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Summary

We consider the critical problem of pharmacosurveillance for adverse events once a drug or med-
ical product is incorporated into routine clinical care. When making inference on comparative
safety using large-scale electronic health records, we often encounter an extremely rare binary
adverse outcome with a large number of potential confounders. In this context, it is challenging
to offer flexible methods to adjust for high-dimensional confounders, whereas use of the propen-
sity score can help address this challenge by providing both confounding control and dimension
reduction.

Among propensity score methods, regression adjustment using the propensity score as a covari-
ate in an outcome model has been incompletely studied and potentially misused. Previous studies
have suggested that simple linear adjustment may not provide sufficient control of confounding.
Moreover, no formal representation of the statistical procedure and associated inference has been
detailed. In this paper, we characterize a three-step procedure which performs flexible regression
adjustment of the estimated propensity score followed by standardization to estimate the causal
effect in a select population. We also propose a simple variance estimation method for performing
inference. Through a realistic simulation mimicking data from the FDA Sentinel Initiative com-
paring the effect of angiotensin-converting enzyme inhibitors and beta-blockers on incidence of
angioedema, we show that flexible regression on the propensity score resulted in less bias with-
out loss of efficiency, and can outperform other methods when the propensity score model is
correctly specified. In addition, the direct variance estimation method is a computationally fast

and reliable approach for inference.
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1 | INTRODUCTION

The increasing availability of electronic health record (EHR) and claims data has created the potential for population scale observational biomedical
research. One transformative national effort is the Food and Drug Administration’s (FDA) Sentinel Initiative that aims to monitor and evaluate the
safety of all regulated medical products [1]. For example, a recent observational cohort study from the FDA Sentinel Initiative compared the effect
of Angiotensin-Converting Enzyme Inhibitors (ACEI) and Beta Blockers (BB), two blood pressure control medications, on incidence of angioedema in
the first 30 days after starting treatment. The FDA Sentinel system utilizes a distributed data network that provides access to electronic healthcare
data for approximately 193 million patients. Data of this quantity is powerful for safety studies because it represents a broader population than
typically enrolled in clinical trials, and it enables early detection of safety signals for less common adverse outcomes.

While the use of such large-scale healthcare data presents numerous opportunities for postmarketing safety research, there are also many
inferential challenges. One key challenge is the need to control for a large number of potential confounders in EHR data, which is further complicated
by the fact that an adverse event is often extremely rare. When the outcome is rare, using regression adjustment with a large number of covariates
can result in model fitting issues such as non-convergence or extreme coefficients. Flexible nonparametric regression is even more challenging
due to the well-known “curse of dimensionality" [2]. In contrast, if there is sufficient uptake of both the new medical product of interest and the
control, usually a comparator medical product, then fitting a propensity score (PS) model with a large number of covariates may be more feasible.

Because use of propensity scores can provide both control of confounding and dimension reduction, it is attractive to consider propensity score
methods in the postmarket surveillance setting [3]. One such propensity score method is the direct regression adjustment of the propensity score
as a covariate in an outcome regression model. To estimate marginal, population-level contrasts that are the central focus of causal inference,
the use of a regression model is often considered as the intermediate summary that is then used in a final standardization step, which takes the
empirical average of the pair of predicted risks over the entire target population under hypothetical exposure and control conditions, also referred
to as G-computation formula for point exposures [4} [5}4].

Propensity score regression adjustment coupled with standardization has not been well-studied and is potentially underused. [7] and [8] have
shown in simulation studies that regression adjustment on the propensity score can result in a biased effect estimate. However, in these studies,
the propensity score was adjusted as a linear term, which may not fully capture the relationship between the outcome and the propensity score.
Therefore, previously observed bias could be due to model misspecification or residual confounding, rather than the validity of the propensity
score regression adjustment method [9} [10} [11] [12]. Because the propensity score and the outcome may not have a linear relationship, efforts
have been made to relax model assumptions by flexible adjustment of the propensity score. In the context of missing data, [13] proposed the
Propensity Penalized Spline Prediction (PSPP) method which adjusts for the propensity score using a penalized spline model, and in addition adjusts
for covariates under parametric assumptions. Similarly, [14] viewed causal inference as a missing data problem and proposed multiple imputation
with two subclassification splines (MITSS) method, which uses Bayesian modeling with a spline function of the propensity score and a simple
linear adjustment for the covariates to impute the pair of potential outcomes. The rationale for both [13] and [14] is that the spline function
provides flexibility in the propensity score adjustment which achieves balance and the covariate adjustment further improves efficiency. In the
spirit of flexible adjustment of propensity score, [15] suggested to include quantiles of the propensity score as additional dummy variables, which
is equivalent to adjusting for the propensity score in a step function, while [16] considered fitting a generalized additive model (GAM) of the
treatment and the propensity score. The aforementioned methods either rely on fairly limited scenarios such as linear or log-linear models without
treatment heterogeneity, which are generally collapsible [13][16], or require adjustment for both covariates and the propensity score, which may
not perform well in a rare outcome setting [13} (14} [15]. Moreover, when the number of adverse events are extremely rare, statistical inference
using the bootstrap procedure can be challenging due to potential bootstrap samples with nearly zero event. However, to our knowledge there is
no existing closed form standard error estimator for the propensity score regression adjustment method.

Despite the benefits and popularity of propensity score methods in postmarket surveillance, there have been few studies comparing the per-
formance of propensity score methods in the setting of rare outcomes with many confounders. [17] compared propensity score-based estimators
of the marginal relative risk mimicking confounders from EHR studies and assumed a relatively high event rate of 5% yielding 250 events among
5,000 patients. However, in postmarket surveillance, we often encounter less events with a much smaller event rate and a larger population, such
as 50 events among 100,000 patients at an event rate of 0.05%. In addition, there was no statistical inference or variance estimation considered
in their study.

In this paper, we focus on developing a propensity-based estimator for analyzing data with rare binary adverse events. In particular, we char-
acterize a simple three-step procedure that provides flexible nonlinear adjustment of the estimated propensity score in an outcome regression
model, followed by standardization to estimate a marginal causal effect in a select population. In particular, using this methodology, our inferential
procedure targets common population-level contrasts that have a simple and direct causal interpretation, such as the causal risk difference, risk
ratio, or odds ratio. In addition, we characterize variance estimation through adoption of influence functions that fully accounts for the uncertainty

from propensity score estimation, outcome modeling, and standardization [18}[19]. We also propose a direct and simple variance estimator that is
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particularly attractive under the rare outcome setting. We conduct a realistic simulation study by mimicking real data from the FDA Sentinel Initia-
tive comparing the effect of ACEIls and BBs on incidence of angioedema in the first 30 days. We look at both the relative performance of different
methods and the validity of our variance estimator.

Our paper is organized as follows. In Section[2]we detail flexible propensity score adjustment and provide an empirical variance estimator of the
causal effect of interest. Section [3] presents an overview of existing methods for causal inference using the propensity score which estimate the
exposure effect in a specific population. In Section[4] we conduct a simulation study to compare flexible regression adjustment of the propensity
score with existing methods. In Section we apply the various methods to the FDA Sentinel investigation comparing the effect of ACEls and BBs
on incidence of angioedema. We close with a discussion in Section[6] R code for implementing the methods is available at |https:/github.com/
shixuO830/PSregress.

2 | FLEXIBLE REGRESSION ON THE PROPENSITY SCORE

2.1 | Notation and background

Causation is inferred by the difference in outcomes when all circumstances are the same except for one factor whose condition was changed.
Accordingly, for each subject in a target population, there is a pair of variables (Y(l), Y(O)) that characterizes the hypothetical outcomes that
would have been observed under exposure and control, respectively. The main goal of causal inference is to provide a comparison of the population-
level averages between the two potential (counterfactual) outcomes. For example, a common causal effect is the average treatment effect, defined
as E[Y(1)] — E[Y (0)].

In this paper, we focus on statistical inference for the average treatment effect (ATE). Let A denote the binary exposure, taking on value 1
(exposed) or 0 (unexposed). We denote the observed outcome as Y, with Y = Y(1) if A = 1,and Y = Y(0) if A = 0 under the consistency
assumption. Hereafter we take Y (1) as an example. Because only one outcome per subject can be observed at a time, Y'(1) is unobserved in the
control group and Y (0) is unobserved in the exposure group. In observational studies, the exposed and unexposed may have systematic differences
in their characteristics, which are potentially associated with the outcome. These patient characteristics are referred to as confounding variables,
denoted by X. Consequently, the distribution of the observed Y (1)’s in the exposure group may not represent the distribution of the unobserved
Y'(1)’s in the control group or the Y (1)’s in the entire population.

