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§1. Introduction. Let s, k and n be positive integers and define rSik(n) to
be the number of solutions of the diophantine equation

n = x? + x§ + - - - + x * (1.1)

in positive integers x,. In 1922, using their circle method, Hardy and Littlewood
[2] established the asymptotic formula

nu/k)-'(1+0(1)) (1.2)

whenever ,*>(&  —2)2* ~' + 5. Here S^(n), the singular series, relates the local
solubility of (1.1). For each k we define G(k) to be the smallest value of s0

such that for all s ^ s0 we have (1.2), the asymptotic formula in Waring's problem.
The main result of this memoir is the following theorem which improves upon
bounds of previous authors when

THEOREM 1. Suppose that k^6. Then (?(&)< |2*.

Hardy and Littlewood were able to prove that G{k) < (k — 2)2* ' + 5 by
using Weyl's inequality, first discussed by Weyl [8] in 1914. In 1938, Hua [4]
demonstrated that (1.2) holds provided s^2k+\, thus proving that
(/(£)< 2*+1, and improving upon the bound of Hardy and Littlewood when
k ^4. Hua's proof complemented Weyl's inequality with a new ingredient,
Hua's inequality. For small values of A: (fc<ll), no progress was made on
6{k) over the next 48 years. For large values of k, frequent progress has
been made—initiated by Vinogradov's pioneering work. Vinogradov, Hua, and
others refined bounds for 6(k) leading to the bound &(k) < (4 + o( 1 ))k2 log k.
Although it is quite probable that (?(fc)< f̂c, and, perhaps, even that G(k)-
k+l (even though (1.1) may be insoluble), this is far beyond the reach of
known methods. In 1986, Vaughan [6], [7] used important new ideas to estab-
lish (1.2) when J = 2* and fc>3. Using techniques unrelated to those of
Vaughan, Heath-Brown [3] in 1988 proved that <5(&)«Sg2*+ 1 when &>6. His
striking methods encompass both an improvement in Weyl's inequality and an
associated improvement in Hua's inequality.
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THEOREM (Heath-Brown [3], Theorem 1). Let k^6 and

a
a — 1

~J2

with (a, q) = \. Set f(a) = £'_, e(a/ ) . Then, for any e > 0,
l + * 2 *  k)^'\ (1.3)

(Throughout this treatise we se t / (a ) , the standard generating function for
fcth powers, to be as defined in the last theorem, with P=[nl/k].) This result
yields its strongest bound when P*<^q<$Pk~3, and, for these q, f(a)<4
p\-i2-k+e (cf ^2) and (6.4)). This may be compared to the b o u n d / ( a H
p\-2' *+e t^ a t j s deduced from Weyl's inequality when P<£q<£Pk~'; many of
the technical difficulties that we encounter can be traced to the disparity in the
aforementioned ranges on q. More precisely, Heath-Brown's result improves
upon the bound that arises from Weyl's inequality whenever P s < k s

with 8>\.

THEOREM (Heath-Brown [3], Theorem 2). Let k^6. Then, for any e>0,

+e. (1.4)J'
To estajblish his bound on G{k), Heath-Brown combined (1.4) with Weyl's

inequality.
Extending ideas of Heath-Brown [3] and Vaughan [7] (the latter relying

heavily upon the opera of Hooley), we establish Theorem 1 as a direct conse-
quence of the following result.*

rsJc(n) = ©,_*(«) r ( ' + .1,/* ) n^-' + O(n^~'(log «)*+
T(s/k)

THEOREM 2. Suppose that s, k and n are positive integers with k^6 and
s=l2k and that x(k) is 1 ifk is even and0 otherwise. Then

where

(A formal definition of S^(n) is given in Section 5.) It is crucial that
j](k)  is negative as <£sjc(n)p\. Indeed: /?(6) = -0-607 . . . . rj(7) = - 6 , TJ(8) =
-5-639. . . , 77(9) = — 11-606 The value of r\(k) may be reduced, but at the
cost of rather cumbersome complications. We intend to pursue such methods
in a later paper. The proof of Theorem 2 involves a delicate treatment of the

* Recently, Greaves has proved an estimate that allows us to take x(k) = 0 for all k in this
result. See G. Greaves, On the representation of a number as a sum of two fourth powers II,
(Russian) Mat. Zametki, 55 (1994), 44-58.
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Hardy-Little wood method that is motivated by the proof of (1.4) of Heath-
Brown [3]. The essential difficulty in the proof is that we cannot appeal to a
classical dissection into major and minor arcs. The major arcs would be too
wide to accommodate the error terms in the standard analysis of the auxiliary
functions that are employed to obtain (1.2) and, moreover, we need the "full"
strength of (1.3) which demands that q$>P3. In classical treatments (see, for
example, [5], Chapter 4), the major arcs "cover" those a which can be well-
approximated with small values of q (e.g. q^P). It may be of some interest
to note that in the arc dissection to follow the main contribution to the error
term in Theorem 2 does not arise on the minor arcs (as formulated), but on
pruned sections of the (non-classical) major arcs.

