
UNIT 4.29Overview of Gene Targeting by Homologous
Recombination

The analysis of mutant organisms and cell
lines has been important in determining the
function of specific proteins. Until recently,
mutants were produced by mutagenesis fol-
lowed by selection for a particular phenotypic
change. Recent technological advances in gene
targeting by homologous recombination in
mammalian systems enable the production of
mutants in any desired gene (Mansour, 1990;
Robertson, 1991; Zimmer, 1992). This technol-
ogy can be used to produce mutant mouse
strains and mutant cell lines. Because most
mammalian cells are diploid, they contain two
copies, or alleles, of each gene encoded on an
autosomal (nonsex) chromosome. In most
cases, both alleles must be inactivated to pro-
duce a discernible phenotypic change in a mu-
tant. The conversion from heterozygosity to
homozygosity is accomplished by breeding in
the case of mouse strains and by direct selection
in cell lines.

Bacteriophage recombinases such as Cre
and its recognition sequence, loxP, have also
allowed spatial control of knockouts. Another
recombinase system, the yeast Flp/FRT system,
can also be used (Fiering et al., 1993, 1999).
The control can function along actual spatial
coordinates when a viral gene transfer system
is used, or in a cell type- or tissue-specific
fashion when restricted promoters are em-
ployed. Adding temporal regulation of Cre,
such as that achievable with the tetracycline-
regulatable expression system (see CPMB UNIT

16.21 and APPENDIX 1A in this manual), allows
temporal control as well.

To produce a mutant mouse strain by ho-
mologous recombination, two major elements
are needed. An embryonic stem (ES) cell line
capable of contributing to the germ line, and a
targeting construct containing target-gene se-
quences with the desired mutation. Maintain-
ing ES cells in their undifferentiated state is a
major task during gene targeting (see CPMB UNIT

23.3 and APPENDIX 1A in this manual). This usually
is accomplished by growing cells on a layer of
feeder cells (see CPMB UNIT 23.2 and APPENDIX 1A

in this manual). The targeting construct is then
transfected into cultured ES cells (see UNIT 4.30).
ES cell lines are derived from the inner cell
mass of a blastocyst-stage embryo. Homolo-
gous recombination occurs in a small number
of the transfected cells, resulting in introduc-

tion of the mutation present in the targeting
construct into the target gene. Once identified,
mutant ES cell clones can be microinjected into
a normal blastocyst in order to produce a
chimeric mouse. Because many ES cell lines
retain the ability to differentiate into every cell
type present in the mouse, the chimera can have
tissues, including the germ line, with contribu-
tion from both the normal blastocyst and the
mutant ES cells. Breeding germ-line chimeras
yields animals that are heterozygous for the
mutation introduced into the ES cell, and that
can be interbred to produce homozygous mu-
tant mice.

Homologous recombination can also be
used to produce homozygous mutant cell lines.
Previously, inactivation of both alleles of a gene
required two rounds of homologous recombi-
nation and selection (te Riele et al., 1990; Cruz
et al., 1991; Mortensen et al., 1991). Now,
however, inactivation of both alleles of many
genes requires only a single round of homolo-
gous recombination using a single targeting
construct (Mortensen et al., 1992). The ho-
mozygous mutant cells can then be analyzed
for phenotypic changes to determine the func-
tion of the gene.

ANATOMY OF TARGETING
CONSTRUCTS

Two basic configurations of constructs are
used for homologous recombination: insertion
constructs and replacement constructs (Fig.
4.29.1). Each can be used for different pur-
poses in specific situations, as discussed be-
low. The insertion construct contains a region
of homology to the target gene cloned as a
single continuous sequence, and is linearized
by cleavage of a unique restriction site within
the region of homology. Homologous recom-
bination introduces the insertion construct se-
quences into the homologous site of the target
gene, interrupting normal target-gene struc-
ture by adding sequences. As a result, the
normal gene can be regenerated from the mu-
tated target gene by an intrachromosomal re-
combination event.