To mitigate this issue, [3] proposed the strongly ignorable treatment assignment assumption (Y(l)7 Y(O)) 1 A | X, which implies that the
common causes of the outcome and the treatment are fully observed and thus the treatment assignment is uninformative of the potential outcomes
given X. This key assumption, combined with the stable unit treatment value assumption and the positivity assumption [3], allows one to estimate

the mean of potential outcomes Y'(1) using only the observed portion of Y | A = 1 by restricting to a stratum of X, i.e.,
E[Y(1)| X]=E[Y | A=1,X].

We immediately have that E[Y (1)] = Ex{E[Y | A = 1, X]}. In addition, [3] defined the propensity score as the probability of being exposed
given the subject’s characteristics, i.e, S = P(A = 1 | X). One can show that E[Y(1)] = Ex{E[Y | A = 1,X]|} = E[P(A%‘?lxﬂ. This dual
representation of the mean potential outcomes has led to a widely used method which is the inverse probability of treatment weighting.

The propensity score is a one-dimensional balancing score: within a stratum of .S, the covariates are similar between both exposure and control
groups. Therefore, adjustment for the scalar S is sufficient to remove bias due to X. Consequently, we have an alternative estimation of the mean
of potential outcomes through the fact that

E[Y(1)|S]=E[Y | A=1,5S]. (1)
Therefore, besides the dual representation of the mean potential outcomes, we in fact have a third representation which is
ElY(1)] = E{E[Y | A=1,5]}. (2)

The idea of estimating a sufficient statistic S and then substituting the set of confounders X with a one-dimensional S in subsequent analysis
has led to numerous methods. These propensity score methods could potentially gain efficiency in finite sample and are particularly useful in

pharmacosurveillance with a rare outcome, a common exposure, and many confounders.

2.2 | Flexible regression on the estimated propensity score

In this section, we detail a three-step procedure that flexibly adjusts for confounding using the estimated propensity score, then standardizes to a

target population for causal comparison. Compared to direct covariate adjustment, which will be discussed in Section[3] our approach replaces the
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set of covariates with a function of the propensity score in the model to reduce the dimensionality of the covariates while attempting to minimize
model assumptions. We further derive direct variance estimates that are computationally efficient and more feasible for a rare outcome setting.
In the first step, we estimate the propensity score based on a parametric model such as a logistic regression. Recall that we take A as the binary

exposure to a drug or medical product. Thus, the propensity score, i.e., the probability of being exposed can be predicted as
§=PlA=1]X;4] = [1+exp(-X"5)] 7", (3)

where 4 is a set of estimated coefficients obtained from fitting a logistic regression.
In the second step, we fit a nonparametric or semiparametric model of the outcome taking the estimated propensity score as the only covariate.
We consider the varying coefficient model proposed by [20]:

g (B | 4,5 =9]) = a(§) +B(9)4, )

where a(-) and 3(-) are unknown and potentially nonlinear functions, and g(-) is a known link function. This is equivalent to fitting two separate
outcome curves in each of the exposure and control arms. Note that when S balances the two arms, conditioning on S is sufficient to control for
confounding. For binary adverse outcomes, g(-) is often the logit link function. When there is little evidence of treatment effect heterogeneity
conditional on the propensity score, we could potentially gain substantial efficiency by assuming that 8(-) = . Then the varying coefficient model
reduces to a partially linear model g ( E[Y | A, S = S‘}) = a(8S) + BA, which tends to stabilize the outcome model when the number of events is
low [21]. Combining (1) and , we can see that the varying coefficient model allows us to estimate two treatment-specific outcome curves that
predict the means of potential outcomes given patient’s propensity:

ElY(1)| S]=E[Y | A=1,5] = g~ [a(8) + B(5)],
E[Y(0)|S]=E[Y |A=0,5]

|
—
—
Q
~
D
=
=

g

To estimate the nonlinear functions a(-) and 3(-), several methods of nonparametric regression on an one-dimensional covariate could be
adopted. Here we apply the spline regression, which is a special case of sieve estimation [22]. A spline is a piece-wise polynomial function that is
smooth at the joint of each piece, referred to as the knots. Any spline function on a given set of knots can be expressed as a linear combination of
B-splines [23}[24]. Denote a set of B-spline basis functions with evenly spaced knots as B(S) = [b1(S),. .., bk (S)]. The dimension K = K(n)
grows to infinity with sample size n, which can be selected by cross-validation procedure in practice [22][25]. Finally, we fit the outcome on the

basis functions and the exposure indicator. The estimated risk given the patient’s propensity score is
ElY(a)|S]=E[Y |[A=a,8] =g ' [B(S)a+a-B(9)B], a=0,1

where & and 3 are the coefficients of the B-spline basis functions. When assuming a partially linear model with constant treatment effect con-
ditional on the propensity score, i.e., 3(S) = 8, we instead predict the patient’s risk as E[Y (a) | §] = E[Y | A = a,5] = g~ 1 [B(S’)d + Eia],
a=0,1.

As discussed in Section |2.1} causal inference is a comparison of the population-level averages. Thus, the outcome regression model should
often be considered as the intermediate summary that is then used in a final standardization step to yield marginal, population-level contrasts.
One popular approach is to take the empirical averages of the predicted risks resulting from creating a pair of predictions for each patient as if
they were exposed to each of the two different drugs regardless of their actual exposure condition. Such a procedure has been called model-based
standardization in epidemiology, which we will refer to generally as standardization [26] 27! [6]. Therefore, at the third step, we take the empirical

average of the estimated potential outcomes over the target population which gives

BY(] = =S EM() 8= 2 3 g7 [B(Soa +BE)A],
=1 =1

BY(O) = =S EM©0) 18] = > g7 [B(S)a]
i=1 i=1

if the target population is the entire study population. One can also average over other target populations such as the exposure arm to estimate
E[Y (a)|A = 1],a = 0, 1, which yields the average treatment effect among the treated (ATT).

With the pair of population-level averages of potential outcomes, we can now make simple comparisons that have explicit causal interpretations.
For example, for a binary adverse event outcome like angioedema, we have a pair of mean risks denoted by p; = E[Y'(1)] and po = E[Y (0)],
which are the risks of angioedema among the full population in need of high blood pressure control medications (a combination of the ACEl and BB
groups), had they taken ACEI (1) or BB (pg). We plug in the estimated mean risks to estimate the parameter of interest such as the risk difference
RD = j1 — po, the relative risk RR = p1 /fo, or the odds ratio OR = [p1/(1 — $1)]/ [P0/ (1 — po)].
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2.3 | Variance estimation

The key challenge in studying the variance of the proposed estimator is the need to incorporate the variability due to estimation of the propensity
score, which impacts both the estimation of the nonlinear functions &(-) and B(-), and the evaluation of the functions &($) and 3(S) when
plugging in S. [19] studied the asymptotic distribution of a class of estimators that employ covariates estimated from a preliminary regression,
such as the use of the estimated propensity score. Motivated by [19], we now consider variance estimation that takes in to account the distinctive
contributions of propensity score estimation, nonparametric regression on the propensity score, and standardization, while remaining a feasible
inferential procedure for the rare outcome setting.

To this end, we introduce the notion of an influence function [18]. Under certain regularity conditions, many estimators of E[Y (a)] are asymp-
totically equivalent to the sample average of an object referred to as the influence function. The influence function is a function of the observed
data with mean zero and finite variance, which contains all information about an estimator’s asymptotic behavior. For example, we say the esti-
mator p; defined in Sectionhas influence function IFy if p1 — p1 = n= 2 31, IF1(O;) + op(n—1/2), where O, denotes the i-th observed
data point. The influence function is particularly useful because its variance is the variance of the asymptotic distribution of the estimator [28].
For example, the variance of p; is equal to the sample variance of the estimated IF; divided by the sample size n. Therefore, the influence func-
tion is a key component for variance estimation and efficiency comparisons, and the one with the smallest variance is referred to as the efficient
influence function. In parametric models the influence function is a scaled version of the score function. For semiparametric and nonparametric
models, derivation of the influence function varies by the parameter of interest and the model assumptions. We refer the interested readers to the
broad literature on semiparametric theory such as [29], [30], [31], and [32].

