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Abstract

Within the framework of Fisher's discriminant analysis, we propose a multiclass

classification method which embeds variable screening for ultrahigh‐dimen-

sional predictors. Leveraging interfeature correlations, we show that the

proposed linear classifier recovers informative features with probability tending

to one and can asymptotically achieve a zero misclassification rate. We evaluate

the finite sample performance of the method via extensive simulations and use

this method to classify posttransplantation rejection types based on patients'

gene expressions.
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1 | INTRODUCTION

Ultrahigh‐dimensional data, wherein the number of
features p is in the exponential order of the sample size
n, have now been routinely collected. For example, in the
motivating kidney transplant study (Flencher et al., 2004),
62 posttransplant kidney tissue samples have been assayed
on 12 625 genes. Distinguishing four types of tissues,
namely, those from normal donors (C), well‐functioning
kidneys (TX), kidneys with acute rejection (AR), and
kidneys with acute dysfunction but no rejection (NR),
based on their molecular biomarkers is important in
balancing the need for immunosuppression to prevent
rejection and in minimizing drug‐induced toxicities.

Linear discriminant analysis (LDA) is a widely used
classification method with ready implementability and
close relationships with many modern machine learning
techniques (Dorfer et al., 2015; Cai et al., 2018; Gorban
et al., 2018). In high‐dimensional settings, LDA using all
features leads to poor results (Fan and Fan, 2008), and
high‐dimensional LDA is often preceded by variable
selection procedures. Many variable selection methods
are based on regularization approaches (Guo, 2010; Cai
and Liu, 2011; Witten and Tibshirani, 2011; Fan et al.,

2012; Mai et al., 2012; Xu et al., 2014; Gaynanova et al.,
2016; Safo and Ahn, 2016), which require iterative
estimation of high‐dimensional parameters, including
computation of a p p× precision matrix (Xu et al., 2014).
It is unclear whether these regularization methods can be
directly applied to ultrahigh‐dimensional classification.
Furthermore, the conditions that guarantee selection
consistency may fail to hold for ultrahigh‐dimensional
cases.

Computationally more efficient screening methods
(Fan and Fan, 2008; Fan and Lv, 2008; Pan et al., 2016;
Yu et al., 2016) and Bayesian methods (Johnson and
Rossell, 2012; Johnson, 2013; Nikooienejad et al., 2016;
Rossell and Rubio, 2018) have also been developed for
(ultra)high‐dimensional variable selection. However,
most of the screening methods in literature require the
informative features to have strong marginal discrimi-
nant effects and ignore the interfeature correlations,
therefore are not designed for weak signal selection.
While in ultrahigh‐dimensional settings, many margin-
ally weak signals have strong predictive effects on the
outcome classes. As shown in Figure 1, gene IPO5 does
not have a sufficient power to distinguish tissues with C
and AR rejection types. However, jointly with gene
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TTC37, a marginally informative (MI) feature, the
classification accuracy can be much improved. In this
case, we call gene IPO5 a marginally weak but jointly
informative (JI) feature.

Furthermore, many of the high‐dimensional classi-
fication methods aforementioned are designed for
binary classifications. Multiclass classification is more
challenging than binary cases (Hastie et al., 2009;
Gaynanova et al., 2016). Most multiclass classification
methods rely on sequential binary classifications by way
of one‐versus‐the rest (Bishop, 2006), direct pairwise
comparison (Bishop, 2006), direct graph traversal (Platt
et al., 2000), error‐correcting output coding (Allwein
et al., 2000), multiclass objective functions (Weston and
Watkins, 1998), sequential approaches (Cai and Liu,
2011; Witten and Tibshirani, 2011; Mai et al., 2012), or
simultaneous canonical vector estimation (Gaynanova
et al., 2016; Mai et al., 2019). However, the choice of
reduction method from multiclass to binary is on a case‐
by‐case basis and is not a trivial task (Allwein et al.,
2000). In particular, commonly used pairwise compar-
isons are involved with a large number of individual
classifiers, which is likely to incur misclassification

error and numerical instability with small sample sizes
(Wu et al., 2004). On the other hand, LDA can perform
multiclass classification without resorting to pairwise
comparisons.

The covariance‐enhanced discriminant analysis meth-
od proposed by Xu et al. (2014) requires estimating the
p p× ‐dimensional precision matrix of the covariates and
is not computationally feasible in ultrahigh‐dimensional
settings. The pairwise sure independent screening for
multiclass LDA (pairwiseLDA) proposed by Pan et al.
(2016) uses the independence rule and ignores the
interfeature correlations. It cannot detect marginally
weak signals. Furthermore, the marginal sliced inverse
regression (SIR) for model‐free feature selection and
multiclass classification proposed by Yu et al. (2016)
selects the linear combinations of features, and cannot
select individual features. It therefore lacks interpretation
for the selected features. The general sparse multiclass
LDA (mLDA) proposed by Safo and Ahn (2016) projects
the original feature space to a low‐dimensional canonical
subspace, and therefore cannot select individual features
either. The work of Cai et al. (2018) is designed for
analyzing dependent data with a large number of

FIGURE 1 The roles of MI and JI features on classification. A, The marginal scores of gene IPO5 between C and AR in the kidney
transplant data are similar and thus IPO5 is not MI. B, The marginal scores of a MI gene TTC37. C, Classification of C (circles) and AR
(triangles) based on gene TTC37. D, Classification based on both TTC37 and IPO5 gives the better performance than TTC37 only. JI, jointly
informative; MI, marginally informative [Color figure can be viewed at wileyonlinelibrary.com]
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samples, but not particularly for high‐dimensional
feature selection.

