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§1. Introduction. Investigations concerning the gaps between consecutive
prime numbers have long occupied an important position on the interface
between additive and multiplicative number theory. Perhaps the most famous
problem concerning these gaps, the Twin Prime Conjecture, asserts that the
aforementioned gaps are infinitely often as small as 2. Although a proof of
this conjecture seems presently far beyond our reach (but see [5] and [10] for
related results), weak evidence in its favour comes from studying unusually
short gaps between prime numbers. Thus, while it follows from the Prime
Number Theorem that the average gap between consecutive primes of size
about x is around log x, it is now known that such gaps can be infinitely often
smaller than 0-249 log x (this is a celebrated result of Maier [12], building on
earlier work of a number of authors; see in particular [7], [13], [3] and [11]).
A conjecture weaker than the Twin Prime Conjecture asserts that there are
infinitely many gaps between prime numbers which are powers of 2, but unfor-
tunately this conjecture also seems well beyond our grasp. Extending this line
of thought, Kent D. Boklan has posed the problem of establishing that the
gaps between prime numbers infinitely often have only small prime divisors,
and here the latter divisors should be small relative to the size of the small
gaps established by Maier [12]. In this paper we show that the gaps between
consecutive prime numbers infinitely often have only small prime divisors,
thereby solving Boklan's problem. It transpires that the methods which we
develop to treat Boklan's problem are capable also of detecting multiplicative
properties of more general type in the differences between consecutive primes,
and this theme we also explore herein.

In order to describe our conclusions precisely we require some notation.
We take (pm)m=i = (2, 3, 5, . . .) to be the sequence of prime numbers, and
throughout use the letters p, q and it to denote prime numbers. When n is a
natural number we denote by P(n) the largest prime factor of n. It is convenient
to describe an integer n as being j-smooth when P(n)^y. Finally, when k is
a positive integer and N is a positive real number, define

Z(N;2k)= X (log/>)(log<7). (1.1)
1

In the current state of knowledge, of course, we are unable to establish an
asymptotic formula for Z(N; 2k). However, one may employ sieve methods
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to obtain an upper bound of the correct order of magnitude. In this context,
we note that it is expected that

where

and

P\k p
p>2

©=2 n (i-(^-
p>2

Our conclusions depend naturally on a constant C arising in the aforementioned
sieving problem, and since it is conceivable that this constant may be susceptible
to improvement, we formulate our results in terms of the following hypothesis.

HYPOTHESIS J^f(C). Let e and A be positive numbers, and let N be
sufficiently large in terms of e and A. Then whenever k is a natural number with
k < (log N)A, one has

Z(N;2k)<{C+E)NS{k).

We note that the proof of Theorem 2 of Bombieri and Davenport [3]
shows that the hypothesis Jf(C) holds with C=4, and later work of Bombieri,
Friedlander and Iwaniec [4], and Fouvry and Grupp [8], may be used to
establish that Jt(C) holds with C= 3-5, and C=3- 454, respectively. Moreover,
the truth of the conjectured asymptotic formula (1.2) would imply that Jf(C)
holds with C=\.

We now announce our solution of Boklan's problem, which we establish
in §§2 and 3.

THEOREM 1. Suppose that C is a positive number exceeding 1 for which
the hypothesis J^(C) holds. Then one has the following conclusions.

(a) Whenever a is a real number with a >exp (-1/C), there are infinitely
many primesp and q with q<p and

P(p-q)<(logp)a.

(b) Whenever ft is a real number with ft > exp (—1 /(2C)), there are infinitely
many consecutive primes, pn andpn+i, with

In view of the remarks following the statement of the hypothesis Jf(C),
we have the unconditional conclusion that infinitely many gaps between primes
of size about x are (log x)3/4-smooth, and moreover that infinitely many gaps
between consecutive primes of size about x are (log x)7/8-smooth.

We are also able to establish the existence of chains of consecutive prime
numbers with the property that the difference between each pair of successive



ON SMOOTH GAPS BETWEEN CONSECUTIVE PRIME NUMBERS 59

elements of the chain is non-trivially smooth. Thus, in §4 we establish the
following conclusion.