The work of [19] and [33] studied the influence function of the three-step estimator based on nonparametric regression on an estimated
propensity score S followed by standardization. They considered scenarios when the propensity score is generated under either a parametric or
a nonparametric model in a prior step and provided two versions of the influence function. In particular, for binary outcomes with p; = E[Y (1)]
and po = E[Y(0)], when the propensity score is estimated under a nonparametric model, the influence functions for p; and pg are
E[Y|A=1,X] - E[Y|A=1,9]

S

IF, :E[Y\A:l,S]—pl+%(Y—E[Y|A:1,S])— (A—S)

and

E[Y|A=0,X] - E[Y|A=1,9]
1-S

respectively. When the propensity score is estimated in a parametric model, such as a logistic regression with S = (X ;v) = [1 + exp(—X7)] 7},

1—A
IFy = B[Y|A=0,5] —po + — (Y = E[V|A=0,5]) - (A-39),

the influence functions are

IFy =E[Y | A=1,5] —p1 + (Y~ B[Y | A=1,8))—

S
E[Y |A=1,X]—E[Y | A=1,5] 8p(X;
E{ Y| |- ElY | ] 9( ’Y)}(b(,y)
S oy
and
1-A
E[Y |A=0,X]—E[Y | A=0,5] 8o(X;
E{[ \ |- ElY | ] 9( 7)%(7)’
1-S oy
where « is the coefficients of the propensity score model, ¢(v) = —E[%ﬁ”)]*lé(w) is the influence function for ~, and £(~) is the score function

for ~. The variance can then be estimated using the sample variances of one version of the IFs according to how the propensity score is estimated.
The above influence functions are derived in detail in [33]. Regularity conditions for root-n consistency and asymptotic normality have been
detailed in Theorem 3.1 of [34]. In particular, the parameter of interest in [34] is a known functional of the two-step sieve estimates, where the
second step involves sieve estimation of unknown functions that may use the nonparametric estimates from the first step as inputs. In our paper,
the corresponding known functional of the two-step sieve estimates is E{E[Y | A = a, 5]}, which is further estimated in the third step via an
empirical average. By the same stochastic equicontinuity argument as Lemma 1.4 of [34], the empirical average of the sieve estimates has the same
asymptotic distribution as the expectation of the sieve estimates. Therefore our estimator is root-n consistent and asymptotically normal under
the regularity conditions stated in [34].

Note that evaluation of the above influence functions requires estimation of the outcome models E[Y | A, X]. For our proposed regression
on the propensity score method, estimating the influence functions introduces an extra step of estimating the mean outcome conditional on all
covariates, which may be unstable when the outcome is rare. Therefore, in a rare outcome setting we propose to substitute E[Y | A, X] with
E[Y'| A, S], which is readily computed in our estimation procedure. Specifically, we estimate the influence functions as

—~ ~ ~ A N ~
IFl:E[YlAzlvs]_ﬁ1+§(Y_E[Y|A:LS])
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and "
1— . .

_(Y —E[Y | A=0,89)]),
Y B )

where S is estimated parametrically in the first step, E[Y(-) | S] is estimated by a nonparametric regression on the estimated propensity score, and

IFo = BlY | A=0,5] — jo +

Pa,a = 0, 1is a population-level sample average. It turns out that ffl and ﬁ50 are the influence functions assuming propensity score is known with
Var(IF) > Var(IF) (5)

under a nonparametric model [33]. This corresponds to the well-known phenomenon that ignoring knowledge about the propensity score and
estimating it using the observed data instead may improve efficiency for certain estimators. Therefore, using IF will generally yield a conservative
standard error. Moreover, using IF instead of IF is equivalent to setting the last term of IF to zero, which is a product of two residuals. Under a
rare outcome scenario, this term often has negligible contribution and thus variance is well approximated using IF. However, when the outcome
is non-rare, the precise influence functions IF; and IFy should be computed for valid inference.

By an application of the delta method to functions of p; and pg, one can show that the influence function for the risk difference (RD) is

fﬁRD =1F — fﬁo; the influence function for log of the risk ratio (RR) is ﬁ*ﬂwRR = ﬁs - IAFO ; and the influence function for log of the odds ratio

p1 Po
(OR) is IF|ogor = o __ Finally, the variance of an estimator, e.g. the log of odds ratio (logOR), is estimated by

F,
p1(1—-p1)  pPo(1—po)

15 1 1 LR 1 1 n ﬁu fﬁ()i 9
-6 = — IF = — — — — = — . (6)
" w [né ] n [né(plum) ol o))

Accordingly, a 95% confidence interval can be constructed using 1ogbR =+ ¢+ 6/+/n, where cis the 97.5-th percentile of the normal distribution.
We applied this variance estimation to all approaches that utilize standardization following regression adjustment in our simulation and

application studies, such as regression on covariates (detailed in Section using IF, and linear adjustment of the propensity score using TF.

3 | COMMON PROPENSITY SCORE METHODS

In this section, we briefly review common propensity-based methods for estimating a pair of population-level average risks for binary outcomes,
which will then be plugged in to estimate a population-level summary such as risk difference, risk ratio, or odds ratio that has a causal interpretation.
We focus on methods that utilize the propensity score. In Section we will compare these strategies to our proposed flexible regression on the
propensity score with standardization method.

3.1 | Regression on covariates followed by standardization

As outlined in Section standardization following flexible propensity score adjustment is a viable approach to estimate causal effects. A common
alternative is to use standardization following direct adjustment for confounders in the outcome regression model. Specifically, we build an outcome
regression model with both the exposure and all confounders as covariates in the model g (E[Y | A, X]) = BA + X, then standardize to the
target population as outlined in Sectionto estimate the marginal, population-level mean risks E[Y (a)],a = 0, 1. The estimated causal effect
can then be obtained by plugging in the population risks into risk difference, risk ratio, or odds ratio. Compared to Section[2.2] there is no estimation
of the propensity score, and all confounders are directly adjusted for in the outcome regression model. Therefore, application of this method may

be unstable, or have model fitting issues, when there are few outcome events and many potential confounders.

3.2 | Inverse probability of treatment weighting

As mentioned in Section the dual representation of the causal estimand has led to a widely used method which is the inverse probability of
treatment weighting (IPTW). The IPTW method aims to achieve balance by reweighting every subject to create a pseudo-population in which every
exposed/unexposed pseudo-subject has equal possibility of being exposed/unexposed. Such a pseudo-population is representative of one from a
randomized study [35]. A commonly used weight is the inverse of the propensity score, that is, to use é if subject is exposed and ﬁ if subject
is unexposed. A well-known challenge with IPTW is the potential instability from inverting the estimated propensity score. To address this issue,
stabilized weights have been proposed [35]. Truncation of the propensity score using either a pre-specified threshold or a quantile is also widely
used in practice [36}[37], and will be implemented in our simulation study in Section

This article is protected by copyright. All rights reserved.
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3.3 | Augmented inverse probability of treatment weighting

Simple IPTW requires that the propensity score must be correctly specified. To relax this assumption, the Augmented IPTW (AIPTW) approach was
proposed, which is a combination of the propensity score model and the outcome regression model [38][39]. It has also been referred to as the
doubly robust estimator because it consistently estimates the truth when either the propensity score model or the outcome regression model is
correctly specified. The AIPTW estimates the distribution of the observed data under a parametric (or semiparametric) model and then evaluates
a particular estimating equation under such working model. The estimating equation is defined by the efficient influence function for the mean
potential outcome under a nonparametric model. Specifically, we solve for the mean potential outcome E[Y (a)] in
{ 1(A=a) v P(A=a|X)—-1(A=a)
"\ P(A = a|X) P(A=a|X)

where P, is the empirical average operator, i.e., P, (V) = % >-% , Vi. From the above estimating equation, we can see that AIPTW can be viewed

E[Y|A:a,X}—E[Y(a)]} =0,a=0,1 (7)

as IPTW with a bias correction term that involves the predicted risks by the outcome regression model. However, modeling of the outcome is
likely to be unstable when there is insufficient number of outcome events and many confounders. In addition, when the risk of adverse events is

extremely low, the magnitude of bias correction from the predicted risks may be small.

3.4 | Targeted maximum likelihood estimation with data-adaptive estimation of the outcome and exposure models

Similar to the AIPTW approach, the targeted maximum likelihood estimation (TMLE) is a methodology that incorporates both outcome and exposure
mechanisms to exhibit doubly robust finite sample performance [40]. This is achieved by a targeting step that solves the efficient influence function
via maximum likelihood estimation in order to improve the initial outcome regression model. It is more robust to outliers than the AIPTW in the
sense that for binary outcomes, the estimated mean potential outcome is always between 0 and 1, whereas the AIPTW estimates can fall outside
of this range.

Another advantage of TMLE is that one can incorporate a collection of algorithms to estimate the outcome and exposure mechanisms, which
may further reduce bias. This is particularly of interest when there are a large number of confounders and model misspecification is likely to
occur. An ensemble procedure called Super Learner was developed which implements a library of data-adaptive algorithms and finds an optimal
combination of the predictions from the algorithms using cross-validated weights. The weighted combination has equal or better performance
than the best-fitting algorithm in the library [41]. Therefore, including a rich set of algorithms in the library provides better chance of predicting the

outcome and exposure mechanisms well. However, the computation time grows significantly as the number of algorithms considered increases.

