FUNDING INFORMATION

This work was supported by grants from the Swedish Research Council, Karolinska Institutet, Karolinska University Hospital, the Hesselman's Research Foundation, the Acta Oto-Laryngologica Foundation, the Nachmanssons Foundation, the Swedish Association for Otorhinolaryngology Head and Neck Surgery (SFOHH), and the European Rhinology Society (ERS).

> Julia Arebron Cecilia Drakskog 1 Ola Winqvist 3 Claus Bachert 1,2,4 iD Susanna Kumlien Georén Lars-Olaf Cardell
${ }^{1}$ Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
${ }^{2}$ Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
${ }^{3}$ Department of Medicine, Immunology and Allergy Unit, Karolinska University Hospital, Stockholm, Sweden
${ }^{4}$ Upper Airways Research Laboratory, Ghent University, Ghent, Belgium

Correspondence

Lars-Olaf Cardell, Professor and Head of Department of ENT-Diseases, Karolinska University Hospital, 14186 Stockholm, Sweden. Email: lars-olaf.cardell@ki.se

ORCID

Julia Arebro (iD https://orcid.org/0000-0002-2584-0941
Claus Bachert (iD https://orcid.org/0000-0003-4742-1665
Lars-Olaf Cardell iD https://orcid.org/0000-0003-0538-9580

REFERENCES

1. Pillay J, Kamp VM, van Hoffen E, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122(1):327-336.
2. Kamp VM, Pillay J, Lammers JW, Pickkers P, Ulfman LH, Koenderman L. Human suppressive neutrophils CD16bright/CD62Ldim exhibit decreased adhesion. J Leukoc Biol. 2012;92(5):1011-1020.
3. Ekstedt S, Safholm J, Georen SK, Cardell LO. Dividing neutrophils in subsets reveals a significant role for activated neutrophils in the development of airway hyperreactivity. Clin Exp Allergy. 2019;49(3):285-291.
4. Chalermwatanachai T, Vilchez-Vargas R, Holtappels G, et al. Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota. Sci Rep. 2018;8(1):7926.
5. Fordham MT, Mulligan JK, Casey SE, et al. Reactive oxygen species in chronic rhinosinusitis and secondhand smoke exposure. Otolaryngol Head Neck Surg. 2013;149(4):633-638.
6. Sauce D, Dong Y, Campillo-Gimenez L, et al. Reduced Oxidative Burst by Primed Neutrophils in the Elderly Individuals Is Associated With Increased Levels of the CD16bright/CD62Ldim Immunosuppressive Subset. J Gerontol A Biol Sci Med Sci. 2017;72(2):163-172.
7. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519-531.
8. Sumagin R, Robin AZ, Nusrat A, Parkos CA. Transmigrated neutrophils in the intestinal lumen engage ICAM-1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol. 2014;7(4):905-915.
9. Millrud CR, Kagedal A, Kumlien Georen S, et al. NET-producing CD16(high) CD62L(dim) neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC. Int J Cancer. 2017;140(11):2557-2567.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome

To the Editor,
Allergen production by house dust mites is influenced directly by antibacterial compounds and digestive enzymes ${ }^{1}$ or indirectly via interactions with nutrients linked to associated microorganisms. ${ }^{1}$ Importantly, heat-stable lipopolysaccharides (endotoxins) from associated Gram-negative bacteria can affect the efficacy of allergen immunotherapy sera produced from house dust mites. ${ }^{1,2}$ House dust mites serve as carriers of bacteria, and it is possible that these bacteria are responsible for the induction of lgE sensitization to microbial antigens. ${ }^{3}$ For this reason, the microbiomes of allergen-producing mites have recently become
the subject of intensive research. ${ }^{4}$ Unfortunately, the existence of variability in microbiome composition among different mite populations or strains is insufficiently considered (Erban et al, ${ }^{5}$ Lee et al^{6}), despite the evidence that different strains of mites may harbor different and persistent microbial communities. In Tyrophagus putrescentiae, for example, these communities include the following bacteria: Wolbachia, Cardinium, Solitalea, Blattabacterium-like (intracellular), Bartonella-like, and Bacillus sp. (gut-associated). ${ }^{5}$ These observations open the question of whether mite strains harboring different bacterial communities differ in allergen production.
TABLE 1 Expression of confirmed and putative allergens in three different strains of Tyrophagus putrescentiae