We propose an ultrahigh‐dimensional multiclass
classification method within the framework of Fisher's
LDA. Our proposal, termed mLDA, embeds a computa-
tionally feasible screening procedure, specially designed
for detection of weak signals by accounting for inter-
feature correlations. We show that the proposed method
can recover all the informative features, including both
MI and JI features, with probability tending to one and
can achieve an asymptotically negligible misclassification
rate.

The rest of the paper is organized as follows. Section 2
introduces mLDA and Section 3 develops its theoretical
properties. In Section 4, the performance of the proposed
method is evaluated using simulation studies. We apply
the proposed procedure to analyze the renal transplanta-
tion data in Section 5 and conclude the paper with a
discussion in Section 6. Technical details are provided in
the Web Appendices.

2 | ULTRAHIGH ‐DIMENSIONAL
MULTICLASS CLASSIFICATION

2.1 | Notation

Denote by A′ the transpose of a p p× matrix A and by
Ajk the j k( , )th entry of A, where ≤ ≤j k p1 , . Let ∣ ∣ be
the cardinality of a set  and  c be the complement of
 . We denote the trace of A as Atr( ), the minimum and
maximum eigenvalues of A as λ A( )min and λ A( )max ,
and the operator norm and the Frobenius norm as
∥ ∥ ∕λA A A= ( ′ )max

1 2 and ∥ ∥ ∕A A A= tr( ′ )F
1 2, respectively.

Let X X X= ( , …, )′p1 be a p‐dimensional vector of
features. We refer to Xj as feature j for short,
≤ ≤j p1 . Denote by Σ the covariance matrix of X

and by Ω Σ= −1 the precision matrix. Let    Ω( , ; ) be
the graph induced by Ω, where  p= {1, …, } is the
vertex set and  is the edge set. An edge refers to a pair
of two vertices, j and j′, which satisfies ≠Ω 0jj′ . For a
subset  ⊂l , denote by Ωl the principal submatrix of
Ω with its row and column indices restricted to l.
Denote by l the corresponding edge set. A subgraph
   Ω( , , )l l l is a connected component in Ω if any two
vertices in l are connected, and for ∈j l

c, then
Ω = 0jj′ for any ∈j′ l. We write    Ω Ω( ) = ( , ; ) for
short when there is no confusion.

2.2 | MI features and JI features

Consider a K ‐class classification problem, where ≥K 2.
Denote by Y the class membership and assume that the
covariate vector X satisfies

∣X μY k N k KΣ{ = } ~ ( , ), = 1,…, ,k

where μ μ μ= ( , …, )′k k kp1 is a p‐dimensional mean vector
of class k and Σ is the common covariance matrix for all K
classes. Let X XY Y( , ),…, ( , )n n1 1 be n independent observa-
tions of XY( , ), where X XX = ( , …, )′i i ip1 , i n= 1,…, .
Denote by nk the number of observations in class k such
that ∑ n n=k

K
k=1 . For a pair of classes k and k′, Fisher's

rule, which can also be considered as a Bayes rule with
equal prior probabilities, assigns an observation to class k
over class k′ if ∕ ∕μ μ μ μX Σ X Σ( − 2)′ > ( − 2)′k k k k

−1
′

−1
′.

This naturally leads to the following classification rule:

 ∕
≤ ≤

μ μY X Σ= arg max ( − 2)′ .
k K

k k
1

−1 (1)

When p n< , μk and Σ can be estimated by
 ∑ ∕μ nX=k i Y k i k: =i and  ∑ ∑ μΣ X= ( − )k

K
i Y k i k=1 : =i

 ∕μ n KX( − )′ ( − )i k . However, when p n> , (1) is ill‐
posed as Σ is singular. Hence, a variable selection
procedure is usually required to precede classification
under some sparsity assumption. It can be shown that a
sufficient and necessary condition for feature j, where
≤ ≤j p1 , to be informative is


⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑≤ ≤ ≠

≤ ≤

j p μ μ

k k K

= 1 : Ω ( − ) 0

for some 1 < ′ .

j

p

jj kj k j0
′=1

′ ′ ′ ′

Under the faithfulness condition that any MI features
must belong to 0, the informative features consist of the
following two mutually exclusive sets:

 ≤ ≤ ≠
≤ ≤

m p μ μ

k k K

= {1 : − 0

for some 1 < ′ }
km k m1 ′

and

 


⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑∈ ≠

≤ ≤

∈
j μ μ

k k K

= : Ω ( − ) 0

for some 1 < ′ ,

c

m
jm km k m2 1 ′

1

(2)

where 1 and 2 contain the MI and JI features,
respectively.