4 | REALISTIC SIMULATION

In this section, we perform extensive simulation studies to investigate the performance of our proposed flexible regression on the propensity score
method (Section and the existing methods outlined in Section We consider estimating a marginal OR for observational surveillance within the
rare outcomes setting since it is the most common estimand of interest in observational cohort studies for binary outcomes. Moreover, in the rare
event setting, the marginal OR is approximately the relative risk. Our simulation study will mimic real data from the FDA Sentinel Initiative study
comparing the effect of angiotensin-converting enzyme Inhibitors (ACEI) and beta blockers (BB) on incidence of angioedema in the first 30 days
[42]. Further details of the study are outlined in the simulation setting in Sectionand the real data application in Section

In the context of rare binary outcomes, [17] evaluated propensity-based estimators of the marginal relative risk using a data simulation framework
referred to as Plasmode [43] mimicking two cohort studies constructed from healthcare claims data with 70 to 178 confounders and 250 number
of events in most scenarios. They found that nonlinear adjustment for the propensity score provides lower bias and mean squared error regardless
of the propensity score estimation method. Our study will further evaluate the performance of propensity score methods targeting marginal odds
ratios to provide additional guidance on selecting methods that control for confounding. In particular, we use a new realistic simulation method

which does not require sharing of individual-level data with similar performance as the Plasmode method [44].

4.1 | Simulation setting

We generate a realistic population of 10,000 subjects mimicking data from the ACEI and BB example. Specifically, there are nine binary clinically
relevant covariates (NSAIDs (Nonsteroidal anti-inflammatory drugs), aspirin, ORAL-CS (optimizing recovery after laparoscopic colon surgery), aller-
gic reaction, diabetes, heart disease, Ischemic HD (heart disease), inpatient hospitalization, and gender) and one categorical variable which is age
category with four levels, corresponding to three dummy variables (binary indicators). See Table[L ] for the prevalence (prev) of each confounder.

To simulate the ACEI and BB dataset, we used the following procedure and generated:
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1. Binary and categorical covariates X that have the same mean and pairwise covariance as the real data, yielding correlated confounders.

2. A binary exposure A (ACEl = 1 and BB = 0) generated based on a logistic regression on the covariates (the propensity score model, see
Table[T), using coefficients observed from fitting the real data.

3. A pair of binary potential outcomes (Y (1), Y (0)) (angioedema within 30 days under exposure and control for the same subject) based on
a logistic regression on the exposure and covariates (the outcome regression model, see Table , using the coefficients observed from
fitting the real data.

We specify the intercepts in the exposure and outcome models such that the exposure prevalence is the same as the real data and the number of
events is similar to the real data. In particular, the exposure rate in the real data is 69%, which is uncommon in postmarketing surveillance because
there are more exposed (ACEI, 69%) than controls (BB, 31%). Therefore we also simulated another scenario when the exposure rate is 20%, which
is more commonly seen for new medications. In addition, we hold the event rate in the control group such that the total number of events in
the simulated data is around 50 across all scenarios. Because there are 12 confounders including nine binary variables and three indicators for
age categories, we have less than five events per covariate on average. This indicates a relatively small amount of information in the data, which
may lead to model fitting issues such as imprecise estimation and model misspecification. In addition, we increased the strength of confounding
by scaling up the coefficient of covariates in the propensity score model (multiply coefficients on the logOR scale by 1.5), while still holding the

exposure prevalence and the baseline event rate the same (see Tablestronger propensity). In a rare outcome setting, sufficient power to detect

TABLE 1 Prevalence (%) of each confounder, relationship (adjusted odds ratio) between exposure (ACEI and BB) and confounders (propensity score
model) for different simulation scenarios, and relationship (adjusted odds ratio) between outcome and the exposure and confounders (outcome

regression model).

Propensity Score Model Outcome Regression Model

Prevalence Observed Stronger Observed Treatment

Confounders . . . . . . .
% Relationship  Relationship Relationship  Heterogeneity

Heart Disease 2.0 0.5 0.4 0.7 0.7
Aspirin 4.4 1.2 1.3 0.9 0.9
Ischemic HD 5.3 0.3 0.2 14 1.4
OptRec Colon Surg 5.6 1.0 1.0 1.4 1.4
Inpatient Hosp. 7.9 0.3 0.2 1.9 1.9
Allergic Reaction 8.3 0.9 0.8 0.6 0.6
NSAIDS 11.8 1.0 1.0 54 54
Diabetes 15.6 4.5 9.6 24 24
Female 51.3 0.6 0.4 15 1.5
Age (Ref: 18-44)
45-54 26.6 2.0 2.7 0.8 0.8
55-64 29.7 21 2.9 0.5 0.5
65-99 223 1.7 2.2 0.5 0.5
Exposure
ACEI 69.1 54 exp(d)*

*d = 0.71(Heart Disease) - 0.11(Aspirin) + 0.31(Ischemic HD) + 0.31(OptRec Colon Surg) +
0.71(Inpatient Hosp.) - 0.61(Allergic Reaction) + 1.71(NSAIDS) + 0.91(Diabetes) +
0.41(Female) - 0.31(Age 45-54) - 0.81(Age 55-64) - 0.71(Age 65-99)

a safety signal often requires a moderate to strong exposure effect. We generated the pair of potential outcomes under both the null model
(marginal OR = 1, i.e., no elevated risk of angioedema due to treatment with ACEI), and the alternative where the marginal OR = 3. Note that, the
marginal OR defined as % is not equal to the conditional OR typically obtained from the treatment coefficient in a logistic regression due
to non-collapsibility. We use the algorithm described in [8] to find a conditional treatment effect that would yield a marginal OR of 3. In addition,
we considered heterogeneous treatment effect in the sense that the log odds ratio is a linear combination of all covariates (see Tabletreatment

heterogeneity). We call the third scenario strong treatment heterogeneity scenario. Note that unlike the main effects presented in Table the
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coefficients for treatment heterogeneity are pre-specified since treatment heterogeneity was not present in the real data. We use the simulated
pairs of potential outcomes to compute the sample average treatment effects for bias comparison, which are marginal OR = 1 (log(OR) = 0) under
the null, marginal OR = 3 (log(OR) = 1.1) under the alternative, and marginal OR = 1.6 (log(OR) = 0.5) under treatment heterogeneity on average.

In each scenario assessed we used 5000 simulated datasets. For simplicity, we use the abbreviation PS to refer to the propensity score hereafter.

4.2 | Methods under comparison

We consider the following marginal OR estimators:

() Crude estimate from regression on the exposure without confounding adjustment;

(i) Regression on covariates without interaction terms between the exposure and covariates;
(iii) Regression on main term of the PS (linear adjustment);

(iv) Flexible regression of the PS using B-spline basis functions with data-adaptive degrees of freedom selected by cross-validation to fit a nonlinear
function «(S), while imposing a marginal structure that the conditional treatment effect is a constant, i.e., 3(S) = 3. Referred to as the PS
one-spline method;

(v) Flexible regression of the PS using B-spline basis functions with data-adaptive degrees of freedom selected by cross-validation to fit both
«(S) and 3(S). Referred to as the PS two-spline method,;

(vi) Regression on indicators of five strata of PS that fits a nonlinear function «(S) by step functions, while imposing a constant conditional
treatment effect 8(S) = 3;

(vii) IPTW with stabilized PS (truncated at the (0.025, 0.975) percentile);

(viii) AIPTW with parametric models for exposure and outcome both adjusting for main terms of all covariates, and stabilized PS (truncated at the
(0.025, 0.975) percentile);

(ix) Targeted maximum likelihood estimation with parametric PS (truncated at the (0.025, 0.975) percentile) and outcome models;

(x) Targeted maximum likelihood estimation with data-adaptive estimation of the PS (truncated at the (0.025, 0.975) percentile) and outcome

models using Super Learner.

All model-based methods are followed by standardization to estimate the population average of potential outcomes and the marginal OR. The
PS used in — is estimated from the same parametric model adjusting for all covariates. Due to the extremely long computation time of Super
Learner (method ), we considered a limited library of algorithms including the generalized linear model, step-wise regression, and penalized
regression. Method has been shown to be biased in other simulation studies [7} [8] and we were therefore interested in assessing it in our
simulations for verification, as well as to investigate the potential for bias correction via flexible semiparametric or nonparametric modeling. To
this end, we considered method (iv) that fits a function «(.S) which is then shifted by a constant treatment effect 8 on the logit scale under the
assumption of homogeneous treatment effect conditional on the PS, and method @ which fits two exposure-specific curves nonparametrically.
For simplicity, we refer to method as PS one-spline, and method (v) as PS two-spline. In addition, we considered method which essentially
fits a piecewise constant function or step function. These methods entail a more flexible nonlinear function of the PS, and may reduce the residual
confounding from regression on a simple linear term in method . Method performance was assessed in terms of bias and variance of the estimates
on the log OR scale.