Gr.	Allergen name	Transcriptome			HMMER Identifier	Koppert		Phillips		Dog		Kop./ Dog P-value	Kop./ Phil. P-value	$\begin{aligned} & \text { Phil./ } \\ & \text { Dog } \\ & \hline P \text {-value } \end{aligned}$
		Sequence	Contigs	Region		Mean	Stderr	Mean	Stderr	Mean	Stderr			
gr2	NPC2 family ${ }^{\text {a,b,c }}$	K_15226	contig_4836	(44..376)	E1_DerP2_DerF2	0.0018	0.0004	0.0282	0.0053	0.0118	0.0005	0.000	0.001	0.010
		K_23671	contig_7944	(801..1241)	E1_DerP2_DerF2	0.0039	0.0007	0.0079	0.0006	0.0044	0.0003	0.484	0.001	0.000
gr3	Trypsin ${ }^{\text {a,c }}$	K_06535	contig_1898	(1254..1919)	Trypsin	0.0124	0.0009	0.0111	0.0006	0.0117	0.0006	0.502	0.251	0.495
		K_02086	contig_555	(1861..2442)	Trypsin	0.0007	0.0001	0.0001	0.0000	0.0001	0.0000	0.000	0.000	0.200
		K_61455	contig_27351	(130..1011)	Trypsin	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.001	0.037	0.002
		K_51335	contig_20689	(221..835)	Trypsin	0.0002	0.0000	0.0003	0.0000	0.0001	0.0000	0.083	0.064	0.002
		K_04018	contig_1132	(1215..2051)	Trypsin	0.0033	0.0004	0.0078	0.0006	0.0087	0.0006	0.000	0.000	0.271
		K_08900	contig_2652	(847..1731)	Trypsin	0.0035	0.0004	0.0018	0.0002	0.0009	0.0001	0.000	0.004	0.003
		K_01128	contig_292	(1012..1611)	Trypsin	0.0077	0.0007	0.0045	0.0003	0.0010	0.0001	0.000	0.002	0.000
		K_11751	contig_3628	(537..1346)	Trypsin	0.0199	0.0010	0.0193	0.0017	0.0131	0.0004	0.000	0.748	0.005
		K_03323	contig_920	(6..1211)	nd.	0.0050	0.0007	0.0026	0.0002	0.0031	0.0001	0.023	0.007	0.022
		K_08886	contig_2647	(357..1211)	Trypsin	0.0013	0.0002	0.0015	0.0001	0.0008	0.0000	0.008	0.339	0.000
gr4	alpha-Amylase ${ }^{\text {b,c }}$	K_08568	contig_2537	(72..1628)	Alpha-amylase	0.0227	0.0028	0.1096	0.0067	0.0992	0.0054	0.000	0.000	0.246
gr5	Unknown ${ }^{\text {b,c }}$	K_12374	contig_3834	(649..1056)	Blo-t-5	0.0600	0.0066	0.0455	0.0041	0.0222	0.0003	0.000	0.083	0.000
		K_11162	contig_3408	(509..895)	Blo-t-5	0.0108	0.0007	0.0088	0.0007	0.0053	0.0002	0.000	0.067	0.000
gr6	Chymotrypsin ${ }^{\text {c }}$	K_02424	contig_654	(959..1786)	Trypsin	0.0167	0.0011	0.0205	0.0020	0.0151	0.0008	0.269	0.118	0.027
		K_22273	contig_7404	(2029..2520)	Glyco_hydro_20	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.013	0.060	0.151
		K_36850	contig_13356	(412..1347)	Trypsin	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.095	0.105	0.642
		K_35901	contig_12940	(10..912)	Trypsin	0.0005	0.0001	0.0005	0.0000	0.0004	0.0000	0.276	0.746	0.183
		K_38741	contig_14263	(653..1441)	Trypsin	0.0007	0.0001	0.0004	0.0000	0.0003	0.0000	0.013	0.045	0.169
gr7	Bactericidal-permeability increas-ing-like protein ${ }^{\text {b,c }}$	K_26316	contig_8979	(202..861)	nd.	0.0039	0.0003	0.0019	0.0001	0.0013	0.0001	0.000	0.000	0.002
		K_00425	contig_109	(152..799)	Grp7_allergen	0.0316	0.0036	0.0240	0.0021	0.0450	0.0024	0.011	0.090	0.000
		K_03162	contig_881	(87..899)	Grp7_allergen	0.0006	0.0001	0.0013	0.0002	0.0052	0.0004	0.000	0.005	0.000
		K_09582	contig_2882	(369..1007)	Grp7_allergen	0.0218	0.0031	0.0465	0.0014	0.0338	0.0011	0.006	0.000	0.000
gr8	Glutathione S-transferase ${ }^{c}$	K_10715	contig_3267	(46..738)	GST_C_3	0.0046	0.0002	0.0033	0.0002	0.0018	0.0001	0.000	0.001	0.000
		K_49191	contig_19504	(2291..2989)	GST_C_3	0.0005	0.0001	0.0003	0.0000	0.0001	0.0000	0.004	0.087	0.006
		K_03001	contig_838	(1454..1765)	GST_C_3	0.0004	0.0000	0.0008	0.0001	0.0003	0.0000	0.190	0.001	0.000
		K_14921	contig_4711	(1141..1797)	GST_C_3	0.0216	0.0010	0.0226	0.0009	0.0115	0.0004	0.000	0.476	0.000
		K_15634	contig_4972	(937..1608)	GST_N	0.0054	0.0003	0.0063	0.0006	0.0045	0.0002	0.018	0.170	0.011
		K_41934	contig_15817	(2077..2487)	GST_C_3	0.0009	0.0001	0.0010	0.0001	0.0005	0.0000	0.002	0.300	0.000