We would be remiss to not note that Wooley [9] has recently demonstrated
that G(k)<(2 + o(\))k2\ogk. In particular, he has proved that G(10)<750.
His substantial improvements supersede the bounds of Heath-Brown when
A:̂  10.

The author would like to thank Professors H. L. Montgomery, R. C.
Vaughan, and T. D. Wooley for their support, encouragement, and many
helpful discussions. This manuscript comprises a part of the author's Ph.D.
thesis at the University of Michigan.

§2. Notation. As usual, e denotes a sufficiently small positive number, <̂
and > denote Vinogradov's well-known notation (where implicit constants are
functions of, at most, e and k unless otherwise specified), and e(x) = exp (2nix).
Further, we assume that s= \lk, that A; is a fixed positive integer that is at least
6, and that n is large (in terms of s and k). We adopt the convention that the
value of £ may change from one occurrence to the next. It will be convenient
to define x(k)t0 be the characteristic function on the even integers. As usual,
dr(n) denotes the number of representations of n as the product of r ordered
positive integers and d2(n) = d(ri). Also, [w]  designates the greatest integer not
exceeding w and ||w|| the distance from w to the nearest integer.

§3. Preliminary lemmata. We initiate the proof of Theorem 2 in the next
section. Presently, we give two germane results of potentially independent
interest. To obtain strong estimates for divisor sums of restricted type we
provide the following lemma.

LEMMA  1. Let r, t, and A be fixed, r>2, t^l, A~^3, and put

c{m) = 4fi{(Q\ > 02> • • • i  ar)'- tn  — O\a2 - • • ar, 1 ̂ a , ^y4 } .

Then

£ cimY<Ar(logA)"-lr-l)t-1 + t.
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Proof. Let r be fixed and set M=A\\ogA)~T. It is clear that if  m> Ar

we have c(m) = 0. Set

//,= I  dm)', //2= I dm)1.
m>M

We treat H\ by utilizing the basic inequality c(m)^dr(m). Employing well-
known bounds for moments of the divisor function,

//,< X dr(m)'<M(\ogMy'-1.

Our estimate for H\ is acceptable if r is taken to be sufficiently large. If m > M,
we have a,> ^4(log A)~r for all /. Fory ̂  1 we set

7(7) = (,4(log A)~V"', A(\o% A)~V].

Since

c(m)  ̂ I 1,

we see that, if  m > M,

I  E l -
Jtjl jr-l a\ai...ar-\\m

UJi)

As eachy, takes on O(log log A) values, it follows that

c(wH(loglog^)r~' max £ 1 =(loglog/4)r"'A r(w)
i - l awi...ar- \\m

where Ar(w) is Hooley's (extended ) divisor function. Setting y = 1 in Theorem
3 of Hall and Tenenbaum [1] we obtain

(and the exponent of log* here is sharp). The desired result follows
immediately.

The second lemma of this section, a mean value estimation, is quite extraor-
dinary—in part because it can be established by elementary means.

LEMMA  2 (Vaughan, unpublished). Let S denote the number of solutions
of the simultaneous equations

x\ + x\ + x\=y]+y\+y\

x,+x2 + x3=y]+y2+yi

in positive integers x,, yt with x^P, yj^P. Then

Proof. If  xt=yj for some i and j , it follows easily that y\, y2, y% is a
permutation of Xi,x2,x3. (The xt are distinct for all but O(P2) triples xx,x2,
x3.) It therefore remains to show that the number of non-trivial solutions of
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(3.1) is 0(P$+e). On factoring (x, + x2 + x3f-x]-x\-x\, it follows that
system (3.1) is equivalent to the pair of simultaneous equations

x, + x2 + x3=yx+y2+y3.