To investigate the performance of our proposed variance estimation for statistical inference, we estimated the standard error of regression on
PS estimators - using equation @ as detailed in Section Performance was then assessed in terms of type | error and power. To provide
a benchmark for comparison, we approximated the variance of the other estimators as follows. First of all, the variance of TMLE estimates is
available in the R package tmle. The variance estimator is computed using the sample variance of the estimating equation that is the efficient
influence function evaluated at each data point. In the simulation study, we adopt such variance estimator for TMLE with and without super
learning. Likewise, because both IPTW and AIPTW methods are asymptotically linear estimators solving an estimating equation evaluated under a
specified model, we computed the variance using their corresponding estimating equations as an approximation of the variance of p; and pg, which
did not take into account the variability of the propensity score estimation. For simplicity, we use the same variance approximation as AIPTW for

the outcome regression method, which will provide a conservative variance estimator.
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We considered three model misspecification scenarios which are (a) the PS model is misspecified, (b) the outcome model is misspecified, and (c)
both the PS and the outcome models are misspecified. All model misspecification is due to omitting age, which is strongly associated with both the
outcome and the exposure, and has sufficient number of observations in all categories according to Table[1 ] Note that under the strong treatment
heterogeneity scenario, the outcome model is specified without the corresponding interaction terms between the exposure and covariates, there-
fore is misspecified even without omitting age categories. In this scenario, only TMLE with super learner may be able to pick up such interaction

terms in the outcome model.

4.3 | Results

Tableand shows the bias and variance of the various methods on the log(OR) scale, the type | error and power, as well as the mean esti-
mated variance, when both the PS model and outcome regression model are correctly specified. We consider two scenarios: an exposure rate of
69% (observed in the real data) and 20%. Each scenario is further tabulated by null and alternative exposure effect, as well as strong treatment het-
erogeneity as described in Section Tablefocuses on the original strength of confounding observed in the real data. In Tablewe provide
simulation results under stronger relationship between the confounders and the exposure in the PS model which generates stronger confounding.

First of all, simple linear adjustment of the PS had a notable increase in bias under the alternative with either homogeneous or heterogeneous
effect, which agrees with the findings of [7] and [8]. PS one-spline method outperformed the simple linear adjustment and removed the resid-
ual confounding. It had equivalent or smaller variance relative to all unbiased methods across all scenarios, indicating an efficiency gain due to
assuming constant conditional exposure effect which greatly reduces the dimension. PS two-spline method tended to have larger variance under
homogeneous effect due to overfitting assuming a heterogeneous effect. In contrast, under effect heterogeneity, PS one-spline had increased bias
whereas PS two-spline had the smallest bias among all methods since it correctly captured the heterogeneity through the exposure-specific curves.
Regression on PS strata also had relatively good performance, with the smallest bias under homogeneous effect when the exposure rate was 69%,
although it had larger bias when the exposure rate was 20%. In addition, it had small variance under homogeneous effect because the degree
of freedom was the smallest across all regression methods. Although regression on covariates is an oracle estimator under homogeneous effect
which essentially fits the true data generating model, it frequently encountered the “perfect fit" phenomenon with predicted probabilities that are
exactly zero or one, which is expected since the outcome is rare and the number of covariates is large. There were also several non-convergence
cases among the replications. IPTW had large variance and bias potentially due to the variability from inverting the propensity scores which may
include extreme values in finite sample. In terms of the three doubly robust estimators, i.e., AIPTW and TMLE with and without super learning,
the bias of TMLE with super learning was generally the smallest among all three. In addition, their variances tended to be larger than methods that
only depend on either the outcome or propensity score models. This is expected because the doubly robust methods essentially trade efficiency
for robustness by operating in a larger model. The performance of AIPTW was very similar to that of the IPTW estimator, which may be due to
the fact that when the event rate is extremely small, the bias correction which involves the predicted outcome risk can be small. In Table[3_Junder
stronger confounding effect, all methods had larger biases and variances in general. We observed similar relative performance as Table

In terms of inference, our direct variance estimator had generally good performance. In particular, under correctly specified models in Table
and all regression on PS methods followed by standardization had similar and valid type | error, except that the PS two-spline method had
inflated type | error which may indicate insufficient characterization of the variation using our simplifying approximation. Nonetheless, the PS two-
spline method had similar power as the other regression on PS methods. The valid type | error showed that our proposed direct variance estimation
is a reliable approach for inference. Particularly, it does not require computationally intensive methods such as the bootstrap. Covariate adjustment
and TMLE methods also had valid type | error and similar power. In addition, IPTW and AIPTW had inflated type | error and slightly less power. We
also observed that under the treatment heterogeneity, the power of the confounding adjusted methods was less than 0.4 and the power of the
crude estimate was at most 0.123. This is because when the number of events is extremely small, the power is highly dependent on the strength
of treatment effect, which is not strong enough to yield a large power in this scenario.

Table[d Jand [6_]present method performance under model misspecification due to omitting the age categories. All methods that depend on
only the outcome regression model or the PS model had increased bias when their corresponding model is misspecified. In particular, regression
on covariates had a notable increase of bias, although the variance was smaller due to omitting the three age category indicators which reduced
the dimension but introduced misspecification. Among regression on PS methods, PS one-spline and PS strata methods had relative smaller bias
under homogeneous effect, whereas PS two-spline method had the smallest bias under heterogeneous effect.

In contrast, doubly robust methods were less sensitive to model misspecification. In particular, under a homogeneous null or alternative effect,
all doubly robust methods were insensitive to misspecification of the outcome models, and had relative smaller bias when the PS model was
misspecified. When both the outcome and PS models were misspecified, AIPTW had relatively larger bias than TMLE methods. Moreover, TMLE
with super learning generally had smaller bias than TMLE without super learning, and can outperform all other methods under the alternative with
either a homogeneous or heterogeneous effect. Therefore, using ensemble learning with data adaptive algorithms can reduce bias from model
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misspecification. Moreover, under effect heterogeneity, only TMLE with super learning may be able to pick up the interaction term between
covariates and exposure to reduce bias.

Our simulation indicated that the bias of regression on the PS observed in previous studies [7,[8] could be due to residual confounding from
simple linear adjustment. Based on our consistent observation that flexible adjustment of PS reduces bias from insufficient linear adjustment and
potentially outperforms traditional methods, it is promising in safety surveillance with rare outcomes to estimate a propensity score that sufficiently
controls for confounding and reduces dimension to allow for flexible outcome modeling. Moreover, the valid type | error showed that our proposed
direct estimation of variance is a fast and valid approach for inference.

TABLE 2 Median bias, variance, type | error, power, and mean estimated variance in estimating the marginal odds ratio (on the log scale) using
correctly specified propensity score model and outcome regression model, under the null, the alternative, and strong treatment heterogeneity,

with original confounding effect observed in the real data.

Null: OR=1 Alternative: OR = 3 Heterogeneity: OR = 1.6

. Typel Mean X Mean . Mean

Methods Bias (Var) Bias (Var) Power Bias (Var) Power
Error Est Var Est Var Est Var
Exposure rate = 69%
i) Crude -0.178 (0.149) 0.079 0.152 -0.180(0.116) 0.841 0.110 -0.238(0.129) 0.123 0.133
i) Covariate adj 0.010(0.162) 0.048 0.167 0.006 (0.123) 0.912 0.131 0.059 (0.145) 0.312 0.165
i) PS adj 0.008 (0.169) 0.051 0.168 0.029(0.128) 0.916 0.134 0.084(0.157) 0.333  0.169
iv) PS one-spline  0.008 (0.163) 0.048 0.167 0.006 (0.124) 0.912 0.131 0.058(0.145) 0.308 0.164
V) PS two-spline  0.004 (0.168) 0.058 0.154 0.001(0.129) 0.909 0.119 -0.003(0.143) 0.304 0.134
vi) PS strata -0.000 (0.159) 0.046 0.167 -0.000 (0.122) 0911 0.130 0.049 (0.142) 0.297 0.164
vii) IPTW 0.024 (0.182) 0.067 0.167 0.022(0.147) 0.871 0.131 0.021(0.162) 0.307 0.165
viii) AIPTW 0.025(0.182) 0.066 0.167 0.023(0.147) 0.872 0.131 0.021(0.163) 0.307 0.165
ix) TMLE w/oSL  0.025(0.183) 0.056 0.164 0.024 (0.147) 0.910 0.128 0.023(0.163) 0.325 0.144
x) TMLE w/ SL 0.022(0.182) 0.055 0.163 0.021(0.146) 0.913 0.128 0.020(0.163) 0.325 0.143
No. events 34 78 48
Exposure rate = 20%

