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Abstract The annual timing of flood events is a useful indicator to study the interaction between
atmospheric and catchment processes in generating floods. This paper presents an assessment of the
seasonal timing of floods for 7,894 gauging locations across the globe over a common period from 1981 to
2010. The averaged ordinal date of annual maximum streamflow is then estimated for ungauged locations
following a two-stage prediction scheme. The first stage identifies regions that share a common climatic
predictor of flood timing by analyzing the similarity of flood timing with seven climate variables. These
variables represent precipitation timing and snowmelt dynamics and are derived from a global climate
reanalysis data set. Homogeneous regions in terms of the dominant predictor are generalized in the
second stage through a rule-based classification. The classification partitions the world into 10 hydroclimate
classes, where each class has flood timing predicted using the most relevant climate predictor. Using this
relatively simple and interpretable model structure, flood timing could be predicted with a global mean
absolute error of approximately 32 days while maintaining consistency across large regions. Potential
applications of the developed map include better understanding of climatic drivers of flooding and
benchmarking the performance of global hydrological models in simulating the processes relevant

to flooding.

Plain Language Summary Timing of annual maximum streamflow is a useful index to relate
flood occurrence to appropriate flood generation processes. This study presents an assessment of flood
timing across 7,894 gauging locations globally over the period from 1981 to 2010. The averaged date of
annual maximum streamflow is compared to seven climate predictors, identifying regions that are likely to
share a common flood generation process. These homogeneous regions are generalized across the globe
using a gridded data set of daily precipitation and temperature. To derive a global map of flood timing, the
date of annual maximum streamflow is predicted for both gauged and ungauged locations, using a linear
function of the most important climate predictor in each region.

1. Introduction

The seasonal timing of flood events is a useful indicator of how atmospheric processes interact with the local
catchment, with recent papers showing the relevance of intense precipitation, snowmelt, and rain-on-snow
events as mechanisms driving the timing of floods (Bloschl et al., 2017; Hall & Bloschl, 2018; Iliopoulou
et al., 2019; Parajka et al., 2010; Villarini, 2016). An understanding of flood timing provides useful insights
at many scales: (i) globally—because of the considerable attention devoted to the development of global
hydrological models (Bierkens, 2015; Bierkens et al., 2015; Wood et al., 2011) and the need to reconcile pat-
terns of nonstationarity in climatic drivers such as rainfall (Sharma et al., 2018; Westra et al., 2013; Westra
et al., 2014) with those observed in streamflow (Do et al., 2017; Gudmundsson et al., 2017; Gudmundsson
et al., 2019; Hodgkins et al., 2017); (ii) regionally—for analyses of flood frequency within homogeneous
regions and for detection/attribution of historical changes in flooding (Cunderlik et al., 2004; Villarini,
2016); and (iii) locally—to assist understanding of flood mechanisms, as required by decision makers in
designing strategies for flood prevention, mitigation, and response (Dhakal et al., 2015; Ward et al., 2015).

There have been many studies of flood magnitude and frequency characteristics at global (Asadieh et al.,
2016; Dankers et al., 2014; Do et al., 2017, 2019; Hodgkins et al., 2017; Wasko & Sharma, 2017;
Woldemeskel & Sharma, 2016), continental (Alfieri et al., 2015; Gudmundsson et al., 2012; Hall et al.,
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2014; Ishak et al., 2013; Mallakpour & Villarini, 2015; Mediero et al., 2015; Parajka et al., 2010), and national
scales (Beurton & Thieken, 2009; Burn & Whitfield, 2016; Merz et al., 2018; Slater & Villarini, 2016; Stevens
et al., 2016). However, there have been fewer and more recent studies of flood timing (Berghuijs et al., 2019,
2016; Bloschl et al., 2017; Burn & Whitfield, 2016; Cunderlik & Ouarda, 2009; Dettinger & Diaz, 2000; Hall &
Bloschl, 2018; Villarini, 2016; Ye et al., 2017). Interestingly, most of the studies of flood timing find unique
information on the mechanisms that cause floods. In particular, unlike indicators of flood magnitude or
frequency, the average timing of floods is relatively independent of human influences including land use
change and river regulation (Villarini, 2016). A regional investigation (Hall & Bloschl, 2018) also found
that geographical location is potentially the dominant factor driving flood seasonality.

Most studies of flood timing have focused on Europe and North America, so that a global perspective of
when and why floods occur at different times of the year is not yet available. To develop this global perspec-
tive, it is essential to expand the assessment of flood timing to other continents (e.g., Australia, South
America, Asia, and Africa) using a consistent data set and analysis methodology. One possibility is to simu-
late runoff and extract information of flood timing through the use of global hydrological models (Lee et al.,
2015) forced with global reanalysis climate. To our knowledge, Lee et al. (2015) is the only model-based study
to produce a global map of the peak flow season (defined as the consecutive 3-month period with the highest
number of events above a threshold of streamflow volume), whereas model-based studies of timing of
annual maximum streamflow are not yet available. More recently, Ghiggi et al. (2019) provide global maps
of the month with minimum and maximum flow, based on a data-driven century long runoff reconstruction.
Another alternative possibility is to estimate flood timing using available observational data sets from across
the globe, followed by the construction of a data-driven model to infer flood timing at locations without
streamflow observations. In addition to providing meaningful information in its own right, such an
approach would provide a useful point of comparison for any subsequent model-derived maps of
flood timing.

The spatial variation of the dominant mechanisms in flood generation, however, poses a challenge to pre-
dicting flood timing for ungauged locations. Heavy rainfall is one of the most common sources of flooding,
as the catchment rapidly saturates due to receiving a significant amount of precipitation (Kozlowski, 1984).
Many studies have shown that other factors also play an important role in the flood generation processes,
including antecedent soil moisture (Bennett et al., 2018; Ivancic & Shaw, 2015; Wasko & Nathan, 2019;
Wasko & Sharma, 2017; Ye et al., 2017) and snowmelt dynamics (Berghuijs et al., 2016; Bloschl et al.,
2017; Mediero et al., 2015; Parajka et al., 2010). Flooding in arid regions or very large catchments may be
more sensitive to the total amount of rainfall over long periods (up to months) rather than short-duration
rainfall events (Ingle Smith, 1999; Johnson et al., 2016; Marengo, 2006; Pathiraja et al., 2012), and thus,
the long-term total precipitation also needs to be taken into account. A reliable model for flood timing, there-
fore, must possess the capacity to identify regions in terms of the dominant flood generation process (es),
which can then be used to predict flood timing in ungauged locations.

