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ABSTRACT 

Background and Aims: Anti-H. pylori therapy may lead to the growth of pathogenic or 

antibiotic-resistant bacteria in the gut. The study aimed to investigate the short-term and long-term 

impacts of H. pylori eradication with reverse hybrid therapy on the components and macrolide 

resistance of the gut microbiota. 

Methods: H. pylori-related gastritis patients were administered a 14-day reverse hybrid therapy. 

Fecal samples were collected before treatment and at the end of week 2, week 8, and week 48. The 

V3-V4 region of the bacterial 16S rRNA gene in fecal specimens was amplified by polymerase 

chain reaction and sequenced on Illumina Miseq platform. Additionally, amplification of erm(B) 

gene (encoding erythromycin resistance methylase) was performed. 

Results: Reverse hybrid therapy resulted in decreased relative abundances of Firmicutes (from 

62.0% to 30.7%; P < 0.001) and Actinobacteria (from 3.4% to 0.6%; P = 0.032) at the end of 

therapy. In contrast, the relative abundance of Proteobacteria increased from 10.2% to 49.1% (P = 
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0.002). These microbiota alterations did not persist but returned to the initial levels at week 8 and 

week 48. The amount of erm(B) gene in fecal specimens was comparable to the pretreatment level 

at week 2 but increased at week 8 (P = 0.025) and then returned to the pretreatment level by week 

48. 

Conclusions: H. pylori eradication with reverse hybrid therapy can lead to short-term gut 

dysbiosis. The amount of erm(B) gene in the stool increased transiently after treatment and 

returned to the pretreatment level 1-year post-treatment. 

 

KEYWORDS: Helicobacter pylori, treatment, microbiome, dysbiosis, erm(B) 
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INTRODUCTION 

Human gut microbiota influence essential biological functions of the hosts including energy 

metabolism, immune modulation, and host defense against pathobionts.1,2 Numerous studies have 

reported that abnormal alterations of the gut microbiota (a.k.a., dysbiosis) may promote the 

development illness including colorectal cancer, inflammatory bowel disease, obesity, type 2 

diabetes mellitus, asthma, rheumatoid disorders, and neurodegenerative diseases.2-4  

   Helicobacter pylori (H. pylori) infection is the major cause of chronic gastritis, gastric ulcer, 

duodenal ulcer, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma 

(MALToma).5,6 Eradication of H. pylori not only can prevent the recurrence of peptic ulcers but also 

may decrease the incidence of gastric adenocarcinoma.7,8 However, most H. pylori eradication 

regimens contain antibiotics and proton pump inhibitor (PPI),9-11 which may deplete gut resident 

commensal microbes resulting in dysbiosis. Antibiotic treatment is known to alter the composition 

of the normal human gut microbiota. Adverse events such as pseudomembranous colitis associated 

with Clostridium difficile (C. difficile) infection have been reported after anti-H. pylori therapy.12,13 

In addition, gastric acid suppression by PPI is a known risk factor for C. difficile-associated diarrhea 

in hospitalized patients.14,15 Another concern with the administration of antibiotics is the selection of 

antibiotic-resistant strains. It is known that gut microbial macrolide resistance is mediated by 

erythromycin-resistance methylases encoded by erm genes.16 The erm genes have been found in 

different genera of bacteria and erm(B) has the largest host range.16 Highly macrolide-resistant 

enterococci have been identified after anti-H. pylori therapy with clarithromycin-containing 

regimen and an increase in erm(B) levels in enterococci has been reported following the 

treatment.17 Therefore, a comprehensive investigation of the effects of H. pylori eradication 

treatment on the growth of pathogenic or antibiotic-resistant bacteria is quite important before 
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recommending global anti-H. pylori therapy for cancer prevention in asymptomatic subjects. 