THEOREM 2. Suppose that C is a positive number exceeding 1 for which
the hypothesis j4f(C) holds. Let r be a natural number with r^2. Then one has
the following conclusions.

(a) Whenever yr is a real number with yr>exp ( - l / (2O2) ) , there are infin-
itely many chains (pn,pn+\,. . . ,pn+ r) of consecutive primes with

p[ n

(b) Write

1 / . . 2 / / . 2\2 4
C V V C

Then whenever Sr is a real number with (5r>exp (— \/(Arr
2)), there are

infinitely many chains {pn,pn+\,. . . ,pn+r) of consecutive primes with

)5' . (1-3)

In particular, when r is large, the conclusion (1.3) holds with

8r = exp ,
F \ (2C- l ) r2

Our methods are by no means limited to detecting smooth gaps between
consecutive primes, and in principle one is at liberty to impose almost any mild
multiplicative constraint on the gaps. By way of illustration, in §5 we establish
that there are infinitely many 5-free gaps between consecutive primes.

THEOREM 3. There are infinitely many consecutive primes, pn and pn + \,
with the property that for no prime n does one have TT5 | {pn+\—pn)-

As a final illustration of the scope of the methods of this paper, in §6 we
discuss erratic behaviour amongst consecutive gaps.

THEOREM 4. There is a positive number 8 with the property that, for infin-
itely many natural numbers n, one has either

Pn+\~Pn Pn+\~Pn

Moreover, there is a positive number co such that, for infinitely many natural
numbers n, one has

\Pn+2-2pn+i+pn\ >0)lOgpn.

Since, on average, one haspn +  2-pn+\ = (1 +O(1))(/J« + I ~pn), the first con-
clusion of Theorem 4 shows that, infinitely often, a gap between consecutive
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primes is either significantly larger, or significantly smaller, than its predecessor.
We note that one may take 5 = 0-0045 in the first conclusion of Theorem 4.
Presumably, by making use of the most modern sieve estimates, it would be
possible to increase the permissible choices for <5, but we have not pursued
such matters in this paper. The second conclusion of Theorem 4 shows that
the second order differences between consecutive prime numbers are infinitely
often "large". A priori, there is no reason to suppose that the second order
gaps are even as large as (log x)c for primes of size about x. As should be
evident from the discussion of §6, the methods we develop are capable of
showing that for any fixed natural number r, the rth order differences between
consecutive prime numbers of size about x are infinitely often 5> r log x. In the
interests of concision, we do not discuss the latter application in detail, confin-
ing ourselves herein to merely illustrating such ideas in Theorem 4 above.

The basic strategy implicit in the proof of Theorems 1, 2 and 3 is simple
to describe. We first obtain an ample supply of gaps between primes of size
not much larger than the average gap. Such a supply of gaps is guaranteed by
the work of Bombieri and Davenport [3], and indeed the latter already suffices
for our proof of Theorem l(a). In order to establish conclusions concerning
consecutive primes, we are forced to make some elementary observations con-
cerning the distribution function of the consecutive gaps. We then employ the
upper bound embodied in the hypothesis Jf(C) to estimate the number of
such gaps divisible by a given modulus 2k. Thus, by summing the contributions
from a number of such moduli, we are able to detect weak multiplicative
properties by engineering an elementary sieving procedure.

Throughout this paper s denotes a sufficiently small positive number, and
implicit constants in the notations, of Landau and Vinogradov depend at most
on £, the parameter r, and the hypothetical constant C, unless stated otherwise.
As is usual, we denote the number of primes at most x in size by n(x).

§2. Smooth gaps between prime numbers. We begin our investigations con-
cerning the gaps between prime numbers by establishing Theorem l(a). In so
doing we take advantage of the opportunity to record several estimates useful
in later sections. The following result of Bombieri and Davenport [3] yields a
supply of typical prime gaps sufficient for our deliberations in this section.

LEMMA 2.1. Suppose that e and A are fixed positive numbers, and that N
is a positive real number sufficiently large in terms of s and A. Then whenever
k is a positive number with 1 <£^ ( log N)A, one has

\-j)z(N;2n)>N £ \\^)S(n)-(-+e)N\ogN. (2.1)
«n«fc k) \nnnk\ kj V4 /

Proof. This is immediate from [3, Theorem 1], on taking t(n) = 1 - \n\/k.