The replacement construct is the second,
more commonly used construct. It contains two
regions of homology to the target gene located
on either side of a mutation (usually a positive
selectable marker; see below). Homologous
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recombination proceeds by a double cross-over
event that replaces the target-gene sequences
with the replacement-construct sequences. Be-
cause no duplication of sequences occurs, the
normal gene cannot be regenerated.

METHODS OF ENRICHMENT FOR
HOMOLOGOUS RECOMBINANTS

Positive Selection by Drug-Resistance
Gene

Nearly all constructs used for homologous
recombination rely on the positive selection
of a drug-resistance gene (e.g., neomycin or
neo) that is also used to interrupt and mutate
the target gene. When either insertion or re-
placement constructs are linearized, the drug-
resistance gene is flanked by two regions of
homology to the target gene. Selection of the
cells using drugs (e.g., G418) eliminates the
great majority of transformants that have not
stably incorporated the construct (see CPMB UNIT

9.5 and APPENDIX 1A in this manual). However, in
many of the surviving clones the construct has
incorporated into the genome not by homolo-
gous recombination but rather through random
integration. Therefore, methods to enrich for
homologous recombinant clones have been de-
veloped.

Positive-Negative Selection
The most commonly used method for elimi-

nating cells in which the construct integrated
into the genome randomly, thus further enrich-
ing for homologous recombinants, is known as
positive-negative selection. It is only applicable
to replacement constructs (Fig. 4.29.2; Man-
sour et al., 1988). In these constructs, a negative
selectable marker (e.g., herpes simplex virus
thymidine kinase, HSV-TK) is included outside
the region of homology to the target gene. In
the presence of the TK gene, the cells are
sensitive to acyclovir and its analogs (e.g.,
gancyclovir, GANC). The HSV-TK enzyme
activates these drugs, resulting in their incor-
poration into growing DNA, causing chain ter-
mination and cell death. During homologous
recombination, sequences outside the regions
of homology to the target gene are lost due to
crossing over. In contrast, during random inte-
gration all sequences in the construct tend to be
retained because recombination usually occurs
at the ends of the construct. The presence of the
TK gene can be selected against by growing the
cells in gancyclovir; the homologous recombi-
nants will be G418-resistant and gancyclovir-
resistant, whereas clones in which the construct
integrated randomly will be G418-resistant and
gancyclovir-sensitive. In some cases, TK is
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Figure 4.29.1 Two configurations of constructs used for homologous recombination. Numbers
indicate target-gene sequences in the genome. An asterisk indicates homologous target-gene
sequences in the construct. Replacement constructs substitute their sequences (2*, neo, and 3*)
for the endogenous target-gene sequences (2 and 3). Insertion constructs add their sequences (2*,
neo, and 3*) to the endogenous target gene, resulting in tandem duplication and disruption of the
normal gene structure.
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inactivated without homologous recombina-
tion; thus, the gancyclovir-resistant clones
must be screened to identify the true homolo-
gous recombinants. Other markers that are le-
thal to cells have also been used instead of TK
and gancyclovir (e.g., diphtheria toxin; Yagi et
al., 1990).

Endogenous Promoters
Constructs that rely on an endogenous pro-

moter to express the positive selectable marker
can also give enrichment of homologous re-
combinants (Fig. 4.29.3), but can only be used
if the gene of interest is expressed in the cell
line. They contain the coding region of a select-
able marker (e.g., neo) but lack a promoter for
the marker. The coding sequence for the marker
usually interrupts, and is in frame with, an exon
of the target gene. Thus, when homologous

recombination occurs, a fusion protein is pro-
duced, driven by the endogenous target-gene
promoter. In contrast, when random integration
occurs, the selectable-marker protein is not
usually produced. Therefore, homologous re-
combinants are G418-resistant, whereas cells
in which the construct integrated randomly are
G418-sensitive. Constructs containing a pro-
moterless selectable marker can be constructed
in either replacement or insertion structure and
can result in dramatic enrichment for homolo-
gous recombinants.