    Previous studies18 showed that standard triple therapy containing amoxicillin and 

clarithromycin led to a reduction of the relative abundance of Firmicutes phylum. In contrast, 

bismuth quadruple therapy containing metronidazole and tetracycline resulted in a dramatic 

decrease in the relative abundance of Bacteroidetes.19 Hybrid therapy is a recommend anti-H. pylori 

treatment in areas of either high or low clarithromycin resistance in the Taiwan H. pylori Consensus 

Report.20 and also in the American College of Gastroenterology (ACG) guideline and the Bangkok 

H. pylori Consensus Report.21,22 Our group has recently shown that a modified hybrid therapy, 

called reverse hybrid therapy consisting of a PPI and amoxicillin for 14 days and clarithromycin 

and metronidazole in the initial 7 days, is a more simplified hybrid therapy regimen.23 It achieves a 

higher eradication rate than standard triple therapy with similar tolerability and at a lower cost.24 

Additionally, reverse hybrid therapy has comparable efficacy as bismuth quadruple therapy in the 

treatment of H. pylori infection and was also found to have fewer side effects.25  

Because the impact of reverse hybrid therapy on the gut microbiota is unknown, the aims of our 

study are (1) to clarify the short-term and long-term impacts of reverse hybrid therapy on the 

components of the gut microbes, and (2) to examine the short-term and long-term impacts of 

reverse hybrid therapy on the amount of erm(B) gene in the fecal microbiota. 

 

METHODS 

Study population 

H. pylori-infected adult patients (age ≥ 20 years) with gastritis documented by 

esophagogastroduodenoscopy were recruited. H. pylori infection was confirmed by at least two 

positive test results (e.g., rapid urease test, histology, and culture). Subjects with any of the 
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following criteria were excluded from this study: (a) previous eradication therapy, (b) allergy to 

any antibiotic of our study, (c) previous gastrectomy, (d) the coexistence of severe concomitant 

illness (e.g., decompensated cirrhosis, uremia, congestive heart failure, chronic obstructive 

pulmonary disease, and cancer), (f) pregnancy or lactating women, (g) the use of antibiotics within 

the previous 8 weeks, and (h) taking PPI or histamine-2 receptor antagonist within previous 8 

weeks. This trial was approved by the Institutional Review Board of the Kaohsiung Veterans 

General Hospital (VGHKS15-CT2-10).  

 

Sample collection procedures 

   The eligible subjects received a 14-day reverse hybrid therapy consisting of pantoprazole 40 mg 

plus amoxicillin 1 g twice daily for 14 days and clarithromycin 500 mg plus metronidazole 500 mg 

twice daily for the initial 7 days. Patients were asked to return in 2 weeks to check drug adherence 

and adverse events. They underwent a urea breath test to assess post-treatment H. pylori status at 

week 8.25 Fecal samples for gut microbiota analysis were collected the morning of day 1 before 

anti-H. pylori therapy and at the end of week 2, week 8, and week 48. Patients collected fecal 

samples at home and stored them at 4 ℃. The samples were sent to our laboratory within 6 hours 

after collection and were immediately stored at -70 ℃ until DNA extraction. 

 

16S rRNA gene amplification and sequencing by MiSeq 

Bacterial DNA in fecal samples was extracted with Bacterial DNA Extraction Kits (Topgen 

Biotechnology Co. LTD, Kaohsiung, Taiwan). The 16S rRNA gene was amplified in a 50 ul reaction 

containing bacterial DNA (5ng/ul), hotStart Taq (Qiagen, Hilden, Germany) and polymerase chain 

reaction (PCR) primers (Rd1-16S-V3-V4-Forward /Rd2-16S-V3-V4-Reverse) as previously 
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described.19 The PCR conditions used were 95℃ for 3 min, 25 cycles of 95℃ for 30 sec, 55℃ for 

30 sec, and 72℃ for 40 sec followed by 72℃ for 5 min. The PCR products with a length of ~550 

base pairs (bp) were further purified using AMPure XP beads. Then PCR products were subjected 

to 2nd PCR amplification in a 50 ul reaction containing 1st PCR products (5 ul), hotStart Taq and 

PCR primers (Nextera XT index primer 1-N7XX and primer2-S5XX) (Illumina, San Diego, CA). 

Finally, the 2nd PCR products were purified using AMPure XP beads and the DNA concentration 

and quality were assessed on a Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA). Equal DNA 

amounts of samples with different specific barcode sequences were pooled and sequencing was 

performed using MiSeq V3 reagent kit (600 cycles) (Illumina, San Diego, CA, USA). 