Fortunately, the sum on the right-hand side of the inequality (2.1) is easily
estimated by exploiting the smoothing factor, and making use of another result
of Bombieri and Davenport [3].
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LEMMA  2.2. For each positive number k, one has

Z £(n) = 2k+O((\og(2k)f)

and

Z (\-n/k)<g(n) = k+O{{\og(2k))2).

Proof. Bearing in mind our modest adjustments to the notation of [3],
the first assertion of the lemma follows from [3, equation (33)]. By partial
summation, moreover,

Z (\-n/k)S{n) = - Z I ^(«)

= - Z (2v + O((log(2v))2)),

and thus the second assertion of the lemma follows immediately from the first.

Next we estimate the contribution to the left-hand side of (2.1) arising from
those n possessing a prime divisor exceeding some parameter D.

LEMMA  2.3. Suppose that C is a positive number exceeding 1 for which the
hypothesis Jf{C) holds. Let e and A be fixed positive numbers. Suppose that
N is a positive number sufficiently large in terms of e and A, and that k is a real
number with 1 <A; ̂  (log N)A. Then whenever D is a real number with
one has

Z Z (l-^Z^;2«)<(C+£)M(log( ]
lo^)+o(^=

P>D uB«/c\ kl \ WogDl \yj\ogl
p\n

Proof. For each prime number p with p > 2, it follows from the hypothesis
Jf(C) that

Z (\-")z(N;2n)= Z \\-—\z{N\2pm)

p\n

<(C+s)N Z \^-^r)^{pm). (2.2)
1 sS

But in view of (1.2), one has

lscii.<i/ f
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whence by Lemma 2.2,

P~2\P
(2.3)

Next one observes that a well-known version of the Prime Number Theorem
with error term (see, for example, [6]) yields the estimates

V = log )+O\ , (2.4)
- ' - 2) VlogZ)/ VlogZ)/

and

£ P^y(\og(2k/p))2 = X ^ (log {2k/p)f

; A:(log(2A:))2
|A:(loglog(3A:))2

(log A:)3 log A:
.v yvg, y-^jj 'v v^a *"& w v / /^ c\

On combining (2.2)-(2.5), therefore, we deduce that

k) ' \ *\\ogD) VlogZ) VIogT
p\n

and the desired conclusion follows immediately.
We note that the error term occurring in the conclusion of Lemma 2.3

could be sharpened with somewhat greater effort. However, such would be
surplus to our requirements.

Equipped now with the apparatus necessary for performing the sieving
alluded to in the Introduction, the proof of Theorem l(a) may be swiftly
disposed of. We suppose that C is a positive number exceeding 1 for which
the hypothesis Jf(C) holds, and that £ is a positive number sufficiently small
in terms of C. Write a = exp ( - 1 / ( C + 2 E ) ) , take N to be a real number
sufficiently large in terms of e, and take also k= e~2 log N and D = (log N)a.
By Lemma 2.1 we have

,«L ('
p\n^psiD

-1)Z(N;
/ v /

2n)> N
1

- I
p>D ].A

p\n
J-\--\z{N-2n). (2.6)

k I

Thus, on applying Lemma 2.2 to estimate the first sum on the right-hand side
of (2.6), and estimating the second such sum by recourse to Lemma 2.3, we
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obtain

FNIC
)\oga)> . (2.7)

In order to complete the proof of Theorem 1 (a), it remains only to show
that the Z)-smooth gaps supplied by (2.7) do not correspond exclusively to
excessively small primes. However, by applying Lemma 2.2 in combination
with the hypothesis 3/f (C), it follows that for each large number M one has

; In) < (C+ e)Mk + 0(M(log (2k))2).

Consequently, on taking M= sN/(SC2), we deduce from (2.7) that

(\--\z(N-2n)-Z(M;2n))>^-2CMk^.

