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ABSTRACT

Although genome-wide association studies have been successful in detecting associations with
common variants, there is currently an increasing interest in identifying low-frequency and
rare variants associated with complex traits. Next-generation sequencing technologies make it
feasible to survey the full spectrum of genetic variation in coding regions or the entire genome.
The association analysis for rare variants is challenging, and traditional methods are ineffective,
however, due to the low frequency of rare variants, coupled with allelic heterogeneity. Recently
a battery of new statistical methods has been proposed for identifying rare variants associated
with complex traits. These methods test for associations by aggregating multiple rare variants
across a gene or a genomic region or among a group of variants in the genome. In this unit, we
describe key concepts for rare variant association for complex traits, survey some of the recent
methods, discuss their statistical power under various scenarios, and provide practical guidance on
analyzing next-generation sequencing data for identifying rare variants associated with complex
traits. Curr. Protoc. Hum. Genet. 78:1.26.1-1.26.22. C© 2013 by John Wiley & Sons, Inc.
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INTRODUCTION
To date, numerous genes involved in dis-

ease and trait etiology have been identified
through linkage and association studies. For
Mendelian diseases, usually linkage analysis
is used to localize the genomic regions har-
boring causal variants, and then fine map-
ping methods are used to pinpoint causal
genes and variants (see UNIT 1.19 for link-
age analysis). Thus far, the underlying genetic
cause of ∼3,500 Mendelian disorders is known
(http://www.ncbi.nlm.nih.gov/omim). Unlike
Mendelian diseases, which are caused by rare
high-penetrant genetic variants, the genetic ba-
sis of complex traits remains largely unknown.
Until recently, the pursuit of an understand-
ing of the genetic etiology of complex traits
has been almost solely based on the common-
disease common-variants (CDCV) hypothe-
sis (Smith and Lusis, 2002; Hirschhorn and
Daly, 2005; Iyengar and Elston, 2007; Schork
et al., 2009), which asserts that common com-
plex diseases are due to common variants—
e.g., minor allele frequency (MAF) >0.05—

with usually little or no allelic heterogene-
ity within a locus. Single-nucleotide polymor-
phisms (SNPs) are the most prevalent form
of common genetic variation and become de
facto markers for localizing common disease-
causing variants. Because neighboring com-
mon variants can be in strong linkage dise-
quilibrium (LD) and thus provide redundant
information, it is only necessary to survey
a subset of SNPs (i.e., tag-SNPs) to achieve
genome-wide coverage (see also UNIT 1.4).
When disease-causing common variants are
in strong LD with one or more tagSNPs,
the genetic effects of causal variants lead
to association signals that are observable
in tagSNPs; this is the basis for Genome-
Wide Association Studies (GWAS), which
makes genotyping genome-wide tagSNPs
on thousands of samples using microar-
ray chips a cost-effective strategy. By de-
sign, this is an indirect mapping strategy
that rarely directly tests causal variants. To
date, >8,500 associated SNPs have been iden-
tified for a variety of complex traits (the
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National Human Genome Research Institute
Catalog of Published Genome-Wide As-
sociation Studies, http://www.genome.gov/
gwastudies). Nevertheless, most identified
common associated SNPs only have weak ge-
netic effects (e.g., odds ratio <1.5), and collec-
tively these identified variants only account for
a small proportion of heritability for most com-
plex traits (Maher, 2008; Manolio et al., 2009),
suggesting that other major mechanisms are
involved in the genetic etiology of complex
traits. Of great interest is the common disease
rare variants (CDRV) hypothesis (Smith and
Lusis, 2002; Iyengar and Elston, 2007; Schork
et al., 2009), which asserts that common dis-
eases are due to rare variants, and that con-
trary to the CDCV hypothesis, rare variants
often exhibit extreme allelic heterogeneity. To
date, several studies have unraveled functional
roles of rare variants in complex traits (Cohen
et al., 2004; Ahituv et al., 2007; Romeo et al.,
2007; Bodmer and Bonilla, 2008; Ji et al.,
2008), making studying the role of rare vari-
ants in complex trait etiology an attractive av-
enue to pursue. Rare variants are inefficiently
tagged in GWAS due to the low correlation be-
tween rare variants, e.g., MAF <1%, and com-
mon tagSNPs with a much higher MAF, e.g.,
>5% (Li and Leal, 2008). Therefore, associa-
tions with causal rare variants will usually be
missed in GWAS. Sequencing can uncover the
full spectrum of genetic variation and is the
optimal approach to identifying rare genetic
variants for association studies. Due to the
advancement of cost-effective next-generation
sequencing (NGS) technologies (Mardis,
2008; Shendure and Ji, 2008), it is now fea-
sible to sequence whole exomes (i.e., the pro-
tein coding regions) in hundreds or even thou-
sands of samples, and soon it will be practical
to sequence whole genomes. Because of the
continuously decreasing cost of sequencing,
our understanding of the allelic architecture
of complex traits will accumulate gradually in
the near future, when more whole-genome or
-exome sequencing studies are carried out.

Traditional analysis methods used in
GWAS are single-marker tests, where SNPs
are tested individually and multiple testing is
corrected to control the family-wise error rate
(FWER). Due to the extensive LD among com-
mon SNPs, permutation-based approaches can
be used to account for the inter-SNP correla-
tion. For GWAS, however, using permutation-
based methods to control for FWER is
computationally intensive, and so it is not prac-
tical for large-scale studies. An alternative ap-
proach is to estimate the effective number of

independent tests based on the LD patterns
and to use the Bonferroni approach to con-
trol for FWER. In practice, a p-value of <5 ×
10−8 is used to declare genome-wide statistical
significance based on European populations,
corresponding to correcting for one million
independent tests (Dudbridge and Gusnanto,
2008). This cutoff is still used even if less or
more than one million tests are performed. Al-
though testing individual variants for associ-
ation can also be done for rare variants, it is
inevitably underpowered (Li and Leal, 2008),
unless the sample size is excessively large. To
address the challenges, numerous novel anal-
ysis strategies have been developed to identify
rare variants associated with complex traits.
This battery of new methods, often referred
to as collapsing, group-wise, or pooled ap-
proaches, generally involves aggregating mul-
tiple rare variations in a gene or region or any
arbitrary set in the genome, and testing the as-
sociation effect of the group of rare variants
as a whole. In this commentary, we describe
some key concepts related to rare variants,
summarize recently developed aggregation
methods, provide practical guidance on the
analysis of rare variation obtained from se-
quencing, and discuss further challenges that
need to be addressed for rare variant associa-
tion studies.

KEY CONCEPTS

LD, Association Mapping, and Rare
Variants

Recall that linkage disequilibrium (LD) is
the nonrandom association of alleles at differ-
ent loci, and the co-occurrence of alleles at
two loci on the same haplotype is either more
or less frequent than expected from random
pairing of the two alleles based on their al-
lele frequencies (Hartl and Clark, 2007). Let A
and a denote the two alleles at locus 1, and B
and b represent the two alleles at locus 2, with
corresponding allele frequencies of pA, pa =
1 − pA for locus 1 and pB, pb = 1 − pB for lo-
cus 2. Without loss of generality (WLOG), we
assume that the minor alleles at the two loci are
A and B, respectively, and pA< = pB. Denote
the frequency of the two-locus haplotype HAB

as pAB. Then the LD between the two loci is
DAB = pAB-pA*pB, where pA*pB is the expected
frequency of HAB under the assumption of no
association between the two loci (i.e., no LD).

The concept of LD is the basis for LD-
based indirect association mapping, where an
investigator analyzes a variant that is in LD
with the causal variant instead of directly
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analyzing the causal variant. For example,
when the underlying causal allele is A at lo-
cus 1 and DAB! = 0, the frequency of allele
A in cases is different from that in controls.
Due to the LD between A and B, we will also
observe differential frequencies of allele B in
cases versus controls. Therefore it is not nec-
essary to directly test the causal SNPs, and
LD-based association mapping is the strategy
that was most commonly employed prior to the
sequencing era. There are different measures
of LD, and for association studies the most
relevant measure is r2, which is the correlation
coefficient between alleles at the two loci. It
can be calculated as r2 = DAB

2/pA(1 − pA)pB

(1 − pB) = (pAB − pA*pB)2/ pA(1 − pA)pB

(1 − pB). There is a simple relationship be-
tween the sample size and r2 when the under-
lying disease model is multiplicative; that is,
for fixed statistical power, the sample size re-
quired is inversely proportional to r2 (Pritchard
and Przeworski, 2001). For example, the sam-
ple size needs to be doubled to achieve the
same power if the r2 between the tag SNP and
the casual variant is 0.5. It is obvious that the
higher r2 is, the better power for association
studies.