 

Bioinformatics Analysis  

De-multiplexing and generation of raw fastq files for each library were performed with the 

MiSeq Reporter Software.27 Trimmomatic was applied to trim the forward and reverse 16S primer 

sequence located at the 5’ end of the forward and reverse reads.28 PEAR was used to merge the 

trimmed paired-end reads.29 The Quantitative Insights into Microbial Ecology (Qiime) was applied 

to analyze the merged paired-end reads.30 An open-reference Operational Taxonomic Units (OTUs) 

picking approach was used to perform detection and clustering of 16S rRNAs.31 OTU assignments 

for reads that failed to hit the reference database were picked by an additional round of de novo 

clustering.32 The OTU representative sequences against the Greengenes core reference alignment 

was then aligned by the PyNAST alignment algorithm with a minimum identity of 75%.31  

 

Statistical methods.  

The raw data of the taxonomy summary results were exported to R version 3.4.1 (R 
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Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0) for statistical 

analysis.19 Nonparametric Wilcoxon signed-ranks test was applied to compare the relative 

abundances of phyla and genera of the fecal microbiota at different time points. Additionally, the 

Benjamini-Hochberg procedure for multiple testing was used to correct P values. A P value less 

than 0.05 was considered statistically significant.  

 

Diversity analysis.  

The alpha diversity was calculated using PD whole tree. A nonparametric Wilcoxon 

signed-ranks test was used to compare the alpha diversity between fecal microbiota at different 

time-points.19 Beta diversity between fecal samples was assessed using the default beta diversity 

metrics of weighted UniFrac.32 The resulting UniFrac distance matrices were applied to perform 

Principal Coordinate Analysis (PCoA) to determine the similarity between groups of 

samples/time-points. Non-parametric statistical analysis ANOSIM was conducted via Qime to test 

the statistical significance between different time-points. 

 

Estimation of fecal erm(B) gene 

The amount of erm(B) gene in feces was analyzed according to previous studies.33 The 16S 

rRNA gene was used as a reference gene. The erm(B) gene was amplified using ermBf/ermBr and a 

TaqMan probe (ABI). The 16S rRNA gene was amplified using 16Sf/16Sr and a TaqMan probe. 

The fluorescent reporter dye at the 59 end of the probe is 6-FAM; the quencher at the 39 end was a 

black-hole quencher-1 (BHQ-1). All primers were synthesized using Invitrogen (Carlsbad, 

California) and the probes were synthesized using Thermo Electron GmbH (Ulm, Germany). The 

cycling program was performed on an ABI Prism 7900HT (ABI). The PCR mixture without 
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template DNA was included in each run as a negative control. The results were analyzed using the 

software SDS 2.1 (ABI). In the present study, we normalized the erm(B) gene copies to the number 

of 16S rRNA copies and preparation of curves and calculations were carried out as previously 

described.34 

 

RESULTS  

From August 2015 to February 2017, 12 adult patients were recruited and received 14-day 

reverse hybrid therapy. All the patients completed a fecal sample collection on enrollment and at 

each follow-up time point. The mean age of these 12 patients was 53.5 ± 14.5 years (mean ± 

standard deviation). Supplementary Table 1 shows the demographic data of each patient. A total of 

3,856,172 quality-filtered reads were obtained from all the fecal samples with an average of 

80,337 ± 40,669 reads per sample. All the 16S rRNA sequences were deposited in the National 

Center for Biotechnology Information Short Read Archive 

(https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP171595) (Supplementary Table 2). 

 

Diversity analysis. 

   Alpha diversity analysis with PD whole tree for microbial richness was performed after 

rarefaction to 2,310 sequences/sample (minimum sampling depth). The rarefaction curves showed 

that the fecal microbiota at week 2 had less richness than that at baseline (P = 0.018; Figure 1). 

However, the microbial richness at week 8 and 1-year post-eradication did not significantly differ 

from that at baseline.  