TYPES OF MUTATIONS

Gene Inactivation
Homologous recombination has most often

been used to completely inactivate a gene (com-
monly termed “knockout”). Usually, an exon
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Figure 4.29.2 Enrichment for homologous recombinants by positive-negative selection using the
TK gene. Homologous recombination involving cross-overs on either side of the neo gene results
in loss of the TK gene. Random integration tends to preserve the TK gene. The presence of TK can
be selected against because any cell expressing the gene will be killed by gancyclovir (GANC).
Although both homologous recombinants and clones in which the construct integrated randomly
are G418-resistant, only homologous recombinants are gancyclovir-resistant. The construct is
shown linearized so that the plasmid vector sequences remain attached to the TK gene. This
configuration helps preserve the integrity of the TK gene. The superscript R denotes resistance and
the superscript S denotes sensitivity.
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encoding an important region of the protein (or
an exon 5′ to that region) is interrupted by a
positive selectable marker (e.g., neo), preventing
the production of normal mRNA from the target
gene and resulting in inactivation of the gene.

A gene may also be inactivated by creating
a deletion in part of a gene, or by deleting the
entire gene. By using a construct with two
regions of homology to the target gene that are
far apart in the genome, the sequences interven-
ing the two regions can be deleted. Up to 15 kb
have been deleted in this way; thus, many genes
could be completely eliminated (Mombaerts et
al., 1991). Gene inactivations may also be con-
trolled using the Cre/loxP recombinase system
either spatially, as in cell type- or tissue-specific
knockout, or temporally, through control of the
activity or expression of the recombinase (see
Cre/loxP System, below).

Mutations can be introduced that have mul-
tiple purposes. Homologous recombination has
been used to introduce a replacement construct
containing the coding sequence of β-galactosi-
dase in frame with the 5′ end of the target gene.
Downstream of the lacZ gene is a positive
selectable marker driven by a heterologous pro-
moter (Fig. 4.29.4). This construct not only
disrupts target-gene function but also expresses
a fusion protein with β-galactosidase activity,
and thus can be used to monitor the activity of
the endogenous gene’s promoter in various tis-
sues during development (Mansour et al.,
1990).

Subtle Gene Mutations
Homologous recombination can also be

used to introduce subtle mutations in a gene.
One method is analogous to a method in yeast
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Figure 4.29.3 Enrichment for homologous recombinants using a positive selectable marker (neo)
lacking a promoter. Clones in which integration of the construct provides an endogenous promoter
to drive neo expression will be G418-resistant. The construct is designed so that homologous
recombination will provide a promoter leading to neo expression, whereas random integration will
most likely not provide a promoter, thus precluding neo expression.
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called transplacement or allele replacement
(CPMB UNIT 13.10). It is called “hit and run” (see
CPMB UNIT 13.10 and APPENDIX 1A in this manual)
because duplications are introduced into the
target gene and then removed. An insertion
construct containing both positive and negative
selectable markers (e.g., neo and TK) is used
to introduce a duplication that contains a subtle
mutation, such as a point mutation, into the
target gene sequence (Fig. 4.29.5). After selec-
tion for integration of the construct using the
positive selectable marker (e.g., G418), ho-
mologous recombinants are identified by
screening. A homologous recombinant clone is
cultured and then the presence of the negative
selectable marker is selected against (e.g., se-
lection against TK using gancyclovir). This
selects for an intrachromosomal recombination

that eliminates the target-gene duplications and
the selectable markers but leaves the mutant
target-gene sequences substituting for the nor-
mal target-gene sequences. Surviving clones are
screened for the correct intrachromosomal rear-
rangements, leaving the desired mutation. A
second method of introducing subtle mutations
into a gene is to insert the mutation by homolo-
gous recombination and then use the Cre/loxP
system to remove the selectable marker.