Upon making the substitutions

and

Yt=y2 + y3, Y2=y3+yx, Y3=yt+y2,

we see that it suffices to show that the number of non-trivial solutions of

X,X2X3 = 7, Y2Y3, X, +X2+X3 = Y, + Y2 + Y3

with 1 ^Xj**2P, 1 ^ Yj^2P, is O(P$+S). (IfX,= 1} for some / and some; then
Y), Y2, Y3 is a permutation of Xt, X2, X3 and, hence, that Xi=y} for some i
and/) Writing

X,\ (Y2 X2

\et d2

y \ lv Y
f V ' I f - \  3 2

J\= y3>3 » J2~\~7~>~;
\ diej \f, d2e2

we find that

dietfid2e2f2

and that

,d3e3f3]=l.
,d\e\f\d2e2f2

Thus X\=d\e\f\, X2 = d2e2f2, and X3 = d3e3f3. We need, therefore, to bound
the number of non-diagonal solutions of

rfiei / . + d2e2f2 + d3e3f3 = dtd2d3 + exe2e3 +/. hh (3-2)

with the six terms in (3.2) each at most 2P. It is sufficient to consider the
solutions for which/3 ̂ /2 < / t , since every solution is of this form after a suitable
rearrangement of indices. We therefore suppose that f3<^P]/3. Multiplying
(3.2) through by/3 and rearranging terms we obtain

^ince we are considering only non-diagonal solutions to (3.2), each of the four
factors in (3.3) is non-zero. By standard estimates for the divisor function,
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given d\, d2, d3, e\, e2, e3 and /3, the number of choices for /i and f2 is thus
at most

The number of solutions of (3.2) is therefore at most

This completes the proof of the lemma.

§4. Preparatory treatments. One of the innovations of Heath-Brown in
[3] was to iterate Weyl's shift operator only k — 3 times to obtain cubic exponen-
tial sums. We begin the proof of Theorem 2 by refining an argument of Heath-
Brown [3] that is based upon a symmetric difference operator. (Alternatively,
one may use Weyl's forward differencing technique followed by a suitable linear
transformation.) We first set

7 W - .
nef

(4.1)

where the maximum is taken over subintervals / of [1, P], z in [0, 1] and y in
J(x). Though we refrain from reproducing the details of the method of Heath-
Brown [3] here, we begin with the bound

\hi\<P/2

(obtained by a differencing argument). (The maximum over y is a spurious
condition as y = x. However, we shall find it convenient to take the max after
realizing that xeJ(x).) We now make two definitions:

c*(h)= {(h t ,h2,..., hk-iy.h-hxh ... hk-3, \h

c(h)= {(hlth2 A*_3): A = Ma • • •  A*-3, 0<h,<P/2}.

It follows that

A-0

»*~4where K = k\/6. Since c(0)<7»*~4 and T(0) = P, we obtain, as c*(h)«c(h),

c(h)n<XK2k-lh). (4.2)

It is at this point in our discourse that we consider two separate lines of attack—
via two different applications of Holder's inequality. From (4.2) we conclude
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that

f{af c(h /2

/i=i

and that

Kpk-3

I 7Xa/06 I c(/i)) 6 / 5

/.=i

We now appeal to Lemma 1 to obtain the respective bounds

and

( \ 1 / 3

+i: ( Z T(ah)3) (4.3)

(4.4)

In Section 6 we use (4.4) to treat the integral over the minor arcs. The integral
over the pruned arcs is more difficult to evaluate and we shall resort to addi-
tional devices to complement (4.3) in later sections of this lucubration. Before
we proceed to invent a suitable arc demarcation, we provide a result which we
shall use to extract key information concerning the "average" size of T(x)6.

LEMMA  3. Using the notation o/(4.1),

m=\

Proof. From the definition in (4.1), T{x) attains a maximum for some /,
z and y. For x = mP~3 let such an extremal triple be denoted by /,„, zm and
ym. Then

T(mP~3) =
ne/m
1

e(-ry)dy
n-\

Suppose 7 is not an integer. Since /,„ is a subinterval of [1, P],

2 1 1
I e(-ry)

Isin ( -

If  y is near an integer, we supplement this with a trivial bound whence

min I P, \dy.
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p

K

»n3 + (
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+ y)n) dyll 1 mir
/ \6/5 \5

1 [P.—) Sy).

Since

r minL_L
J \ ' llyll.