   Figure 2 and Supplementary Figure 1 show the PCoA plots generated from weighted 

UniFrac distance metrics in beta diversity analysis for stool samples in baseline vs. end-of-therapy 
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(week 2), baseline vs. 6-week post-eradication (week 8), and baseline vs. 1-year post-eradication 

(week 48). Distinct clustering was noted between the gut microbiota at baseline and at week 2 

(Figure 2A). However, the differences in bacterial compositions were not significant between 

baseline and week 8 (Figure 2B) and between baseline and 1-year post-eradication (Figure 2C).  

 

Sequential changes in relative abundance of bacteria at phylum taxonomy level 

Figure 3 shows the relative abundance of phyla of the gut microbiota at baseline, week 2, 

week 8, and week 48. Before the eradication of H. pylori, the most abundant phyla were 

Firmicutes (62.0%; 95% confidence interval [CI], 52.5% - 71.4%), Proteobacteria (14.1%; 95% CI, 

3.3% - 24.9%), Bacteroidetes (10.2%; 95% CI, 3.0% - 17.4%), and Actinobacteria (3.4%; 95% CI, 

0.5% - 6.2%) (Table 1). At the end of reverse hybrid therapy, the relative abundances of 

Firmicutes and Actinobacteria decreased to 30.7% (95% CI, 19.2% - 42.2%; P = < 0.001) and 

0.6% (95% CI, 0.2% - 1.0%; P = 0.024), respectively. In contrast, the relative abundance of 

Proteobacteria increased to 49.0% (95% CI, 29.2% - 68.8%; P = 0.011). At week 8, the relative 

abundances of Firmicutes, Actinobacteria, and Proteobacteria returned baseline levels. The relative 

abundances of all phyla at 1-year follow up were not significantly different from baseline. 

 

Sequential changes in relative abundance of bacteria at genus taxonomy level 

   Next we compared the microbiota impact of reverse hybrid therapy at the genus level. At week 

2, a significant decrease of relative abundances in Firmicutes phylum was observed in Clostridium, 

Coprococcus, Lachnospira, Roseburia, and Ruminococcus (Table 2). In Actinobacteria, the 

relative abundance of Collinsella was significantly decreased, while the relative abundances of 

many genera of Proteobacteria including Klebsiella, Proteus, Serratia, and Trabulsiella were 
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increased. At week 8, the relative abundances of gut microbiota at the genus level were 

comparable to baseline. Nonetheless, the relative abundance of Staphylococcus genus in the 

Firmicutes phylum was lower than that at baseline (Supplementary Table 2). At 1 year following 

eradication therapy, the relative abundances of most genera were similar to those at baseline. 

However, the relative abundances of Brochothrix, Lysinibacillus, Solibacillus genera in the 

Firmicutes phylum and the relative abundances of Enhydrobacter, Psychrobacter, and 

Pseudomonas genera in the Proteobacteria were lower than those at baseline (Table 3). 

 

Sequential changes in fecal erm(B) gene 

The total amount of erm(B) gene in the feces at the end of week 2 was comparable to that at 

baseline (P = 0.850). However, the amount was increased at week 8 (P = 0.025) and returned to 

pretreatment level at week 48 (P = 0.120; Figure 4). 

 

DISCUSSION 

   In the current study, we conducted the first cohort study to assess the effect of reverse hybrid 

therapy on the gut microbiota. The data clearly demonstrated that microbial richness was 

decreased after reverse hybrid therapy. The Bacteroidetes and Actinobacteria phyla rapidly 

declined following treatment whereas the Proteobacteria phylum increased. Additionally, the 

abundance level of erm(B) gene in the feces was significantly increased 6 weeks after eradication 

therapy and returned to the initial level 1-year post-treatment. These findings indicate that reverse 

hybrid therapy can lead to a short-term dysbiosis and a transient increase in the amount of 

clarithromycin-resistant genes in the feces.  