TABLE 1 (Continued)

Gr.	Allergen name	Transcriptome			HMMER Identifier	Koppert		Phillips		Dog		Kop./ Dog P-value	Kop./ Phil. P-value	Phil./ Dog P-value
		Sequence	Contigs	Region		Mean	Stderr	Mean	Stderr	Mean	Stderr			
gr10	Tropomyosin ${ }^{\text {a,b,c }}$	K_04302	contig_1207	(390..1244)	Tropomyosin	0.0235	0.0007	0.0509	0.0025	0.0680	0.0014	0.000	0.000	0.000
gr11	Paramyosin ${ }^{\text {c }}$	K_04929	contig_1384	(206..2944)	Myosin_tail_1	0.0466	0.0019	0.0793	0.0061	0.1422	0.0049	0.000	0.000	0.000
gr13	Fatty acid-binding protein ${ }^{\text {a,b,c }}$	K_01655	contig_449	(624..1316)	Lipocalin	0.1154	0.0068	0.1128	0.0063	0.1133	0.0022	0.781	0.783	0.938
		K_11403	contig_3502	(722..1117)	Lipocalin	0.0047	0.0004	0.0119	0.0014	0.0147	0.0007	0.000	0.001	0.097
		K_20937	contig_6885	(3..302)	fn3	0.0001	0.0000	0.0002	0.0000	0.0002	0.0000	0.187	0.110	0.536
		K_37766	contig_13786	(1487..1660)	nd.	0.0001	0.0000	0.0001	0.0000	0.0005	0.0000	0.000	0.356	0.000
		K_00427	contig_109	(2063..2728)	Lipocalin	0.0119	0.0016	0.0200	0.0009	0.0148	0.0008	0.123	0.001	0.001
		K_21264	contig_6995	(3604.4167)	Lipocalin	0.0012	0.0001	0.0006	0.0000	0.0009	0.0001	0.067	0.002	0.012
		K_11177	contig_3412	(5869..6336)	Lipocalin	0.0105	0.0008	0.0048	0.0002	0.0040	0.0002	0.000	0.000	0.024
		K_11356	contig_3483	(3..302)	Lipocalin	0.0002	0.0000	0.0001	0.0000	0.0001	0.0000	0.000	0.021	0.000
gr16	Gelsolin/villin	K_04861	contig_1366	(10167..10985)	Gelsolin	0.0060	0.0004	0.0051	0.0002	0.0042	0.0002	0.002	0.076	0.004
gr20	Arginine kinase ${ }^{\text {c }}$	K_05860	contig_1679	(199..1269)	ATP-gua_Ptrans	0.0374	0.0015	0.0568	0.0019	0.0723	0.0007	0.000	0.000	0.000
gr24	Ubiquinol-cytochrome c reductase binding protein	K_05869	contig_1683	(1453..1809)	UCR_14kD	0.0067	0.0002	0.0047	0.0002	0.0046	0.0002	0.000	0.000	0.750
gr25	Triosephosphate isomerase ${ }^{\text {c }}$	K_04799	contig_1354	(1295..2038)	TIM	0.0177	0.0010	0.0155	0.0007	0.0137	0.0004	0.004	0.099	0.041
gr27	$\text { Serpin }{ }^{\text {c }}$	K_07442	contig_2180	(922..2037)	Serpin	0.0014	0.0002	0.0013	0.0001	0.0004	0.0000	0.002	0.592	0.000
		K_08004	contig_2364	(109..972)	Serpin	0.0035	0.0002	0.0008	0.0001	0.0007	0.0001	0.000	0.000	0.553
		K_15320	contig_4863	(16.1209)	Serpin	0.0007	0.0001	0.0011	0.0001	0.0008	0.0001	0.447	0.010	0.012
		K_17811	contig_5752	(182..1435)	Serpin	0.0087	0.0006	0.0033	0.0003	0.0032	0.0002	0.000	0.000	0.823
		K_36167	contig_13049	(707..1570)	Serpin	0.0024	0.0003	0.0060	0.0004	0.0043	0.0003	0.001	0.000	0.003
		K_01124	contig_290	(4967..6148)	Serpin	0.0092	0.0005	0.0052	0.0003	0.0049	0.0002	0.000	0.000	0.546
		K_03687	contig_1032	(464..1738)	Serpin	0.0199	0.0019	0.0128	0.0018	0.0076	0.0004	0.000	0.019	0.017
		K_05988	contig_1725	(2519..3862)	Serpin	0.0042	0.0002	0.0017	0.0001	0.0016	0.0001	0.000	0.000	0.490
		K_38933	contig_14360	(655..1860)	Serpin	0.0011	0.0002	0.0009	0.0001	0.0007	0.0001	0.070	0.356	0.149
		K_49318	contig_19580	(305..1471)	Serpin	0.0002	0.0001	0.0027	0.0002	0.0018	0.0006	0.017	0.000	0.156
		K_55291	contig_23036	(1046..2068)	Serpin	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.830	0.485	0.239