Though identifying marginally weak features is
challenging in general, the JI features can be found by
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searching the connected components in Ω which contain
at least one feature in 1. Furthermore, Theorem 1 in
Section 3 shows that the connected components inΩ can
be accurately recovered by thresholding the correspond-
ing sample covariance matrix.

2.3 | Algorithm of mLDA

Given the training dataset Y X{ , }i i i
n
=1, denote by

∑⋅X n X=j
k

k i Y k ij
( ) −1

: =i the sample mean of feature j
within class ∈k K{1, …, }. Denote by

∼Σ the thresholded
sample covariance matrix. That is,  ∣ ∣ ≥͠ αΣ = Σ 1( Σ )jj jj jj′ ′ ′ ,
≤ ≤j j p1 , ′ , where Σjj′ is the j j( , ′)th entry of Σ, ⋅1( ) is the

indicator function, and α is a threshold. For a pair of
classes k k( , ′), ≤ ≤k k K1 < ′ , select the set  k k( , ′)1
containing indices m which satisfy

∣ ∣⋅ ⋅X X τ− > ,m
k

m
k( ) ( ′)

where τ > 0 is a thresholding parameter controlling the
size of  k k( , ′)1 . Denote by   ⋃ ≤ ≤ k k= ( , ′)k k K1 1 < ′ 1 the
set containing all of the MI features.

With 1, we use the recursive labeling algorithm
(Shapiro and Stockman, 2002) to identify the connected
components in  ∼Σ( ), the graph introduced by

∼Σ, that
contain any features in 1. Suppose there are ≤ ∣ ∣B 1
such connected components, say, l, l B= 1,…, , each
containing at least one MI feature. Let  ⋃= l

B
l=1 with

∣ ∣u = . Notice that  ⊆1 .
Let

∼Σl be the principal submatrix of
∼Σ with the row

and column indices restricted to l, and compute
 ∼Ω Σ= ( )l l

−1. Let   Ω Ω Ω= diag( , …, )u
B1 be a block diag-

onal matrix of dimension u u× . Under the sparsity
assumption, l are of small sizes and u is much smaller
than p. To detect the JI features, we only need to
consider  as the candidate set for them. Thus, 2 can
be estimated by

  


  


∑∈ ∩

≥ ≤ ≤
∈

⋅ ⋅j X X

ν k k K

= { : | Ω ( − )|

for some 1 < ′ },

c

j
jj
u

j
k

j
k

n

2 1
′

′ ′
( )

′
( ′)

1

(3)

where ν > 0n is a thresholding parameter controlling the
size of selected JI features.

We denote by     ∪=0 1 2 the set containing all the
informative features. Finally, for a new observation with
covariate vector Xnew, we determine the class member-
ship by

≤ ≤
darg max ,

k K
k

1

where dk is the Fisher discriminant statistics for class k,
defined by

 ∕μ μd X Ω= ( − 2)′ .k
s

k
s s

k
s

new (4)

Here μk and Ω
u
are estimated from the training data and

X s
new, μk

s, and Ωs
, respectively, are subvectors or

submatrices of Xnew, μk, and Ωu
with the elements

indexed by 0.
For ease of understanding, Figure 2 depicts the

flowchart of the mLDA algorithm. The proposed mLDA
algorithm utilizes the dependence between the MI and JI
features, and when the informative features are sparse, the
proposed screening procedure to identify 0 is computa-
tionally feasible, as we will demonstrate in Section 4.
Moreover, as shown in Section 3, setting the tuning
parameters as ∕τ O r p α O n= (( log ) ), = ( )s ξ( −1) 2 and
ν O r p n= (( (log )exp( )) )n

ξ s′ , for some r0 < < 1,
∕s ξ0 < < 1 2, 0 < < 1 and ≤ ∕s0 < ′ 1 2 guarantees that

mLDA has selection consistency and a zero asymptotic
misclassification rate.

3 | THEORETICAL PROPERTIES

Under regularity conditions (A1) to (A11) listed in
appendix, mLDA possesses theoretical properties, such
as the sure screening property and asymptotic vanishing
postscreening misclassification rate.

For feature j, denote by  j[ ] and  j[ ] the vertex sets of
the connected component containing j in the graphs
induced by Ω and Σ, respectively.

Theorem 1. For any feature ≤ ≤j j p, 1 , suppose that
 O n= (exp( ))j

ξ
[ ] for the ξ given in condition (A3), then,

together with conditions (A5) and (A7), we have

  → → ∞P n( = ) 1 as .j j[ ] [ ]

Therefore, the principal submatrices of Ω correspond-
ing to the relevant connected components can be
estimated by inverting the corresponding submatrices of
Σ. For a properly chosen thresholding parameter α,
Bickel and Levina (2008) and Fan et al. (2011) showed
that the estimated precision matrix using Σ is consistent.