   In the current study, reverse therapy containing pantoprazole, amoxicillin, clarithromycin, and 
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metronidazole was used to eradicate H. pylori. Dramatic changes of the gut microbiota at the 

phylum level were notable. The relative abundances of Firmicutes and Actinobacteria were 

markedly reduced. In contrast, the relative abundance of Proteobacteria increased rapidly. The 

change of phylum profile of the gut microbiota by reverse hybrid therapy was consistent with a 

previous study investigating the impacts of standard triple therapy on the composition of gut 

microbiota.18 The study showed that standard triple therapy with lansoprazole, clarithromycin, and 

amoxicillin led to a reduction in the relative abundance of Firmicutes and an increase of the 

relative abundance of Proteobacteria.18 The effect of bismuth quadruple therapy on the gut 

microbiota was different from that of clarithromycin-based eradication therapies. Our previous 

study demonstrated that bismuth quadruple therapy consisting of a PPI, bismuth, tetracycline, and 

metronidazole led to a decrease in the relative abundances of Bacteroidetes, Actinobacteria, and 

Verrucomicrobia and an increase of the relative abundance of Proteobacteria and Cyanobacteria.19 

Overall, both clarithromycin-based anti-H. pylori therapy and bismuth quadruple therapy can lead 

to an increase of the relative abundance of Proteobacteria in the gut. The impacts of the two 

commonly used anti-H. pylori therapies on the other phyla are noted to be different. 

In this study, a dramatic decrease of the relative abundance of Firmicutes phylum from 62.0% 

to 30.7% was noted after reverse hybrid therapy. Both amoxicillin and clarithromycin may 

contribute to the reduction of Firmicutes following eradication therapy. A metagenomic study has 

demonstrated that both amoxicillin and azithromycin can decrease the abundance of Firmicutes.35 

Therefore, the decrease of Firmicutes following reverse hybrid therapy was most likely due to the 

effects of amoxicillin and clarithromycin. Long-term erythromycin therapy has also been shown to 

decrease the relative abundances of members of the Actinomyces genus in the oropharyngeal 

microbiota.35 Thus, clarithromycin in reverse hybrid regimen may contribute to the decrease of the 
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relative abundance of Actinobacteria. In this study, a dramatic increase in the relative abundance 

of Proteobacteria, a major phylum of gram-negative bacteria, was observed after reverse hybrid 

therapy. These include a wide variety of pathogens, such as Escherichia, Proteus, Salmonella, 

Klebsiella, and Morganella. Since amoxicillin, clarithromycin, and metronidazole all have limited 

activity against Proteobacteria, it is likely that Proteobacteria may rapidly increase due to 

inhibition of other commensal bacteria by reverse hybrid therapy. 

Currently, the impact of eradication therapy-induced alterations of the gut microbiota remains 

unclear. Murata et al. revealed that showed anti-H. pylori therapy improved symptoms of chronic 

constipation.36 On the other hand, Imase et al. showed that eradication therapy induced 

antibiotic-associated diarrhea due to dysbiosis with the growth of C. difficile.37 Another recent 

study demonstrated that dysbiosis characterized by an increased relative abundance of 

Proteobacteria during bismuth quadruple therapy may contribute to the development of adverse 

effects such as nausea, vomiting, and fatigue.19 Additionally, several studies revealed that 

probiotic supplementation could reduce the antibiotic-induced dysbiosis and decrease the 

frequency of adverse effects of H. pylori eradication therapy.18,38 In addition, there is emerging 

experimental and epidemiological evidence suggesting that H. pylori may be beneficial to its 

carriers by preventing the development of inflammatory bowel disease.39,40 Future research is 

warranted to clarify the benefits and risk of eradication therapy in the development of intestinal 

disorders and the relationships between alterations of the gut microbiota following eradication 

therapy and the risk of developing intestinal diseases. 

   In this study, the richness of the gut microbiota declined at the end of eradication therapy and 

returned to the level before treatment at week 8. Additionally, there were no significant differences 

in the richness between microbiota at baseline and week 48. The relative abundances of all phyla 
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at week 8 returned to the levels at baseline. These data suggest that reverse hybrid therapy did not 

permanently alter the richness and major composition of the gut microbiota. Nonetheless, it is still 

worthy to note that the relative abundances of some genera in the Firmicutes including 

Brochothrix, Lysinibacillus, Solibacillus and some genera in the Proteobacteria including 

Enhydrobacter, Psychrobacter, and Pseudomonas at week 48 were lower than those at baseline. 