6/5

employing the change of variable zm + y = ^i we conclude that

T(mP-3)6<P
1 J n - l

rf/i. (4.5)

We define R(u, v) to be the number of solutions of the simultaneous equations

with 1 ^rij^P. Since

from (4.5) we discern that
i

£ f
i= 1 v

By Parseval's indentity, the integral on the right-hand side is equal to
2

R(u, v)e(ymv)

and therefore

X T(mP~3)6<Pl I
»« = 1 w m =  1

(4.6)

By assumption, each of the points ym lies in the interval [m/P3, (w+ 1)/P3] so
that the set of ym under consideration can be partitioned into two sets, by
parity on m, in each of which they are spaced at least P"3 apart. Hence, by
the large sieve inequality,

2

YR(u,v)e(ymv)
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Thus, from (4.6),
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Since the double sum is the number of solutions of (3.1) as counted by S, the
desired result follows from Lemma 2.

This proof of Lemma 3 is due to R. C. Vaughan. From Lemma 3 we see
that T(ah) is rarely larger than P2/*. We shall exploit this phenomenon further
(cf. (8.2)).

§5. The essential demarcation. By a theorem of Dirichlet, for any real a
we can find integers a and q with (a, q) = 1 and

a—-
1

qPk-3 (5.1)

where U ^ F * 3. We tacitly assume that (5.1) holds throughout this
manuscript. It will be convenient to work on the unit interval

\_2kn 2kn_

rather than [0, 1]. We partition % into three sections. We first set

a — '2kqn
M{a,q)

where the * signifies that the union is taken over all 1< a ̂  q < P with (a, q) =
1. It follows that MCLII. Additionally, set

= aef:
a

a—- 1r j with (a, q) = 1 implies — k-3

and

pruned sections of the major arcs Jl. (The intervals M(a, q) are clearly pairwise
disjoint.) We have, by classical methods (see [5], Theorem 4.4),

J-f(a)se(-na)da = <Zs, (5.2)

for some explicit 5>0. As usual, the singular series SJ/fc(«) is given by

L I (S(q,a)q-lYe(--
q=\ a-\

(a,?) = 1
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with

q

It is well-known that 1 ^>SiA (n)>l (see [5], Theorem 4.6). A salient feature
of our major arcs is the inequality

P 1
* - 3 'Ikqn qP

so we may think of .M as being embedded in the set of ae<% that satisfy (5.1)
with l^q^P. As noted in Section 1, we cannot take M to be the set of all
a £<% that satisfy (5.1) with l^q^P for that would corrupt the treatment of
the auxiliary functions that are (classically) used to approximate/(o) on the
major arcs (see [5], Chapter 4). Pruning is our recourse. Since

rsA»)= \f(aye(-na)da,
j
o

it follows that

r.*{n)=  \f(a)se(-na)da + \f(a)se(-na)da+ \ f(a)se(-na)da

(5.3)

§6. The treatment of the minor arcs. We first obtain a refined form of
Heath-Brown's analogue of Weyl's inequality (1.3). We use the following
lemma.

LEMMA  4 (Heath-Brown [3], Lemma 6). Let \ a - (a/q)\ = z with (a, q) =
1 and z< 1 /q1. Then, for H^l, A>0, and any real \i,

#{h: l

and

#{h:

We deduce from Lemma 4 that if z< l/q2 and (a, q) = \,

#{h: l

and that

#{h:
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It follows that

#{h: X^h^H, \\ah-n\\^A}^\+HA + qAZ+q-lHZ~'

where Z=max (1, (Hz/A)). Thus, for Z=max (1, Pkz),

#{h:h^KPk-\\\ah-mP-i\\^p-i}^qZP'i + Pk'6 + q''Z-lPk-\ (6.1)

Since
Kpk-3 P3

£ T(ah)6<max#{h^KPk-3: Wah-mP^W^P'3} £ T(mP~3)6,
A - 1 '"  m - 1

from Lemma 3 we conclude that

Therefore, from (4.4),

f(a)<P(PZ-'q~' +p-2 + qZPl-k)¥ '(log

where

It follows from (only) using the second bound in Lemma 4 that whenever
\a-(a/q)\^\/q2 with (a,q)=l,

(6.2)

To treat the minor arcs we first note that s= |2* + 2*~1 so

| \f(a)\sda «sup |/(a)|i2' | |/(a)|2*"W.  (6.3)

From the definition of m we deduce from (6.2) that for a em

(6.4)

To overcome the positive power of the logarithm in (6.4) we appeal to Theorem
B of Vaughan [7] with subsequent remarks to obtain, with l=k—\,

I

Jl/(«)l  C (6.5)

o

Combining this with (6.3) and (6.4) we conclude that

(6.6)
J

where

= l(k-3)6/5-ik2-3
lk + T + x(k)(d(k)-]).
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For k>6, T(/c) is negative: *F(6) = -6 -157 . . . , ¥ ( 7 ) = -13-304 . . . , ¥ ( 8 ) =
-15-253 . . . , and V(9) = - 2 4 0 3 5 . . . . It suffices to treat the integral over the
pruned arcs to establish Theorem 2.

