
70 1
75 1
80 1
85 1
90 ]
95 1

100  ]

1-2985
1-3365
[-3314
1-3485
1-3125
[-2945
[-2897
•2817
•3383
•3262
•3336
•3265
•3230
•3357
•2954

LEMMA 8. Suppose that z ^ 100. Then

o-36i.

Proof. Let

Then, on integrating by parts, we find that

z

(i +«2"1)" 1 Kq)2/<f>(q) = z J (z + uy'

(4.4)

= iD(z) - j^j + z J D(u)(z + u)-2du
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which, by Lemma 7, is
z

> iOogz + 1-07) - - ^ 7 - +z f (logu + l-07)(z + uY2du.
z + 6 J

6

Hence, integrating by parts again, and using (4.4) with u = 5, we see that the above
is

z duV n(q)2 / z z \ z c z du
> > "77T" " T + r flog 6 + 1-07)+ .

±-<  <l>(q)  \z +q z + 6 ) z + 6 J z + u u
qi5 6

When 1 < q < 5 and z ^ 100,

so that

We note

z

f z
J 24
6

z
z +

also that

• u u

On combining the

y (1 + <

provided

?z J) 1n

thatz ^

q z

= logz

above,

100.

z
: + 6 Z

«(<Z)2 / z
<t>(q)  \ z +

+ log (1 +

we obtain

q) > logz

> logz -

z /

+ 3 I

q z

+ 1-07

(- 0-36L

Z \ -
+ 6 ) -

log 12 >

- I o g 2 +

9-67

z + 6

logz +

15-67

6
z

z

—

-q
+ 6 '

6
+ 6

6(log6
z + 6

log

- ! •

12.

•07 )

LEMMA 9. //JV ^ 15000 andz = (fJV)*,

) " 1 ^ ^ • (4-5)
\q<z I

Proof. We have z 5= 100, so that by Lemma 8

o-i5.

When z is this large, 7r(z) < \z < $N*. Hence the left hand side of (4.5) is less than

3

3 + 10 logN

Since logJV > 9-6,

3 1
3 + lOlogJV > 41ogJV'

).
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so that it suffices to show that

* y  N 2
3 2(logJV)2 logJV '

As 41ogN < 3JV it is enough to show that (logiV)2 < JV*. If u > 10, then
logM < iu. Taking JV = u4 gives (logJV)2 < JV* when JV > 104. This establishes
the lemma.

5. Proof of (1.10) when y > 16000k. To establish (1.10) when y/k is large, we
combine (3.3) and (3.4) with Lemma 3. Thus

n(x + y, k, I) - n(x, k, I) <
k

<Kk)

Also, by (3.1) and (3.2),

• (5.1)

N = l -jr h" ~T~ ' (5'2)

so that N > 15000. We now take z = (fiV)± , whence (5.1) and L e m m a 9 give

n(x + y,k,l) - n(x,k,l) <  2*fl  ^ • (5.3)
<l>(k)  logiV

By (5.2) we see that N - 1 < y/k  ̂ JV + 1. Thus if y/k Ss JV, then

J V - 1 JV y/k

logJV logJV ^ log 0>/A:)'

whilst if  JV - 1 < y/k < JV, then

N-l y/k
logiV

We combine this with (5.3) to complete the proof.

6. Proof of (1.10) when k < y  ̂ 20000&. We begin by establishing the following
form of the sieve of Eratosthenes.

LEMMA 10. On the hypothesis of Theorem 2,

n{x + y,k,l) - n(x,k,l) ^ ~ U ( l - —) + 2"« + n(z)
k P\p(z, k)\ p }

where P(z,k) is the product of all those prime numbers which neither exceed z nor
divide k.
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Proof. It is easily seen that

n(x + y,k, 1) — n(x,k,l) < y>

•y  r|(»fc + 'j,  P(z,t))

r|P(x, k)

where |0| < 1. This gives the lemma.
For convenience we write v = y/k,

E = n(x + y, k, I) - n(x, k, I)
and

cj>(k) log (y/k)'

By Lemma 10 we have

V • / 1 \ ^ . .
-r-  I! 11 I + 2* (z ) + 7r (2)

. _ n (l ) + r •<p(k) p$z\ p J k y

p J v

- ) + ~r • - ( 2 I t ( 2 ) + n(zj)p J k y v '

)

On taking z = 2,3,5 and 13 respectively we obtain £ < F if at least one of the
following is true:

(6.2)

f ) < L (6-4)
We now show that if 1 < v ^ 20,000, then at least one of these does hold. Let

f{v;a,ft) =
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A simple calculation reveals thatf'(v;i, f) > 0 for all v > 1, so that if 1 < v < 20,
then

To treat the remaining cases we observe that

f'(p;a,P) = pv-Hwp-1 + 1 - log»).