The recent publication of a global archive of over 30,000 streamflow gauges (GSIM; Do et al., 2018b;
Gudmundsson et al., 2018b) provides a unique opportunity to explore many aspects of streamflow char-
acteristics at the global scale, including flood timing. The main aim of this study is to use this resource,
combined with an atmospheric reanalysis data set, and to develop a data-driven model to infer flood tim-
ing at both gauged and ungauged regions across the globe. Specifically, the global seasonality of flood tim-
ing is first evaluated across all Global Streamflow Indices and Metadata (GSIM) stations with sufficient
data. Observations of flood timing are then analyzed with respect to seven climate predictors derived from
the reanalysis data set to identify potential flood-producing mechanisms. The single predictor best suited
to explain and predict flood occurrence is then identified at each location. The regional consistency
between flood timing and the most relevant predictor is then generalized to all gauged and ungauged
locations using a rule-based classification system that identifies homogenous regions in terms of the
predictor-flood timing relationships.

The remainder of this paper is structured as follows. Section 2 provides an overview of the data and methods
that were used to assess the seasonal timing of floods and the prediction scheme development. The results are
reported in section 3 together with discussions about the performance of the prediction scheme. Finally,
section 4 summarizes the key findings and highlights potential application of the proposed prediction scheme.
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2. Data and Methods

This section summarizes the workflow for global prediction of flood timing (Figure 1), including input vari-
ables, observational analyses, and the prediction scheme using a rule-based classification system. The data
sets used in this study are presented in section 2.1, followed by descriptions about observations and predic-
tors of flood timing (section 2.2) and the development of a prediction scheme to derive a global map of flood
timing (section 2.3).

2.1. Data Sets

The GSIM archive contains streamflow indices from more than 30,000 stations across the globe (Do et al.,
2018b; Gudmundsson et al., 2018b). To establish a compromise between data quality and availability, only
stations classified with a “useful” homogeneity class (Gudmundsson et al., 2018b) are used to ensure that
stations with potentially spurious step changes are excluded. A threshold of at least 20 yearly data points
available during the 1981-2010 common period (with each year having at least 350 days of reliable records)
was used to select streamflow gauges with sufficient data to minimize the influence of interannual and inter-
decadal variability while maintaining a relatively large sample for a global-scale investigation. This filtering
process identified 9,560 viable stations, of which a further 76 stations were removed due to unavailability of
catchment area information.

To mitigate the influence of large-scale climate gradients as well as routing effects and catchment processes,
an approach of previous global-scale reconstruction studies was adopted (Beck et al., 2015; van Dijk et al.,
2013), and only stations with catchment area less than 10,000 km? were retained—approximately the size
of a 1° longitude/latitude grid cell. This led to the removal of a further 1,226 stations. Finally, 364 stations
that fall outside of ERA-Interim land regions were also removed (primarily over coastal regions or islands),
as it was not possible to develop predictions for these locations. The outcome of this filtering process was the
identification of a final subset of 7,894 stations (out of the original 30,959 GSIM stations) to be used for
this study.

To represent global observations of atmospheric forcing, the ERA-Interim data set was used over the same
1981-2010 period (Dee et al., 2011). Regridded daily temperature and precipitation data products at 0.5°
resolution were retrieved directly from the European Centre for Medium-Range Weather Forecasts data
portal. The land-sea mask from ERA-Interim was used to keep only the values over land regions (except
Greenland and Antarctica, which were excluded). Time series at monthly and annual resolutions were
aggregated from original daily time series. The empirical analysis was conducted at each streamflow gauge,
and thus, reported streamflow gauge coordinates (Do et al., 2018a) were used to identify corresponding grid
cells from the global climate data set and extract information of both precipitation and temperature for each
streamflow station. Note that although the streamflow data have inconsistent coverage across the globe, the
reanalysis data cover all the global land areas and thus provide the capacity to extrapolate the findings at
data-covered regions and make predictions of flood timing across the globe.

2.2. Observations and Predictors of Flood Timing

2.2.1. Observations of Flood Timing

The ordinal day (from 1 to 365 or 366 and starting on 1 January) of annual maximum streamflow (DOYMAX
index, available in GSIM; Gudmundsson et al., 2018a) was selected as the indicator of flood seasonality.
Circular statistics (Bloschl et al., 2017; Mardia & Jupp, 2009) was used to assess the seasonality of historical
flood timing, with further details provided in the supporting information. As the present study focused on
assessing long-term mean of flood timing, the circular mean value of each DOYMAX time series over the
period from 1981 to 2010 was used as the observed timing of flood seasonality for each stream gauge. A con-
centration statistic (R) of each DOYMAX time series was also calculated to represent the strength of the
seasonality, where R = 0 indicates that flood occurrence dates were spread evenly throughout the year,
and R = 1 indicates that all flooding events occur on the same ordinal day across all years.

Note that a low value of the flood timing concentration index R does not always correspond to low levels of
seasonality and could reflect other complex flood timing distributions (e.g., reflective symmetric bimodal or
asymmetric unimodal), which is beyond the scope of our investigation. Stations with nonseasonal flood
timing were identified through a circular Kuiper's test, which evaluates whether the time series is circularly
uniform. Only stations for which the null hypothesis of circular uniformity is rejected at the 10% confidence
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level (i.e., those stations that have statistically significant seasonality) were considered as input for the
prediction of flood timing (7,040 stations in total).

Figure 2 shows examples of calculating the mean and concentration of flood timing. Figure 2a illustrates a
location where flood events can occur at any time of the year. The hypothesis of uniformity was not rejected
at the 10% significance level in this case, suggesting the absence of flood seasonality evidence. Figure 2b pro-
vides an example of seasonality where all flood events occur between November to April, and the majority of
the events falls in January and February.