There is extensive LD in the human
genome. The HapMap project (Altshuler
et al., 2010) comprehensively surveyed the LD
among common variants in various popula-
tions. A necessary condition to achieve high
r2 is the similarity of the allele frequencies
at two loci. For given allele frequencies, the
maximum r2 is achieved, but not necessarily
equal to 1, when the two minor alleles are on
the same haplotype and the haplotypes were
not broken by historical recombination events.
In this case, the two loci are in complete LD
(i.e., D’ = 1) and only three haplotypes (HAB,
HaB, and HBB, with pAB = pA) are observed
in the population. The maximum r2 between
the two loci is (pAB-pA*pB)2/pA(1 − pA)pB

(1 − pB) = pA(1 − pB)/pB(1 − pA). Only
when pA = pB, i.e., the variant frequency is
exactly the same for the two loci, r2 = 1; in
this case, only two haplotypes (HAB and Hab)
are observed and the two loci are in perfect
LD. When the allele frequencies of two loci
are very different, the r2 will never be very
large. To see this, let’s assume pA<<pB and
1 − pA ≈ 1. Then the maximum r2 ≈ pA/pB*
(1 − pB), which is <<1, since pA is very small
compared with pB. This indicates that causal
rare variants are mostly likely to be missed in
GWAS for single-marker tests, since GWAS
chips are designed to include predominantly
common variants (e.g., MAF > 0.05).

When considering haplotypes across multi-
ple SNPs, some rare causal variants are likely
to be tagged by rare haplotypes, and meth-
ods based on rare haplotype analysis (Li et al.,
2010a; Zhu et al., 2010) may be used to iden-
tify such signals. It is expected, however, that
the majority of unobserved causal rare vari-
ants reside on common haplotypes, and rare
haplotype-based methods may tag only a small
proportion of causal rare variants. Other strate-
gies are therefore in order for mapping rare
variants associated with complex traits. Let’s
assume A and B are the minor alleles of two
rare variants, that is, pA<<1, pB<<1, and 1 −
pA ≈ 1, 1 − pB ≈ 1. We also assume WLOG
that the A allele was introduced in the popula-
tion later than allele B. By chance, it is more
likely that allele A occurred on the haplotypes
not carrying the B allele. In this case there
are three haplotypes (HAb, HaB, and Hab) af-
ter the introduction of the A allele, and r2 =
(0 − pA*pB)2/pA(1 − pA)pB(1 − pB) ≈ pApB ≈
0. Due to the extremely weak r2 between rare
variants, it is clear that LD-based indirect map-
ping via traditional genotyping is not a viable
option for rare variants.

Thus, sequencing seems to be the opti-
mal approach to uncover and identify asso-
ciated rare variants. Since association tests are
performed directly on potentially causal vari-
ants, sequencing-based association analysis is
a direct mapping approach, but without the
need for the fine mapping step following LD-
based association studies. Traditional Sanger
sequencing (Sanger et al., 1977) is labori-
ous, low-throughput, and expensive. On the
other hand, NGS technologies make it feasi-
ble to sequence targeted regions, exomes, and
whole genomes of thousands of samples, and
hold great promise for genetic studies of com-
plex traits. The 1000 Genomes Project (1000
Genomes Project Consortium, 2010; Abecasis
et al., 2012) utilized NGS platforms to provide
a comprehensive catalog of genetic variation in
various populations. NGS is routinely used for
genetic studies of various traits and is expected
to reveal a comprehensive allelic architecture
and genetic etiology for complex traits in the
near future.

Sequencing Strategies
For sequencing studies, one of the key fac-

tors that determines the accuracy and com-
pleteness of the underlying genetic variation
spectrum is the sequencing depth of cover-
age, which is defined as the average num-
ber of reads mapping to each position in
the genome (see UNITS 18.2, 18.3, & 18.4). For
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example, let the total number of sequenced
reads be N, each with R bases. The depth of
coverage can be calculated as N*R/L, where
L is the length of the genomic regions. For
genome-level coverage, L = ∼3 × 109, the
total length of the genome. For exome-level
coverage, L is the total length of corresponding
exonic target regions for a particular capturing
technology. Although high-depth (e.g., >30×)
whole-genome sequencing (WGS) is ideal for
complete surveys of genomic variants, high-
coverage sequence data is associated with high
costs. To date, this strategy is still not practical
for sequencing the whole genome of thousands
of samples.

Two alternative strategies, each with spe-
cific goals, have been commonly used in cur-
rent large-scale sequencing studies: low-depth
WGS and high-depth exome sequencing. Low-
depth WGS is designed to sequence the whole
genome to 4× to 6× and is a cost-effective
approach to having whole-genome coverage
of genetic variation. Due to insufficient cov-
erage of each position for inferring underly-
ing genotypes, a haplotype-based approach,
e.g., MaCH/Thunder (Li et al., 2010b; Li
et al., 2011; Howie et al., 2012) or IMPUTE-2
(Howie et al., 2009; Howie et al., 2012) is
required to jointly call genotypes, utilizing
the LD among variants across the genome.
Due to extensive LD among common variants,
this approach is best suited for studying com-
mon and low-frequency variants (e.g., MAF >

1%). As previously discussed, however, the
LD (in terms of r2) among rare variants or be-
tween rare and common variants is extremely
low and the LD-based joint calling may not
be ideal for very rare variants (e.g., MAF <

0.5%). Alternatively, exome sequencing se-
lectively sequences to a high depth the cod-
ing regions of the genome (∼30 megabases)
(Ng et al., 2009). Although the exome oc-
cupies only ∼1% of the genome, it is es-
timated to harbor ∼85% of disease-causing
variants (Choi et al., 2009). This number may
change dramatically, however, when noncod-
ing regions are extensively studied through
WGS. Exome sequencing starts with the tar-
geted capturing of coding sequences. Next, the
enriched exomes are sequenced to deep cov-
erage (e.g., >100×). Since exome sequenc-
ing is still considerably less expensive than
WGS and promises to identify causal cod-
ing variants, exome sequencing is currently
the most popular approach for studying the
genetic etiology of Mendelian and complex
traits. Although both rare and common vari-
ants in the coding region can be accurately in-

ferred from sequencing, it for the most part ex-
cludes noncoding regions and is likely to miss
regulatory variants. With the continuously de-
creasing cost of NGS, in the next few years
high-coverage WGS will become a common
way of studying the noncoding portion of the
genome.

Likelihood Models for Genetic
Association

Let n be the number of individuals in a
sample, c be the number of covariates to be
included, and k be the total number of vari-
ants to be tested in a gene. In this unit we
use “gene” to refer to any collection of vari-
ants that are to be analyzed together, e.g., a
gene, a region, a pathway, or any arbitrary set
of variants in the genome. For i = 1, . . . , n,
let yi be the phenotype of the ith individual;
for i = 1, . . . , n, j = 1, . . . , k, let Xij denote
the number of rare alleles the ith individual
carries at the jth variant; for i = 1, . . . , n,
j = 1, . . . , c, let Zij denote the value of the
jth covariate of the ith individual. We repre-
sent the genotype and covariate data of the ith
individual in vector form

Similarly, we let Xj denote the genotypes of
the jth variant across all samples, and use X
and Z to represent the data matrix of genotypes
and covariates respectively, where X is an n
by k matrix and Z is an n by c matrix. We can
represent the genotype-phenotype relationship
in the regression framework in the following
way:

Model (1) is for normally distributed quan-
titative traits and model (2) is for dichotomous
traits, where β is the vector of the genetic ef-
fects of Xi and γ is a vector of the effects of
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covariates Zi on yi. For dichotomous traits, let
pi denote the probability of being a case given
the ith individual’s genotypes and covariates,
and

In this setup, the intercept is included in the
γ vector. The coefficients β’s are the log odds
ratios (ORs) of the rare alleles for case/control
data and the additive effects for quantitative
traits. Here we include in the model all vari-
ants, including the noncausal ones that are to
be analyzed together. For noncausal variants,
the β’s are zero and pose no modeling difficul-
ties. Under the null hypothesis that Xi is not
associated with yi, β = 0, i.e., β1 = ··· = βk =
0. For binary traits assuming a logistic model
(2) the likelihood for the ith individual is:

For quantitative traits assuming a linear
model (1) the likelihood for the ith individ-
ual is:

where μ is the population mean of the trait.
Combining all individual data, the likelihood
is:

To avoid redundant discussions for both
dichotomous and quantitative traits, we will
use dichotomous traits to describe associa-
tion studies, unless otherwise specified. Most
of these principles directly apply to quanti-
tative traits as well. Based on the likelihood
models, commonly used hypothesis testing ap-
proaches for genetic effects β are described
below.

Likelihood ratio tests. Let L1 be the max-
imum likelihood in the full model over the
parameters β and γ, and L0 be the maximum
likelihood in the null model over the param-
eter space γ while fixing β1 = ··· = βk =
0. The Likelihood Ratio Test (LRT) statistic
λ = −2ln(L0/L1) follows a χ2

k distribution with
k degrees of freedom (d.f.) asymptotically. An
asymptotical p value can be obtained by com-
paring the LRT statistic with the χ2

k distribu-
tion for large sample sizes. When k > 1, this
tests for the overall effects of all SNPs as a
whole but not individual SNP effects.

