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Table 1

MH contingency table separated by MH load and CDR status. (NC¼Non-

carrier, M+¼Mutation Carrier)

# of MH NC M+/CDR¼0 M+/CDR¼0.5 M+/CDR>0.5 Total

0 91 80 26 16 213

1-4 5 5 5 4 19

>4 0 0 4 2 6

Total 96 85 35 22 238
Background: Cerebral microhemorrhages (MH), defined as small, hypoin-

tense lesions on T2/T2* weighted images, occur in approximately 23% of

Alzheimer’s disease (AD) cases. Furthermore, anti-amyloid treatment trials

have been associated with the development of MHs . As a response to con-

cerns about the safety of increased MH loads, the Alzheimer’s Association

Research Roundtable Workgroup recommended that individuals with more

than 4MHs be excluded from clinical trials. There is, however, only one ex-

tant in vivo study examining the prevalence of MH in autosomal dominant

cases of AD (ADAD).With clinical trials of amyloid modifying agents soon

to begin in ADAD populations, there is a pressing need to establish the prev-

alence ofMH in this disease.Methods: Individuals from families with a his-

tory of ADAD were recruited at 11 sites worldwide, as part of the DIAN

initiative. In total, 96 non-carriers (NC) and 142 carriers (M+) were studied.

Longitudinal MH data was available for 25 non-carriers and 59 carriers. A

3T susceptibility-weighted imaging (SWI) sequence was used to quantify

the number of MHs in each participant. Following the recommendation of

Sperling et al., instances of siderosis were included along with MH counts.

Results: Approximately 26% (15/57) of symptomatic (CDR>0) ADAD

mutation carriers had at least one MH (Table 1). Of the 142 mutation car-

riers, only 6 had more than four MHs. None of these participants carried

the Dutch (Glu693Gln or E693Q) mutation subtype. Within mutation car-

riers there was clear association with CDR: both the M+/CDR¼0.5 and

M+/CDR>0.5 groups had greater MH counts than the M+/CDR¼0 group

(p<0.0001). Longitudinal imaging revealed that individuals with more

than 4 MH at baseline showed a dramatic increase in the number of MHs

at follow-up (Figure 1).Conclusions:Rates forMHs in our study are similar

to those reported in a recent meta-analysis in sporadic AD, and in a small

study of ADAD mutation carriers. Only six of the participants in this study

would have been excluded from a clinical trial due to MH load. Further-

more, no asymptomatic carriers met the MCH cutpoint, suggesting that pre-

symptomatic trials in ADAD may not be overly burdened by current MH

load recommendations.
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Background:MRI in Alzheimer’s disease (AD) has primarily measured de-

clines in grey matter thickness and volume. There is a growing interest in

understanding how both grey matter microstructure and myelination are al-

tered in AD. Previous examinations of white matter have been restricted to

large fiber bundles, whereas myelin is distributed throughout the cortex. We

used the ratio of intensities in a T1-weighted image (T1w) to a T2-weighted

(T2w) image (T1w/T2w, or Myelin Map) to evaluate grey matter micro-

structure and compared this to measurements of cortical thickness.

Methods: Participants consisted of cognitively normal individuals (n¼44,

mean age¼74.5) and a collapsed population of participants with very

mild (n¼31, CDR¼0.5, mean age¼78) and mild (n¼12, CDR¼1, mean

age 77) AD. Cortical thickness was estimated using Freesurfer. Estimates

of cortical myelinationwere generated using Caret (1).Results: Participants

with dementia had widespread reductions in cortical thickness compared to

controls (Figure 1). They had lower T1w/T2w ratios in primary sensory and

motor cortices, which suggests a loss of cortical microstructure, likely due to

demyelination. Conversely, the dementia group exhibited higher T1w/T2w

ratios in the temporal lobe, medial prefrontal and cingulate cortex suggest-

ing divergent pathological processes in those areas. Conclusions: This

study represents a novel attempt to utilize T1w/T2w ratios to further define

cortical microstructural changes in AD. Both the strength and direction of

these effects appear to be regional in nature. (1) Glasser, M. F., & Van Essen,

D. C. (2011). Mapping human cortical areas in vivo based onmyelin content

as revealed by T1- and T2-weighted MRI. The Journal of neuroscience: the

official journal of the Society for Neuroscience, 31(32), 11597-616.
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HC E-MCI L-MCI AD ANOVA/c2 p

