[JGR: Biogeosciences]

Supporting Information for

Top-down constraints on methane point source emissions from animal agriculture and waste based on GEM airborne measurements in the US Upper Midwest
Xueying Yu ${ }^{1}$, Dylan B. Millet ${ }^{*}{ }^{1}$, Kelley C. Wells ${ }^{1}$, Timothy J. Griffis ${ }^{1}$, Xin Chen ${ }^{1}$, John M. Baker ${ }^{1,2}$, Stephen A. Conley ${ }^{3}$, Mackenzie L. Smith ${ }^{3}$, Alexander Gvakharia ${ }^{4}$, Eric A. Kort ${ }^{4}$, Genevieve Plant ${ }^{4}$, and Jeffrey D. Wood ${ }^{5}$
${ }^{1}$ Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota 55108, United States
${ }^{2}$ Agricultural Research Service, US Department of Agriculture, St. Paul, Minnesota 55108, United States
${ }^{3}$ Scientific Aviation, Inc., Boulder, Colorado 80301, United States
${ }^{4}$ Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States

${ }^{5}$ School of Natural Resources, University of Missouri, Columbia, Missouri 65211, United States

Contents of this file

Text S1
Tables S1

Text S1.

Top-down methane point source quantification method

Top-down emission estimates

The airborne sampling consists of a vertically stacked set of circuits around the facility (radius $\sim 1 \mathrm{~km}$) extending from as close to the ground as possible (typically $\sim 60 \mathrm{~m}$) through the extent of the plume ($\sim 800 \mathrm{~m}$ for summer/spring and $\sim 300 \mathrm{~m}$ for winter). The total methane emission $E(\mathrm{~kg} / \mathrm{h})$ for a given facility is then obtained via summation of the measured advected enhancements as a function of height through the plume, via:

$$
\begin{equation*}
E=\sum_{j=1}^{N}\left(F_{j} \Delta z_{j}\right) \tag{S1}
\end{equation*}
$$

where $F_{j}(\mathrm{~kg} / \mathrm{m} / \mathrm{h})$ is the total advected methane enhancement for vertical layer j and $\Delta z_{j}(\mathrm{~m})$ is the layer height. F_{j} is computed for $N=4$ evenly-spaced layers by interpolating the individual enhancements $f(z)$ measured on-board for the stacked flight circuits. This interpolation is performed to ensure appropriate weighting of $f(z)$ when the aircraft circuits are not evenly distributed in the vertical. In most cases, the number of individual flight circuits within a given interpolated layer j is 3-4 (range: 1-9). Each $f(z)$ is calculated following Eq. S2:

$$
\begin{equation*}
f(z)=\sum_{i}\left(U_{z, \perp}(i)\left(\rho_{z}(i)-\bar{\rho}_{z}\right) \Delta d_{s, z}(i)\right), z \in\left[z_{1}, z_{2}\right] \tag{S2}
\end{equation*}
$$

where i indicates observational time steps, s is flight direction, and z is height above ground level (AGL) determined from on-board altitude measurements and a highresolution elevation dataset (0.33 arc-second) from the US Geological Survey [USGS, 2019]. $U_{z, \perp}(\mathrm{~m} / \mathrm{s})$ is the wind speed component perpendicular to s at height $z ; \rho_{z}(i)$ is the dry methane density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ for observation i, while $\bar{\rho}_{z}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ is the mean dry methane density over the individual flight circuit; $\Delta d_{s, Z}(\mathrm{~m})$ is distance between two consecutive observations ($\sim 80 \mathrm{~m}$); and z_{1} and $z_{2}(\mathrm{~m})$ are respectively the lowest and highest sampled altitudes in the calculation (see Table S1). The surface-layer flux is set equal to the observed value in the lowest sampled layer j.

For most cases, the stacked flight circuits were each flown at level altitude and connected by ascents/descents while flying into the wind (as in Figure 2), thus minimizing any difference in upwind concentrations between upwind and downwind legs in case of a background vertical gradient in methane. In a few instances (08/17/2017, 08/24/2017, 01/19/2018, 01/20/2018, 01/27/2018, 01/28/2018, and $05 / 21 / 2018$), the sampling followed more of a spiral configuration. In such cases we account for any methane background gradient by repeating the calculation while assuming the upwind legs to be the i) lower versus ii) upper portions of the stacked circuits, with the resulting average used for the final point source emission estimates.

In cases where the profile extended through the mixed layer into the lower free troposphere, we restrict the calculation to those observations within the mixed layer (as determined by vertical transitions in trace gases such as methane and water vapor). In the case of Dairy C on 08/17/2017, anomalous negative fluxes are derived above ~300 m AGL that are not readily attributable to meteorological effects. We assume this is due to unidentified nearby methane sources, and in this case omit >300 m AGL observations from the calculation.