TABLE 1 (Continued)

Gr.	Allergen name	Transcriptome			HMMER Identifier	Koppert		Phillips		Dog		$\begin{array}{l}\text { Kop./ } \\ \text { Dog }\end{array}$ p-value	Kop./ Phil. P-value	Phil./ Dog P-value
		Sequence	Contigs	Region		Mean	Stderr	Mean	Stderr	Mean	Stderr			
gr28	Heat shock protein	K_03237	contig_900	(102..1025)	HSP70	0.0035	0.0005	0.0011	0.0001	0.0020	0.0001	0.011	0.000	0.000
		K_09808	contig_2962	(158..1363)	HSP70	0.0303	0.0031	0.0057	0.0004	0.0090	0.0007	0.000	0.000	0.001
		K_10835	contig_3314	(2320..3324)	HSP70	0.0714	0.0044	0.0235	0.0015	0.0425	0.0032	0.000	0.000	0.000
		K_13947	contig_4387	(1051..1548)	HSP70	0.0217	0.0011	0.0068	0.0005	0.0095	0.0007	0.000	0.000	0.008
		K_25236	contig_8554	(190..1659)	HSP70	0.0037	0.0004	0.0030	0.0002	0.0029	0.0001	0.043	0.128	0.570
		K_31610	contig_11117	(258..2126)	HSP70	0.0003	0.0001	0.0005	0.0000	0.0003	0.0000	0.993	0.208	0.059
		K_33180	contig_11776	(273.2258)	HSP70	0.0003	0.0001	0.0002	0.0000	0.0002	0.0000	0.344	0.555	0.436
gr30	Ferritin ${ }^{\text {c }}$	K_02597	contig_710	(2655..3182)	Ferritin	0.0655	0.0026	0.0248	0.0018	0.0163	0.0007	0.000	0.000	0.001
gr31	Cofilin ${ }^{\text {c }}$	K_06133	contig_1780	(42..488)	Cofilin_ADF	0.0143	0.0003	0.0082	0.0002	0.0070	0.0002	0.000	0.000	0.002
gr33	alpha-Tubulin	K_06195	contig_1796	(228..1199)	Tubulin_C	0.0234	0.0021	0.0108	0.0002	0.0148	0.0007	0.003	0.000	0.000
gr33		K_13397	contig_4189	(1072..2208)	Tubulin_C	0.0035	0.0002	0.0023	0.0001	0.0028	0.0001	0.021	0.001	0.002
gr34	Troponin $\mathrm{C}^{\text {a }}$	K_22454	contig_7471	(218.679)	FAM91_C	0.0062	0.0003	0.0112	0.0007	0.0122	0.0002	0.000	0.000	0.224
gr35	Aldehyde	K_11771	contig_3635	(907.2040)	Aldedh	0.0591	0.0062	0.0375	0.0021	0.0214	0.0008	0.000	0.007	0.000
	dehydrogenas	K_16087	contig_5142	(44.1084)	Aldedh	0.0389	0.0035	0.0289	0.0013	0.0223	0.0009	0.001	0.021	0.001
gr36	Profilin	K_00095	contig_29	(3952..4347)	Profilin	0.0180	0.0013	0.0091	0.0003	0.0070	0.0003	0.000	0.000	0.000
	Unknown ${ }^{\text {d }}$	K_07970	contig_2348	(1974.2471)	nd.	0.0011	0.0003	0.0044	0.0004	0.0003	0.0000	0.022	0.000	0.000
		K_12999	contig_4063	(6000.6710)	nd.	0.0034	0.0003	0.0032	0.0001	0.0018	0.0001	0.001	0.401	0.000