Because the relative abundances of all aforementioned genera in the Firmicutes and Proteobacteria 

with decreased relative abundances 1-year post-treatment did not significantly change at the end of 

eradication therapy (week 2), whether the changes of relative abundances in this small subset of 

gut microbiota was due to aging, change in diet habit, or eradication therapy needs further 

investigation. 

   Anti-H. pylori therapy can result in antibiotic resistance development among H. pylori strains41 

and also in normal intestinal microbiota.42 The increase of resistant strains can be due to point 

mutation, clonal expansion of resistant strains, or resistance acquisition by new populations via 

horizontal gene transfer following antibiotic treatment.43 In the current study, the amount of erm(B) 

gene in feces at the end of eradication therapy was comparable to that before treatment. However, 

its amount increased at 6-week post-treatment. The delayed impact of reverse hybrid therapy on 

the amount of erm(B) gene in gut microbiota was most likely due to the inhibition of bacterial 

growth during eradication therapy. However, it is important to note that the amount of erm(B) 

gene in feces returned to the initial level 1-year post-treatment. Our data suggest that reverse 

hybrid therapy can lead to an increase of the total amount of erm(B) gene in gut microbiota but its 

impact on the amount of erm(B) gene is transient.   

  This study has some limitations. First, the study did not include a placebo arm for comparison, 

thus, whether the long-term changes in the gut microbiota was only due to eradication therapy 
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remain to be clarified. Second, resistance to macrolides in gut microbiota can be mediated by 

methylation of 23S rRNA via erm(B) methylase, drug efflux via mef(A), and point mutations in 

23S rRNA genes or ribosomal proteins.43,44 The current study only investigated the impacts of 

eradication therapy on the amount of erm(B) gene in the gut microbiota. Nonetheless, the current 

study is the first study to investigate the short-term and long-term effects of reverse hybrid therapy 

on the composition and clarithromycin resistance of gut microbiota. 

   In conclusion, H. pylori eradication with reverse hybrid therapy can lead to transient gut 

dysbiosis with an increased relative abundance of Proteobacteria and decreased relative 

abundances of Firmicutes and Actinobacteria. The abundance of erm(B) gene in the gut microbiota 

temporarily increases following treatment but returns to the initial level 1-year post-treatment. 
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Table 1. Comparison of the relative abundance of phyla of the gut microbiota between baseline 

(week 0) and end of eradication therapy (week 2), baseline and 6-weeks post-eradication (week 8), 

and baseline and 1-year post-eradication (week 48) 

 

Phylum Mean relative abundance (%) P value 

 Week 0 Week 2 Week 8 Week 48 Week 0 vs   

Week 2 

 

Week 0 vs 

Week 8 

Week 0 vs 

Week 48 

Bacteroidetes 10.23 13.24 17.24 10.86 0.977 0.948 1 

 (3.02-17.44) (1.65-24.83) (6.97-27.52) (1.58-20.13)    

Firmicutes 61.99 30.71 53.80 60.13 < 0.001* 0.948 1 

 (52.54-71.44) (19.21-42.20) (42.88-64.73) (45.44-74.82)    

Proteobacteria 14.14 49.04 13.19 14.67 0.011* 1 1 

 (3.33-24.94) (29.24-68.84) (3.68-22.70) (5.61-23.72)    

Actinobacteria 3.36 0.59 5.60 2.45 0.024* 1 1 

 (0.48-6.23) (0.15-1.03) (0.17-11.03) (0.47-4.42)    

Cyanobacteria 7.21E-03 0.01 0.02 0.02 0.270 1 0.997 

 (0-0.01) (4.27E-03-0.01) (-0.01-0.05) (-7.2E-03-0.06)    

Fusobacteria 0.17 0.02 0.24 1.95 0.731 1 0.997 

 (-0.18-0.53) (-6.10E-03-0.05) (-0.29-0.78) (-2.4-6.31)    

Verrucomicrobia 0.33 7.76E-04 2.02 0.58 0.177 1 1 

 (-0.42-1.09) (-5.23E-04-2.08E

-03) 

(-2.24-6.30) (-0.73-1.91)    
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Euryarchaeota 3.08E-04 0 2.02E-03 3.19E-04 0.270 1 1 