Wald tests. When maximizing likelihood
over the parameters in the full model, the max-

imum likelihood estimates (MLEs) of βj’s and
their corresponding standard errors can be ob-
tained in standard statistical packages. Let β̂i

denote the MLE of βi and SE(β̂i ) denote the
standard error of β̂i . The Wald statistic w =
βi/SE(βi) follows a standard normal asymp-
totically, and an asymptotic p value can be
calculated by comparing the statistic with the
standard normal distribution. The Wald test
can be carried out for any of the βi’s condi-
tional on covariates and other SNPs.

Score tests. Let α = (β, γ) be the combined
vector of the parameters of β and γ, and Ai =
(Xi, Zi) be the combined vector of Xi and Zi.
Then the score statistic for α is:

where ỹi is the expected phenotype for the
ith individual. Under the null hypothesis its
expectation is zero, and its covariance matrix
is:

Since we are only interested in testing the
SNP effects β, the covariate effects γ are con-
sidered as nuisance parameters. To eliminate
γ, let ỹi be the fitted phenotype values after
regressing out the covariates, i.e., ỹi = logit−1

γ̂ Zi). The score vector for β is:

Under the null, Uβ follows a multivari-
ate normal distribution asymptotically: Uβ ∼
Nk(0,Vβ), where Vβ is the covariance matrix
of Uβ under the null. Vβ can be obtained
from Vα as Vβ = Vββ − VβγV −1

γγ Vγβ, where
Vββ, Vβγ , and Vγγ are corresponding subma-
trices of Vα . To test the null hypothesis that
β = 0, a score test statistic can be computed as
S = UβV−1

βU′
β, which follows asymptotically

a χ2
k with k d.f. As for LRT, the score test is

only testing the overall effect of all SNPs but
not individual SNP effects.

STRATEGIC APPROACH

Traditional Approaches
In GWAS, the most commonly used anal-

ysis approach is single-marker tests, where a
statistical test is carried out for each marker
and a threshold of 5 × 10−8 is used to correct
for multiple testing to control FWER at the
genome level. In GWAS and candidate gene
studies, in addition to single-marker tests, if
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the hypothesis is whether a gene harbors as-
sociation signals, multimarker tests are often
applied to jointly test the overall effect of the
markers in a gene or region as a whole. When
the CDRV hypothesis holds, although both can
be applied to rare variants, the following sec-
tions demonstrate that both approaches are un-
derpowered.

Single-marker tests
The simplest approach to genome-wide

analysis is to analyze individual variants sepa-
rately. Without any model assumptions, a 2 d.f.
Pearson χ2 test can be performed on a 2 by 3
contingency table to compare the frequencies
of three genotypes of a variant in cases versus
controls. For rare variants, the frequency of
homozygous rare alleles may be very low and
Pearson χ2 tests may have inflated type I error.
One remedy is to group the rare homozygotes
and the heterozygotes together (i.e., assum-
ing a dominant model). After the grouping, a
1 d.f. Pearson χ2 test can be performed and
is expected to achieve improved power over a
2 d.f. test. For complex traits, an additive ge-
netic model is usually assumed for the three
genotypes, where carrying an extra copy of
the variant allele increases the genetic risk. A
convenient way to code the genotype is 0, 1, 2
for genotypes carrying 0, 1, or 2 rare alleles,
respectively. To test for association in regres-
sion models, only one variant can be included
in (1) or (2), and the test for β = 0 can be
carried out either through a Wald test, an LRT,
or a score test (equivalent to the commonly
used Cochran-Amitage test for trend), all with
1 d.f.

The 0, 1, 2 coding for the genotype is not
the most powerful approach for all scenarios.
If prior knowledge is available, other coding
approaches can be used to reflect the genetic
effect of each genotype. For example, a 0, 0, 1
coding is for the recessive model, where car-
rying one copy of a variant allele does not
increase disease risk, and 0, 1, 1 is for the dom-
inant model, where the increase in disease risk
is the same for heterozygous and homozygous
variant carriers. Other methods can be used as
well to represent complex models. Although
an additive model is unlikely to be strictly cor-
rect, the trend test (i.e., score test) is not to test
the linearity, and as long as there is a trend—
which is likely to hold for complex traits—the
trend test is expected to be robust and achieve
increased power due to the parsimony of the
model. For rare variants uncovered through se-

quencing, it is likely that association tests will
be carried out directly on causal variants, and
therefore flexible genetic models can be used
if prior knowledge is available for specific dis-
eases or variants.

Multimarker tests
Oftentimes the interest is to test whether

multiple variants in a gene, region, or any col-
lection of variants as a whole are associated
with the phenotype. This can be achieved us-
ing LRT or score tests discussed previously.
These multimarker tests can only jointly test
the effect of all markers as a whole, and if
the null hypothesis is rejected, it is not known
which variants are associated with the pheno-
types. It is possible that all of them or only
a subset might be associated with the pheno-
type. To pinpoint associated variants, a single-
marker test may be needed to examine indi-
vidual variant effects.

Limitations of traditional methods when
applied to rare variants

The performance of various testing strate-
gies is heavily influenced by the underlying ge-
netic models, and both the power and type I er-
ror can be dramatically different under CDCV
and CDRV hypotheses. Let’s use a gene as an
example. Two key features that are different in
the two hypotheses influence power. First, un-
der the CDCV hypothesis, it is most likely that
there will be only one causal variant per gene.
Extreme allelic heterogeneity in a gene is of-
ten the case when the CDRV hypothesis holds,
however; that is, for the CDCV hypothesis
only, one causal variant contributes to the as-
sociation signal, while for the CDRV hypoth-
esis, multiple rare variants independently in-
fluence the phenotype. The second difference
is that common variants in a gene are often
in strong LD, so that multiple common vari-
ants can be used to tag the underlying causal
common variant, while rare variants are often
weakly correlated. Given these differences, the
power for single-marker tests of rare variants
is low for three reasons. First, very few indi-
viduals in a sample carry rare alleles at single-
variant sites and therefore the association sig-
nal is weak due to low frequencies. Second,
in the presence of allelic heterogeneity, dis-
tinct causal variants in a gene are observed in
affected samples and the association signals
of individual variants are weakened by one
another (Slager et al., 2000). Finally, rare
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variants are drastically more abundant than
common ones (Keinan and Clark, 2012; Nel-
son et al., 2012; Tennessen et al., 2012) and
are only weakly correlated, resulting in a se-
vere penalty to correct for multiple testing. All
of these reasons make the single-marker test
an unfavorable approach.

For multimarker tests, allelic heterogeneity
poses a less severe problem than for single-
marker tests, since multiple causal variants
jointly contribute to the association signal. As
a result, multimarker tests can be more pow-
erful than single-marker tests (Li and Leal,
2008). There is a large penalty in terms of de-
grees of freedom for multimarker tests, how-
ever, due to the excess of rare variants to be
tested within a gene and because the power is
degraded with increasing numbers of rare vari-
ants. Although ultimately single-marker tests
can be used to pinpoint individual causal rare
variants when the sample size is sufficiently
large, currently this is not feasible due to the
prohibitive cost of sequencing thousands of
samples. A promising strategy for the modest
sample size of current sequencing studies is to
test for rare variant associations by aggregat-
ing multiple rare variants across a gene. This
approach is described in detail in the following
sections.

For rare variants, not only the statistical
power but also the type I error rate is negatively
affected. Due to the low frequency of rare vari-
ants, the sparsity of the data may make the
asymptotic results inaccurate for modest sam-
ple sizes. For example, likelihood ratio tests
for case/control data are often anticonservative
due to the numerical instability of the likeli-
hood maximization, and conversely Wald and
scores tests are often conservative. In such sit-
uations, permutation is usually carried out to
obtain empirical p values. Even after aggregat-
ing multiple rare variants (see the following
sections), the cumulated allele frequency may
not be sufficient for asymptotic results to hold
and permutation is often required to calculate
empirical p values.

Aggregation Association Analysis for
Rare Variants

The goal is to test whether multiple rare
variants in a gene as a whole are associated
with the phenotype. This class of tests is of-
ten referred to as aggregation association tests.
The major advantage of this approach is the
achievement of dimension reduction through
aggregating multiple rare variants into a single
unit of analysis. Specifically, in the regression
framework (1) or (2), where Xi represents the

genotype of the k rare variants carried by the
ith individual in a gene, the key is to reduce
the dimension of β from k to 1 or a small num-
ber. A variety of aggregation methods have
been proposed (see review papers by Asimit
and Zeggini, 2010; Bansal et al., 2010; Dering
et al., 2011; Stitziel et al., 2011; Ladouceur
et al., 2012), and we present some of them in
the follow categories.