i) Crude -0.211 (0.243) 0.035 0.372 -0.201 (0.094) 0.676  0.150 -0.354 (0.167) 0.037 0.341
i) Covariate adj -0.008 (0.258) 0.055 0.277 -0.003 (0.105) 0.869 0.119 -0.106 (0.188) 0.176  0.240
i) PS adj -0.012 (0.254) 0.054 0.277 -0.020 (0.102) 0.858 0.122 -0.109 (0.185) 0.172 0.242
iv) PS one-spline  -0.012 (0.260) 0.057 0.277 -0.001 (0.106) 0.867 0.120 -0.103(0.190) 0.180 0.240
V) PS two-spline  0.058 (0.287)  0.085 0.223 -0.014 (0.121) 0.887 0.108 -0.013(0.192) 0.282 0.174
vi) PS strata -0.036 (0.261) 0.053 0.288 -0.021 (0.106) 0.853 0.122 -0.139 (0.191) 0.157 0.252
vii) IPTW -0.065(0.353) 0.095 0.277 -0.025(0.126) 0.866  0.119 -0.063(0.236) 0.191  0.240
viii) AIPTW -0.064 (0.354) 0.095 0.277 -0.022 (0.126) 0.866 0.119 -0.058 (0.236) 0.191  0.240
ix) TMLE w/o SL -0.065 (0.349) 0.060 0.269 -0.016 (0.122) 0.872 0.112 -0.057 (0.229) 0.243 0.189
x) TMLE w/ SL -0.069 (0.350) 0.061 0.267 -0.013(0.123) 0.876 0.110 -0.057(0.233) 0.252  0.187
No. events 36 48 39
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TABLE 3 Median bias, variance, type | error, power, and mean estimated variance in estimating the marginal odds ratio (on the log scale) using

correctly specified propensity score model and outcome regression model, under the null, the alternative, and strong treatment heterogeneity,

with stronger confounding effect.

Null: OR=1 Alternative: OR = 3 Heterogeneity: OR = 1.6

. Typel Mean X Mean . Mean

Methods Bias (Var) Bias (Var) Power Bias (Var) Power
Error Est Var Est Var Est Var
Exposure rate = 69%
i) Crude -0.235(0.149) 0.099 0.182 -0.239 (0.113) 0.748 0.128 -0.314 (0.127) 0.087 0.167
i) Covariate adj 0.012 (0.177) 0.059 0.202 0.004 (0.127) 0.852 0.158 0.082 (0.155) 0.306 0.212
i) PS adj 0.009 (0.191) 0.068 0.202 0.044(0.137) 0.856 0.164 0.122(0.180) 0.343  0.220
iv) PS one-spline  0.008 (0.179) 0.063 0.202 0.004 (0.130) 0.849 0.158 0.076 (0.156) 0.303 0.211
V) PS two-spline  0.015 (0.213) 0.077 0.160 0.024 (0.144) 0.905 0.123 0.024 (0.169) 0.311 0.141
vi) PS strata 0.005 (0.174) 0.059 0.202 0.002 (0.126) 0.852 0.159 0.064 (0.152) 0.292 0.212
vii) IPTW 0.040 (0.226) 0.079  0.202 0.050(0.183) 0.841 0.158 0.044 (0.204) 0.308 0.212
viii) AIPTW 0.041 (0.227) 0.082 0.202 0.051(0.183) 0.841 0.158 0.047 (0.204) 0.311 0.212
ix) TMLE w/o SL  0.039 (0.263) 0.072 0.183 0.050(0.241) 0.864 0.142 0.042 (0.221) 0.324 0.162
x) TMLE w/ SL 0.036 (0.279) 0.072 0.181 0.052(0.210) 0.865 0.142 0.041(0.229) 0.327 0.161
No. events 34 78 48
Exposure rate = 20%

i) Crude -0.293(0.252) 0.061 0.507 -0.278 (0.098) 0.493 0.225 -0.494 (0.192) 0.017 0.556
i) Covariate adj -0.020(0.285) 0.079 0.334 -0.003(0.123) 0.787 0.161 -0.168 (0.235) 0.139 0.338
i) PS adj -0.020 (0.275) 0.079 0.329 -0.043(0.115) 0.761  0.168 -0.171(0.223) 0.128 0.338
iv) PS one-spline  -0.018 (0.293) 0.085 0.335 -0.003 (0.125) 0.787  0.160 -0.155(0.238) 0.145 0.333
V) PS two-spline  0.067 (0.484) 0.132 0.239 -0.021(0.168) 0.831 0.128 -0.004 (0.255) 0.262  0.205
vi) PS strata -0.061(0.292) 0.079 0.351 -0.033(0.126) 0.765 0.166 -0.213(0.242) 0.115 0.361
vii) IPTW -0.137 (0.486) 0.148 0.334 -0.055(0.180) 0.758 0.161 -0.119 (0.355) 0.146 0.338
viii) AIPTW -0.130(0.509) 0.152 0.334 -0.054 (0.186) 0.753 0.161 -0.115(0.365) 0.152 0.338
ix) TMLE w/oSL  -0.131(0.481) 0.097 0.321 -0.023 (0.165) 0.798 0.132 -0.095(0.350) 0.225 0.238
x) TMLE w/ SL -0.137 (0.485) 0.102 0.318 -0.013(0.167) 0.809 0.129 -0.094 (0.363) 0.243 0.233
No. events 36 48 39
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TABLE 4 Median bias, variance, type | error, power, and mean estimated variance in estimating the marginal odds ratio (on the log scale) when

propensity score model is misspecified, or outcome regression model is misspecified, or both are misspecified, under original confounding effect.

Null: OR=1 Alternative: OR = 3 Heterogeneity: OR = 1.6
. Typel Mean . Mean . Mean
Methods Bias (Var) Bias (Var) Power Bias (Var) Power
Error Est Var Est Var Est Var
Exposure rate = 69%
Qutcome regression model misspecified
i) Covariate adj -0.040 (0.160) 0.053 0.161 -0.044 (0.123) 0.899 0.125 -0.063(0.141) 0.222  0.149
viii) AIPTW 0.027(0.182) 0.071 0.161 0.022(0.147) 0.880 0.125 0.024(0.163) 0.338 0.149
ix) TMLEw/oSL  0.027(0.182) 0.057 0.164 0.023(0.148) 0.911 0.128 0.026(0.163) 0.326 0.144
x) TMLE w/ SL 0.023(0.181) 0.056 0.163 0.022(0.147) 0.913 0.128 0.022(0.163) 0.325 0.143
Propensity score model misspecified
ii) PS adj -0.044 (0.166) 0.056 0.164 -0.027 (0.126) 0.897 0.131 -0.049 (0.149) 0.239 0.151
PS one-spline  -0.041(0.161) 0.051 0.164 -0.042 (0.123) 0.895 0.128 -0.062(0.142) 0.225 0.149
PS two-spline  -0.044 (0.190) 0.058 0.152 -0.047 (0.125) 0.887 0.118 -0.082(0.138) 0.230 0.133
i) PS strata -0.051(0.157) 0.053 0.163 -0.050(0.121) 0.892 0.128 -0.067 (0.139) 0.217 0.149
vii) IPTW -0.025(0.178) 0.062 0.166 -0.028 (0.143) 0.842 0.131 -0.058 (0.159) 0.234 0.164
viii) AIPTW 0.025(0.180) 0.063 0.166 0.023(0.145) 0.867 0.131 0.064(0.167) 0.353 0.164
ix) TMLE w/oSL  -0.014 (0.176) 0.054 0.162 -0.005 (0.141) 0901 0.127 -0.019 (0.157) 0.284 0.143
x) TMLE w/ SL 0.022(0.182) 0.056 0.163 0.021(0.146) 0.913 0.128 0.023(0.163) 0.328 0.143
Both outcome regression and propensity score model misspecified
viii) AIPTW -0.025(0.178) 0.066 0.162 -0.028 (0.144) 0.853 0.125 -0.059 (0.158) 0.259  0.149
ix) TMLE w/oSL  -0.024 (0.178) 0.056 0.161 -0.028 (0.144) 0.890 0.126 -0.059(0.158) 0.245 0.141
x) TMLE w/ SL 0.022(0.182) 0.056 0.163 0.021(0.146) 0.913 0.128 0.022(0.162) 0.325 0.143
No. events 33 75 46
Exposure rate = 20%
Outcome regression model misspecified
i) Covariate adj -0.056 (0.256) 0.047 0.297 -0.052(0.103) 0.833 0.126 -0.182(0.182) 0.121  0.266
viii) AIPTW -0.063 (0.354) 0.086 0.297 -0.024 (0.126) 0.854 0.126 -0.056 (0.237) 0.169 0.266
ix) TMLE w/o SL  -0.065 (0.350) 0.061 0.270 -0.016 (0.122) 0.873 0.112 -0.052(0.231) 0.247 0.189
x) TMLE w/ SL -0.069 (0.350) 0.061 0.268 -0.014 (0.122) 0.874 0.111 -0.054 (0.234) 0.255 0.187
Propensity score model misspecified
ii) PS adj -0.059 (0.254) 0.051 0.269 -0.066 (0.101) 0.841 0.117 -0.187(0.181) 0.156 0.208
PS one-spline  -0.060 (0.258) 0.052 0.272 -0.053(0.104) 0.850 0.116 -0.182(0.185) 0.161  0.207
PS two-spline  0.010(0.404) 0.105 0.235 -0.067 (0.115) 0.870 0.106 -0.140(0.212) 0.201 0.168
i) PS strata -0.083(0.257) 0.050 0.278 -0.071(0.104) 0.837 0.118 -0.204 (0.183) 0.144 0.214
vii) IPTW -0.111(0.338) 0.094 0.277 -0.074 (0.122) 0.838 0.119 -0.188(0.227) 0.122  0.240
viii) AIPTW -0.058 (0.335) 0.091 0.277 -0.021(0.122) 0.865 0.119 -0.110(0.229) 0.167 0.240
ix) TMLE w/oSL  -0.100(0.342) 0.057 0.259 -0.029 (0.121) 0.878 0.104 -0.151(0.235) 0.206 0.177
x) TMLE w/ SL -0.069 (0.350) 0.061 0.268 -0.015(0.122) 0.873 0.111 -0.054 (0.232) 0.254 0.187
Both outcome regression and propensity score model misspecified
viii) AIPTW -0.113(0.341) 0.087 0.297 -0.073(0.122) 0.825 0.126 -0.188(0.227) 0.106 0.266
ix) TMLEw/oSL  -0.111(0.337) 0.052 0.264 -0.068 (0.118) 0.854  0.109 -0.184 (0.221) 0.165 0.185
x) TMLE w/ SL -0.069 (0.353) 0.061 0.268 -0.014 (0.122) 0.874 0.111 -0.053(0.232) 0.254 0.186
No. events 36 47 38
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TABLE 5 Median bias, variance, type | error, power, and mean estimated variance in estimating the marginal odds ratio (on the log scale) when