 (-1.82E-04-7.99E-0

4) 

 (-2.4E-03-6.49E-03) (-4.24E-04-1.06E

-03) 

   

Synergistetes 5.18-E04 0 1.12E-03 0.02 0.177 1 1 

 (-3.17E-04-1.35E-0

3) 

 (-7.39E-04-2.98E-03) (-0.03-0.07)    

TM7 0.01 4.84-E03 4.75E-03 5.18E-03 0.101 1 0.997 

 (1.09E-04-0.02) (-4.39E-03-0.01) (1.43E-03-8.08E-03) (-3.64E-04-0.01)    

Tenericutes 0.06 0 0.06 0.01 0.467 1 1 

 (-0.08-0.21)  (-0.08-0.20) (-0.01-0.03)    

Others 5.08E-03 0.01 0.01 0.01 0.760 1 1 

 (-1.65E-03-0.01) (-2.61E--0.02) (-6.72E-03-0.04) (-6.71E-03-0.03)    

* denotes P < 0.05 
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Table 2. Sequential changes of the proportions of the genera with significant differences in the 

relative abundances of the bacteria at the end of reverse hybrid therapy (week 2) compared with 

those at baseline. 

 

 Proportion of microbiota P value 

Genus Week 0 Week 2 Week 8 Week 48 Week 0 vs   

Week 2 

Week 0 vs 

Week 8 

Week 0 vs 

Week 48 

Other (Family: Carnobacteriaceae) 8.35E-06 5.13E-05 1.09E-05 3.51E-06 0.044* 0.790 0.422 

Other (Family: other) 0.008 0.001 0.011 0.006 0.004* 0.537 0.058 

Other (Family: Clostridiaceae) 0.001 1.97E-04 0.001 0.001 0.042* 0.554 0.588 

Clostridium (Family: Clostridiaceae) 0.012 7.66E-04 0.002 0.005 0.020* 0.061 0.269 

Other (Family: Lachnospiraceae) 0.014 0.002 0.009 0.010 0.003* 0.204 0.302 

Collinsella (Family: Coriobacteriaceae) 0.002 3.31E-06 0.006 0.002 0.043* 0.389 0.7119 

Coprococcus (Family: Lachnospiraceae) 0.018 7.24E-04 0.009 0.006 0.017* 0.172 0.077 

Lachnospira (Family: Lachnospiraceae) 0.006 2.52E-05 0.007 0.009 0.046* 0.883 0.578 

Roseburia (Family: Lachnospiraceae) 0.002 1.95E-04 0.002 0.005 0.019* 0.588 0.113 

Ruminococcus (Family: Ruminococcaceae) 0.016 6.85E-04 0.008 0.027 0.028* 0.227 0.357 

Other (Family: other) 5.87E-05 6.66E-06 3.09E-05 3.92E-05 0.025* 0.194 0.444 

Other (Family: Other) 1.35E-05 3.75E-04 2.05E-04 5.53E-05 0.010* 0.262 0.214 

Other (Family: Aeromonadaceae) 8.76E-07 3.57E-05 2.61E-06 1.12E-05 0.049* 0.439 0.274 

Other (Family: Enterobacteriaceae) 0.072 0.322 0.071 0.064 0.006* 0.983 0.810 

Klebsiella (Family: Enterobacteriaceae) 0.002 0.017 0.002 0.002 0.022* 0.822 0.976 

Proteus (Family: Enterobacteriaceae) 3.02E-04 0.009 0.001 2.33E-04 0.041* 0.355 0.756 

Serratia (Family: Enterobacteriaceae) 5.13E-05 5.84E-04 4.06E-05 2.27E-06 0.039* 0.562 0.193 
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Trabulsiella (Family: Enterobacteriaceae) 1.65E-05 6.00E-04 2.71E-05 8.96E-05 0.041* 0.166 0.435 

Other (Family: Other) 1.03 E-06 1.19E-05 2.49 E-06 0 0.016* 0.338 0.338 

Other (Family: Pseudomonadaceae) 6.73E-04 0.001 8.21E-04 6.44E-05 0.004* 0.730 0.015* 
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Table 3. Sequential changes of the proportions of the genera with significant differences in the 

relative abundances of the bacteria 1 year post-eradication (week 48) compared with those at 

baseline. 