		K_15940	contig_5084	(5.712)	C2	0.0058	0.0004	0.0065	0.0004	0.0072	0.0003	0.015	0.220	0.265
		K_21203	contig_6969	(422..1216)	nd.	0.0086	0.0010	0.0045	0.0005	0.0050	0.0003	0.007	0.004	0.366
		K_00342	contig_86	(965..1636)	nd.	0.0207	0.0028	0.0264	0.0019	0.0300	0.0013	0.014	0.117	0.139
		K_25185	contig_8537	(844..1806)	nd.	0.0031	0.0003	0.0032	0.0000	0.0028	0.0001	0.383	0.794	0.005
gr38	Bacterial Iytic	K_42057	contig_15866	(69..503)	NLPC_P60	0.0007	0.0002	0.0004	0.0001	0.0002	0.0000	0.033	0.125	0.089
	enzyme ${ }^{c}$	K_01620	contig_440	(1482..1997)	NLPC_P60	0.0004	0.0001	0.0005	0.0000	0.0003	0.0001	0.341	0.205	0.014

[^0]

FIGURE 1 Allergen expression in three strains of the mite Tyrophagus putrescentiae with different microbiome compositions. The mite microbiomes were characterized based on V1-V3 16s RNA barcode sequencing (A). Differences in transcript expression among the mite strains were visualized by nonmetric multidimensional scaling (B); only sequences contributing to at least 75% of the total variability (SIMPER test) between the mite strains are shown. Differences in the transcript expression of selected immunogenic proteins are shown on the heatmap (C)

Until now, only eight allergens, Tyr p 2, 3, 10, 13, 28, 34, 35, and 36 , have been described in T. putrescentiae (IUIS/WHO allergen database). In this study, we investigated the expression of these allergens (and additional putative allergens predicted by us in silico) in three different strains of T. putrescentiae with known microbiomes. ${ }^{5}$ We used V1-V3 16S RNA sequence data from the three strains of mites. ${ }^{5}$ The transcriptomes were obtained by Illumina HiSeq 2500, and the raw reads were deposited in the SRA database (SUB4527480) (Table S1). The reads were processed and assembled in CLC Genomic Workbench v. 11 (Qiagen) (Tables S2-S4); the resulting assembly was then annotated by Prokka. ${ }^{7}$ The identified cDNA and protein sequences were compared to sequences of known mite allergens using BLAST, and the sequences with the lowest E values were compared manually to known and predicted allergen protein sequences (see Supplementary Material and methods).