§7. A partition of the pruned arcs. We construct two subsets of Jf corre-
sponding to rational approximations to a as in (5.1) with q large and q small.
To this end we set

\ a--

where the * indicates that the union is taken over all a with 1 ^ a ̂  q and
(a, q)=\. Clearly I(q, z) and I{q, 2z) are not disjoint. Let i0-io(q) be the
smallest integer / with

l

Define, for

2kqn

and let

If we set

^= U U H.q,ZAq)),

then J/[ includes all a ell that satisfy (5.1) with l^q^P that do not lie in Jt.
We define j0 =j o(q) to be the smallest integer j such that

7Jp-k> -
^2qPk'3'

and subsequently let, i

and set

We next define

. ^ 2 = U, , U Kq,Z'M)).
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It follows that Jt\ includes all ae<% that satisfy (5.1) with q in the intermediate
range P<q<*P3. Thus

j\f(a)\'da< I I .  J l / ( « ) l ^ «
JT ~~ " "  Hq,Z,(q))

+ I I [  \f(a)\'da.
P<q<iP3 0</<A •

nq,Z)(q»

For each of the two sums on q we break up the range of q into dyadic blocks.
For convenience we refer to the first sum above by subscript 1 and the second
sum with, naturally, subscript 2. There are O(log P) such blocks for each sum.
It follows that there exist Qt and Q2 such that

\\f(a)\sda<\ogP £ I [ \f(a)\'da

We next make each range for Z,(q) and Zj(^) independent of q by annealing
our structure. Let U be the smallest integer / with

and define, for 0 ̂  i<  it,

and set

For the sum on j we define j \ to be the smallest integer j that satisfies

vp-k> ?

and let

<j\ and set
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(Clearly Z'h(q)>Z'h(q).) This newly generated cover of \a-(a/q)\ for
Qv<q^2Qv (v=\,2) is larger than the former given implicitly in (7.1). We
rewrite (7.1), inverting the orders of summation, to find that

j\f(a)\'da<]ogP £ Z j \A«)\'da
.V """ "  r(q,Z,(q))

+ logP I I [  l/(o)|Va.
0</^/l G2<?<2g2 •

f(q.z}(q))

Since /| andyi are O(log P) we conclude that there exist Zt and Z2 such that

f|/(a
J

)r<fa<§(log/>)2max £ f \f(a)\'da (7.2)

/(9.Z,)

where

. (7.3)

In the next section we employ the fact that the I(q, Zv) are pairwise disjoint
(for v fixed). To establish this assertion suppose a is in both I(q\,Zv) and
I(q2, Zv) where qi^qi- Then

a2

q\qi

from which it follows that

a a-
a2

QVPk-3

Since we obtain a contradiction as q2< zP* on JC

§8. J/je jmfl//  values case. Following (4.3) and (7.2), we need to bound

" l  ' T(ahf (8.1)

for those ael(q, Zv). We cannot, unfortunately, evaluate the integral over Jf
in (5.3) in a direct manner. Instead, we consider a bifurcation contingent upon
the size of the quantity in (8.1). Suppose that this function attains its maximum
value for ael(q, Zv) at aq. Let Tu denote those values of q with Qu<q^2Qv

for which

(8.2)
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For any aeI(q,Zv) where q4Tv (where we are henceforth assuming that

-'(log P)2+e

so that, from (4.3),

f(af'<P2k^l(\ogP)Uk-3)l/2-k+4+c. (8.3)

We first note the trivial bound (after (7.2))

f|/(a)|Va«(log/»)2max(l f \f(a)\'da+ £ [\f(a)\'da\

(8.4)

We now deal with the second sum in (8.4) by using (8.3) and (6.5). Set

Since it was demonstrated in the previous section that the I(q, Zv) are pairwise
disjoint,

(logP)2 £ f \Aa)\sda<Pl2k-l(\ogPy"w+e X f \f(a)\*"da

(8.5)
where

3 / 2 ± 2 U l). (8.6)
A direct calculation shows that 0> ri(k)> y¥(k) when k^6. (Explicit values of
i]{k)  are given in Section 1.)