2.2.2. Predictors of Flood Timing

This section presents seven identified climate predictors of flood timing considered in this analysis. To
ensure global availability for the prediction, daily precipitation and temperature data at each grid point of
the ERA-Interim data sets were used to derive the identified predictors. Each predictor is the circular mean
value of the occurrence date of one hypothesized flood generation process over the 1981-2010 period. The
seasonality assessment using the circular uniformity hypothesis was also applied to these seven predictors,
so that only grid cells where the null hypothesis of circular uniformity was rejected at the 10% level are con-
sidered, while a missing value was assigned for other grid cells. The seven climate predictors are divided into
three groups based on the hypothesized flood generation processes that they represent.

The first group of predictors focuses on short-term rainfall and reflects the hypothesis that heavy rainfall
events are the primary mechanism driving large streamflow events. Based on the contributing areas of the
gauging stations, it is estimated that all stations in the final subset (which by design have catchment areas
less than 10,000 kmz) had times of concentration of 7 days—based on the Pilgrim McDermott formula
(Pilgrim et al., 1987). This suggests that heavy rainfall events spanning a period of 7 days or less are appro-
priate to represent this mechanism. Two variables were extracted from ERA-Interim precipitation data set
considered in this group:

(i) PD—date of peak daily precipitation in each calendar year, which represents flood produced by the sin-
gle largest rainfall event
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Figure 2. Example of a station that does not have evidence to reject the null hypothesis of uniformity in a circular time series (Figure 2a; the east branch of Cann
River located in Victoria, Australia) and a station that has evidence to reject the uniformity hypothesis (Figure 2b; Los Sosa River located in Entre Rios
Province, Argentina). Gray areas represent the density of maximum streamflow events distributed across 12 months of the year. The direction of the red arrow
represents the average timing, whereas the length of the arrow illustrates the temporal concentration (R value) of the maximum events (0.1 and 0.9 for the
Figures 2a and 2b, respectively).

(ii) PD7—date of peak 7-day precipitation in each calendar year, which represents flood produced by the
largest series of rainfall events. To extract PD7, a backward-moving window of 7 days was applied to
each day of the year, and the day of maximum value (comprising the total precipitation depth on that
day and the six prior days) was recorded for each calendar year.

The second group of predictors focuses on long-term rainfall and reflects the hypothesis that long-term
catchment wetness and antecedent moisture conditions play a key role in the flood generation process.
There are two variables considered in this group:

(i) PD30--the date of peak 30-day precipitation in each calendar year, which represents the hypothesis that
the peak discharge occurs when the drainage area is relatively wet, and

(i) PD90—the date of peak 90-day precipitation in each calendar year, which represents the hypothesis that
the timing of peak discharge occurs toward the end of a wet season, where significant buildup of catch-
ment moisture will have occurred. The calculation process for PD30 and PD90 was similar to PD7 but
with the backward-moving window set at 30 and 90 days, respectively.

The third and final group of predictors focuses on snowmelt processes and is designed to provide an indica-
tor of snowmelt or rain-on-snow processes. The first predictor in this group is the date of seasonal transition
from snowfall to rainfall in precipitation (TD), which is defined as the first 7 days (the first day was chosen as
TD value) that have averaged surface air temperature rises above 0 °C after having been below 0 °C for at
least seven consecutive days. To represent a more sophisticated indicator for snowmelt events, a simple
degree-day method (Berghuijs et al., 2016; Hock, 2003; Woods, 2009) was used to simulate snow dynamics
(see supporting information for detail methodology). This led to two predictors derived from simulated
snowmelt contribution:

(i) SD—the date of peak value of daily snowmelt or rain-on-snow
(ii) SD7—the date of the peak value of 7-day snowmelt or rain-on-snow. Here a backward-moving window
of 7 days was used to calculate the time series of total snowmelt or rain-on-snow amount.

To mask out locations where there was an absence of significant contribution of snowmelt to flood genera-
tion, additional constraints were applied to snowmelt predictors. For the TD predictor, locations where this
variable cannot be identified for more than 70% of the years were assigned a missing value. Missing values
were also assigned to SD and SD7 predictors across locations where less than 10% of precipitation falls
as snow.

The availability of chosen climate predictor groups across the globe is shown in Figure 3. The constraining
criteria for snowmelt predictors imply that these predictors are mostly available in high-latitude regions in
the Northern Hemisphere and in some mountainous areas in the Southern Hemisphere such as the Andes in
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oooo

No predictor available
No rainfall-predictor available

No snowmelt-predictor available

Rainfall and snowmelt predictor available

Figure 3. Map of data availability for the seven predictors. Predictors were divided into two categories: (1) Rainfall-predictors comprising short-term rainfall pre-
dictors (PD and PD7) and long-term rainfall predictors (PD30 and PD90) and (2) Snowmelt predictors comprising TD, SD, and SD7. Unavailability may be due to no
data being available (for snowmelt-base predictors only) or where the circular uniformity hypothesis was not rejected at the 10% level (for all predictors).

South America and the Southern Alps in New Zealand. Due to nonseasonality of the selected predictors (i.e.,
where the circular Kuiper test does not reject the uniformity hypothesis), some areas, mostly desert regions,
do not have any available predictors, such as in the interior of Southern Australia and the southeastern part
of the Arabian Peninsula or the Uruguay River. Furthermore, no rainfall predictors are available for many
grid cells across the Appalachian Mountains in North America, eastern Europe, central Kazakhstan, and
Northern Africa as a result of the lack of rainfall seasonality in these regions (i.e., the null hypothesis of cir-
cular uniformity is not rejected at the 10% confidence level). Detailed maps of the timing and seasonality of
each predictor are provided in Figures P1 to P7.

2.3. Developing a Global Prediction of Flood Timing

At the global scale, it has been shown previously that the mechanism dominating flood occurrence varies
significantly in many regions (Berghuijs et al., 2016; Bloschl et al., 2017), and thus, a reliable prediction
for flood timing must adequately reflect this spatial variation. To facilitate this requirement, the present
study proposes a two-stage prediction model, in which the first stage (section 2.3.1) aims to define homoge-
neous regions in terms of the most important predictor. In the second stage (section 2.3.2), the defined
homogeneous regions are generalized across the globe through a classification scheme, in which prediction
of flood timing is made for each class by a linear function of the most relevant predictor. The global predic-
tion for flood timing was then obtained by applying the classification system and the linear functions to all
land locations, including ungauged regions.