1. Burden tests
The strategy of this category of aggregation

association methods is to test whether there is
an excess of rare variants in cases or controls.
A general approach is to collapse or aggregate
multiple rare variants in a gene into a single
“super” variant and then to perform the asso-
ciation tests on this single super variant. Such
an aggregation, if done properly, can achieve
these benefits: when summed, low frequencies
of multiple rare variants increase the overall
frequency of the super variant; and the de-
grees of freedom are reduced from k to 1. This
results in both an enrichment of signals and a
reduction of dimensionality. Formally, this ag-
gregation can be represented in this regression
model:

where δ(Xi1, . . . Xik) is a function that sum-
marizes multiple rare variants into a single
number, which represents a single super vari-
ant, and βa is the genetic effect of the super
variant. By aggregating, the original null hy-
pothesis of β1 = ··· βk =0 is equivalent to
the null hypothesis βa = 0. Now the associ-
ation test of multiple rare variants becomes a
single d.f. test, greatly reducing dimensional-
ity. The central component of burden tests is
the construction of the aggregation function
δ(Xi1, ··· Xik). Although an appropriately con-
structed aggregation can increase power, the
inclusion of noncausal variants can dramati-
cally reduce the power. Several aggregation
approaches and their performance in various
scenarios are discussed below.

Indicator function. The simplest collapsing
way is the use of an indicator function (Li and
Leal, 2008),

This simple approach codes 1 for individ-
uals that carry one or more rare alleles within
the tested genetic region and zero if all variants
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are major alleles. For this method, the associ-
ation test is transformed into testing whether
the frequency of rare variant carriers in cases is
different from that in controls. Single-marker
tests using LRT, Wald, or score statistics can
be carried out as previously described. In
addition, a 2 by 2 table can be constructed with
numbers of rare variant carriers and noncarri-
ers, and a Fisher exact test can be performed.
Although simple, this strategy has an intuitive
interpretation in terms of OR of rare variant
carriers. Even if other more involved methods
are used, this simple counting can serve as an
estimate of the overall genetic effect of rare
variants.

Variant counting. The use of an indicator
collapsing method indicates that most likely
one individual carries only one rare variant.
For larger genes or when multiple genetic re-
gions are analyzed as a single unit, however,
the probability that an individual carries more
than one rare variant increases. If it is as-
sumed that individuals with more than one
rare variant have an increased risk of being af-
fected, ignoring this information may reduce
the power to detect an association. A sim-
ple extension is to count the number of rare
variants each individual carries (Li and Leal,
2009), i.e.:

where Xij is coded as the number of rare alleles
the ith individual carries at the jth variant site.
As in the single-marker approach, Wald, score,
or LRT tests can be used. In this aggrega-
tion, no simple contingency tables can be tabu-
lated because of the potential LD between rare
variants. The estimated βa can be interpreted
as the log(OR) per rare variant in a gene on
average.

Weighted sum statistic. It is likely that dif-
ferent rare variants have differential genetic ef-
fects. For example, causal variants with strong
deleterious effects are under strong purifying
selection and are therefore more likely to be
rare (Gorlov et al., 2008; Keinan and Clark,
2012; Tennessen et al., 2012), and nonsyn-
onymous variants are more likely than syn-
onymous variants to affect the gene function.
In either the indicator-collapsing or variant-
counting approach, such information is ig-
nored, and power loss is expected when rare
variants to be collapsed have different effects.
To take this into account, Madsen and Brown-

ing proposed a weighted sum statistic (WSS)
to aggregate multiple rare variants, i.e.,

where wj is the weight assigned to the jth rare
variant. Specifically, a frequency-dependent
weighting is used:

where pj is the allele frequency of the jth rare
variant in controls and estimated as:

in which mU
j is the number of minor alleles of

the jth variant in controls and nj is the num-
ber of controls with nonmissing data. Here the
numbers 1 and 2 are used to avoid the es-
timation of zero frequency, which can cause
numerical instability. In WSS, rarer variants
are up-weighted so that rare alleles contribute
more to the test statistic. The genetic scores
are then ranked and the WSS is calculated as
the sum of the ranks of the cases. Since the
frequency estimation depends on the pheno-
type, i.e., only unaffected individuals are used,
permutation is performed to obtain empirical
p values by permuting case/control status.

The WSS as originally proposed cannot ac-
count for covariate effects and permutation is
needed to obtain empirical p values, which is
computationally expensive. The same aggre-
gation can be implemented in regression mod-
els and has been extended to general score tests
(Lin and Tang, 2011). Such a setup can readily
incorporate covariates and efficiently obtain
estimates of genetic effects. To obtain asymp-
totic p values in regression models, frequency
estimates should not be dependent upon phe-
notypes, since inflation of type I error is ex-
pected if frequencies are estimated based on
controls only.

Weighting scheme. The assumption of up-
weighting rarer variants is that rarer variants
are more likely to have larger effects. The
frequency-based weighting scheme proposed
in WSS is arbitrary and may have reduced
power when the weighting is far away from
the true relationship. To see how weighting can
affect the power and how the upper bound of
power can be achieved by optimal weighting
schemes, we can compare the weighted sum
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approach with the true model. The weighted
sum model is as follows:

Assuming the true model is (2), if we com-
pare (3) to (2), we will see that when wj =
βj/βa, (3) is recovered to the true model (2).
This indicates that when wj for the jth vari-
ant is assigned proportional to its true genetic
effect, the aggregation can achieve the opti-
mal power (Lin and Tang, 2011). Conversely,
improper weighting schemes that dramatically
deviate from this relationship are detrimental
to the power. Ideally, a zero weight should be
assigned to nonassociated variants. Acciden-
tally up-weighting instead of down-weighting
noncausal variants amplifies noise and reduces
power. Theoretically, no uniformly most pow-
erful tests exist for this multidimensional prob-
lem (Cox and Hinkley, 1979), and for a fixed
weighting scheme the power depends on the
alternative hypothesis (i.e., the true genetic
model). Empirical evaluation of rare variant
analysis methods in various scenarios is con-
sistent with the theory (Ladouceur et al., 2012).
Although it is generally impossible to know a
priori the true model, the ability to utilize prior
knowledge to assign weights that are close to
the true genetic model is the key to achiev-
ing increased power of aggregation analysis. It
should be noted that it is not the absolute value
of the weight but rather the ratio of the weights
for rare variants that determines the power,
since the model is unchanged if weights are
multiplied by a nonzero constant and βa is di-
vided by the same constant. Although optimal
weighting is not possible in reality, it is help-
ful to calculate the relative ratio of weights as-
signed to rare variants when designing weight-
ing schemes. A weighting scheme that gener-
ates extremely large ratios is questionable and
can lead to a great decrease in power.

Madsen and Browning used a frequency-
related weighting scheme. This weighting
scheme will achieve increased power when

for the jth variant. Although rarer variants are
more likely to be functional due to strong pu-
rifying selection, it may be difficult to jus-
tify this relationship between ORs and fre-
quencies. The variable threshold (VT) method
(Price et al., 2010) proposed to explicitly in-
corporate functional prediction scores from
PolyPhen-2 (Adzhubei et al., 2010; Ramen-
sky et al., 2002) as weights for individual vari-
ants in the aggregation testing. Assuming that
functional prediction scores reflect the genetic
effect of individual variants on the trait un-
der study, this approach has the potential to
increase power compared with collapsing or
equal weighting schemes. Some tools specifi-
cally generate predictive functional scores for
nonsynonymous variants (Ferrer-Costa et al.,
2005; Bromberg and Rost, 2007), while oth-
ers are more general tools that can assess the
potential of disease causing or evaluate the se-
quence conservation across species (Cooper
et al., 2005; Siepel et al., 2005; Schwarz
et al., 2010). Since these scores are from exter-
nal sources and are not dependent upon phe-
notype and genotype data, asymptotic results
hold for large sample sizes. One of the chal-
lenges is that functional prediction scores from
different bioinformatics tools are often not
consistent, and it is unclear how to integrate
the inconsistent predictions into the analysis.
Additionally, even if bioinformatics could pre-
dict with high accuracy that a variant is causal
for one phenotype, it does not guarantee that
it is causal for the trait under study.

2. Mixed-effects models
For case/control studies, burden tests look

for an enrichment of rare variants in cases
compared with controls for risk alleles, or an
excess of protective alleles in controls com-
pared with cases. Burden tests will achieve
greatest power when all causal variants have
the same direction of genetic effects. When a
portion of causal variants has effects in oppo-
site directions, i.e., protective and detrimental
or increasing and decreasing quantitative trait
values, aggregating variants will weaken the
overall association signal, resulting in reduced
power to detect an association. In an extreme
scenario, when half of the variants decrease
disease risk and the other half increase disease
risk, the association signal can be completely
cancelled out. Theoretically, this can be solved
by assigning negative weights to protective
variants. In reality, however, it is impossible
to decide which set of variants has risk effects
and which set is protective. New methods have
been developed to deal with this situation.
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The C-alpha test (Neale et al., 2011) is
one of the early methods that was developed
to tackle this problem for case/control data.
It compares the observed variance of allele
counts to the expected variance under the null
hypothesis of no association for dichotomous
traits. Let the number of observed rare alle-
les be nj for the jth variant. When no variants
are associated with the phenotype, the rare
allele count at the jth variant sites in cases
follows a binomial distribution (nj, pj), where
pj = p0 for all j = 1,. . ., k and p0 is the ex-
pected proportion of allele count in cases (e.g.,
p0=0.5 when the numbers of cases and con-
trols are equal). When causal variants have dif-
ferent effect sizes and directions, not all pj’s
are equal to p0 and the data are a mixture of
binomial distributions. Since any mixture of
binomial distributions creates overdispersion,
testing the increased variance over its expected
value under the null serves as the foundation
for the C-alpha test.