Top-down emission uncertainties

We estimate the overall top-down flux uncertainty based on the individual contributions from meteorological factors, instrument error, and sampling lag. The first two (collectively $\varepsilon_{\text {meas }}$) are calculated following Conley et al. [2017] from the variance in the measured methane enhancements ($\sigma_{f(z)}^{2}$, see also Eq. S2) and the uncertainties associated with each individual flight circuit $n\left(\varepsilon_{\text {cir,n }}\right)$:

$$
\begin{equation*}
\varepsilon_{\text {meas }}=\Delta z_{j}\left[\sum_{j}\left(\left(\sigma_{f(z)}^{2}+\sum_{n} \varepsilon_{\text {cir }, n}^{2}\right) / N_{j}\right)\right]^{0.5} \tag{S3}
\end{equation*}
$$

where j indicates the vertically interpolated layers as above, N_{j} is the number of individual circuits for layer j, and Δz_{j} is layer height. The circuit uncertainties $\varepsilon_{c i r, n}$ are calculated as:

$$
\begin{equation*}
\varepsilon_{c i r, n}=f\left(z_{n}\right)\left[\left(\varepsilon_{U} / \bar{U}_{n}\right)^{2}+\left(\varepsilon_{c} / \bar{c}_{n}\right)^{2}\right]^{0.5} \tag{S4}
\end{equation*}
$$

where \bar{U}_{n} and \bar{c}_{n} are the mean wind speed and mean methane mixing ratio for circuit n, and ε_{U} and ε_{c} are the corresponding precisions of measurement ($1 \mathrm{~m} / \mathrm{s}$ and 1 ppb , respectively).

Here we also account for lag time uncertainty between the trace gas measurements and other quantities (wind speed and direction, position, etc.), as described in the main text. Measurement and lag time uncertainties are then added in quadrature to arrive at the total flux uncertainty. In cases where point sources were quantified more than once in a season, we use the averaged emission E as the best estimate with uncertainty based on the root mean square of the individual errors.