We therefore conclude that there exist Z>-smooth values of n for which there
exist primes/? and q with q<p^N andp> eN/(8C2), and satisfying the equa-
tion p — q = 2n. Since D^(\ogp)" + e, the conclusion of Theorem l(a) follows
immediately.

§3. Smooth gaps between consecutive prime numbers. In the remainder of
this paper we restrict attention to gaps between consecutive prime numbers. In
order to adapt the ideas of the previous section to analyse such gaps success-
fully, we require information concerning the distribution function for these
gaps. When n is a natural number, we denote by dn the n-th prime gap dn =
Pn+\~pn- We fix  x to be some large real number, and when A is a non-negative
real number, we define the distribution function fx (A) by

/V(A)= card {neN: dn> Alogx

LEMMA  3.1. The function fx(A) has the following properties:
(i) for each fixed x one has that fx (A) is a piecewise continuous function

of A. which is monotonic decreasing on [0, oo);
(ii) for each Ae[0, oo), one has 0< /x (A)^ l + 0(I/log JC);
(iii)  one has J"/x(A)dfA< 1;
(iv) whenever r is a natural number and e is a positive number with e < 1,

there exists a real number Ae, with £^Aê 2r + 2e, which satisfies the
property that

/ c (A s)<- 1 — - —— .
r\ 2r + 2e/



64 A. BALOG, J. BRUDERN AND T. D. WOOLEY

Proof. That fx (A) is piecewise continuous and monotonic decreasing on
[0, oo), and that/v(A) ^0 for each A, is immediate from the definition of/x (A).
Thus the property (i) claimed in the lemma holds true. In order to establish
property (ii) we have merely to observe that, as a consequence of a familiar
version of the Prime Number Theorem with error term (see [6]), one has

/ . ( A ) ^ I l = l + O(l/logx).
X pn + i =S x

Also, it follows from the definition offx{A) that

CO OC ^,/lOg A

I
x J dn > A log x x />„ +1 sg A

0 0 Pn + l ^ x 0

and so property (iii)  holds.
In order to establish property (iv), we consider the function

/ 4 X f ( l / r ) ( l - A / ( 2 r  + 2e)), when 0 ^ A < 2 r + 2e,
gr (A) = <

(.0, otherwise,

and observe that, in view of the conclusion of part (iii) of the lemma, one has

gr(A)dA

2r \ 2r + 2e,

4r(r+s)

Consequently, for some real number AE with £<A£^2r + 2e, one has
fx(A£)<gr(Ae), and the desired conclusion follows immediately.

Before advancing to prove Theorem l(b), we pause to convert the hypoth-
esis 2tf(C) into an unweighted version more convenient for the application at
hand. When A: is a positive integer, define

Z*(N;2k)= Y 1. (3.1)

LEMMA 3.2. Suppose that C is a positive number exceeding 1 for which the
hypothesis Jt(C) holds. Let s and A be positive numbers, and let N be sufficiently
large in terms of C, e and A. Then whenever k is a natural number with
k < (log N)A, one has

Z*(N; 2k)<(C+ e)S (k)N(log N)~2.



ON SMOOTH GAPS BETWEEN CONSECUTIVE PRIME NUMBERS 65

Proof. With the hypotheses of the statement of the lemma, it follows from
(1.1) that whenever k<(\og N)A, one has

X \ ̂ (\og (N(log N)~')Y2 £ (\ogp)(\ogq)
/V(log N) y pq pq

p — q = 2k p — q = 2k

NY2 l + O "& " * " . (3.2)
logN / /

On the other hand, again from (1.1),

Oog/»)(log?)

p — q=2k

<2(C+s)£(k)N(log N)~\ (3.3)

On combining (3.2) and (3.3), therefore, we find that the conclusion of the
lemma follows from (3.1).