We obtained 21 transcriptomes (seven biological replicates per every strain) and found 78 transcripts belonging to the eight known allergens of T. putrescentiae (see Supplementary Results); we
also found 16 putative allergens based on sequence similarity with other mite species (groups $4-8,11,14,16,20,24,25,27,30,31,33$, and 38; Table 1). ${ }^{8}$ Our BLAST search showed high similarity of our transcriptomes to some contigs of the genomic assembly of the fly Rhagoletis zephyria from GenBank (GCF_001687245.1). Several independent GenBank sequences of T putrescentiae allergens also showed high identities ($99 \%-100 \%$) to the "R. zephyria" genome. These data suggest that the GenBank assembly of R. zephyria contains a significant portion of T. putrescentiae DNA (nearly 100 Mb), most likely due to inadvertent laboratory contamination. Such contamination is not surprising because T. putrescentiae commonly infects insect and fungal cultures in the laboratory. Nevertheless, the chimeric mite-fly GenBank "R. zephyria" genome facilitated our search for mite proteins (Table 1). We also detected polymorphisms in several allergens (Table 1). Coding sequences of some allergens were found in different contigs, for example, $2,3,5,6,7,8,13,27,28,35$, and 36 (Table 1).

In this study, we employ an approach to continue on a recent description of the allergen-producing mite microbiome. ${ }^{6}$ Lee et al ${ }^{6}$
demonstrated that the microbiome profiles of Dermatophagoides farinae, Dermatophagoides pteronyssinus, and T. putrescentiae change after antibiotic treatment and bacteria that influence the endotoxin concentration. ${ }^{6}$ In this study, we set out to show that bacteria not only affect the endotoxin concentration but also their presence is correlated with the mite allergen expression level. The authors did not consider the intraspecies variability of the microbiome. For example, Solitalea-like (Sphingobacteriaceae_JN236497) and Bartonella-like bacteria (Bartonella_JX001274) form the microbiome of the Korean strain of T. putrescentiae. ${ }^{6}$ We previously observed that strains of T. putrescentiae are inhabited by unique microbial communities formed by intracellular (Wolbachia, Cardinium), putative intracellular (Solitalea, Blattabacteriumlike bacteria), and gut-associated symbionts (Bartonella-like bacteria, Bacillus sp.). ${ }^{5}$ All of these strains have unique and stable microbiome compositions with different proportions of the abovementioned bacterial taxa, suggesting a question of whether the allergen production of strains with different symbionts is similar or different.

Expression analyses indicated significant differences in transcript abundances among the three tested mite strains (ANOSIM perm. $=1000$; $R=0.9518, P<0.001$). Among all the mite strains, the differences in allergen transcript expression levels were strong (Figure 1), as shown by nonmetric multidimensional scaling (NMDS; Table 1). The profiles of both intracellular symbionts (Wolbachia and Blattabacterium-like) significantly contributed ($P<0.001$) to the explained variability of transcript expression after forward variable selection (Figure 1A).

In the two mite strains with intracellular bacterial symbionts (Phillips and Dog), many immunogenic proteins showed increased expression levels (Figure 1B), as shown by NMDS, where these groups were separated from the group lacking these bacteria along the x-axis: alpha-amylase (group 4), chymotrypsin (group 6), bactericidal-permeability increasing-like protein (group 7), tropomyosin (Tyr p 10), paramyosin (group 11), fatty acid-binding protein (Tyr p 13), arginine kinase (group 20), and an unknown group 36 allergen. In contrast, the Koppert population (no intracellular bacteria) had higher expression of allergen group 5, heat shock protein (Tyr p 28), ferritin (group 30), and aldehyde dehydrogenase (Tyr p 35) than the mite populations having intracellular bacteria, Phillips and Dog (Figure 1). The Koppert population is connected to highly abundant Bacillus cereus, a bacterium previously shown to be associated with the feces of T. putrescentiae. ${ }^{9}$ The y-axis of our NMDS analysis separates the two latter populations: The Dog population is characterized by higher expression of bacteri-cidal-permeability increasing-like protein (group 7), tropomyosin (Tyr p 10), paramyosin (group 11), and arginine kinase (group 20), while the relative expression of alpha-amylase (group 4), chymotrypsin (group 6), bactericidal-permeability increasing-like protein (group 7), and fatty acid-binding protein (Tyr p 13) is higher in the Phillips population. The increased expression of muscle proteins/ allergens (tropomyosin and paramyosin) and digestive enzymes (amylase and chymotrypsin) suggests a correlation with increased mite population growth. The growing mite cultures produce more juveniles that can contain higher muscle proportion in their bodies than adults due to reduced reproductive organs.