To wit, from (5.2), (5.3), (6.6), (8.4) and (8.5),

f  ̂ ~'(log n)°
(s/k)

+o((logP)2max X f |/(a)|Va). (8.7)

§9. y4 /arge values sieve. The goal of this section is to show that there
cannot be "many" q with qeTv. From (4.3) we obtain

X [ \f(a)\'da< I V(q) [ |/(a)|l2trfa (9.1)
J6T, J «ET, J
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where

i-2k+i

i - 1

Define
-pit —A \

E TV <u f. \ 3 1

and, as D and T run over (appropriate) powers of 2, let

S(Z), 7", </) = {Ae[l, icPk~3]: D<(h, q)^2D, T

(Trivially, T(aqh)>\.) Thus, for some Dv and Tv,
tcpk~y

In the other direction (8.2) holds whence

#S(Dv,Tv,q)>Pk-lT-3log\ogP. (9.3)

Observing that

#3(£>u, Tv, q) ̂ #{h< KPk~3: (A, q) >Dv}

d\q
d>Dv

(a bound that can be worse than trivial), we conclude from (9.2) that
k 3 + < 1 I #E(D.,Tv,q) (9.4)

for a suitable subset Tu(£>u, Tv) of To. We next consider

S'c= X #S(Dv,Tv,q).

Since the treatment of S'v that we need is (essentially) the same as that given
by Heath-Brown [3], Section 3, we suppress the details here (the argument
relies upon (6.1)). To strengthen our rhetoric, we remark upon an improvement
arising from the precision of Lemma 3:

m - l

From (9.3),

S'V>#YV(DV, Tv)P
k-lT:3 \og\ogP

hence, we deduce after Lemma 3 that
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Thus, from (9.4),

345

(9.5)

§10. The conclusion of the proof of Theorem 2. We first observe that if k =
2[j(k+ 1)] then \?>k>k for all k^6. Additionally,

[ \f(a)\i2"da< sup \f(a)\i2"-*  f \f(a)\eda

sup
ae/(q,Zv)

. (10.1)

( a , ? ) - I - 2 ZV

We now give a very useful mean value result.

LEMMA  5 (Health-Brown [3], Lemma 8). Let h be a fixed positive integer
such thatlh^k. Then

2/i — 1 + e _j_ p2h-k +

Lemma 5 may be refined so the PE terms are quantified as slowly growing
functions of q—but, as we shall soon see, this is an unnecessary complication.

In order to treat the supremum in (10.1), we provide one last lemma.

LEMMA  6. Suppose that \a-(a/q)\^2/(qPk~3) where (a,q)=\ and
*3. Suppose, further, there is a positive constant A such that whenever
we have

a
a —

q qPk-\ '

Then

Proof Clearly \a-(a/q)| ^l/q2. For q>P, the desired result is thus a
direct consequence of Weyl's inequality (see [5], Lemma 2.4). We suppose,
therefore, that l^q^P. By Dirichlet's theorem, we can find integers r and s
with (r, s) = 1 and 1 O<P*~ ' /A satisfy

a—- sPk

Since a/q does not satisfy this inequality, a/q^r/s hence

sq
r
—
s

a

q
a

r

s
+ a

a
—

q

A
nk-\ jfc-3"
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It follows that s>Pk~\ Thus

r
a—-

s

where (r, s) = 1 and Pki<Zs<ZAPkl. The desired result follows from Weyl's
inequality.

We now address the supremum in (10.1)—if ael(q, Zv),

a
a —

q

1 2
^ r-

with (a, q) = \. {i.e., v= 1),

k-\
qP

by construction. From (10.1) and Lemmata 5 and 6 we infer that

f \f(a)\L'2 (]-2' ^ -da<P

(We have dropped the restriction (a, q) = 1 to majorize the right-hand side of
(10.1).) Combining this with (9.1) we find that

I I \f{a)\'a
.T . J

On the first factor on the right we use the trivial bound QV4:P*. Then, from
(9.5),

I f \f(a)\'da<P-k-i+2l-*+ '(Q v̂P
k-*+-

Since (7.3) provides that

'»)"')• (10.2)

the second factor on the right-hand side of (10.2) is bounded. We conclude
that

\f(a)\sda<P s-k-S+c

where 8 = * - 2 k. From (8.7) we consequently obtain

r(s/k)
(10.3)
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where rj(k) is given in (8.6). A simple check verified that S>0 whence the
latter error term in (10.3) is subsumed by the former—and, mirabile dictu,
Theorem 2 is proved.
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