2.3.1. Diagnostic of Regional Consistency Between Predictors and Observed Flood Timing

This section describes the first stage of the flood timing prediction scheme, aiming to define regional patterns
of the most important flood timing predictors from observational data. The temporal discrepancy between
the average ordinal dates of predictors and annual maximum streamflow events was first calculated to iden-
tify the climate variable with the closest match at each location across selected stations showing seasonal
flood timing. The circular characteristic of the variables was also considered, allowing for the discrepancy
between 31 December and 1 January to be 1 day rather than 364 days (see supporting information for calcu-
lation of circular statistics). The level of consistency between flood timing and the predictor with the closest
match was assessed by grouping stations into five categories based on the magnitude of temporal discre-
pancy, as outlined in Table 1. The spatial distribution of the single predictor with the highest level of consis-
tency to flood timing at each gauged location was then used to represent homogeneous regions in terms of
the dominant climate predictor.

2.3.2. Predicting Flood Timing Using a Rule-Based Hydroclimate Classification

In the second stage of the prediction scheme, the observed homogeneous regions were generalized across the
globe through a rule-based classification system, which used a set of climate indices (derived from ERA data
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Table 1

Description of the Five Consistency Categories Between Flood Timing and a Single Predictor

Category Description

High consistency Discrepancy between (+)15 days

Medium consistency Discrepancy between (+)16 and ()45 days

Low consistency Discrepancy between (+)46 and (+)75 days

Inconsistency Discrepancy is outside of [—75, +75] range

No data available Predictor data is not available at the reported coordinates of the streamflow

station due to seasonal uniformity of the time series

set and represent the climatic conditions across the world) as separating variables. The indices were derived
by first using nine variables from the Koppen-Geiger (Kdppen, 1900) classification, which is currently the
most widely used climate classification system. In addition, we also calculated the fraction of total
precipitation that falls as snow (f,ow), and an indicator of whether transition time from snowfall to
rainfall can be reliably identified (TD;pngicator) to support the development of a classification tree (i.e., to
better delineate the boundary between snowmelt dominant and rainfall dominant flood regions). This led
to the selection of 11 “candidate” indices, which are summarized in Table 2.

The classification scheme has a similar structure to that of a classification tree, which is a binary tree with
nodes defined by simple splitting rules applied to a set of input variables and corresponding thresholds
(e.g., at the root node, all stations are divided into two groups by a decision rule “transition time from snow-
fall to rainfall can be reliably identified”). However, each leaf of the tree (i.e., terminal node or hydroclimate
class in the context of this study) provides a prediction of flood timing through a linear function of one of the
seven climate predictors, rather than the output of the tree simply being the assignment of a class.

To develop this classification scheme, one possible option is to apply machine learning techniques such as
recursive binary splitting together with a greedy-pruning algorithm (see, e.g., Cannon, 2012) on available
data sets. However, we decided to construct the model in a semiautomated manner to ensure that the final
hydroclimate classification system is as physically interpretable as possible while retaining regional patterns
of predictors that best explain the occurrence of flood.

Figure 4 illustrates our approach, with two different procedures were applied for “nonterminal” and “term-
inal” nodes separately. At each nonterminal node n, a specific climate index (selected from 11 climate vari-
ables and denoted here by C,,) and corresponding thresholds were manually selected to divide the world into

Table 2
“Candidate” Climate Indices for the Rule-Based Hydroclimate
Classification

Index Description

MAP Mean annual precipitation (m)

MAT Mean annual temperature (°C)

Thot Temperature of the hottest month (°C)

ieaita] Temperature of the coldest month (°C)

Pary Precipitation of the driest month (m)

Pgary Precipitation of the driest month in spring-summer” (m)
Pyary Precipitation of the driest month in fall-winter® (m)

By Precipitation of the wettest month in spring-summer® (m)
By Precipitation of the wettest month in fall-winter® (m)
T Fraction of precipitation falling as snow (from 0 to 1). Daily

precipitation is assumed to fall as rainfall when 7' > 0

TDjndicator Binary variable (0/1) indicates whether transition time
from snowfall to rainfall can be reliably identified (i.e.,
at least 70% of the years have a temperature rise from
below to exceed 0°C)

aSpring-summer (fall-winter) is defined as the warmer (cooler) 6-month
period of October—March and April—September for each respective
hemisphere.

subregions. To guide the selection of climate index C,, visual matching
was first conducted between the spatial variations of all climate indices
(see supporting information Figures C1 to C11) to the regional consis-
tency between predictors and observed flood timing (results of the method
presented in section 2.3.1; an example is provided in the methodology sec-
tion of the supporting information). This step identified the climate
indices that can potentially serve as splitting variables to divide the world
into hydroclimate classes, with each class sharing a common flood predic-
tor. Among the “short-listed” climate indices, the variable and associated
threshold that could be meaningfully linked to a flood generation
mechanism (e.g., snowmelt processes, heavy rainfall events, and long-
term catchment wetness) were then chosen.

We define the terminal node of the partitioning scheme (hydroclimate
class R;, where j is the index over all classes) to be a homogenous “region”
that shares a common flood timing predictor. At each terminal node R;,
the timing of the flood (denoted by Yk, ) is then predicted by adding a
lag day (denoted by ij) to the value of the best climate predictor (denoted
by X, which is one of the seven climate predictors (i.e., indicators of rain-
fall and snow melt timing) that are defined in section 2.2.2). For a specific
hydroclimate class R;, the prediction of flood timing (?RJ.) was made using
a linear equation:
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Previous non-terminal node YR_/ = XRj + Y j= {1, 2. ]}. 1)

l

Non-terminal node »

|

G>a

Terminal node R;:
?Rj = Xg, + Vg,

The central idea of this prediction scheme is that regions with the same
hydroclimate class (R;) are likely to have floods, on average, occurring TR

days within the occurrence of the hypothesized mechanism (ij is
bounded between —15 and +15 days to prioritize predictor that has a high
consistency to flood timing). For example, if the peak daily precipitation
(PD) was identified as the most suitable predictor for hydroclimate class
R;, the flood timing at each station in this class is predicted by adding a

Terminal node R, .
constant yp to the date of the peak daily precipitation.