 

 Proportion of microbiota P value 

Genus Week 0 Week 2 Week 8 Week 48 Week 0 vs   

Week 2 

Week 0 vs 

Week 8 

Week 0 vs 

Week 48 

Other (Family: Micrococcaceae) 1.65 E-04 2.56 E-04 9.48E-05 5.97E-07 0.468 0.368 0.020* 

Other (Family: other) 2.65E-05 5.23 E-05 2.52E-05 0 0.442 0.945 0.010* 

Arthrobacter (Family: Micrococcaceae) 5.42E-04 0.001 4.30E-04 2.89E-06 0.237 0.717 0.004* 

Flavobacterium (Family: Flavobacteriaceae) 4.66E-05 6.02E-05 3.19E-05 1.25E-06 0.552 0.573 0.007* 

Myroides (Family: Flavobacteriaceae) 1.11E-04 1.91E-04 1.17E-04 0 0.289 0.938 0.016* 

Other (Family: other) 5.43E-05 4.30E-05 3.59E-05 1.81E-06 0.590 0.424 0.018* 

Geobacillus (Family: Bacillaceae) 2.50E-06 1.79E-05 8.38E-06 4.11E-05 0.218 0.151 0.024* 

Brochothrix (Family: Listeriaceae) 4.30E-04 7.76E-04 3.16E-04 4.92E-05 0.277 0.616 0.009* 

Paenibacillus (Family: Paenibacillaceae) 0 3.70E-06 0 3.65E-6 0.166 － 0.044* 

Lysinibacillus (Family: Planococcaceae) 1.57E-04 2.01E-04 9.26E-05 2.17E-05 0.607 0.424 0.016* 

Solibacillus (Family: Planococcaceae) 2.68E-05 8.28E-05 2.50E-05 0 0.232 0.920 0.026* 

Other (Family: Moraxellaceae) 0.001 0.001 0.001 3.23E-06 0.157 0.940 0.003* 

Enhydrobacter (Family: Moraxellaceae) 9.06E-05 1.44E-04 7.50E-05 1.51E-05 0.316 0.782 0.017* 

Psychrobacter (Family: Moraxellaceae) 2.08E-04 1.97E-04 1.89E-04 0 0.884 0.881 0.007* 

Other (Family: Pseudomonadaceae) 1.31E-04 1.60E-04 6.98E-05 9.77E-06 0.564 0.366 0.039* 

Pseudomonas (Family: Pseudomonadaceae) 3.27E-03 0.003 0.002 3.13E-04 0.606 0.637 0.013* 
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 Figure 1. Alpha diversity analysis for the richness of the gut microbiota at baseline, week 2, week 

8 and week 48. 
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Figure 2. The PCoA plots generated from weighted UniFrac distance metrics in beta diversity 

analysis for (A) baseline (week 0) vs. end of eradication therapy (week 2), (B) baseline vs. 6 weeks 

post-eradication (week 8) and (C) baseline vs. 1-year post-eradication (week 48). Distinct clustering 

was noted between the gut microbiota at baseline and week 2 (P = 0.011; Figure A). However, the 

differences between the distance metrics at baseline and week 8 (Figure B) and between those at 

baseline and 1-year post-eradication (Figure C) were not significant. 
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Figure 3. Relative abundance of phyla of gut microbiota at the baseline, the end of reverse hybrid 

therapy (week 2), 6 weeks post-eradication (week 8), and 1-year post-eradication (week 48). At the 

end of reverse hybrid therapy, the relative abundances of Firmicutes, and Actinobacteria decreased. 

In contrast, the relative abundance of Proteobacteria increased. 
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Figure 4. The sequential change of the amount of erm(B) gene in fecal specimens after H pylori 

eradication with reverse hybrid therapy. The abundance amount of erm(B) gene at the end of week 

2 was comparable to that at week 0. Its level increased at week 8 (P = 0.023) and restored to the 

level before treatment. 
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