propensity score model is misspecified, or outcome regression model is misspecified, or both are misspecified, under stronger confounding effect.

Null: OR=1 Alternative: OR = 3 Heterogeneity: OR = 1.6
. Typel Mean . Mean . Mean
Methods Bias (Var) Bias (Var) Power Bias (Var) Power
Error Est Var Est Var Est Var
Exposure rate = 69%
Qutcome regression model misspecified
i) Covariate adj -0.059 (0.173) 0.064 0.193 -0.066 (0.126) 0.830 0.148 -0.101(0.148) 0.191 0.185
viii) AIPTW 0.040(0.228) 0.087 0.193 0.051(0.184) 0.848 0.148 0.046 (0.206) 0.350 0.185
ix) TMLE w/oSL  0.039 (0.269) 0.073 0.182 0.049 (0.237) 0.864 0.142 0.042(0.241) 0.327 0.162
x) TMLE w/ SL 0.037(0.277)  0.073 0.181 0.052(0.212) 0.865 0.142 0.041(0.231) 0.328 0.161
Propensity score model misspecified
ii) PS adj -0.060(0.183) 0.068 0.191 -0.036 (0.134) 0.843 0.153 -0.086 (0.163) 0.215 0.179
PS one-spline  -0.059 (0.174) 0.061 0.191 -0.068 (0.128) 0.836  0.148 -0.102 (0.151) 0.200 0.175
PS two-spline  -0.036 (0.201) 0.079 0.155 -0.042 (0.129) 0.891 0.117 -0.096 (0.159) 0.218 0.134
i) PS strata -0.064 (0.167) 0.061 0.191 -0.066 (0.123) 0.837 0.149 -0.105(0.145) 0.189 0.176
vii) IPTW -0.032(0.213) 0.070 0.200 -0.024 (0.171) 0.822  0.157 -0.086 (0.192) 0.202  0.209
viii) AIPTW 0.046 (0.222) 0.079 0.200 0.052(0.177) 0.851 0.157 0.104 (0.209) 0.366  0.209
ix) TMLEw/oSL  -0.017 (0.681) 0.082 0.175 0.005(0.669) 0.877 0.135 -0.035(0.633) 0.293 0.154
x) TMLE w/ SL 0.040(0.281) 0.072 0.181 0.053(0.206) 0.868 0.142 0.043(0.232) 0.331 0.161
Both outcome regression and propensity score model misspecified
viii) AIPTW -0.032(0.214) 0.076 0.193 -0.023(0.171) 0.834 0.147 -0.083(0.190) 0.237 0.184
ix) TMLE w/oSL  -0.035(0.758) 0.088 0.173 -0.025(0.716) 0.870 0.134 -0.087 (0.649) 0.249 0.152
x) TMLE w/ SL 0.038(0.280) 0.072 0.181 0.054 (0.206) 0.869 0.142 0.043(0.224) 0.329 0.160
No. events 33 75 46
Exposure rate = 20%
Outcome regression model misspecified
i) Covariate adj -0.091(0.281) 0.068 0.371 -0.078 (0.119) 0.728 0.175 -0.271(0.224) 0.070 0.398
viii) AIPTW -0.133(0.507) 0.140 0.371 -0.056 (0.190) 0.731  0.175 -0.112(0.365) 0.117 0.398
ix) TMLE w/oSL  -0.130(0.485) 0.097 0.321 -0.020 (0.166) 0.799  0.132 -0.086 (0.358) 0.235 0.236
x) TMLE w/ SL -0.136 (0.487) 0.102 0.318 -0.014 (0.167) 0.808 0.129 -0.086 (0.366) 0.245 0.232
Propensity score model misspecified
ii) PS adj -0.089 (0.268) 0.069 0.307 -0.110(0.113) 0.748 0.152 -0.275(0.218) 0.109 0.261
PS one-spline  -0.092(0.280) 0.072 0.309 -0.082(0.121) 0.769 0.147 -0.269 (0.229) 0.120 0.259
PS two-spline  0.016(0.359) 0.102 0.233 -0.100 (0.140) 0.814 0.120 -0.200(0.218) 0.151 0.194
i) PS strata -0.130(0.281) 0.067 0.326 -0.108 (0.121) 0.748 0.152 -0.305(0.226) 0.104 0.271
vii) IPTW -0.184 (0.431) 0.146 0.335 -0.125(0.165) 0.711 0.161 -0.318(0.323) 0.089  0.339
viii) AIPTW -0.096 (0.424) 0.129 0.335 -0.043 (0.167) 0.763 0.161 -0.200(0.328) 0.126  0.339
ix) TMLEw/oSL  -0.168 (0.439) 0.085 0.301 -0.040 (0.158) 0.818 0.117 -0.262(0.344) 0.174 0.216
x) TMLE w/ SL -0.136 (0.475) 0.100 0.317 -0.014 (0.167) 0.808 0.129 -0.089 (0.362) 0.243 0.232
Both outcome regression and propensity score model misspecified
viii) AIPTW -0.177 (0.447) 0.133 0.375 -0.123(0.167) 0.690 0.175 -0.311(0.331) 0.073 0.396
ix) TMLE w/oSL  -0.183(0.433) 0.078 0.309 -0.096 (0.153) 0.773  0.125 -0.302(0.319) 0.125 0.229
x) TMLE w/ SL -0.135(0.481) 0.101 0.318 -0.014 (0.167) 0.808 0.129 -0.086 (0.362) 0.244 0.232
No. events 36 47 38
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5 | APPLICATION TO THE ACEI AND ANGIOEDEMA STUDY

In this section, we analyze a subset of data obtained from an observational cohort study using EHR data from 2008-2012 at Kaiser Permanente
Washington, a managed healthcare system in Washington State that is part of the FDA's Sentinel network [42]. The goal of this evaluation is to
compare the effect of Angiotensin-Converting Enzyme Inhibitors (ACEI) and Beta Blockers (BB), which are two medications used to control high
blood pressure, on incidence of angioedema in the first 30 days after starting either medication. There is a known elevated risk among those who
take ACElIs relative to BBs for incidence of angioedema especially early after initial drug exposure [45].