Theorem 2 (Sure screening property). Under conditions
(A1) to (A9) and (A11),

 ⊆ → → ∞P n( ) 1 as .0 0
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Theorem 3 (False‐positive control property). Under
conditions (A1) to (A8), (A10) and (A11), for any
ζ o n p= ( log ), we have

  ∣ ∩ ∣ ≤ ∣ ∣ → → ∞P ζ n( ) 1 as .c c
0 0

−1
0

Remark. Theorems 2 and 3 hold for any distributions
satisfying (A1) given in appendix. Condition (A1) char-
acterizes a rich family of distributions, including distribu-
tions with polynomial tails such as the t distribution.

Given the training samples  Y X= { , }i i i
n
=1, we can

assess the conditional misclassification rate for a class k
of mLDA by

 



∕

≠ ∣
≤ ≤

μ μR k P

k Y k

X Ω( ; ) = (arg max ( − 2)′

= ; ),
l K

l lmLDA
1

new
S S S S

new

where μl
S, and ΩS

are estimated from . As pointed out
in Shao et al. (2011), by the dominated convergence

FIGURE 2 Flowchart of the mLDA procedure. mLDA: multiclass linear discriminant analysis
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theorem, it suffices to focus on the conditional mis-
classification rate, instead of the unconditional misclas-
sification rate. We define the overall conditional
misclassification rate of mLDA as

 ∑R K R k( ) = ( ; ).
k

K

mLDA
−1

=1
mLDA

Theorem 4 (Asymptotic vanishing postscreening
misclassification rate). For any pair of classes
≤ ≤k k K1 < ′ , let

≤ ≤
μ μ μ μk k ΩΔ ( , ′) = min ( − )′ ( − ) ,p

k k K k k k k
2

1 < ′
0

′
0 0 0

′
0

where the superscript “0” denotes subvectors or
submatrices with indices restricted to 0. Let

≤ ≤ k kΔ = min Δ ( , ′)p k k K p
2

1 < ′
2 . Under conditions (A2)

to (A11), when classifying Xnew based on features
selected from the screening step, for sufficiently large
n, we have

 ≤ ∕∕ ∕R K O a O ρ o( ) Φ(−(1 + ( )) (1 + ( )) Δ 2) + (1),P n P n p PmLDA
1 2 1 2

where Φ is the standard normal distribution
function, ρn is given in (A11) and

 ≡ ∣ ∣ ∣ ∣
≤ ≤

∕
∕{ }a

n k k n k k k k
min max

Δ ( , ′)
,
Δ ( , ′)

, 1
Δ ( , ′)

.n
k k K p p p1 < ′

0
1 2

1 2
0

2 2

Furthermore, if ∕∣ ∣ → ∞nΔ min{ , 1}p
2

0 , then
 →R ( ) 0mLDA .

Notice that the condition ∕∣ ∣ → ∞nΔ min{ , 1}p
2

0 is
weaker than ∕ → ∞n pΔp2 , which is required for achieving
an asymptotic zero misclassification rate under the
independent rule (Fan and Fan, 2008).

4 | SIMULATION STUDIES

We compared the finite sample performance of mLDA
with that of other ultrahigh‐dimensional classification
methods, including the penalizedLDA (Witten and Tib-
shirani, 2011), the regularized risk minimization package
(bmrm) (Teo et al., 2010), the multigroup sparse dis-
criminant analysis (MGSDA) (Gaynanova et al., 2016),
pairwiseLDA (Pan et al., 2016), SIR (Yu et al., 2016), the
feature annealed independence rule (MS) (Fan and Fan,
2008), and the sure independence screening (SIS) (Fan and
Lv, 2008). As an oracle benchmark, we also applied
Fisher's rule with informative features known a priori. We

first investigated the cases where the variance‐covariance
matrices of the features were equal across different classes,
and, hence, the classes were linearly separable. We
specifically considered the following two models.

Model 1 (multivariate normal distribution): Set K = 3
with class sizes n n n= = = 1001 2 3 and p = 10 000.
Variables 1 to 30 were generated from a multivariate
normal distribution with the means specified as in
Table 1. These 30 features were divided into six
independent blocks: X1–X5, X6–X10, X11–X15, X16–X20,
X21–X25, and X26–X30. Features within the block were
governed by the same covariance structures such as
compound symmetry (CS), first‐order autocorrelation
(AR1), banded, star, and “unstructured” (Un). The
explicit form of the last three covariance structures was
given in (5). When the covariance structure required a
correlation coefficient parameter, we used ρ = 0.35. In
this case, variables 5 to 10, 15 to 20, 25 to 30 were MI
features, whereas X1–X4, X11–X14 were considered JI
features for class pair (1, 2), X21–X24 were considered JI
features for class pair (1, 3), and X1–X4, X11–X14, and
X21–X24 were considered JI features for class pair (2, 3).
The remaining noninformative 9970 features were
independently generated from N (0, 1) and were inde-
pendent of the first 30 variables.