To also address the problem when vari-
ants have effects in opposite directions, the
sequence kernel association test (SKAT) (Wu
et al., 2011) was developed in a more general
framework. Additionally, it has been shown
that C-alpha is a special case of SKAT (Wu
et al., 2011). Compared with current imple-
mentations of the C-alpha test, SKAT has
the flexibility to accommodate such additional
features as including covariates (e.g., princi-
pal components for adjusting population strat-
ification); accounting for LD among variants;
allowing for the analysis of both qualitative
and quantitative traits; weighting of variants
based on frequencies or functional prediction
scores; and handling complex genetic mod-
els (e.g., epistasis effects) (Wu et al., 2011).
SKAT is a variance-component score test in
a multiple regression model (1) or (2). SKAT
assumes that each βj follows an arbitrary dis-
tribution with a mean of zero and a variance
of wjτ , where τ is a variance component and
wj is the weight for the jth variant. Under this
setup, the original null hypothesis is equiva-
lent to H0: τ = 0. A variance component score
test in a mixed-effects model can be used to
test this hypothesis. The SKAT score statistic
is defined as Q = (y − ỹ)′ K(y − ỹ), where
K = XWX’, ỹ is the predicted mean of the
phenotype under the null hypothesis, i.e., fit-
ting (1) or (2) without βj’s, as described be-
fore, W is diag(w1, . . . ,wk) with wj being the
weight for the jth variant. Since it is a score
test, it can be efficiently computed to obtain
asymptotic p values (see Wu et al., 2011, for
details).

An attractive feature of SKAT is that flex-
ible genetic models and prior knowledge can
be incorporated in the K matrix. K is an n
by n matrix, with the (i, i’)-th entry equal to
K(Xi, X ′

i ), representing the genetic similarity
of the ith and the jth individuals. K(.,.) is called
a kernel function and different kernels can be
constructed depending on hypotheses about
genetic models of variants for specific studies
and genes. The simplest kernel is the weighted
linear kernel, i.e.,

As discussed for WSS, a good weighting
scheme can increase power, while one that
does not reflect the true underlying genetic
model can reduce power. If equal weights are
used and no covariates are included for case
control data, SKAT is equivalent to C-alpha
(Wu et al., 2011). In the original paper, the
authors proposed to use a beta distribution to
specify weights because it is flexible enough
to accommodate a wide range of weights.
Specifically,

where a1 and a2 are prespecified parameters
for a beta distribution and MAFj is the rare al-
lele frequency estimated across both cases and
controls. The authors suggested a1 = 1 and
a2 = 25, which allows for increasing weights
for rare variants and decreasing weights for
common variants. Other values can also be
used for different prior knowledge; for ex-
ample, a1 = a2 = 1 corresponds to assigning
equal weight for all variants, and a1 = a2 = 0.5
specifies:

which put strong weights on rare variants.
There may not be a simple relationship be-
tween the allele frequency and the genetic ef-
fect, and other prior information can be in-
corporated to guide the weighting, such as
the functional prediction scores discussed in
the VT test. Other complex kernels can also
be constructed to accommodate more com-
plex models such as epistasis. Wu et al. (2011)
provides details for interested users.

SKAT was proposed as a variance com-
ponent score test in a mixed-effects model
and has a connection with the score test in a
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fixed-effect regression model. For the linear
kernel, i.e.,

it can be shown that

where

is the individual score statistic of the jth variant
(Wu et al., 2011). Similarly, the WSS score
statistic is:

SKAT also has connections with other
tests; see Pan (2009), for more discussion.
For single-marker tests, i.e., k = 1, SKAT
is equivalent to single-marker score tests.
When k > 1, their behaviors become different,
and the relative power depends on genetic
models and how weights are assigned. For
example, when two rare variants have opposite
directions of effect, it is most likely that the
score statistic of the risk allele is positive
while the score statistic of the other variant is
negative. The association signal is cancelled
out when positive weights are assigned to both
variants, resulting in reduced power, as shown
in Weighting scheme. On the other hand, the
squared score statistics in SKAT eliminate
the direction issue and all variants contribute
positive scores to the test statistic. Therefore,
SKAT can gain more power compared with
burden tests in the presence of opposite
directions of genetic effects. However, there
is a trade-off between power and robustness.
When a large proportion of rare variants has
the same direction of effects, SKAT will be
less powerful than burden methods. In general,
it is challenging for investigators to know
when to apply SKAT or burden tests due to the
complexity of the genetic basis of complex
traits. It is plausible—especially for dichoto-
mous traits—that genetic variants in the same
gene are likely to affect the gene function in a
similar fashion, and burden tests may be more
powerful if the analysis unit is a gene.

3. Data-driven approaches
To carry out aggregation analyses and to

increase statistical power, several criteria need

to be determined. These criteria include, for
example, the frequency cutoff of rare variants
and the weight for each variant. Usually these
criteria are either prespecified or come from
external sources. The choices are usually ar-
bitrary, however, and may not be proper for
some traits or genes. An alternative is to let the
data drive these choices—that is, to select ap-
propriate criteria based on the phenotype and
genotype data under study. Since this class of
methods uses the same data for both feature
selection and hypothesis testing, permutation
procedures are usually needed to obtain em-
pirical p values. We describe a few of these
methods and discuss their performance.

Variable-threshold method. For a complex
trait, it is likely that causal variants span a
wide spectrum of allele frequencies and that
the allelic architecture varies widely from trait
to trait. Although variants with allele frequen-
cies of less than 0.01 are commonly used in
practice for aggregation analyses, there is no
clear biological justification for this thresh-
old. An improper threshold cutoff may dra-
matically reduce power by excluding causal
variants and including noncausal variants. To
avoid the arbitrary specification of frequency
cutoffs, the variable-threshold method (Price
et al., 2010) was proposed to automatically
select the “optimal” frequency threshold for
rare variants and include the variants with fre-
quencies below this threshold for aggregation
analyses. Specifically, for a given weighting
scheme (e.g., functional prediction, inverse of
allele frequency, or no weighting), a statistic
ST is calculated for each threshold T in the
range between the lower bound TL and the up-
per bound TU, and the maximum of Smax and
the corresponding threshold Tmax are recorded.
Since Smax depends on phenotype and geno-
type, the distribution of Smax under the null
is generally unknown and permutations are
required to assess the significance of Smax.
Specifically, the same procedure is carried out
to obtain Smax perm for each permutated data
set and Smax is compared with the distribu-
tion of the Smax perm to obtain empirical p val-
ues. Although a different statistic was used in
the original publication of the VT method, the
standard score statistic in a regression model
can be used to carry out the same VT testing
procedure because of its desirable statistical
properties (Lin and Tang, 2011).

The VT method essentially performs many
tests to find the optimal cutoff and uses per-
mutation to correct the multiple testing to
obtain empirical p values. When Tmax is far
from a user-specified cutoff, VT is expected to
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achieve increased power by finding the proper
threshold, and if Tmax is close to the prespeci-
fied threshold, VT suffers loss of power be-
cause of correcting for multiple testing. To
reduce the search space, it may be desirable
to set TL and TU accordingly to confine the
search in a smaller range. For example, it may
not be necessary or desirable to include in
the aggregation association test variants with
frequencies >0.1. VT also explicitly incorpo-
rates functional prediction scores in weighting
variants, e.g., PolyPhen-2 scores (Ramensky
et al., 2002; Adzhubei et al., 2010), and proper
weighting can reciprocally increase the effec-
tiveness of selecting the optimal threshold.

Adaptive weighting methods. Although
allele frequency and function prediction
scores are used for weighting, they may
not reflect true genetic models. Adaptive
weighting methods have been proposed to
utilize phenotype and genotype data to guide
the weighting of variants. The estimated
regression coefficients (EREC) method (Lin
and Tang, 2011) first estimates the regression
coefficients in the general model (1) and (2)
and then incorporates these estimates of in-
dividual coefficients in the weighting scheme.
As described before, the optimal weights are
the true βj’s, which are unknown. It is tempt-
ing to use the maximum-likelihood estimates
β̂j’s to guide the assignment of the weights of
individual variants. In the EREC approach, it
was proposed to use wj = β̂j + δ as the weight
for the jth variant, where δ is a constant. The
value of δ is arbitrary and the EREC method
recommends that it be set to 1 for dichotomous
and 2 for quantitative traits when sample
size is <2000. The behavior of the EREC
method depends on the choice of the constant
δ. When δ = 0, it is equivalent to assigning
β̂j as the weight of the jth variant. Since β̂j’s
are maximum-likelihood estimates, plugging
β̂j’s as the weights in model (3) results in the
maximum likelihood of the original model (2).
Therefore, testing based on such a weighting
scheme is asymptotically equivalent to the
multimarker LRT or score test with k d.f. At
the other extreme, when δ>> β̂j’s, all weights
are close to a constant and this is equivalent
to the variant-counting approach. Therefore,
EREC can be viewed as a method that falls be-
tween multimarker tests and the variant-count
approach. Further modification can be made
such that δ is no longer a constant, but variable
for different variants when desired, reflecting
the prior belief of the genetic effects. The
EREC method is expected to achieve both
robustness due to its feature of multimarker
tests as well as increased power, owing to

its collapsing functionality. It is not clear,
however, how the selection of δ values affects
the statistical power for various scenarios.