n 256 287 210 142 n/a

Age 75.3 (0.5) 71.0 (0.4) 73.8 (0.5) 75.7 (0.6) p<0.001

Gender (M, F) 123, 133 162, 125 119, 91 86, 56 p¼0.07

Education 16.4 (0.2) 16.0 (0.2) 16.3 (0.2) 15.9 (0.2) ns

Handedness (R, L) 235, 21 258, 29 187, 23 129, 13 ns

CDR-Sum of Boxes 0.1 (0.1) 1.3 (0.1) 1.7 (0.1) 5.0 (0.2) p<0.001

GDS Total Score 0.8 (0.1) 1.8 (0.1) 1.9 (0.1) 2.1 (0.1) p<0.001

MMSE Total Score 29.0 (0.1) 28.3 (0.1) 27.6 (0.1) 22.4 (0.2) p<0.001

Logical Memory – Immediate 14.6 (0.2) 11.0 (0.2) 8.1 (0.2) 4.1 (0.3) p<0.001

Logical Memory – Delayed 13.7 (0.2) 9.0 (0.2) 5.1 (0.2) 1.6 (0.3) p<0.001

Rey AVLT Total Score 45.4 (0.6) 39.2 (0.6) 33.3 (0.7) 23.1 (0.8) p<0.001

Rey AVLT Delayed Score 7.5 (0.2) 5.7 (0.2) 3.3 (0.2) 1.0 (0.3) p<0.001

ECog-Self: Memory (% endorsed) 44.3 (1.7) 75.2 (1.6) 78.5 (1.8) 81.5 (2.3) p<0.001

ECog-Self: Language (% endorsed) 31.1 (1.9) 58.4 (1.8) 58.4 (2.1) 54.5 (2.7) p<0.001

ECog-Self: Visuospatial (% endorsed) 11.6 (1.9) 32.1 (1.8) 32.7 (2.1) 42.2 (2.6) p<0.001

ECog-Self: Organization (% endorsed) 13.2 (2.1) 36.4 (2.0) 40.5 (2.3) 45.6 (2.9) p<0.001

ECog-Self: Planning (% endorsed) 22.9 (2.1) 41.0 (2.0) 42.7 (2.3) 47.1 (3.0) p<0.001

ECog-Self: Divided Attention (% endorsed) 37.7 (2.3) 63.9 (2.2) 61.8 (2.5) 64.1 (3.3) p<0.001

ECog-Self: Total (% endorsed) 27.3 (1.5) 52.1 (1.5) 53.6 (1.7) 56.9 (2.1) p<0.001

ECog-Inf: Memory (% endorsed) 24.5 (1.7) 63.5 (1.6) 76.1 (1.8) 97.2 (2.3) p<0.001

ECog-Inf: Language (% endorsed) 12.3 (1.8) 40.3 (1.7) 48.8 (2.0) 82.1 (2.4) p<0.001

ECog-Inf: Visuospatial (% endorsed) 6.9 (1.8) 26.2 (1.7) 35.3 (1.9) 73.0 (2.4) p<0.001

ECog-Inf: Organization (% endorsed) 9.9 (2.0) 33.7 (1.9) 46.0 (2.1) 83.7 (2.6) p<0.001

ECog-Inf: Planning (% endorsed) 12.7 (2.0) 35.4 (1.9) 46.0 (2.2) 85.2 (2.7) p<0.001

ECog-Inf: Divided Attention (% endorsed) 21.0 (2.3) 57.1 (2.2) 60.7 (2.5) 92.6 (3.0) p<0.001

ECog-Inf: Total (% endorsed) 14.5 (1.5) 42.5 (1.4) 52.7 (1.6) 85.5 (2.0) p<0.001

Mean Global Florbetapir SUVR 1.14 (0.01) 1.18 (0.01) 1.23 (0.01) 1.29 (0.01) p<0.001

Mean Global FDG SUVR 1.37 (0.01) 1.36 (0.01) 1.32 (0.01) 1.25 (0.01) p<0.001

Mean Hippocampal Volume 3831.0 (33.3) 3614.2 (26.5) 3326.5 (36.9) 3007.1 (47.9) p<0.001

CSF Ab1-42 237.1 (7.0) 228.8 (5.2) 181.9 (8.7) 161.9 (15.0) p<0.001

CSF Total Tau 69.6 (4.9) 83.0 (3.6) 103.2 (6.1) 130.4 (6.1) p<0.001

CSF P-Tau 20.7 (1.1) 22.7 (0.8) 29.7 (1.4) 31.9 (2.3) p<0.001
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Background: Cognitive complaints are common in older adults includ-

ing controls with generally intact psychometric performance (HC) as

well as those with early or late mild cognitive impairment (EMCI,

LMCI). We analyzed the relationships between imaging biomarkers,

clinical performance, and cognitive complaints on the Measurement of

Everyday Cognition (E-Cog) from both the participant and his or her

informant in the ADNI-2 cohort. Methods: Data from 895 participants

were analyzed (256 HC, 287 EMCI, 210 LMCI, 142 AD). Measures

of amyloid deposition, glucose metabolism, and brain atrophy from tar-

get regions of interest (ROIs) were extracted from Florbetapir PET, flu-

orodeoxyglucose (FDG) PET, and structural MRI, respectively. PET

scans were processed using standard techniques to generate SUVR mea-

sures intensity normalized to the whole cerebellum (Florbetapir) and
pons (FDG). MRI scans were analyzed using Freesurfer (R0Is) and