YRf+1 = XRi+1 i YRisa

The best predictor and corresponding lag day for each hydroclimate class

Figure 4. Illustration of the classification scheme and the procedure under-  aq determined following an automated optimization. The objective of

taken at each classification node.

the optimization was to (i) minimize error between predicted and

observed flood timing and (ii) maximize the proportion of locations that
have available data for the predictor. The former criterion represents the predictive ability, while the latter
indicates the ability to correctly identify regions with common flood generation processes of the prediction
scheme. The objective function used an adjusted mean absolute error:

1 AE;
AMAEg = — > =1 i€R;,  j=1,2,.J, )
P} N
P—y; if [5,—y;|<183
where AE, — { i I beyl<1ss 3)
365—[y;—yi] if pi—y;1>183

and where AMAEF, is the adjusted mean absolute error for region R;, N is the number of stations located in
hydroclimate class R;, y; is the prediction, while y; is the equivalent observation of flood timing for a specific
site i within hydroclimate class R;, and P, is the proportion of locations in hydroclimate class R; having avail-
able data for predictors (ranging from 0 to 1). This metric was used to penalize predictors that are unavailable
for many locations within a specific hydroclimate class (the square value emphasizes the importance of this
metric). The predictor Xg, and value of y,, that minimised the error for a given climate class were selected for
each terminal node of the prediction scheme.

The tree-based flood timing prediction model, calibrated to the seasonal flood timing observed across the
selected stations, was then applied to all land grid cells of the ERA-Interim data set to derive a map of flood
timing. The temporal concentration (R value) of selected climate predictor at each grid cell was then used to
represent the confidence of the prediction (high confidence: R value ranges from 0.8 to 1.0; medium confi-
dence: R value ranges from 0.6 to below 0.8; low confidence: R below 0.6). This information is useful to indi-
cate areas with complex temporal distribution of the most important predictors, which could reduce the
usefulness of flood timing prediction. For example, locations with a bimodal distribution of the PD predictor
may have intense rainfall events distributed in both April and November, but the averaged timing (used to
predict flood timing) would fall in February. The confidence of flood timing prediction (i.e., the flood timing
prediction of February) therefore would be low in these cases.

3. Results and Discussion
3.1. Seasonality Characteristics of Flood at the Global Scale

Figure 5 provides an overview of flood seasonality at gauged locations at the global scale (regional maps pro-
vided in supporting information). Figure 5a illustrates the average timing of floods for the 1981-2010 period,
while Figure 5b shows the flood timing concentration R. Stations that exhibit uniformity in the records are
highlighted as red dots in the lower panel. There is a clear regional association in the timing of flood occur-
rence, of which the patterns over North America and Europe concur with prior studies (Bloschl et al., 2017;
Burn & Whitfield, 2016; Hall & Bloschl, 2018; Villarini, 2016). The selected stations provide streamflow
observation for 3,539 of the total 57,191 ERA-Interim cells (noting that there may be several streamflow gau-
ging stations in a single ERA-Interim cell), leaving 94% of the global ERA-Interim landmass ungauged.
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Figure 5. Seasonality of flood occurrence across 7,894 GSIM stations fulfilling the quality control criteria for the period 1981-2010. Figure 5a: average flood timing;
color points represent long-term mean value. Figure 5b: concentration index (R) of flood timing (values range from 0 to 1); red dots represent records with uni-
formity hypothesis was not rejected at the 10% significance (854 stations). In both panels: gray dots represent GSIM stations that were removed prior to this analysis
due to quality entrance criteria (outlined in section 2.1). Note that (i) the averaged timing for points that are classified as 'uniform’ would not be reliable; (ii) a low R
may reflect a multimodal distribution of flood timing, which is outside the scope of this study.

Selected stations are also unevenly distributed, with the percentage of cells having flood data is relatively
high over North America and Europe (17.5% and 12.5% of ERA-Interim cells, respectively). South
America and Oceania have 7.2% and 5.8% of the total land mass covered by streamflow gauge, while
Africa and Asia are covered by less than 1% of the continental total land mass.

Notwithstanding data coverage limitations, this analysis provides a first regional perspective of flood timing
over parts of Asia (the majority of stations are located in Japan and India together with some stations avail-
able across Russia) and several regions in the Southern Hemisphere (the majority of stations are located in
Brazil and Australia). In Asia, high-latitude regions have floods occurred typically during spring, while the
rest of this continent is dominated by summer to autumn floods. In the Southern Hemisphere, there is a clear
transition of flood timing in the latitudinal direction. Due to the limited availability of snowmelt processes in
the Southern Hemisphere (only significant in some mountainous areas as discussed in section 2.2.2), the
rainfall regime and its interaction with catchment soil moisture conditions are more likely to be the key
flood generation mechanisms across these regions.

The strength of the seasonal cycle (Figure 5b) demonstrates a high level of spatial heterogeneity. There are
several clusters of stations showing uniformity due to the influence of climate-related processes that have
been documented in previous studies. For instance, the east of United States is subject to a range of flood
generation processes occurring throughout the year such as tropical and extratropical storms or snowmelt
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Figure 6. Global map of single predictor with smallest discrepancy to flood timing across 7,040 stations that exhibit seasonality in flood timing. The brown colors
indicate the short-precipitation predictor (PD and PD7), blue colors represent the long-precipitation predictors (PD30 and PD90), and the red colors represent the
snowmelt-base predictors (TD, SD, and SD7). There are 63 stations with no data available for predictors. These stations are plotted in the gray color.

dynamics (Villarini & Smith, 2010). European stations located at the foothill of mountainous areas tend to be
influenced by a mix of spring snowmelt, rainfall events, and/or glacier melting in summer (Hall & Bloschl,
2018). The southern coast of southeastern Australia has frequent rainfall in winter, but heavier summer pre-
cipitation is also possible due to convective activity. The combined influence of extreme rainfall and antece-
dence soil moisture is a likely reason for uniformity in flood timing records across this region (Leonard et al.,
2008), particularly where soil moisture conditions are countercyclical with heavy rainfall (e.g., the most
intense rainfall may occur during summer due to convective processes, but on average the soils tend to be
wettest during the winter). Lastly, the south of Brazil is characterized by a nondefined rainy season due to
the combined influence of cold fronts, thunderstorms, and tropical cyclones which make rainfall-induced
floods occurring throughout the year (Rao & Hada, 1990; Teixeira & Satyamurty, 2011). Ultimately of the
7,894 selected records, the uniformity hypothesis was rejected for 7,040 locations, and this subset of stations
that exhibited significant seasonality in flood timing represents the final subset used for the prediction of
flood timing.