Other data-driven methods use similar
approaches for dynamic weight assignment.
For example, the kernel-based adaptive
cluster method (Liu and Leal, 2010a) and
the data adaptive sum test (Han and Pan,
2010) assign weights adaptively to variants
based upon variant counts from the data.
The RareCover (Bhatia et al., 2010) method
uses a variable-selection approach to select
the optimal set of variants that maximize the
burden test statistics (i.e., finding optimal
assignment of zero weights to a subset of
variants). A general class of adaptive methods
has also been proposed (Pan and Shen, 2011).
Statistical significance for these tests is
usually evaluated by permutation. Interested
readers can refer to the original papers of the
authors cited in this paragraph for details.

4. Hybrid methods
Both burden tests and nonburden methods

(e.g., multimarker tests and SKAT) have in-
creased power for certain genetic models and
are underpowered in other situations, and all
have reduced power when noncausal variants
are included in the analysis. Hybrid methods
have been proposed to combine methods that
are powerful for variants with the same ef-
fects and methods that are robust when either
noncausal variants or variants with opposite
effects are present. We will describe in this
section the combined multivariate and collaps-
ing (CMC) method (Li and Leal, 2008) and
the SKAT-O approach (Lee et al., 2012a; Lee
et al., 2012b).

CMC. The CMC method combines the bur-
den tests and multivariate tests explicitly to
achieve both increased power and robustness.
It intuitively collapses subsets of k rare vari-
ants and then jointly tests the collapsed sub-
sets in a multivariate test. Based on the regres-
sion framework (2), an example of the CMC
method is as follows:

In the above modeling, �1 and �2 are two
sets of rare variants that are to be aggregated,
and β1

CMC and β2
CMC are the genetic effects



Genetic
Mapping

1.26.13

Current Protocols in Human Genetics Supplement 78

of the collapsed super variants in the two sub-
sets. The CMC method proposes to use the in-
dicator function for collapsing and can be im-
plemented using other collapsing approaches
such as weighted sum score statistic. The null
hypothesis in the CMC method becomes:

A multiple d.f. LRT or score test can be car-
ried out to jointly test the hypothesis. Here the
dimension reduction is achieved for the rare
variants in �1 and �2 for increased power
while the multivariate tests of the subsets
achieve robustness. It has been shown that
common noncausal variants have greater detri-
mental effects on power of burden tests than
that of multivariate tests (Li and Leal, 2008),
and if different frequencies are to be analyzed
in a gene, collapsing only rare variants using
CMC is expected to be robust. Other criteria
can also be used to collapse subsets of rare
variants, e.g., rare functional variants affect-
ing splicing and stop codons may be collapsed
in one subset, while less dramatic changes like
missense variants are collapsed in another. The
CMC method is a flexible framework in that
both the complete collapsing and multimarker
tests without collapsing are special cases of
CMC at two extremes. Its flexibility often re-
quires appropriate user-defined subsets, how-
ever, which may not be obvious in reality.

SKAT-O. SKAT was developed to tackle
the problem that both risk and protective al-
leles are present in a gene but prior knowl-
edge is rarely available about the directional-
ity of causal variants. Lee et al. developed the
SKAT-Optimal test, which combined a bur-
den test and SKAT in a single framework (Lee
et al., 2012a,b). Recall that in SKAT each βj

is assumed to follow an arbitrary distribution
with a mean of zero and a variance of wjτ (see
Mixed-effects models). All βj’s are assumed to
be independent in SKAT. The new class of tests
is formulated as a generalized family of SKAT
through a family of kernels that incorporate
a correlation structure among variant effects.
Specifically, Lee et al. used an exchangeable
correlation structure and the correlation matrix
of βj’s is Rρ = (1 − ρ)I + ρ11′, where I is a k
by k identical matrix with 1 on the diagonal and
zero otherwise, and 11′ is a k by k matrix with
all entries being 1. This matrix is a compound
symmetry correlation structure with 1 on the
diagonal and ρ for all off-diagonal entries. The
statistic for dichotomous traits in model (2) is:

This is similar to the original SKAT statistic
with the exception that the kernel is replaced
by:

By separating the Rρ matrix into the sum
of two parts, it can be seen that Qρ is a linear
combination of a burden test and the SKAT,
i.e.,

The statistic is calculated as:

where pρ is the p value calculated for a specific
ρ. SKAT-O uses a grid search approach to find
the best ρ value that minimizes pρ: set a grid
0 < ρ1 < . . . < ρn < 1, calculate pρl , . . .,pρn

and obtain:

For large sample sizes, the p value of
Qoptimal is derived analytically to evaluate the
significance. Simulation studies suggest that
SKAT-O outperformed SKAT and burden tests
in a wide range of scenarios (Lee et al., 2012a,
b). The correlation ρ determines the relative
contribution of either test to the SKAT-O statis-
tic. When ρ = 0, it reduces to a burden test,
when ρ= 1, it is equivalent to SKAT, and when
0 < ρ < 1 it achieves the unification of these
two kinds of tests. Since ρ is estimated from
data, SKAT-O is also a data-driven approach.
Using a similar argument, EREC can also be
viewed as a data-driven hybrid method. Like
other data-driven approaches, SKAT-O also in-
volves multiple testing (i.e., searching for the
optimal ρ ). Due to the correction of multiple
testing, SKAT-O will be less powerful than
both SKAT and burden tests when the true ρ

is close to zero or one.

Replication
To rule out the possibility of spurious as-

sociations due to confounding factors, e.g.,
population stratification and sequencing batch
effects, it is critical to replicate findings in in-
dependent samples. As discussed above, there
are no uniformly most powerful tests for this
type of analysis strategy. To potentially reduce
false negatives, a viable approach is to carry
out different tests in the initial study. If apply-
ing multiple tests is not corrected for in the
initial study, there will be inflation of type I
error rates. Therefore, replication studies are
extremely important for the confirmation of
association findings.
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Two replication approaches can be em-
ployed. A simple strategy is to genotype the
variants discovered in the initial study in an
independent panel and perform appropriate
rare variant aggregation tests on these geno-
typed variants (Liu and Leal, 2010b). This
variant-based approach is cost effective and
can quickly generate genotype data on a large
replication sample. However, if causal rare
variants have not been uncovered in the ini-
tial study, these causal variants will be missed
in the replication panel and a loss of power
is to be expected. An alternative strategy is
to sequence the genes or regions of interest
in a replication sample and to carry out as-
sociation tests on the variants uncovered in
the new sample (Liu and Leal, 2010b). This
sequence-based approach is likely to uncover
additional causal rare variants, but is more ex-
pensive and time consuming. Which replica-
tion strategy to choose depends on specific
study goals and designs. For example, if the in-
tent is to identify a more complete allelic spec-
trum for clinical applications, the sequence-
based strategy serves as a better approach
than the variant-based approach. Through
extensive simulations, it has been demon-
strated that the sequence-based approach is
usually more powerful than variant-based
replication; however, for most situations the
difference is not dramatic (Liu and Leal,
2010b). Given the low cost of genotyping
compared with sequencing, a variant-based
strategy is attractive for large-scale replication
studies of complex traits.

Estimates of Genetic Effects
After a genetic association is identified,

it is desirable to estimate genetic effects for
the identified association and quantify the ex-
plained genetic variance, in addition to the p-
values that are usually reported. In rare variant
burden tests, since multiple variants are ag-
gregated as a single super variant, the slope
parameter βa in the regression model mea-
sures the change of mean trait value per unit
of change in the burden score. For example, it
is shown that for quantitative traits βa is the
weighted average of the individual β’s (Pan,
2009). For the same data set, different aggrega-
tion strategies (indicator function, differential
weights in weighted sum approaches) will lead
to different estimates of the genetic effects.
Therefore, they do not have a straightforward
interpretation. On the other hand, the pheno-
typic variance explained by the burden score
has a natural interpretation. In fact, it’s shown

that the locus genetic variance explained by
the burden score will always be lower than the
true genetic variance, unless optimal weights
are assigned (Liu and Leal, 2012a). This sug-
gests that some proportion of the heritability
may still be missing and not explained by the
burden analysis, even if an association is es-
tablished between the gene and the pheno-
type. It is still necessary to pinpoint causal
variants to more precisely estimate the contri-
bution of causal rare variants to complex trait
etiology.

Sequencing analysis pipeline for rare
variant association

Previous sections presented various analy-
sis methods for rare variant association studies.
For most practical applications, sequencing
data will be used to identify genes with associ-
ated rare variants. In this section we describe
a practical pipeline for analyzing sequencing
data to identify rare variant associations, fo-
cusing primarily on exome sequencing.