Previous experiments have demonstrated that the allergen expression in D. pteronyssinus is quantitatively and/or qualitatively influenced by mite development, sex, and environment. ${ }^{10}$ Here, we demonstrate that differences among mite strains are correlated with the presence and absence of intracellular symbionts in individuals taken from the same population. This sampling technique is used by the majority of mite allergen studies.

In conclusion, our results indicate that allergen expression is variable across different mite populations, and this phenomenon can be linked to differences in their microbiome compositions. It is possible that due to symbiotic microbes, the mite population in the natural conditions produces different levels of allergens, although belong to the same species of mites. However, establishing whether this relationship is causative or correlational requires further experiments. Mite microbiome composition appears to be an important factor that should be considered in allergen production.

ACKNOWLEDGMENTS

The authors are obligated to Martin Markovic for technical support. JH was supported by a project of the Ministry of Education, Youth and Sports of the Czech Republic (no. CZ.02.2.69/0.0/0.0/16_027/ 0008503), MN and TE by the Czech Science Foundation: GACR no. 19-09998S, BS was supported by project RO0418 of the Ministry of Agriculture of the Czech Republic. PBK was supported by the Russian Foundation for Basic Research (grant no. 18-04-01092) and by the Russian Science Foundation (grant no. 16-14-10109).

CONFLICTS OF INTEREST

The authors declare that they have no relevant conflicts of interest.

KEYWORDS

Bartonella, Blattabacterium, house dust mite, intracellular symbionts, stored product mite, Wolbachia

> Jan Hubert ${ }^{1}$ (iD Marta Nesvorna ${ }^{1}$ (iD Pavel Klimov, ${ }^{2,3}$ (iD Scot E. Dowd ${ }^{4}$ (iD Bruno Sopko ${ }^{1}$ (iD Tomas Erban ${ }^{1}$ (iD)
> ${ }^{1}$ Drop Research Institute, Prague, Czechia
> ${ }^{2}$ Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
> ${ }^{3}$ Institute of Biology, University of Tyumen, Tyumen, Russia
> ${ }^{4}$ MR DNA (Molecular Research LP), Shallowater, Texas

Correspondence
Jan Hubert, Crop Research Institute, Drnovska 507, Praha 6, Ruzyne, Prague, CZ-16106, Czechia.

Email: hubert@vurv.cz

ORCID

Jan Hubert https://orcid.org/0000-0003-0740-166X
Marta Nesvorna (iD https://orcid.org/0000-0003-0572-4131
Pavel Klimov iD https://orcid.org/0000-0002-9966-969X
Scot E. Dowd iD https://orcid.org/0000-0002-6296-1427
Bruno Sopko iD https://orcid.org/0000-0002-5580-1871
Tomas Erban https://orcid.org/0000-0003-1730-779X