Table S1. Point Sources Quantified by GEM Flights

Type	Facility ID	Herd Size (head)	Date	Mean Wind Direction	Mean Wind Speed (m/s)	Surface Skin Temperature - 850 hPa Air Temperature (K)	Height Range (m)	Top-down Best Emissions and Uncertainty Range (kg/h)	Bottom-up Emissions and Uncertainty Range (kg/h)
Dairy	Dairy A	8,000	08/24/2017	SE (123)	7.6	6.73	[188, 556]	$\begin{aligned} & 98 \\ & {[53,144]} \end{aligned}$	$\begin{aligned} & \hline 221 \\ & {[170,277]} \end{aligned}$
			01/20/2018	NW (323 ${ }^{\circ}$)	5.4	-4.42	[42, 181]	$\begin{aligned} & 125 \\ & {[92,153]} \end{aligned}$	$\begin{aligned} & 166 \\ & {[106,218]} \end{aligned}$
			01/28/2018	NW (334*)	6.2	-4.42	[56, 263]	$\begin{aligned} & 112 \\ & {[83,141]} \end{aligned}$	
			05/22/2018	SE (147 ${ }^{\circ}$)	3.4	6.48	[169, 991]	$\begin{aligned} & 216 \\ & {[175,260]} \end{aligned}$	$\begin{aligned} & \hline 217 \\ & {[170,267]} \end{aligned}$
			06/01/2018	SE (115 ${ }^{\circ}$)	12.8	6.23	[117, 438]	$\begin{aligned} & 127 \\ & {[96,168]} \end{aligned}$	$\begin{aligned} & 235 \\ & {[170,302]} \end{aligned}$
	Dairy B	7,000	08/17/2017	NW (331 ${ }^{\circ}$)	9.2	6.55	[187, 755]	$\begin{aligned} & \hline 28 \\ & {[11,120]} \\ & \hline \end{aligned}$	$\begin{aligned} & 193 \\ & {[149,242]} \end{aligned}$
			01/19/2018	SW (235 ${ }^{\circ}$)	7.4	-4.13	[66, 691]	$\begin{aligned} & 55 \\ & {[39,63]} \\ & \hline \end{aligned}$	$\begin{aligned} & 145 \\ & {[93,190]} \end{aligned}$
			01/28/2018	NW (337)	4.8	-4.13	[30, 233]	$\begin{aligned} & 101 \\ & {[79,122]} \end{aligned}$	
			05/22/2018	SE (115)	2.1	5.84	[90, 787]	$\begin{aligned} & 108 \\ & {[72,143]} \end{aligned}$	$\begin{aligned} & \hline 189 \\ & {[149,233]} \end{aligned}$
	Dairy C	6,500	08/17/2017	NW (331 ${ }^{\circ}$)	8.9	6.80	[157, 716]	$\begin{aligned} & 26 \\ & {[23,32]} \end{aligned}$	$\begin{aligned} & 179 \\ & {[138,225]} \end{aligned}$
			01/20/2018	NW (323 ${ }^{\circ}$)	4.5	-4.30	[34, 174]	$\begin{aligned} & 131 \\ & {[107,148]} \end{aligned}$	$\begin{aligned} & 135 \\ & {[86,177]} \end{aligned}$
			01/28/2018	$\mathrm{N}\left(341^{\circ}\right)$	6.7	-4.30	[44, 259]	$\begin{aligned} & 130 \\ & {[106,154]} \end{aligned}$	
			05/22/2018	SE (145)	4.3	6.61	[96, 719]	$\begin{aligned} & \hline 77 \\ & {[47,107]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 176 \\ & {[138,217]} \\ & \hline \end{aligned}$
	Dairy D	6,500	08/24/2017	SE (116)	9.3	6.55	[138, 439]	$\begin{aligned} & \hline 78 \\ & {[61,95]} \\ & \hline \end{aligned}$	$\begin{aligned} & 179 \\ & {[138,224]} \\ & \hline \end{aligned}$
			01/19/2018	SW (232 ${ }^{\circ}$)	5.9	-4.16	[47, 184]	$\begin{aligned} & 148 \\ & {[105,169]} \end{aligned}$	$\begin{aligned} & 135 \\ & {[87,177]} \end{aligned}$
			01/28/2018	$N\left(346^{\circ}\right)$	4.5	-4.16	[48, 405]	$\begin{aligned} & 116 \\ & {[82,141]} \end{aligned}$	
			05/22/2018	SE (119)	2.8	5.98	[105, 925]	$\begin{aligned} & 45 \\ & {[9,71]} \end{aligned}$	$\begin{aligned} & \hline 176 \\ & {[138,217]} \end{aligned}$
			06/01/2018	$\mathrm{E}\left(110^{\circ}\right)$	13.0	5.90	[77, 423]	$\begin{aligned} & 138 \\ & {[93,171]} \\ & \hline \end{aligned}$	$\begin{aligned} & 191 \\ & {[138,245]} \end{aligned}$
	Dairy E	6,000	01/20/2018	NW (313 ${ }^{\circ}$)	6.5	-4.34	[48, 278]	$\begin{aligned} & \hline 70 \\ & {[20,94]} \end{aligned}$	$\begin{aligned} & 124 \\ & {[80,163]} \end{aligned}$
			01/28/2018	NW (336)	6.2	-4.34	[56, 349]	$\begin{aligned} & 93 \\ & {[74,116]} \end{aligned}$	
			05/22/2018	SE (144)	3.4	6.41	$\begin{aligned} & {[160,} \\ & 1006] \end{aligned}$	$\begin{aligned} & 169 \\ & {[105,233]} \end{aligned}$	$\begin{aligned} & 163 \\ & {[127,201]} \end{aligned}$
			06/01/2018	SE (116)	13.1	6.19	[117, 243]	$\begin{aligned} & \hline 80 \\ & {[52,112]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 176 \\ & {[127,227]} \end{aligned}$
Beef CAFO ${ }^{1}$	Beef CAFO A	11,925	01/20/2018	NW (298 ${ }^{\circ}$)	1.4	-4.68	[39, 174]	$\begin{aligned} & 59 \\ & {[33,81]} \end{aligned}$	$\begin{aligned} & 70 \\ & {[55,85]} \end{aligned}$
			01/28/2018	$\mathrm{N}\left(4^{\circ}\right)$	7.8	-4.68	[32, 219]	$\begin{aligned} & 48 \\ & {[40,55]} \end{aligned}$	
			05/23/2018	S (174 ${ }^{\circ}$)	11.2	4.20	[99, 533]	$\begin{aligned} & 69 \\ & {[54,83]} \end{aligned}$	$\begin{aligned} & 72 \\ & {[58,86]} \end{aligned}$
			05/31/2018	NW (331 ${ }^{\circ}$)	5.9	4.20	[101, 619]	$\begin{aligned} & 78 \\ & {[65,91]} \end{aligned}$	
	Beef CAFO ${ }^{1}$ B	10,500	08/22/2017	NW (305 ${ }^{\circ}$)	10.1	6.80	[167, 545]	$\begin{aligned} & 26 \\ & {[-13,76]} \end{aligned}$	$\begin{aligned} & 61 \\ & {[48,73]} \end{aligned}$
			01/18/2018	SW (239 ${ }^{\circ}$)	5.4	-3.89	[58, 176]	$\begin{aligned} & 2.3 \\ & {[-7,52]} \end{aligned}$	$\begin{aligned} & 58 \\ & {[46,71]} \end{aligned}$
			01/27/2018	NW (305 ${ }^{\circ}$)	6.7	-3.89	[65, 209]	74	

${ }^{\mathrm{I}} \mathrm{CAFO}$: concentrated animal feeding operation.