SPM8 (voxel based morphometry). Clinical, diagnostic, CSF, and cogni-

tive performance data was also obtained for all available participants at

the first ADNI-GO/2 visit. Associations between amyloid deposition,

glucose metabolism, brain atrophy, CSF A b and tau levels, cognitive

performance, and the extent of cognitive complaints on the E-Cog

from the participant and informant were assessed. Results: Diagnostic

groups differed in E-Cog scores for both participants and informants

as expected (Table 1), with greater complaints in the MCI and AD

groups. Significant associations between E-Cog self and informant mea-

sures and cognitive performance, amyloid deposition, glucose metabo-

lism, CSF A b and tau, and brain atrophy were also observed across

the full sample and within diagnostic groups (Figure 1). Generally, in-

formant E-Cog scores in the memory domain and across all cognitive

domains showed more significant associations with biomarkers and clin-

ical performance than self-ratings by the participant. A notable excep-

tion was depressive symptoms which were more significantly

associated with self E-Cog scores than informant scores. Conclusions:

Informant ratings of cognitive decline in mildly impaired and cogni-

tively healthy participants are better predictors of cognitive performance

and AD biomarker status than self-reported cognitive complaints. For

very early detection of incipient cognitive decline in secondary preven-

tion trials it may be advisable to ascertain informant ratings of appar-

ently healthy older adults and not only in those suspected of MCI or

dementia.
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Figure 1. Heat maps of average regression weights of 5-fold cross-valida-

tion trials for (a) T-MSBL-FP, (b) the Mixed L2/L1, and (c) RIDGE regres-

sion. Each row corresponds to a MRI measure and each column corresponds

to a cognitive score. Blue indicates negative correlation, while red indicates

positive correlation. The bigger the value of a coefficient, the more impor-

tant its VBM measure is in predicting the corresponding cognitive score.

Table 1

45 VBM measures

Region Group VBM Grey Matter Density (45 in total)

Subcortical

(temporal)

Amygdala, Hippocampus

Subcortical

(striatum/basal

ganglia)

Caudate, Pallidum, Putamen

Subcortical

(thalamus)

Thalamus

Frontal Lobe InfFrontal_Oper, InfOrbFrontal, MidFrontal,
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InfRrontal_Triang, MedOrbFrontal, Rectus,

MedSupFrontal, MidOrbFrontal, SupFrontal,

SupOrbFrontal, Rolandic_Oper, SuppMotorArea
IDENTIFYING THE NEUROANATOMICAL BASIS

OF COGNITIVE IMPAIRMENT IN ALZHEIMER’S

DISEASE
Cingulate AntCingulate, MidCingulate, PostCingulate

Parietal Lobe Angular, InfParietal, SupParietal, Precuneus,

Supramarg

Temporal Lobe

(cortical)

Fusiform, Heschl, Lingual, Olfactory, Parahipp,

InfTemporal, MidTempPole, MidTemporal,

SupTempPole, SupTemporal

Occiptal Lobe Calcarine, Cuneus, InfOccipital, MidOccipital,

SupOccipital

Insula Insula

Sensory-Motor

Cortex

Paracentral, Postcentral, Precentral
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Background: Multivariate regression model was employed for predicting

multiple cognitive scores from MRI measures. A sparse Bayesian learning

algorithm was applied to the ADNI database, which exploited dependence

across the cognitive scores via explicitly modeling correlation among the re-

gression coefficients. Methods: Data were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database. 160 AD and 219 healthy

control (HC) participants were included. The baseline 1.5T MRI scan of

each participant was processed using voxel-based morphometry (VBM) in

SPM5 [1]. The grey matter (GM) density of 45 AAL regions of interest (Ta-

ble 1) from each hemisphere was extracted and the bilateral measures were

averaged to generate one single measure for each structure. Four sets of cog-
nitive scores [2] were examined as response variables: ADAS, MMSE,

RAVLT and TRAILS. All the VBM measures and cognitive scores were

pre-adjusted for baseline age, gender, education, and handedness. A sparse

Bayesian learning algorithm, T-MSBL-FP [3], was adopted to predict cog-

nitive scores from VBM data, and compared with Mixed L2/L1 minimiza-

tion algorithm [3] and RIDGE Regression [3]. 5-fold cross validation

method was used to obtain an unbiased estimate of prediction performance.
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