1. Variant calling
To identify rare variant association, it is crit-

ical to accurately call variants from NGS data.
NGS reads are usually short, with moderate
error rates. For example, typical reads from
NGS platforms (e.g., Illumina) are around
100 bps with error rates ∼0.5% to 1% per base.
It is important to recognize that these imperfect
sequences may lead to incorrect variant calls.
The first step is to align short reads to the hu-
man reference genome. A variety of software
is available (Nielsen et al., 2011), and BWA
is a widely used tool (Li and Durbin, 2010).
After the initial alignment, reads around short
insertions or deletions need to be realigned,
duplicated reads need to be removed, and raw
base quality scores need to be recalibrated
(DePristo et al., 2011; Nielsen et al., 2011).
These preprocessing steps are meant to gener-
ate the accurate alignment of bases with cal-
ibrated quality scores. After these steps are
taken, it is helpful to generate summary statis-
tics about the alignment, such as the fraction
of reads mapped to the target regions, distri-
bution of depths on the target regions, base
and mapping quality scores, etc. Contamina-
tion may also be checked based on the align-
ment (Jun et al., 2012). Outlier samples may
be identified and removed from downstream
analyses. After the sample cleanup, the next
step is to identify variant sites and individ-
ual genotypes from the aligned bases across
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study samples. The standard variant calling
tools—e.g., GATK (DePristo et al., 2011) and
SAMtools (Li et al., 2009)—are likelihood-
based and generate quality scores for variant
calling. The current calling algorithms rec-
ommend joint calling of multiple samples to-
gether to increase the accuracy for common
variants and decrease the false positive rare
variant calls (DePristo et al., 2011; Li, 2011).
If the samples are related, PolyMutt (Li et al.,
2012a) or TrioCaller (Chen et al., 2013) can be
used to perform family-aware variant calling.
After this step, an initial Variant Call Format
(VCF) (Danecek et al., 2011) file is gener-
ated to store all variant sites and individual
genotypes with quality scores to indicate the
confidence of the calling.

2. Annotation
This step aims to annotate all identified

variant sites with functional features. Sev-
eral software packages (Liu et al., 2011;
Wang et al., 2010) are available. In this sec-
tion, we will describe ANNOVAR (Wang
et al., 2010), a tool that can integrate multiple
databases and annotate variants with a vari-
ety of functional information. For gene-centric
features, it can annotate variants as synony-
mous, nonsysnonymous, stop gain/loss, splic-
ing, 5’UTR and 3’UTR, and intronic. It gen-
erates the corresponding positions and amino
acid changes for coding variants. These an-
notations are based on transcripts and some
variants may have multiple annotations for
different transcripts in the same gene or tran-
scripts from overlapping genes. For non-
synonymous variants, it also provides func-
tionality prediction scores from a variety of
prediction algorithms, including PolyPhen-2
(Ramensky et al., 2002; Adzhubei et al.,
2010), SIFT (Ng and Henikoff, 2003), LRT
(Chun and Fay, 2009), and MutationTaster
(Schwarz et al., 2010). For all variants,
ANNOVAR outputs sequence conservation
scores such as GERP++ (Cooper et al., 2005)
and PhastCon (Siepel et al., 2005). Other
information includes dbSNP IDs, allele fre-
quencies in the 1000 Genomes Project (1000
Genomes Project Consortium, 2010; Abeca-
sis et al., 2012), and the NHLBI-Exome Se-
quencing Project from the Exome Variant
Server (EVS) (Emond et al., 2012; Tennessen
et al., 2012). All these categories of informa-
tion are useful for selecting promising variants
for the analysis and construction of sensible
weighting schemes in rare variant aggregation
analysis.

3. Quality assessment of variant calling
It is common practice to filter out false

positive variant calls using machine learn-
ing approaches (Abecasis et al., 2012; 1000
Genomes Project Consortium, 2010; DePristo
et al., 2011) by using features that are predic-
tive of misalignment of reads (e.g., mapping
quality, sequence repeats, mappability). After
filtering “bad” calls, it is helpful to check the
Ti/Tv ratio, i.e., the ratio of numbers of transi-
tions (A<->G and C<->T) versus transver-
sions (all other nucleotide changes) from the
reference alleles. There are more possible Tv’s
than Ti’s, and if false variant calling is ran-
dom regardless of Ti or Tv changes, we ex-
pect that the Ti/Tv ratio will be ∼0.5. Since
transitions occur more easily than transver-
sions, a Ti/Tv ratio higher than 0.5 is expected.
On the genome level, the observed Ti/Tv ra-
tio is ∼2.2 to 2.3, and for coding variants
the Ti/Tv ratio is slightly over 3 (Abecasis
et al., 2012; 1000 Genomes Project Consor-
tium, 2010; Tennessen et al., 2012). A signifi-
cantly reduced Ti/Tv ratio indicates an excess
of false positive variant calls. The Ti/Tv ratio
analysis is particularly important for check-
ing the quality of novel variant sites that are
not present in public databases (Ng et al.,
2009).

4. Aggregation analysis
After generating a clean set of genotype

calls with functional features, the key is to
perform association analyses to identify as-
sociated rare variants. Although the focus is
on aggregation analysis, it is always desirable
to perform single-marker tests to identify rel-
atively common variants with larger genetic
effects. As we show in the discussion of var-
ious aggregation analyses, there is no single
method that is superior to other methods in all
scenarios. The performance is largely depen-
dent on the true underlying genetic models,
which are unknown. Here we provide some
practical strategies that we hope are useful
in genetic association studies. This is still an
active research area and practitioners are en-
couraged to apply appropriate approaches and
adapt new advances for their studies.

For gene-based analyses, the first step is
to determine which variants to include in the
aggregation analysis. If only rare variants are
to be included, a set of prespecified allele
frequency cutoffs may be used, e.g., MAF
0.05 to MAF 0.01, or the VT method may
be used. To select a cutoff, it is worth not-
ing that approaches based on the estimates
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from controls need to use permutation to cal-
culate p values to avoid inflation of type I error
rates. This is because under the null hypothe-
sis that rare variants are not associated with the
trait, under this selection criterion the expected
frequency in controls is less than that in cases,
which is the allele frequency in the population.
The next step is to determine which functional
variants are included. In practice, the first pri-
orities may be the analysis of stop gain/loss,
splicing and missense variants, and perform-
ing gene-based analyses on this category of
variants. For dichotomous traits, it is natural
to apply burden tests to test for an enrichment
of these “functional” variants in cases or con-
trols, with possible weighting of each variant
based on such prior knowledge as functional
prediction scores. Before applying weights to
variants, it is desirable to check the ratio of
the weights so that the range is compatible
with complex traits. For example, it is hardly
believable that the OR of one variant is hun-
dreds of times higher than that of another one,
and if noncausal variants are accidently more
highly weighted than others, the association
signal will be dramatically diluted by noise.
For quantitative traits, either in random or ex-
treme sampling designs in which SKAT-O can
be applied, although rare variants that influ-
ence the quantitative trait values in different
directions may be expected, it is biologically
plausible for a large proportion of causal vari-
ants to have effects in the same direction, and
burden tests should also be considered. For
complex diseases with a strong indication of
specific genetic models, specific aggregation
tests may be appropriately constructed. For
example, if a recessive model is suggested,
a compound heterozygote modeling (e.g., the
collapsing of heterozygotes where rare alleles
are on different haplotypes) can be used to test
for highly conserved functional variants, e.g.,
splicing sites and stop gain/loss variants.

Aggregation tests can also be applied to
pathways or gene sets. It may not be desir-
able, however, to aggregate all rare variants,
since the total number of rare variants may
be too excessive to detect the association sig-
nal contributed by a smaller number of causal
variants. The investigation of power in various
tests in realistic simulations is lacking in this
setup. It is expected that a few genes in a path-
way or gene set may harbor causal variants,
and the CMC method or SKAT-O may be used
to guard against the noise in the noncausal
genes. Prior knowledge from other resources
(e.g., gene expression data) or data-driven ap-
proaches are a viable way to subselect promis-

ing genes (e.g., genes expressed in appropriate
tissues) in order to reduce the dimension prior
to aggregation analyses.

After obtaining exome-wide p values, we
recommend drawing a QQ plot to check the
behavior of all test methods. Systematic devi-
ations from what is expectated indicate issues.
If inflation of type I error is observed, it can
be caused by the use of an anticonservative
test, e.g., LRT for extremely rare variants (Li
and Leal, 2008). Conversely, a deflation can
be observed when conservative tests (Fisher
exact tests or score tests when the sample size
is not large) are used. These can sometimes be
circumvented by obtaining empirical p-values
via permutation. Confounding factors, such as
population stratification or sequencing batch
effects, can generate false association signals,
and permutation will not resolve these issues.
In such situations it is important to explore
the data to identify and correct the confound-
ing factors so as to avoid spurious associations
(see Commentary at the end of this unit for
more details).