Clearly uvfi'1 + 1 = logy has at most two solutions, the lesser of which is the only
local maximum of / . For f(v; £, 3) this smaller solution lies in [e, 12], for
f(v;-^j,^-) in [e,4], and for f(v; lHl, 35) in [e, 3]. Thus/has no local maximum
in the intervals we shall consider. When 18 < v < 270 we have

f(v;t,3) < max(/(18;i,3),/(270;i,3)) < 1,

when 42 ^ v «S 1000

f(v, A.V") ^ max(/(42;T
2

T,YX/(1000;TW)) < L

and when 700 < y < 20,000

5) < max(/(7OO;Tff r,35),/(2O,OOO;T^T,35)) < 1.

Hence (6.1) holds if 1 < v < 20, (6.2) if 18 < v < 270, (6.3) if 42 «S v ^ 1000,
and (6.4) if 700 < v < 20000. This establishes the inequality E < F throughout
the range k < y < 20000*:.

7. Proof of Corollary 2. Rosser and Schoenfeld [21] have shown that

when N ^ 17. Hence, by (1.12),

TI(M  + N)~ n(M) < 2n(N)

for N ^ 17. It remains only to deal with the range 1 < N < 17. If M = 1, then

n(M + JV) - n(M) = ;r(JV

and if M > 2, then
n(M + JV) - 7t(M) ^

since all the primes in the range are odd. We now remark that \{N + 1) < 2n(N)
for 2 < JV < 17, and we are finished. An alternative treatment of the range
1 < JV < 17 is contained in the work of Schinzel and Sierpinski [23] and Schinzel
[22], where it is shown that if 1 < min (M,N) < 146, then

n(M + JV) ^ n{M) + n(N).

8. Proof of Theorem 3. We assume throughout this section that JV is large.
Let z = (f JV)* and P = Ylp^xP- We use (2.6) with M = 0, an = A(n) if (n, P) = 1
and an = 0 if (n, P) > 1. By the prime theorem number, the right hand side of
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(2.6) is
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V A(n)2 = N logJV - N + o(N) < N logJV - -JAT

(n, P ) = l

for large JV. Bombieri and Davenport [2] have shown that if q < z, then

N 2 q

X « = 1

We now see from (2.6) that

<N2\ogN-irN2. (8.1)

We next group together those characters / which are induced by the same primitive
character x*. Clearly 2Xx(«) = Efl

n/*(«)> a nd if Z is to the modulus q and #* is
to the modulus q*, then q* divides q, say g* r = q. It is well known (see for instance
Davenport [4, p. 148]) that |x(z)|2 = q* if r is square free and (r,q*) = 1, and
otherwise \T(J)\2 = 0. Thus the left hand side of (8.1) becomes

2 <Ki*)

From Lemmas 3 and 8 we see that the sum in parenthesis is

^ r + 0-361

provided that q* ^ TO"OZ- Since W == yjjQ-iV*  < j ^ z we are able to assert that

< N2 logN -

It remains to consider those n with (P, n) > 1. Gallagher [6] has shown that

N 2

(8.2)

a = l n = l

Thus from (2.6) it follows that
N

(n.

2 AW2

<N\ogN

i
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Hence
N 2

(8.3)

THE LARGE

N

Q I ^—i
X

2 A(
in"F) > 1

SIEVE

n)x(n)

2

<$ N*(logN)2.

We use Minkowski's inequality to combine (8.2) and (8.3); we find that

V ( l o g — \ V*|iA(iV,z)| 2 < (NQogN - i)* + O(N* logJV))2.
g^w x

For large N this upper bound is < N2 logN, as required.
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