3.2. Distribution of Predictors With the Least Discrepancy to Flood Timing

The distribution of the “best climate predictor” for the globe is provided in Figure 6 (regional maps for areas
with a high density of stations are provided in Figure S3). An interesting pattern observed through this ana-
lysis is the high level of spatial clustering in the distribution of predictors having the least discrepancy to
flood timing, suggesting the existence of homogeneous regions in terms of climate predictors that could
be used to predict flood timing.

In regions above 35°N where snowmelt also plays a significant role in flood generation, there are clear regio-
nal patterns regarding the most important predictor of flood timing. In particular, snowmelt-dominant pre-
dictors (i.e., TD, SD, and SD7, which usually occur in spring) are generally most suitable in the north-central
and the northeast of the United States, most of Canada, central and northeastern Europe, North Eurasia, and
Scandinavia. On the other hand, the rainfall-dominant predictors (i.e., PD, PD7, PD30, and PD90) are gen-
erally the most suitable to explain flood occurrences on the western coastline of North America and western
Europe (including the United Kingdom). These findings are generally consistent with previous studies
(Berghuijs et al., 2016; Burn & Whitfield, 2016; Cunderlik & Ouarda, 2009; Hall et al., 2014; Mediero
et al., 2015; Villarini & Smith, 2010; Ye et al., 2017).

Focusing on regions with no snowmelt-based predictors (i.e., below 35°N), short-term precipitation predic-
tors (PD and PD7) generally have the closest match with the timing of floods in the southeastern United
States, Northern Australia, and both the eastern and southern regions of Brazil, where previous studies have
shown the importance of thunderstorm activities or tropical cyclones in flood generation (Avila et al., 2016;
Bradley & Smith, 1994; Stevenson & Schumacher, 2014; Villarini, 2016; Villarini et al., 2014). On the other
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Figure 7. Consistency between flood timing and individual predictors (top panels: snowmelt-based predictor; bottom panels: rainfall-based predictors), based on
definitions in Table 1. Each bar chart illustrates the percentage of stations allocated into five consistency categories for one predictor across the six considered
regions. Note that the top panels (TD, SD, and SD7) have the same axis as the bottom panels.

hand, long-term precipitation predictors (PD30 and PD90) have the highest consistency with flood timing in
central Brazil and southern Australia, while other regions show a mixture between these two groups.

This comparison shows two of the main challenges for predicting flood timing at the global scale. First,
within relatively small geographic areas, such as the U.S. Rocky Mountains or the Alpine region in
Europe, there is large variability in the identified predictor, which reflects the complexity of flood formation
factors (snowmelt, soil moisture state of the catchment, and different types of precipitation) across these
regions (Berghuijs et al., 2016; Parajka et al., 2010). Second, many locations also show a high correlation
between predictors (e.g., the average timing of short-term precipitation and long-term precipitation being
in the same month; see Figure S4), and this feature creates noise in determining the most important predic-
tor. In addition, it also indicates a limitation of the prediction scheme, as the dependences between short-
term precipitation and long-term precipitation predictors cannot be fully reflected (e.g., the single most
extreme rainfall event may occur at the end of rainfall season, and thus PD and PD90 have the similar
values). Nevertheless, the spatial patterns shown in Figure 6 indicate the utility of the climate predictors
to identify different flood timing mechanisms at the regional scale.

The level of consistency between flood timing and available predictors (i.e., the discrepancy, in number of
days, between flood timing and available predictors as defined in Table 1) was also analyzed to evaluate
the appropriateness of using these predictors for estimating flood timing. At the continental scale
(Figure 7), all precipitation-based predictors generally have a good level of consistency in Asia, Africa,
and South America, with more than 70% of stations exhibiting high or medium consistency with flood tim-
ing. In Oceania (of which the majority of stations are in Australia), flood timing is most consistent with long-
term precipitation predictors, as both PD30 and PD90 have more than 60% of stations exhibiting high or
medium consistency. In North America and Europe, where snowmelt-related processes are a key flood-
producing mechanism, the percentage of stations showing high or medium consistency between
precipitation-based predictors and flood timing is lower than the other continental regions; however, this
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Table 3

Number of Stations Grouped by Five Consistency Categories at Regional and Global Scales

Level of consistency

Continents High Medium Low Inconsistency No data Total

Asia 223 (69.5%) 76 (23.7%) 15 (4.6%) 7 (2.2%) 0 (0%) 321
North America 1,837 (44.7%) 1,420 (34.5%) 509 (12.4%) 314 (7.6%) 31 (0.8%) 4,111
Europe 703 (52.2%) 471 (35.0%) 95 (7.0%) 75 (5.6%) 3 (0.2%) 1,347
Africa 100 (80.0%) 21 (16.8%) 2 (1.6%) 2(1.6%) 0 (0%) 125
South America 544 (74.3%) 136 (18.6%) 26 (3.5%) 19 (2.6%) 7 (1.0%) 732
Oceania 177 (43.8%) 115 (28.5%) 44 (10.9%) 44 (10.9%) 24 (5.9%) 404
Global 3,584 (50.9%) 2239 (31.8%) 691 (9.8%) 461 (6.6%) 65 (0.9%) 7,040 (100%)

is supplemented by snowmelt predictors, which have high and medium consistency for approximately 25—
40% of stations.

The level of consistency between flood timing and the single most important predictor across the 7,040 sta-
tions was also assessed (showed in Table 3), suggesting generally high consistency at the global scale with the
percentage of stations having high and medium levels of consistency being 50.9% and 31.8%, respectively.
This pattern is also evident at the continental level, with the percentage of locations showing high or med-
ium consistency levels ranging from 72% (Oceania) to 97% (Africa). These results indicate the potential of
using the proposed indices to predict flood timing, which could result in a model with up to 80% of locations
having a prediction error of less than 46 days (i.e., the predicted and observed flood timing will fall within the
same season).