5. Follow-up studies
It is important to carry out follow-up studies

to confirm any significant findings in the initial
sequencing study, and this is particularly true
for rare variant associations. It is of particu-
lar interest to assay the function of candidate
genes on phenotypes, but this strategy is time-
and labor-consuming. The most economical
approach is to replicate candidate genes in
an independent sample. Given the effective-
ness of the variant-based approach (Liu and
Leal, 2010b), this strategy is more practical
to assay thousands of samples. Custom chips
can be designed to target the top candidate
genes. Of particular note is the exome-chip
design, which includes on the array ∼240,000
nonsynonymous and splice site variants iden-
tified by sequencing >12,000 individuals
(Do et al., 2012; http://genome.sph.umich.
edu/wiki/Exome Chip Design). Although this
exome chip can be used for replication, cur-
rently it is also used for primary association
studies of coding variants. The exome chip
is being genotyped on >1,000,000 individu-
als with phenotype data for a wide variety of
traits (Do et al., 2012). For replication studies,
ideally the same analysis strategy that is used
in the discovery panel to select top candidate
genes would be applied to the replication data,
although it is also desirable to explore other
genes for additional signals in the exome-chip
data.
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Software packages for rare variant
analyses

Most original papers describing analysis
methods provide software for carrying out the
proposed methods. General tools that imple-
ment a battery of published methods are also
available. Some of the methods can be eas-
ily implemented in statistical packages such
as R software (R Development Core Team,
2008). Due to the complexity of the rare vari-
ant analyses, currently available tools may not
fulfill specific analysis needs for specific stud-
ies. In such situations it is desirable to imple-
ment custom-designed approaches in R, to, for
example, carry out specific analyses. The fol-
lowing list names a few software packages that
implement most of the methods discussed in
this unit:

• PLINK/SEQ, a package implementing a
variety of methods (http://atgu.mgh.harvard.
edu/plinkseq/)

• EPACTS, a package implementing a vari-
ety of methods (http://genome.sph.umich.edu/
wiki/EPACTS)

• SKAT-related packages (Lee et al.,
2012a, 2012b; Wu et al., 2011: http://www.
hsph.harvard.edu/research/skat/)

• SCORE-Seq (Lin and Tang, 2011: http://
www.bios.unc.edu/∼dlin/software/SCORE-
Seq/)

• SimRare, a tool for the simulation and
evaluation of various methods (Li et al., 2012b:
http://code.google.com/p/simrare/)

• Variant Association Tools (San Lucas
et al., 2012: http://varianttools.sourceforge.
net/Association/HomePage)

COMMENTARY

Study designs
In this unit we focus on unrelated

case/control or quantitative designs. Other
study designs provide attractive alternatives.
For example, family studies were largely ig-
nored in the GWAS because of the low power
for common variants. With the advent of rare
variant searches, however, there is a resur-
gence of family studies, and the question of
whether family or unrelated designs are more
powerful for identifying rare variants with
larger genetic effects is still being debated. It
is argued that collecting families with multi-
ple affected individuals can enrich causal rare
variants, and sequencing such families is ex-
pected to achieve improved power over un-
related designs (Cirulli and Goldstein, 2010;
Peng et al., 2010). A particular advantage of
family studies is the ease of replication of

rare variant findings. For example, a much re-
duced sample size is needed to ascertain ad-
ditional family members of those individuals
who carry candidate rare variants for repli-
cation. On the other hand, it requires a large
sample to observe enough copies of rare vari-
ants in unrelated individuals. Family samples,
however, are much more difficult to collect. It
is likely that in the future, both designs will be
carried out and that they will prove to comple-
ment each other. Although we only discussed
methods that are devised for unrelated designs,
some can be extended to family studies. A
few other methods are available as well (Fang
et al., 2012; Zhu and Xiong, 2012).

For quantitative traits, sampling individu-
als with extremely low or high phenotypes is
more powerful than random sampling (Huang
and Lin, 2007; Barnett et al., 2013; Liu and
Leal, 2012b). This extreme sampling strategy
has been successful in identifying rare vari-
ants in sequencing studies (Cohen et al., 2004,
2005, 2006; Romeo et al., 2007). One simple
analysis approach is to treat the two extremes
as cases and controls, for which all methods
discussed in this unit are readily applicable.
This simple strategy ignores the information
carried in individual phenotypes, however. For
traits that are normally distributed and sam-
pling that is based on phenotype value cutoffs
only, the extreme phenotypes follow truncated
normal distributions. In such cases, likelihood
models that are conditional on extreme sam-
pling are expected to achieve improved power
(Barnett et al., 2013; Huang and Lin, 2007; Liu
and Leal, 2012b). In reality, however, investi-
gators should be cautious about applying such
methods if the traits do not follow a normal
distribution or if additional criteria are used
to select extremes. In these situations the ex-
treme phenotypes may not follow truncated
normal distributions, and it is recommended
that case/control methods be used to gain more
robustness.

Confounding factors for rare variant
associations

In addition to the statistical challenges of
rare variant association analyses, to avoid spu-
rious associations, two confounding factors—
namely, batch effects of sequencing and popu-
lation stratification—are worth further discus-
sion. These confounding effects have not been
investigated extensively but their impact on as-
sociation results can be substantial. Advanced
methods are needed for studies in which such
confounding effects are present.
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Batch effects of sequencing refer to the dif-
ferential variant and genotype calls in cases
versus controls that are caused by any possi-
ble confounding factors, such as DNA sources,
sequencing technologies, sequencing depth,
calling approaches, and postprocessing. For
example, sequencing depth has been shown
to be such a confounding factor in the 1000
Genomes Project data (Abecasis et al., 2012;
1000 Genomes Project Consortium, 2010).
It is not uncommon for different sequencing
strategies to be used in the same study. For
example, newer technologies with reduced er-
ror rates and increased coverage are used for
later phases of sequencing, resulting in better
genotype calls; different capturing kits have a
more dramatic confounding effect due to vary-
ing capturing evenness and target regions. On
their own, these factors can introduce system-
atic differences in cases and controls and in
combination may lead to strong batch effects
that generate spurious associations. It is gen-
erally true that genotypes of rare variants are
more difficult to infer from sequencing than
common variants. For a few methods in which
the rarer a variant is, the more heavily it is
up-weighted, it is unclear how the potential
false rare variant calls may affect the power
and false positive associations, and this war-
rants additional investigation. In the benign
case where the heterogeneity of the sequenc-
ing strategies does not lead to confounding in
well-designed studies, power loss is expected
if these differences are ignored. It is helpful
to explore batch effects—using, for example,
principal component analysis (PCA)—and to
take appropriate steps once confounding fac-
tors are identified. Unless sequencing tech-
nologies maintain high accuracy as they ma-
ture, differential sequencing platforms (e.g.,
reagents, software pipelines, etc.) are likely to
be used in the same study and advanced meth-
ods that take into account such sequencing ef-
fects may be needed to increase the analysis
power while controlling for batch effects.

The problem of population stratification in
association studies is well recognized, and ef-
fective methods based on PCA (Price et al.,
2006) and variance component models (Kang
et al., 2010) are routinely applied to GWAS
data. For rare variants, however, it is less clear
how population stratification may affect as-
sociation analyses. Several recent large-scale
sequencing studies reveal that a vast major-
ity of variants are rare, and the excess of
rare variants is due to recent explosive human
population growth (Keinan and Clark, 2012;
Nelson et al., 2012). The departure of popu-

lation growth from equilibrium skews the pat-
terns of genetic variation and makes the mod-
eling of population genetics more challenging.
Excessive mutations introduced after the split
of modern populations obscure the association
studies; for example, study samples regarded
as homogenous for GWAS may show differ-
ential patterns in the spectrum of rare vari-
ants. Simulation studies showed that the im-
pact of rare variant population stratification on
association mapping can be stronger than that
of common variants (Mathieson and McVean,
2012). Commonly used approaches for cor-
recting population stratification in GWAS—
including methods based on PCA and variant-
component models—may not always be ef-
fective in correcting the population stratifica-
tion of rare variants (Mathieson and McVean,
2012). Although PCA has been shown to be
effective on some data (Zhang et al., 2013),
definitive conclusions require more studies,
and the development of rare variant analysis
methods can clearly benefit from an under-
standing of genetic variations that are caused
by the recent explosion in human population
growth.

Concluding remarks
In this unit we have described various rare

variant analysis methods, their statistical fea-
tures and scope of application, and discussed
challenges of rare variant analysis from sev-
eral perspectives. We also outline a pipeline
for sequencing analysis to identify rare variant
associations. It is clear that no consensus can
be reached on standard approaches for aggre-
gation analyses of rare variants, however. It is
up to investigators to select appropriate anal-
ysis strategies that are tailored to their stud-
ies. Forthcoming results from ongoing studies
will further our understanding of the architec-
ture of complex traits, which will in turn help
develop better analysis strategies. We hope
that this unit serves as a general platform for
introducing this emerging field and provides
useful guidelines for rare variant association
analysis.
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