Model 2 (multivariate t distribution): It was the same
as model 1 except that variables 1 to 30 were generated
from the multivariate t distribution with four degrees of
freedom and the remaining noninformative 9970 features
were independently generated from the univariate t4
distribution and were independent of the first 30 features:

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

ρ
ρ ρ
ρ ρ
ρ ρ
ρ

ρ ρ ρ ρ
ρ
ρ
ρ
ρ

ρ ρ
ρ ρ ρ
ρ ρ
ρ ρ

ρ

Banded:

1 0 0 0
1 0 0

0 1 0
0 0 1
0 0 0 1

, Star:

1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

Un:

1 0 0
1 0

0 1 0
0 1 0

0 0 0 1

. (5)

TABLE 1 Means of the informative features

Features Class 1 Class 2 Class 3

X1–X4, X11–X14, X21–X24 0 0 0

X5, X15 0 2.5 0

X6–X10, X16–X20 1.5 –1.5 –1.5
X25 0 0 2.5

X26–X30 –1.5 –1.5 1.5
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Even though condition (A7) provides the orders of the
tuning parameters so that mLDA will render the desired
theoretical properties, these orders do not provide
specific ranges of the tuning parameters with given p
and n in practice. In our numerical studies, we used
fivefold cross‐validation to choose the optimal tuning
parameters, α τ, and νn.

To assess the performance in feature selection, we
used false positives (FP), false negatives (FN), and the
minimum number of features needed to include all
informative features (MMS). To assess the classification
performance, we used the number of misclassified cases
(ER). The simulation results were reported in Table 2. It
appears that mLDA had the lowest FP, FN, ER, and MMS
under various covariance structures. When features did
not follow multivariate Gaussian distributions, ERs
tended to be larger across all of the methods, compared
to the multivariate Gaussian. However, mLDA consis-
tently outperformed the other methods. More simulation
results with different correlations were reported in Table
S6 in the Web Appendices.

We next investigated the performance of mLDA when
the variance‐covariance matrices differed across classes
so that the classes were not linearly separable. We
compared the classification performance of mLDA with
various nonlinear classification methods, including the
mixed discriminant analysis (Hastie and Tibshirani,
1995), the quadratic discriminant analysis (Ripley,
1996), the regularized discriminant analysis (Hastie
et al., 1995), the shrunken‐centroids regularized discri-
minant analysis (Guo et al., 2005), neural network
(Ripley, 1996), kernel support vector machine (Hsu and
Lin, 2002), k‐nearest neighbors (Torgo, 2010), and naive
Bayes (Ng and Jordan, 2001).

Model 3 (heterogeneous covariance): We set K = 3,
n n n= = = 1001 2 3 , and p = 10 000. The variables in each
class were simulated from multivariate normal distribu-
tions with the same mean structure as in model 1 and a
class‐specific covariance matrix.

To increase the heterogeneity and the level of
nonlinearity of the class boundaries, we let different
classes have different correlation coefficients in the
covariance matrices. The “unstructured” covariance
matrix in (5) was used for each of the six blocks within
the first 30 features. Class‐specific correlation coefficients
were set to be ρ1, ρ2, and ρ3 for the first, second, and third
classes, respectively. The remaining noninformative 9970
features were independently generated from N (0, 1) and
were independent of the first 30 features.

The results reported in Tables S4 and S5 in the Web
Appendices showed that, in most cases considered,
mLDA still outperformed the other linear classification
methods, in terms of selecting JI features and classifica-

tion accuracy. The mLDA procedure also outperformed
the nonlinear classification methods in classification
accuracy when the classes were nearly linear separable.
As expected, the classification performance of mLDA
deteriorated as the classes became more linearly
inseparable.

5 | CLASSIFICATION OF
POSTTRANSPLANT REJECTION
TYPES

We applied the proposed mLDA to classify postkidney
transplant rejection types based on patients' gene
expressions. The kidney transplant study (Flencher
et al., 2004) had a total of 62 kidney tissue samples taken
from 17 normal donor kidneys (C), 19 well‐functioning
kidneys more than 1‐year posttransplant (TX), 13 biopsy‐
confirmed acute rejection (AR), and 13 acute dysfunction
with no rejection (NR). Each sample was microarrayed
(by HG‐U95Av2 GeneChips; Affymetix) with 12 625
genes from kidney biopsies and peripheral blood
lymphocytes at transplant.

For comparisons, we also considered regularization
methods including the regularized optimal affine dis-
criminant (ROAD) by Fan et al. (2012), the linear
programming discriminant (LPD) by Cai and Liu
(2011), the covariance‐enhanced discriminant analysis
(CED) by Xu et al. (2014), and screening methods
including MS (Fan and Fan, 2008), SIS and the iterative
SIS (ISIS) by Fan and Lv (2008). Since ROAD, LPD, and
CED cannot handle ultrahigh‐dimensional data, we
performed variable selection using mLDA before apply-
ing the corresponding regularization method.