3.3. A Hydroclimate Classification to Estimate Global Flood Timing

A rule-based classification (Figure 8b; herein referred to as D5) was developed to partition the land surface
into five hydroclimate classes (Figure 8a). Although it is possible to further break each class into subregions
and potentially improve the model's predictive power, the classification scheme was kept at this level of sim-
plicity because the tree is found to represent the key regional patterns of the best predictors. In addition, the
high correlation between predictors within the same group (e.g., PD30 and PD90; see Figure S4) indicates
that breaking these classes into subclasses does not necessarily lead to improved accuracy in terms of predict-
ing flood timing. Among the 11 “candidate” separating variables, 4 were retained for the final classification
(MAP, Pger, TDindicator a0d fs0w), Which partition the world into three rainfall-dominant classes (Class 1 to
Class 3) and two snowmelt-dominant classes (Class 4 and Class 5).

As shown in the resulting tree, the first splitting rule focuses on differentiating rainfall-dominant classes
from snowmelt-dominant classes. Specifically, the index TD;pgicqt0r Was used as the splitting variable, reflect-
ing the fact that regions where the transition timing predictor (TD) cannot be reliably defined (i.e.,
TDindicator = 0) are unlikely to have snowmelt occurring. These “no snowmelt” regions were then divided
into two classes using the total amount of annual precipitation. Specifically, locations with annual precipita-
tion higher than 1,200 mm (or higher than annual rainfall of approximately 80% of all land grid cells) were
assigned into Class 1, while the other locations were assigned into Class 2. Locations satisfying this condition
(i.e., MAP > 1,200 mm) are mostly coastal areas or tropical regions (see Figure C1) and are often character-
ized by strong activity of thunderstorms and tropical cyclones. Class 1 is therefore more likely to have short-
term precipitation driving floods relative to Class 2.

For locations where the TD predictor can be reliably estimated, the “transitional regions” between rainfall-
dominant and snowmelt-dominant groups were identified using the fraction of precipitation falling as snow
(fsnow < 0.2). The key characteristic of these “transitional regions” is a relatively low amount of snowfall (and
thus snowmelt) occurring, so rainfall mechanisms may still play a dominant role in flood generation. Across
these “transitional regions,” rainfall-dominant locations (Class 3) were defined if more than 12% of precipi-
tation falls into the wettest month of spring-summer period (i.e., P,/ MAP > 0.12), while the other loca-
tions were classified as snowmelt-dominant (i.e., Class 4). This splitting rule suggests that locations where
rainfall concentrates in a specific month may potentially have floods that are driven by rainfall processes.
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Figure 8. Global maps of climate regions (top panel) partitioned by the D10 hydroclimate system (bottom panel). Each hydroclimate class is defined following a set
of separation rules and has a prediction of flood timing as a linear function of one predictor.

The final class of the prediction scheme (Class 5) is characterized by a higher fraction of precipitation fall as
SNow (fsnow = 0.2), and thus floods are more likely driven by snowmelt processes.

The dominant atmospheric predictor of flood timing was then identified for each hydroclimate class to form
a linear function between that predictor and the flood timing response. The most relevant predictor and
associated lag day in each class were identified through the optimization process described in section 2.3.2
and are presented in Table 4. Although this process was automated, the chosen predictors are generally con-
sistent with the splitting rules determining the boundaries. Among 7,040 locations, the prediction scheme
could be applied for 6,671 stations in total (excluding 369 stations due to a missing value of the identified
predictor). The majority of “no prediction” locations fall into Class 1 due to the nonseasonal characteristic
of rainfall predictors across the southeastern United States, which contains most stations classified into
Class 1. The maximum value of Vg, ACrOss five hydroclimate classes was found to be 15 days, indicating that

floods, on average, occur within the 15 day window from the timing of the dominant predictor. Prediction
errors (represented by mean absolute error) range from 21 (Class 1) to 34 days (Class 3) and when averaged
across all stations had a value of 31 days. Across all land regions, snowmelt, long-term precipitation, and
short-term precipitation predictors, respectively, predict flood timing for 43.3%, 29.1%, and 27.6% of the glo-
bal landmass.

Although the overall performance of the prediction scheme is reasonable at the global scale, there are some
regions that have a large prediction error (Figure 9) such as central North America or the Alps (regional
maps provided in Figure S5). There were many locations within these regions that exhibited nonseasonality
in flood timing (e.g., central North America or the Alps; reported in section 3.1), indicating some limitations
in the proposed prediction scheme, which will be further discussed in our “caveats” section.
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Table 4
Description of the Hydroclimate Classes Defined Through the D10 Classification System (Lower Panel of Figure 6)
Climate indices used to Number of % of no Dominant flood Prediction errors % of global land

Class define hydroclimate class gauges prediction generation Lagday (MAE; in days) mass

1 TDindicator» MAP 1507 17 Short-term  precipitation 15 22 17.5
(PD7)

2 TDindicator» MAP 1278 7 Long-term precipitation 4 31 29.1
(PD90)

3 TD;ndicators fsnows Pswes MAP 709 3 Short-term  precipitation -15 34 10.1
(PD7)

4 TD;ndicators fsnows Pswer MAP 2259 0 Snowmelt predictor (TD) 15 33 4.8

5 1D wkasiion Jsaanw 1287 1 Snowmelt predictor (SD7) 15 34 38.5

Global  TDjngicators Pswes MAP, and 7,040 5 = = 31 100.0

fsnow

Note. “No prediction” indicates locations where there is no predictor available to predict flood timing.

The global prediction of flood timing using the proposed classification system (Figure 10a), however, can
reflect most of the large-scale spatial association in flood timing, especially in the Southern Hemisphere,
where rainfall plays the key role in flood generation. The longitudinal transition over regions with high sta-
tion density (e.g., North America and Europe) is also generally illustrated, suggesting the potential capacity
of this prediction scheme in representing the spatial complexity of flood generation processes. The predic-
tion of flood timing not only has consistency with flood timing based on regional observational studies in
Europe and North America but also has high consistency with the spatial patterns of the main high-flow sea-
son obtained from a global hydrological model (Lee et al., 2015). Additionally, the predicted flood timing is
compared favorably to the streamflow peak month identified monthly stream flow series across 1,345 sites
globally (Dettinger & Diaz, 2000) and the recently published GRUN gridded runoff product (Ghiggi et al.,
2019), providing confidence that a relatively simple predictive scheme—based on readily available atmo-
spheric predictors obtained from reanalysis data sets—is able to provide credible predictions of flood timing
in both data rich and sparse regions.