REFERENCES

1. Trivedi B, Valerio C, Slater JE. Endotoxin content of standardized allergen vaccines. J Allergy Clin Immunol. 2003;111(4):777-783.
2. Valerio CR, Murray P, Arlian LG, Slater JE. Bacterial 16S ribosomal DNA in house dust mite cultures. J Allergy Clin Immunol. 2005;116(6):1296-1300.
3. Dzoro S, Mittermann I, Resch-Marat Y, et al. House dust mites as potential carriers for $\lg E$ sensitization to bacterial antigens. Allergy. 2018;73(1):115-124.
4. Kim JY, Yi M-H, Hwang Y, et al. 16S rRNA profiling of the Dermatophagoides farinae core microbiome: Enterococcus and Bartonella. Clin Exp Allergy. 2018;48(5):607-610.
5. Erban T, Ledvinka O, Nesvorna M, Hubert J. Experimental manipulation shows a greater influence of population than dietary
perturbation on the microbiome of Tyrophagus putrescentiae. Appl Environ Microbiol. 2017;83(9):e00128-17.
6. Lee J, Kim JY, Yi M-H, et al. Comparative microbiome analysis of Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Tyrophagusputrescentiae.JAllergyClinImmunol.2019;143(4):1620-1623.
7. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-2069.
8. Allergen Nomenclature. Astigmata. WHO/IUIS Allergen Nomenclature Sub-Committee; 2019. http://www.allergen.org/ search.php?TaxOrder=Astigmata. Accessed February 8, 2019.
9. Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Front Physiol. 2016;7:53.
10. Vidal-Quist JC, Ortego F, Lombardero M, Castanera P, HernandezCrespo P. Allergen expression in the European house dust mite Dermatophagoides pteronyssinus throughout development and response to environmental conditions. Med Vet Entomol. 2015;29(2):137-146.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Inadequate knowledge of allergen immunotherapy among athletes with allergic rhinitis: A post hoc analysis

To the Editor:
In our recent paper-based questionnaire survey of 636 German professional and hobby athletes, we observed a high prevalence of allergic rhinitis ($n=269 ; 42.6 \%$ in total, 36.1% confirmed by a physician, 6.5% self-diagnosed). ${ }^{1}$ We presented evidence suggesting that this condition substantially impairs athletes' physical fitness. The negative impacts of allergic rhinitis on sport performance can be lessened by allergen immunotherapy (AIT), whereas symptomatic medications elicit only modest effects on sport performance and physical fitness in this particular group of allergic rhinitis sufferers. ${ }^{1}$

This post hoc analysis was conducted in the above-mentioned 269 athletes to better understand (a) athletes' knowledge of AIT, (b) the reasons why most athletes had not been treated with AIT, and (c) the demographic and diagnostic factors influencing the athletes' decision to undergo AIT.

Methods of the study and questionnaire are presented in Online Repository.

Although the majority of athletes (230 out of 265 athletes who responded to this question; 86.8\%) had "heard" about AIT, most (213; 80.4\%) were familiar with the conventional subcutaneous
immunotherapy. The noninvasive route of administration with its better safety and tolerability profile was largely unknown to them: 57 out of 265 (21.5\%) of athletes were aware of sublingual immunotherapy with drops and 37 (14.0\%) with tablets. About half of the athletes (110 out of 265, 41.5\%) knew about short-term subcutaneous immunotherapy comprising 4-7 injections per year. Even fewer athletes were familiar with pre-co-seasonal sublingual immunotherapy administered before and during the pollen season: 27 out of 265 (10.2\%) were aware of drops and 19 (7.2%) of tablets.

The athletes' knowledge about AIT came mostly from physicians (69.7\%). Hardly any athletes obtained information from public channels (academic literature: 6.1\%; the Internet: 5.3\%; newspaper: 4.8\%; television/radio: 3.1\%; pharmacy: 3.1\%; German Allergy and Asthma Association: 1.8%). Only 15.4% of athletes evaluated their physician's consultation regarding AIT as being "good" (score 6-7), whereas 50.4% gave a "moderate" (score $3-5$) and 34.2% "poor" rating (score 1-2). These results mirrored the athletes' knowledge of AIT; only 8.3% of athletes rated their knowledge as being "good" (score 6-7), 56.4% as "moderate" (score $3-5$), and 35.3% as "poor" (score 1-2).

[^0]: Note: The numbers are means and standard errors in percent. The statistical significance of differences in expression levels across the mite strains was estimated by Metastats using 100000 permutations, and P -values for pairwise comparison after Bonferroni correction are shown. The significant differences are indicated by bold. Sequences marked with gray shading contributed 75% of the variability between the mite strains (SIMPER test).
 ${ }^{\text {a }}$ Known allergen (WHO/IUIS-T. putrescentiae) in GenBank.
 ${ }^{\mathrm{b}}$ Similarity to Tputrescentiae sequences in GenBank.
 'Similarity to the GenBank genomic assembly GCF_001687245.1 (Rhagoletis zephyria contaminated with T. putrescentiae).
 ${ }^{d}$ WHO/IUIS differences between Tyr p 36 (profilin) and Der f 36, Der p 36 (unknown protein), nd: unidentified by HMMER.