The classification performance was assessed by the
leave‐one‐out procedure. The thresholding parameters
τ α, , and νn in (3) were chosen by fivefold cross‐
validation. ROAD, LPD, and the R package SIS,
which implements the SIS and ISIS methods, cannot
handle categorical outcomes with K > 2. When im-
plementing them, we first carried out pairwise com-
parisons between rejection types, and then used the
majority vote to decide the final membership. The
binary classification approaches inadvertently pro-
duced ties, which made the final class membership
assignment difficult. When a tie occurred, we ran-
domly assigned a class membership among the tied
rejection types. Contrarily, mLDA, which performed
multiclass classification without resorting to pairwise
comparisons, did not encounter the tie issue. It turned
out that the numbers of misclassified tissues given by
mLDA, ROAD, LPD, CED, MS, SIS, and ISIS were 6, 9,
12, 8, 15, 16, and 13, respectively.
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TABLE 2 Comparisons with the competing methods

Model 1 Model 2

CS AR1 Band Star Un CS AR1 Band Star Un

FP

mLDA 9.4 9.5 16.2 16.3 17.4 7.5 8.5 15.8 19.6 28.0

(0.9) (0.9) (1.0) (2.1) (2.3) (0.9) (1.0) (2.1) (3.5) (4.1)

MS 19.8 24.0 59.4 41.6 59.4 18.2 26.4 59.1 39.3 40.7

(1.2) (1.2) (2.4) (1.3) (2.1) (1.2) (1.1) (2.3) (2.1) (2.0)

pairwiseLDA 16.7 18.9 24.1 20.5 25.7 17.1 20.6 25.5 24.1 27.3

(2.3) (2.6) (3.0) (3.0) (3.1) (2.6) (2.7) (3.1) (2.9) (3.2)

SIR 34.2 35.6 37.1 38.3 37.8 33.9 36.2 35.1 37.7 39.3

(5.7) (6.8) (5.9) (6.0) (7.2) (6.3) (7.7) (6.4) (6.6) (7.8)

bmrm 24.0 26.6 23.9 25.4 27.1 24.3 25.7 25.9 26.1 28.8

(4.6) (5.1) (4.4) (5.2) (5.6) (6.3) (5.9) (6.0) (6.1) (6.6)

MGSDA 45.1 43.2 49.0 47.1 47.3 48.8 49.3 50.1 47.4 51.2

(7.2) (6.7) (6.9) (7.0) (7.3) (8.7) (7.9) (7.4) (7.6) (8.5)

SIS 0.8 1.8 2.2 0.3 1.1 1.4 2.1 2.2 1.0 1.0

(0.0) (0.5) (0.7) (0.01) (0.01) (0.1) (0.3) (0.4) (0.2) (0.1)

FN

mLDA 0.3 0.6 0.5 1.0 1.1 1.7 2.3 2.5 4.7 10.3

(0.9) (1.2) (1.5) (1.4) (1.5) (1.7) (1.9) (2.1) (2.1) (1.1)

MS 12.3 12.0 12.4 13.1 11.9 11.5 12.4 11.9 11.8 11.8

(0.9) (0.9) (1.2) (1.0) (1.4) (0.9) (0.8) (0.8) (0.9) (1.4)

pairwiseLDA 12.2 12.7 12.1 13.0 12.9 12.3 13.1 12.4 13.3 13.4

(0.9) (1.1) (1.0) (1.0) (1.1) (1.0) (1.0) (1.0) (1.1) (1.1)

SIR 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

bmrm 12.0 12.0 12.0 12.0 12.0 12.1 12.0 12.0 12.1 12.1

(0.0) (0.0) (0.0) (0.0) (0.0) (0.2) (0.0) (0.0) (0.2) (0.2)

MGSDA 13.0 12.7 13.4 13.5 13.7 14.1 13.6 13.9 14.2 13.8

(2.4) (1.8) (2.5) (2.2) (2.5) (3.2) (3.0) (3.3) (3.1) (3.2)

SIS 20.7 20.9 20.7 20.4 21.0 20.9 21.3 21.6 20.5 21.0

(1.5) (1.3) (1.3) (1.2) (1.3) (1.4) (1.3) (1.5) (1.5) (1.5)

MMS

mLDA 38.7 36.2 42.1 39.8 44.0 48.9 49.1 44.5 36.3 48.8

(2.1) (3.4) (3.0) (5.8) (3.2) (8.5) (9.1) (4.5) (5.6) (5.9)

MS 9856 9811 9773 9832 9804 9733 9864 9770 9699 9634

(286) (243) (275) (263) (286) (293) (266) (231) (269) (247)

bmrm 9673 9526 9725 9766 9422 9567 9327 9764 9327 9334

(223) (284) (257) (279) (247) (265) (251) (270) (284) (255)

SIS 9463 9634 9721 9644 9579 9842 9756 9688 9720 9591

(232) (243) (257) (234) (261) (270) (225) (291) (256) (248)

ER

mLDA 6.1 6.5 6.3 2.7 5.0 10.4 10.5 7.6 4.1 9.7

(2.1) (2.3) (2.1) (1.8) (2.2) (3.0) (3.0) (2.4) (2.1) (2.9)

(Continues)
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For each gene, we computed the frequency of its being
selected during the leave‐one‐out procedure. The top
10 genes with the highest selection frequency were given
in Table 3. Among them, the JI genes CEACAM8,
RNASE3, TCN1, BPI, and CRISP3 were all highly
correlated with the MI gene TCF12, while the JI gene
IGHV3‐23 was highly correlated with the MI gene HLA‐
G. Our results have biological explanations. For example,
the identified gene TCN1 encodes a member of the
vitamin B12 binding protein family and vitamin B12
inefficiency can cause kidney injury (Gowder, 2014).
Gene BPI fold‐containing family A member 2/parotid
secretory protein is associated with acute kidney injury
(Kota et al., 2017). Gene TCF12 is expressed in the
forming collecting ducts in the developing kidney as well
as in the liver (Lazzaro et al., 1992), while HLA‐G
expression in biliary epithelial cells is associated with
allograft acceptance in liver‐kidney transplantations
(Xiao et al., 2013). Our study has also identified some
novel genes, such as genes CEACAM8 (a carcinoem-
bryonic antigen related to cell adhesion), RNASE3

(associated with allergic rhinitis), and CRISP3 (strongly
upregulated in prostate carcinomas), which are all JI
features and have not been reported in transplant
literature.