We are now equipped to prove Theorem l(b). Suppose that C is a positive
number exceeding 1 for which the hypothesis j f (C) holds. Let s be a positive
number sufficiently small in terms of C, and let x be a real number sufficiently
large in terms of e and C. Then according to Lemma 3.1, there is a real number
A£, with e^A£^2 + 2e, which satisfies the property that

" v 2 + 2e

It therefore follows from the definition of the function fx (A), together with a
version of the Prime Number Theorem with error term, that

ifx(As)
</ns:AclogA l o g X

/>» + != ; v

>^~+o(~^-\ (3.4)
2 + 2£logx \(logx)V

We next estimate the number of the gaps of size at most A£ log x which
are divisible by large primes. Let D be a real parameter with 2<Z)^A£ log*.
Then by Lemma 3.2,

I I 1
„ ^ Afc log A

P\dn

I I
logx

2 £ X <?(£/). (3.5)
X) ZXpsCAjlogx
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But by (1.2) and Lemma 2.2, one has

n ^
;r > 2

p-2
( 3 6 )

Thus, on substituting (3.6) into (3.5), and making use of the Prime Number
Theorem as in the argument leading to (2.4) and (2.5), we obtain

I I 1
log x i/n^Ae\ogx

PWr,

logx D<p<iA e\ogx\p(p-2) \ logx / /

(3.7)
log

Finally, on taking

a = exp

and D = (logx)a, and collecting together (3.4) and (3.7), we obtain

log*

On recalling that Ae ̂  £, therefore, we conclude that

(3.8)

The proof of Theorem 1 (b) will be completed on accounting for the contri-
bution of the small primes. But the Prime Number Theorem shows that

^ (3.9)I  U ( ) ^
4,s:Atlog.v log
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whence by (3.8),

s2x

4Clogx

Consequently, there exist D-smooth values of dn for which pn+\>  e3x. Since
e, the conclusion of Theorem l(b) is immediate.

§4. Chains of smooth gaps between consecutive primes. It is evident that
the approach described in the previous section can be modified so as to demon-
strate the existence of chains of smooth gaps between consecutive primes, pro-
vided that one has sufficient knowledge concerning upper bounds for the
number of solutions to simultaneous gap problems. Such simultaneous prob-
lems, unfortunately, are not well understood, and so we are forced to sidestep
such difficulties with some elementary observations concerning fx (A).

LEMMA  4.1. Suppose that C is a positive number exceeding 1 for which the
hypothesis J^C(C) holds. Then one has the following.

(i) For each positive number s with s  ̂ 1/(2C), whenever x is sufficiently
large in terms of C and e, one has for

(ii) Suppose that r is a natural number with r ^ 2 , and s is a positive number
with £< 1/(2C). Write C£= C(l +3e), and define Br by

2)2Ce-\+
2) - ^ j .  (4.1)

Then there exists a real number A£, with

^A<
C+ e rBr

which satisfies the property that

r

Proof. Suppose that C is a real number exceeding 1 for which the hypoth-
esis Jt?(C) holds. We start by applying Lemma 3.2 to obtain, for each positive
number A,

dn > A log x dn^\ log x

- 1 - I Z*(x;2d)
log;t/2

${d).
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Then on applying the Prime Number Theorem with a suitable error term,
we deduce from Lemma 2.2 together with the definition of fx(A) that for

-*-  dn > A log X

whence part (i) of the lemma follows immediately.
In order to establish part (ii) of the lemma we consider the function gr (A)

defined by

f l - (C+£)A, whenO«SAsSl/(C+£),
gr(A) = s l/r  — BrA, when 1/(C+ £)< A^ l/(rBr).

(.0, otherwise.

From Lemma 3.1(iii) together with part (i) of this lemma, we have
oo l/(C + e)

fx(A)dA= \fx{A)dA- { fx(A)dA

l/(C+e)

(l-(C+e)A)dA

2(C+£)

But then, on recalling (4.1), a modest computation reveals that

J fx(A)dA- J gr(A)dA
W(C+s) 1/(C+E)

= ! + £ - •

2(C+£) 2Br\r C+e

1 2C.-1
2(C+£) 2(C+e)'

whence

We may therefore conclude that for some Ae with
one has/v(Ae) <gr(Ae), and so part (ii) of the lemma follows.