Our cohort includes 31,269 prescribed to ACEI and 15,025 to BB. Among those prescribed to ACEls, 49 subjects had an angioedema event
(0.157%), and 5 had an angioedema event (0.033%) among BB prescribers yielding an unadjusted OR of 4.715. We reanalyze this data set with all of
the methods described in the previous sections. For the analysis, we include all of the following potential confounders: NSAIDs (Nonsteroidal anti-
inflammatory drugs), aspirin, ORAL-CS (optimizing recovery after laparoscopic colon surgery), allergic reaction, diabetes, heart disease, Ischemic
HD (heart disease), inpatient hospitalization, and gender and one categorical variable which is age (categories: 18-44, 45-54, 55-64, and 65-99).
This example was also mimicked for the simulation study presented in the Section Details of the confounders including the prevalence and
relationship to the exposure and the outcome were shown previously in Table

TABLE 6 Estimation and inference for a marginal odds ratio (ATE) comparing ACEIl and BB on angioedema.

Std Err Risk of angioedema
Methods OR P value 95% ClI
log(OR) scale ACEI BB

i) Crude 4.715 0.382 0.157% 0.033% <0.001 (2.230, 9.967)
i) Covariate adj 5.677 0.421 0.167% 0.029%  <0.001 (2.490, 12.946)
i) PS adj 5.670 0.420 0.167% 0.029%  <0.001 (2.488,12.923)
iv) PS one-spline  5.485 0.413 0.165% 0.030% <0.001 (2.441,12.326)
V) PS two-spline  5.632 0.419 0.167% 0.030% <0.001 (2.478, 12.800)
vi) PS strata 5.612 0.418 0.166% 0.030% <0.001 (2.473,12.735)
vii) IPTW 6.363 0.421 0.239% 0.077% <0.001 (2.790, 14.509)
viii) AIPTW 6.477 0.421 0.160% 0.025% <0.001 (2.841, 14.770)
ix) TMLE w/oSL ~ 6.494 0.491 0.161% 0.025% <0.001 (2.481,16.997)

TMLE w/ SL 6.492 0.491 0.161% 0.025% <0.001 (2.480, 16.994)

Std Err: standard error on the log(OR) scale.

We present in Table[6 Jresults of applying the various methods estimating the marginal OR to the ACEIl and BB cohorts. The methods considered
are the same as the ones evaluated in our simulation studies described in Section[4.] All of the methods found a statistically significant association
in increased risk for angioedema when the entire population is treated with ACEI, compared to when the entire population is treated with BB. The
estimated marginal OR is approximately 6 across all methods. In the study population, the average adjusted risk of angioedema in 30 days under
ACEI treatment is around 0.17% (53 events out of 31, 269) whereas the average adjusted risk of angioedema in 30 days under BB is around 0.03%
(5 events out of 15, 025). The PS one-spline method had the smallest estimated standard error. All three doubly robust estimation procedures had
similar results. In particular, super learning with a library of data-adaptive algorithms produced similar estimation and inference as the ones from

TMLE using parametric models.

6 | DISCUSSION

In the era of big data, use of electronic health record and claims data increasingly enables detection of safety signals for rare adverse outcomes
in a realistic population once a drug or medical product has been approved and incorporated into routine clinical care. When making inference
on comparative safety using routinely collected healthcare data, propensity score methods are particularly advantageous due to the insufficient
number of outcome events and the potentially large number of confounders. In this paper, we have shown that there is a great potential in using
flexible regression adjustment of the propensity score coupled with standardization to estimate a marginal, causal effect in a select population

for rare binary outcomes. We illustrated that simply adjusting for the propensity score as a covariate in the outcome regression model can result
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in residual confounding bias [Z} [8]. In contrast, fitting a nonlinear function of the propensity score in the outcome regression model is a simple
correction of such bias. In addition, we proposed direct estimation of the variance which is a fast and reliable approach for performing inference
compared to computationally extensive approaches such as the bootstrap procedure.

Our simulation studies have shown that the PS one-spline method resulted in less bias without loss of efficiency. Moreover, when the propensity
score model is correctly specified, it performed equivalently and often better than the existing methods under homogeneous treatment effect.
However, under treatment heterogeneity, PS one-spline had notable increase in bias. In contrast, PS two-spline method had the least bias among
all competing methods in this scenario, although it had larger variance than other regression on PS methods. The relatively larger variance of the
PS two-spline approach under homogeneous effect is expected because it relies on a larger model without incorporating any knowledge about the
outcome model, whereas the PS one-spline method gains efficiency by using the extra knowledge that treatment is a constant conditional on the
PS, at the price of an increased bias when such assumption is incorrect. IPTW with stabilized weight had similar to slightly larger variance but much
larger bias than the PS two-spline method. We note that they rely on the same model in the sense that both assume the same PS model and make
no assumption about the outcome model. Therefore, the similar efficiency is expected and the smaller bias of PS two-spline could be attributed
to the smoothing procedure of the nonparametric regression which stabilizes the estimate in finite sample. Although regression on covariates is
an oracle estimator since it fits the true model under homogeneous effect, it frequently encountered the “perfect fit" phenomenon with predicted
probabilities that are exactly zero or one in addition to non-convergence, with a large increase in bias under model misspecification.

The three doubly robust estimators, i.e., AIPTW and TMLE with and without super learning were the least sensitive to model misspecification,
and had generally larger variance than regression based methods that depend on correctly specified corresponding models, due to the fact that
the doubly robust estimators operate on a larger model under which the estimator is consistent as long as one of the outcome or PS model is
correctly specified without necessarily knowing which one is correct. The small bias of TMLE with super learning under model misspecification or
effect heterogeneity suggested that using ensemble learning with data adaptive algorithms may be a promising alternative to reduce bias.

Our results confirm prior findings of [17], which evaluated propensity-based estimators of the marginal relative risk in a rare outcome setting and
found that PS one-spline method performed the best under the null. They also generate a strong non-null treatment heterogeneity scenario and
found that PS one-spline may not work well in this scenario whereas PS two-spline was less biased but with large standard error. They considered
evaluation of both ATE and ATT estimation and compared estimators with and without trimming the PS, which are not included in our study. In
contrast, they did not consider a homogeneous non-null effect or doubly robust estimators which are studied in our simulation.

Our proposed variance estimation also provided valid type | error and high power, although under a rare outcome setting with small number
of events, the power was highly dependent on the strength of the exposure effect. Applying all of the aforementioned methods to a real world
application, we see that the estimated effects were similar across different methods. PS one-spline method had the smallest estimated standard
error. Moreover, super learning with a library of data-adaptive algorithms produced similar estimation and inference as TMLE using parametric
models.

Findings of our simulation study are limited in several aspects. First, we considered only one real-world study, thus the interpretation of our
results may not be generalizable to other studies.In addition, the ACEI and BB study consists of only a moderate number of design-based con-
founders, which may not sufficiently reflect the high-dimensional covariate setting when working with healthcare databases. Nonetheless, the
average number of events per covariate is in fact less than five, which parallels the setting of insufficient information for flexible outcome regres-
sion adjusting for all covariates in previous studies [17]. In addition, the observed exposure rate was uncommon in postmarketing surveillance.
Further study is needed to perform realistic simulation comparing multiple real-world studies with a much larger number of covariates and rang-
ing numbers of events. Moreover, our simulation study is also limited to the particular data generating distribution specified. Future study should
consider settings such as a richer set of homogeneous and heterogeneous treatment effects, exposure prevalences and outcome event rates, near
violations of the positivity assumption, and model misspecifications. A practical challenge is the modeling of high dimensional covariates to esti-
mate the propensity score which is subject to potential misspecification. Recently, the covariate balancing propensity score has been proposed
which mitigates the effect of the potential misspecification of a parametric propensity score model by selecting parameter values that maximize
the resulting covariate balance [44]. It has been successfully incorporated in matching and weighting methods but not yet fully studied in regres-
sion adjustment methods. Therefore, a potential future research is to investigate the performance of regression on a data-driven propensity score
learned targeting covariate balance.

In summary, in postmarketing surveillance with a rare outcome but a common exposure, we suggest the following: first, focus on fitting the
propensity score model to balance covariates and reduce dimensionality; second, apply flexible regression adjustment of propensity score to
control for confounding, and then standardize to a prespecified target population for marginal causal comparison; lastly, use the proposed variance
estimation method which is particularly attractive in the postmarketing surveillance setting using large healthcare databases due to its simple and
fast calculation and good approximation of the variance under a rare outcome setting. If there is evidence of treatment heterogeneity, PS two-
spline or TMLE with super learning may be preferred. If the knowledge about the propensity score model is insufficient but event size is sufficient,

we suggest considering alternative methods such as the TMLE with super learning which had better performance when the propensity score model
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was likely to be misspecified. We also suggest regression on the propensity score strata with standardization as a sensitivity analysis as it fits a step

function of the propensity score with relatively smaller degrees of freedom, which may work particularly well with discrete covariates.
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