TABLE 2 (Continued)

Model 1 Model 2

CS AR1 Band Star Un CS AR1 Band Star Un

MS 10.2 10.3 9.4 3.0 7.8 11.8 11.8 11.0 5.4 10.7

(2.6) (2.7) (2.5) (2.7) (2.6) (3.2) (3.0) (3.1) (2.1) (3.1)

pairwiseLDA 8.8 9.2 8.4 8.0 8.3 12.4 11.5 11.7 10.3 11.4

(3.2) (3.6) (3.3) (3.1) (3.4) (3.7) (3.9) (3.5) (3.4) (3.5)

SIR 43.2 42.1 39.7 36.5 44.0 42.9 41.8 40.5 41.4 46.7

(14.6) (13,2) (13.5) (13.8) (13.9) (14.3) (14.5) (14.3) (13.6) (14.7)

penalizedLDA 47.9 43.3 45.8 47.7 49.3 48.0 49.2 50.4 52.1 51.5

(12.1) (14.0) (13.2) (12.8) (11.9) (14.7) (15.2) (15.0) (14.1) (13.5)

bmrm 28.1 24.6 29.3 28.4 33.3 31.6 28.7 30.9 32.4 36.8

(6.2) (6.7) (6.3) (6.5) (6.8) (7.1) (6.9) (7.0) (7.3) (7.1)

MGSDA 9.3 8.7 9.9 10.0 7.5 11.3 12.0 10.4 9.7 12.5

(3.7) (3.6) (3.7) (4.0) (4.1) (4.3) (4.2) (4.5) (4.5) (4.7)

SIS 17.9 17.3 7.4 5.0 17.7 19.7 19.6 9.3 5.5 20.2

(3.5) (2.8) (3.4) (3.1) (3.9) (3.4) (3.8) (3.1) (3.5) (4.8)

Oracle 5.2 6.0 5.8 2.4 4.6 9.7 8.9 6.5 3.2 8.8

(2.0) (1.9) (1.9) (1.6) (2.1) (3.1) (3.3) (3.0) (2.2) (3.0)

Abbreviation: AR1, first‐order autocorrelation covariance matrix; Band, banded structured covariance matrix; CS, compound symmetry covariance matrix; ER,
the number of misclassified cases; FN, average number of false negatives; FP, average number of false positives; LDA, linear discriminant analysis; MGSDA,
multigroup sparse discriminant analysis; MMS, the minimum number of features needed to include all informative features; SIR, sliced inverse regression; SIS,
sure independence screening; Star, star‐shape structured covariance matrix; Un, “unstructured" covariance matrix.
In model 1, features were generated from multivariate normal distribution and in model 2, features were generated from multivariate t distribution. Numbers in
parentheses are interquartile ranges for MMS and standard deviations for FP, FN, and ER. MMS is reported only for methods that output the full ranks of all
features. The competing methods include penalizedLDA (Witten and Tibshirani, 2011), the regularized risk minimization package (bmrm) (Teo et al., 2010),
the MGSDA (Gaynanova et al., 2016), pairwiseLDA (Pan et al., 2016), marginal SIR (Yu et al., 2016), the feature annealed independence rule (MS) (Fan and
Fan, 2008), and the SIS (Fan and Lv, 2008).

TABLE 3 Top 10 genes selected from the posttransplant
rejection study

Genes Selection frequency MI or JI

CEACAM8 0.90 JI

TCN1 0.85 JI

HLA‐G 0.84 MI

BPI 0.82 JI

GUSBP11 0.82 MI

IGHV3‐23 0.79 JI

TAF6L 0.74 MI

RNASE3 0.73 JI

CRISP3 0.66 JI

TCF12 0.58 MI

Abbreviation: JI, jointly informative; MI, marginally informative.
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6 | DISCUSSION

The proposed mLDA can be easily extended to accom-
modate non‐Gaussian covariates. Indeed, the results in
Section 4 hinted that mLDA works well for the heavy‐tailed
t distribution. Our proposed mLDA is based on the
assumption of the common covariance matrix across
classes. We have examined the performance of our proposal
when the covariance matrices vary across classes. Our
empirical results show that mLDA performs reasonably
well even under the misspecified models, as long as the
common covariance assumption is not severely violated.
The performance of mLDA might deteriorate when the
covariance matrices do differ much across classes. For these
cases, the nonlinear classification methods, such as
quadratic discriminant analysis, may be more appropriate.