We establish Theorem 2 following the trail laid down in §3. Suppose that
C is a real number exceeding 1 for which the hypothesis Jf(C) holds. Let r
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be a natural number with r ̂  2, let £ be a positive number sufficiently small in
terms of r and C, and let x be a real number sufficiently large in terms of r, e
and C. Then according to Lemma 4.1(ii), there is a real number Ae with
1/(C+e)^Ae<l/(r5 r) (where Br is defined as in (4.1)), which satisfies the
property that

/ v ( A £ K - - 5 r A £ .
r

It therefore follows from the definition of the function fx (A), together with a
version of the Prime Number Theorem with error term, that one has

d n i i . , « S Ae l o g x ( l < /
/?„ + r ^ x

o(
log x \(log x

(4.2)

Meanwhile, the number of consecutive r-tuples (dn, dn+i,. . ., dn+r-\) of gaps,
in which at least one of the </„ + ,-_i (1 </<r) is divisible by a large prime, may
be estimated as follows. We take D to be a real parameter with 2 ̂  D ̂  A£ log x.
Then again making use of the Prime Number Theorem, it follows from (3.7)
that

I I 1
ssAelogx( lsas: r )

PT, + r ̂  .v
|dn + ,-_l some i

Z I i
gA' dM ^ A £ log *

io v '• ( 4 3 )

Finally, on taking

-1
C+2eJ

and D = (log x)*r, and combining (4.2) and (4.3), we deduce that

erBrAe x
C+2e log.

O(l/Vloglogx)).
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On recalling that AE ̂  e, therefore, we arrive at the conclusion

2ClOgX

Moreover the estimate (3.9) may again be employed to discard the small primes
occurring in the latter sum, so that there exist chains (dn, dn+,,..., dn+r~\),
with pn+r>e3x, and satisfying the property that whenever n\dn+i-t then

) . Since D = ( logpn+r )
s'+E , and

B,=

the main conclusion of part (b) of Theorem 2 follows immediately. Part (a)
of Theorem 2, meanwhile, follows from part (b) on noting that whenever r ̂  2,
one has

Moreover, a simple expansion yields

r \r

thereby establishing the final assertion of Theorem 2(b).

§5. The existence ofk-free gaps between consecutive prime numbers. Since
our methods fall short of showing that there are infinitely many 4-free gaps
between consecutive primes, in the interest of concision we will be crude in our
proof of Theorem 3. Suppose that C is a positive number exceeding 1 for
which the hypothesis J^(C) holds. Let £ be a positive number sufficiently
small in terms of C, and let x be a real number sufficiently large in terms of e
and C. We begin by noting that the lower bound (3.4) holds for some real
number Ae with £^A£<2 + 2s. Moreover, when k is a natural number with
k  ̂2, the number of fc-free prime gaps of size at most Ae log x is given by

Thus we deduce from (3.4) and Lemma 3.2 that

y i > A g * y y
d^kiogx ^2 + 2elogx p i<d<(A îogx)/2~ " ' ' V(logx)1

Pk\2d

(log*)2 V(logjc)l ^ ^ l .  (5-1)
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where

* ' / ) . (5.2)

Next we estimate Jtk(x)- By (1.2) and Lemma 2.2, it follows from (5.2)
that

S(d)+ £ £ P-Z\i(d)
p>2

: 7 +O((\og(p-kA£\ogx))2)
p>2 \p-2 p

/«(A£logAr)/2

£ log x+ O((log x)x/2 + E), (5.3)

where

Pk(P~2)

We note, in particular, that when k ^5 , a modest computation reveals that
co(k) < 1/12. On substituting (5.3) into (5.1), therefore, we conclude that when-
ever k ̂  5, one has

•O((logx) £-1/2)).

Consequently, whenever C<6 we deduce from the lower bound Ae>e that

^ t o g * 3 l o g *

Since an estimate similar to (3.9) again shows that the small primes in the
latter sum are inconsequential, we may conclude that there are infinitely many
5-free gaps between consecutive primes. This completes the proof of Theorem 3.

§6. Inequitable consecutive prime gaps. We establish Theorem 4 through
the use of another sieve estimate, which again we formulate as a hypothesis.
When h and k are positive integers, and N is a large real number, we define

Z(N;2k,2h)= £ 1,
1 <p,q,r^N

q-p + 2h
r=p + 2h + 2k

in which the summation is over prime numbers p, q and r. In view of the prime
^-tuples conjecture of Bateman and Horn [2] (see also [1] for a discussion of
this conjecture), it is expected that

Z(N; 2k, 2/0 = (1 +o(\))S(k, h)N(log N)~\
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where

and p(n) denotes the number of solutions of the congruence

n(n + 2h)(n + 2h + 2k)=0 (mod it).