CRE/loxP SYSTEM
The Cre/loxP system is derived from the

bacteriophage P1. The recombinase Cre acts on
the DNA site loxP. If there are two loxP sites
in the same orientation near each other, Cre can
act to loop out the sequence between the two
sites, leaving a single loxP site in the original
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Figure 4.29.4 LacZ reporter construct for gene targeting. This construct has two purposes: first,
to disrupt the target gene and, second, to express the lacZ gene as a marker to monitor activity of
the endogenous target gene’s promoter.
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DNA and a second loxP in a circular piece of
DNA containing the intervening sequence.
Therefore, a properly designed targeting con-
struct containing loxP sites can be used for
introducing subtle mutations or for a tempo-
rally or spatially controlled knockout (for a
review of the control of transgenes, see Sauer,
1993).

Other recombinase systems, such as the
Flp/FRT system, can be similarly useful (Fier-
ing et al., 1995; Vooijs et al., 1998).

Removing the Positive Selectable
Marker

Although many gene inactivation ap-
proaches involving homologous recombina-
tion still use constructs that leave the positive
selectable marker in the genomic DNA, it has
become increasingly clear that this can cause a
number of unanticipated effects. For example,
the presence of the neo gene, often with its own
promoter, can alter the expression of neighbor-
ing loci (Olson et al., 1996; Pham et al., 1996).
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Figure 4.29.5 Allele replacement “hit and run.” Cells are cultured in G418 to select for the
integration of neo, then homologous recombinants are identified by screening and are cultured in
gancyclovir (GANC) to select against the presence of the TK gene. This strategy may yield a
reconstituted gene containing the subtle mutation present in the construct (indicated by the dark
bar and †). Because intrachromosomal recombination may result in the loss of the subtle mutation,
its presence must be verified (e.g., by a change in restriction site).
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This can be a particular problem in gene clus-
ters where neighboring genes are in the same
family, since the genes affected may have simi-
lar or identical functions. As a result, slight
differences in targeting constructs have led to
marked differences in phenotype.

If the targeting construct includes loxP sites
flanking the neo gene, then neo can be removed
after targeting by transient expression of the
Cre recombinase (as discussed in Fig. 4.29.3).
This will leave the small loxP site in the
genomic DNA, but the construct can be engi-
neered so that this is in an innocuous location,
such as an intron. Although theoretically even
a loxP site could cause alterations in the expres-
sion of neighboring genes, no such cases have
yet been reported. The efficiency of Cre recom-
bination from transient expression reported in
the literature varies widely, from ∼2% to ∼15%
(Sauer and Henderson, 1989; Abuin and
Bradley, 1996). This rate should be distin-
guished from the efficiency of Cre recombina-

tion in vivo, where the expression of Cre is
derived from sequences integrated into the
genome and therefore will show longer-lasting
expression in nearly all cases.

Introduction of Subtle Mutations
Using Cre/loxP

The strategy described in the previous sec-
tion involves introducing subtle mutations by
first duplicating sequences and then screening
for intrachromosomal recombination that re-
moves the redundant sequences and leaves the
mutation. A limitation to this approach is that
the second homologous recombination event
occurs only infrequently. A more efficient
method is to use a replacement construct con-
taining the subtle mutation and then remove the
positive selectable marker, which is flanked by
loxP sites, using the Cre recombinase system
(Fig. 4.29.6). This is identical in effect to re-
moving the neo locus after gene inactivation,
except that instead of an inactive gene, the
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Figure 4.29.6 Using the Cre/loxP system to introduce subtle mutations. The subtle mutation is
introduced along with the selectable marker in the targeting vector. The selectable marker is then
removed by transient expression of Cre, which leaves only the small loxP site in the genome in a
silent location.
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replaced sequences contain a subtly mutated
version.