Algorithms can be developed more efficiently. For
instance, when the whole feature space can be divided
into uncorrelated subspaces, such as blocks of chromo-
somes in a genome or different functional regions in a
brain, parallel computing on multiple partitioned feature
spaces can be implemented. We are also cognizant that
there might be some marginally weak signals that may
not be detected by our method, such as the marginally
weak signals with joint pooled effects (Li and Leal, 2008).
In this case, the proposed method may be used with other
weak signal detection techniques to boost weak signal
selection and classification performance. We will pursue
this.
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APPENDIX: TECHNICAL CONDITIONS

To derive the sure screening property and asymptotic
vanishing postscreening misclassification rate for mLDA,
we assume the following conditions.

(A1) For any positive integer ≥ ∣ ∣ ≤l E X l C1, !j
l l for

some constant ≤ ≤C j p> 0, 1 .
(A2) (Faithfulness condition) For any j satisfying

≠μ μ− 0kj k j′ , ∑ ≠μ μΩ ( − ) 0j
p

jj kj k j′=1 ′ ′ ′ ′ for some

≤ ≤k k K1 < ′ .
(A3) p O n= (exp( ))ς for some ς0 < < 1 and

C O n= (exp( ))ξ
max for some ξ ς0 < < , where

Cmax is the maximum size of the connected
components in Ω containing at least one MI
signal. For any MI feature ∈j 1, if ≠μ μ− 0kj k j′

for some pair k k( , ′), ≤ ≤k k K1 < ′ , we assume
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that ∣ ∣μ μ r p− > logkj k j′ , where r0 < < 1 con-

trols the overall strength of the MI features.
(A4) For any subset  ⊂ p{1, …, }l with ∣ ∣ O n= ( )l ,

∣ ∈ ∣ ∞
≤ ≤

E X Y k j Cmax sup 1( = , ) < <
k K j

ij i l
t

t
1

2

for some constants t > 0 and C > 0t .

(A5) ∣ ∣ ≥∈ ∕Cnmin Σj j jj
ξ

( , ′) ′
( −1) 2 and ∣ ∣∉max Σ =j j jj( , ′) ′

∕o n( )ξ( −1) 2 for the ξ in (A3).
(A6) There exist positive constants κ1 and κ2 such that

≤ ∞κ λ λ κΣ Σ0 < < ( ) ( ) < < .1 min max 2

(A7) τ O r p= (( log ) )s for some ∕s0 < < 1 2 and r given

in (A3), ∕α O n= ( )ξ( −1) 2 and ν O r p n= (( (log )exp( )) )n
ξ s′

for some ≤ ∕s0 < ′ 1 2 and ξ given in (A3).
(A8) There exist positive constants c1 and c2 such that

≤ ≤ ≤ ∞
≤ ≤ ≤ ≤

c n
n

n
n

c0 < min max <
k K

k
k K

k
1

1 1
2

for all n.
(A9) For any pair of classes, the number of informative

features that differentiate the pair is of O n( )ϱ , for
some uniform constant ϱ > 0 not depending on
the pairs.

(A10) There are p β− , β0 < < 1, fraction of features that
are MI and p γ, 0 < < 1γ− , fraction of features
that are JI.

(A11) →∕ρ n C C= 0n t
t−1

max
4 as → ∞n , where t and Ct are

given in (A4) and Cmax is defined in (A3).

(A1) is required to prove that the connected components
of Ω can be consistently recovered by Σ. Gaussian
distributed random variables satisfy (A1). (A2) ensures that
all MI features belong to 0. (A3) implies that for each
connected component of a MI feature, its size cannot
exceed the order of nexp( )ξ for some ∈ξ (0, 1). This
condition is required for consistently estimating precision
matrices by thresholding covariance matrices and is also
assumed by Bickel and Levina (2008). (A4) ensures that the
connected components in Ω can be adequately estimated
from the connected components in Σ; see Shao et al. (2011)
and Bickel and Levina (2008) for details. (A5) guarantees
that the true zero entries in Ω can be reliably separated
from the nonzero entries in the covariance matrix, and
therefore the connected components containing at least one
MI feature in the precision matrix can be detected
accurately (Zhang et al., 2014). (A6) is commonly assumed
on design matrices in high‐dimensional settings (Bickel and
Levina, 2008; Fan et al., 2011; Shao et al., 2011). (A7) gives
the order of tuning parameters τ α, , and νn to achieve the
desired theoretical properties (Bickel and Levina, 2008; Jin,
2009; Fan et al., 2011; Shao et al., 2011). (A8) implies that
the K classes are of comparable sample sizes and the
sample size of each class goes to infinity when n goes to
infinity (Fan and Fan, 2008; Shao et al., 2011). (A9) requires
that the numbers of informative features differentiating
different pairs of classes have a uniform lower bound of the
order O n( )ϱ . (A10) indicates the sparsity of the MI and JI
features and is required for proving Theorem 3. As β and γ
get closer to 1, MI and JI features become sparser,
respectively (Jin, 2009). (A11) is used to gauge the
covariance and precision estimation errors (Bickel and
Levina, 2008; Fan et al., 2011; Shao et al., 2011).
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