Figure 10b illustrates the prediction confidence base on the temporal concentration (R value) of selected pre-
dictor across the globe. High-latitude area and regions where floods are influenced primarily by intense rain-
fall events (e.g., Southern and Southeast Asia) generally possess high to medium prediction confidence (i.e.,
selected predictor has R value higher than or equal to 0.6). The distribution of areas exhibiting low prediction
confidence is quite consistent with the empirical assessment presented in section 3.1. Specifically, the major-
ity of low confidence prediction falls over arid areas (e.g., northern Africa and inland of Australia) or
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Figure 9. Prediction errors across 7,040 stations grouped into the five consistency definitions in Table 1 based on local performance.
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Figure 10. Global prediction of flood timing (Figure 10a) and prediction confidence (Figure 10b) using reanalysis climate forcing data sets and D10 decision tree.
Gray color indicates locations where there is no suitable predictor available due to lack of seasonality. Temporal concentration (R) of selected predictor was used to
define prediction confidence for each cell.

locations where there are no strong signal of the seasonal cycle of defined predictors (e.g., Southern Australia
and southeastern United States).

3.4. Caveats of the Proposed Flood Timing Prediction Scheme

The proposed prediction scheme, although possessed the capacity to reflect many important spatial associa-
tion in flood timing, has two important caveats that should be taken into account for any considered appli-
cation. The consistency analysis between flood timing and the predictors (e.g., short-term rainfall) assumes
that flood, on average, would occur within a small time window of the averaged timing of the most relevant
hypothesized process. For simplicity, a common approach was applied across all the predictors and thus
does not consider whether the predictor occurs before or after the flood event. This is likely to be appropriate
for long-term rainfall predictors (e.g., PD90), such that it is physically plausible for a flood to be caused by
accumulated wetness yet having the averaged timing occurs before the predictor. This assumption is less
physically realistic for shorter duration (i.e., “heavy rainfall” predictors—PD or PD7) in which one would
expect the heavy rainfall to occur prior to the flood event. In addition, there is a possibility of significant coli-
nearity between predictors, implying that the annual maximum streamflow may have a close association
between both short-term and long-term rainfall predictors. As a result, findings of predictor-flood timing
relationships cannot be interpreted as a definitive statement of causality regarding the flood generation
mechanisms for individual sites.
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Another caveat of the proposed prediction scheme lies in the data-driven approach of the hydroclimate clas-
sification scheme. Specifically, the global prediction is primarily based on the analysis of the predictors with
the least discrepancy to flood timing. This approach is generally sensitive to the climate data sets being used.
For instance, using other reanalysis products such as ERA5 (C3S, 2017) or GSWP3 (Kim, 2017) could lead to
some difference in the global map of flood timing.

The regions with large prediction errors (Figure 9) also indicate other shortcomings of the proposed predic-
tion scheme, in which the data-driven approach may not correctly define the most important flood genera-
tion mechanism. This limitation is likely to occur over some relatively small geographic areas with large
variability of the identified predictor, potentially in part due to the coarse resolution of climate reanalysis
products. In addition, using a single most important predictor may not reflect the complexity in regions with
more than one mechanism contributing substantially to flood generation. For example, flood timing across
the Alps and the central North America is characterized with a multimodal distribution (e.g., snowmelt
dominant flood in spring and convective storms in summer), but only either snowmelt predictors (for the
Alps) or rainfall predictors (for central North America) were chosen to predict flood timing.

4. Summary and Conclusions

This study analyzed the spatial consistency of observed flood seasonality from 7,894 streamflow records (Do
et al., 2018b; Gudmundsson et al., 2018b) and climate variables derived from an atmospheric forcing reana-
lysis data set (Dee et al., 2011). The analysis not only has demonstrated consistent results with existing stu-
dies of flood seasonality across Europe and North America (Bloschl et al., 2017; Burn & Whitfield, 2016; Hall
& Bloschl, 2018; Villarini, 2016) but also has facilitated the extension of flood timing estimates across the
globe. Having identified spatial consistency between flood timing and selected variables representing
flood-generating mechanisms, this study provides important observation-based evidence of homogeneous
regions of flood generation mechanisms. Short-term precipitation predictors are highly correlated with flood
timing in the southeastern region of the United States, northern Australia, and the southern and eastern
regions of Brazil; long-term precipitation predictors are more relevant in central Brazil, western Europe,
and southern Australia; and snowmelt predictors are the most important variables in the high-latitude areas
of the North American and Eurasian continents. These findings complement current understanding of the
average timing and temporal concentration of the maximum events, which is generally available for only
North America and Europe. Stream-gauge scarcity remains the key limitation for gauge-based hydrological
investigations at the global scale, with approximately 94% of the global landmass was not observed.

Notwithstanding the complexity of dominant flood producing mechanisms and data limitation, this study
was able to empirically identify a low discrepancy between flood timing and a single most important atmo-
spheric predictor over data-covered regions. The empirical analysis yielded high percentage of locations with
discrepancy of less than or equal to 45 days; that is. flood timing and the most suitable predictor occur in the
same season (continental scale: 73-94%, global average 82%). Taking advantage of the strong agreement
between flood timing and climate predictors, a rule-based classification system was developed to partition
the world into five hydroclimate classes. Each class represents regions sharing a common flood timing pre-
dictor. The classification was used to infer flood timing globally, including regions not covered by stream-
flow gauges. Although there are some regions with a high prediction error (e.g., central North America,
the Alps, and southern Australia), the proposed model, which has a relatively simple structure, performs
well in predicting flood timing (global mean absolute error of 31 days) and was able to preserve large-scale
spatial associations in flood timing across the globe. The spatial pattern of flood seasons obtained from this
analysis compares favorably to the high-flow seasonal data obtained from a global hydrological model (Lee
et al., 2015) and streamflow peak month obtained from 1,345 sites globally (Dettinger & Diaz, 2000) or the
recently published gridded runoff (Ghiggi et al., 2019).

The classification system proposed in this study can be used to define regions of similar flood generation pro-
cesses at the global scale. Considering its relative simplicity and reproducible character, the proposed predic-
tion framework could also be used for different climate data sets to assess the variation in either flood timing
or flood-generating processes. Finally, the global map of flood timing prediction could be used as a measure
of global hydrological model performance, by providing an indicator that these models correctly simulate
the climatic mechanisms that lead to large streamflow events.
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