Spatial Control of Knockout
Spatially controlled targeted gene inactiva-

tions can be performed in two ways. The most
common makes use of cell type-specific pro-
moters (sometimes called tissue-specific pro-
moters, even though tissues are actually made
of a number of different cell types). This ap-
proach begins with the creation of a transgenic
animal that expresses Cre in only some cells

using a cell type-restricted promoter. A second
transgenic animal line is then created by ho-
mologous recombination that contains loxP
sites flanking a portion of the gene that is
critical for activity, typically important exons
(Fig. 4.29.7). Initially there are three loxP sites
flanking this important gene region and the
selectable marker. After homologous recombi-
nation has been verified, Cre is transiently ex-
pressed, and loops out regions of DNA between
pairs of loxP sites. The resultant colonies are
screened for the desired recombination (loss of

or or

Homologous sequences

construct and target gene
Nonhomologous sequences
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Figure 4.29.7 Conditional gene targeting using the Cre/loxP system. The targeting vector contains
three loxP sites that flank the regions of the gene to be removed and the positive selectable marker
neo. After homologous recombination is obtained, the selectable marker is excised from the gene
by transient expression of Cre. The correct recombination is identified by screening by Southern
analysis or PCR. The mutant ES cells are then used to produce a transgenic animal, which is finally
bred to an animal line expressing Cre under either temporal or spatial control.  Cre can also be
ubiquitously expressed to obtain a knockout in all tissues, including the germ line.

Supplement 21 Current Protocols in Neuroscience

4.29.8

Overview of Gene
Targeting by
Homologous

Recombination



the selectable marker but retention of all re-
gions of the gene). Depending on the frequency
of recombination at the site, it may be useful to
use a construct that contains a negative select-
able marker (such as cytosine deaminase in the
example shown in Fig. 4.29.2) between the
loxP sites along with the positive selectable
marker. In this way cells that have lost the
markers can be selected.

The targeted line will have normal expres-
sion of the targeted gene, since its only modi-
fication is the presence of loxP sites in innocu-
ous sites (e.g., introns). When the two lines are
bred together, the Cre recombinase will loop
out the DNA—inactivating the gene—only in
those cells where it is expressed. In this way,
tissue-specific knockouts of a number of genes
have been generated (Gu et al., 1994; Agah et
al., 1997). The method also has the advantage
that, once a transgenic line is generated with
the desired restricted expression of Cre, the
approach can be applied to a number of targeted
lines. In addition, it is not necessary to make
separate constructs for a restricted and a com-
plete knockout, since Cre-expressing lines have
been made that will produce rearrangement in
all tissues when bred to the targeted line
(Schwenk et al., 1995).

Another way of spatially controlling knock-
out is to use an expression system for Cre that
can be applied to absolute location. In some
cases, no restricted expression pattern is known
for a gene that matches the desired spatial
alteration; in others, the site may be particularly
amenable to viral manipulation (as with an
epithelial or endothelial surface) or accessible
by direct injection (such as sterotactic injection
of the central nervous system). By using a viral
vector to express the Cre protein, it is possible
to obtain knockouts that are spatially limited
by the viral infection. This strategy has been
applied to a number of tissues including the
brain, liver, colon, and heart (Rohlmann et al.,
1996; Wang et al., 1996; Agah et al., 1997;
Shibata et al., 1997; van der Neut, 1997).

Temporal Control of Knockout
In many cases the phenotype of interest is

in the adult animal but, because the gene is
necessary for development, no adult animals
are obtained. Delaying the expression of Cre
activity until the animal is an adult would allow
normal development, and then the knockout
could be created in the adult (Rajewsky et al.,
1996). This can be accomplished by using a
conditional expression system (e.g., the tet-on,
tet-off, or ecdysone systems; see St-Onge et al.,

1996) or other inducible system (such as an
interferon-inducible promoter; Kuhn et al.,
1995) to express Cre at the proper time. This
would, however, require the construction of
animals containing three transgenes. Another
approach that has been used is the creation of
a fusion protein with either a modified estrogen
receptor (Feil et al., 1996, 1997; Zhang et al.,
1996; Brocard et al., 1997) or a modified glu-
cocorticoid receptor (Brocard et al., 1998).
These fusion proteins are inactive for recombi-
nation until the appropriate ligand is added,
allowing temporal control in an animal with
only transgenes. The Flp/FRT recombinase
system can be used in an analogous way. Com-
bination of the two systems can allow the pro-
duction of complex schemes for gene mutation.
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