HYPOTHESIS JT(C). Let e and A be positive numbers, and let N be
sufficiently large in terms of e and A. Then whenever h and k are natural numbers
with max {h, k} < (log N)*, one has

Z(N; 2k, Ih) < (C + e)i(k, h)N(log N)~\

By applying standard sieve methods it is possible to show that the hypothesis
Jf (C) holds for some fixed positive number C (indeed, [9, Theorem 5.7] shows
that C=48 is permissible). Moreover, as may be verified with a little effort,
there is a positive number B with the property that for any fixed positive
numbers A] and A2 with A2> A], one has for each large number H the upper
bound

^ (6.1)
A]/i!gA:s:A2/i

We note that while the expenditure of sufficient effort would establish that B =
4 is permissible, the mere existence of such a number suffices for the proof of
Theorem 4.

Before proceeding further, we require some additional information concern-
ing the distribution function fx(A).

LEMMA  6.1. Whenever s is a positive number with e< 1, there exists a real
number Ae, with £ ^ A£< | ( l + e), which satisfies the property that

J ' 9(1+ £)2

Proof. Consider the function b(A), defined by

}l-4A 2/9(l + £)2,
(. 0, otherwise,

and observe that, in view of Lemma 3.1(iii), one has
3(l + e) /2 oo 3(l

b(A)dA

Thus, for some real number Ae with e^AE^ | ( l + e), one hasfx(A£)<b(Ac),
whence the lemma follows immediately.
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We advance now to dispose of the proof of Theorem 4. Suppose that C is
a real number exceeding 1 for which the hypothesis Jf(C) holds. Let £ be a
positive number sufficiently small in terms of C, and let x be a real number
sufficiently large in terms of £ and C. Also, let 6 be a small positive parameter
to be chosen later. By Lemma 6.1, there is a real number Ae, with
1(1 + e), which satisfies the property that

4 A 2

/ < A ) 1 ^

By the definition of the function/*(A), together with a version of the Prime
Number Theorem with error term, therefore, we have

4 A
e

( x \
+O\ A. (6.2)

\ ( l ) 2 /
\ f x ( A e ) ^ 7 + O \

4.<£logx l°g* 9(1+ £)2 log* \(logx)2

Let No denote the number of prime gaps dn counted in the latter sum, for which
the subsequent prime gap dn+l satisfies \dn + i/dn- 11 <<5. Then one has

N0*k I I I 1, (6.3)
p^x l«/i«(As logx)/2 0^$)h^k^0+6)h

p + 2h prime p + 2h + 2k prime

and so by combining (6.1) with the hypothesis JT (C), we arrive at the estimate

——. (6.4)
logx

On recalling (6.2), we deduce from (6.3) and (6.4) that

-\8{C+ s)(B+ £)(1 + ef + O(l/logx)).
<4«A log.v

Consequently,

4AE
2

^ 9 ( l + £)2

whenever

l o g *

5<
9(C+e)(B+e)(\

one finds that

(6-5)

where here the implicit constant may depend on 8, B and C. Again, by an
estimate similar to (3.9), one finds that the small primes provide a negligible
contribution, and thus we deduce that for infinitely many natural numbers n,
one has \dn+\ldn—\\>8. This completes the proof of the first assertion of
Theorem 4.
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We remark that the choices C=48 and B = 4 yield the conclusion that 5 is
permissible whenever S < 1/216, thereby justifying the assertion made in the
Introduction.

Finally, we observe that whenever \i is a positive number, it follows from
Lemmas 2.2 and 3.2 that

log

whence, on taking yu £ to be a positive number sufficiently small in terms of e
and 8, we deduce from (6.5) that

/ijlog.rs:<4«Aelog.Y

Thus we conclude that for infinitely many natural numbers n, one has
He\ogx,pn+^x, and

The second assertion of Theorem 4 follows immediately.
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