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Summary: Within the framework of Fisher’s discriminant analysis, we propose a multiclass

classification method which embeds variable screening for ultrahigh-dimensional predictors.

Leveraging inter-feature correlations, we show that the proposed linear classifier recovers in-

formative features with probability tending to one and can asymptotically achieve a zero mis-

classification rate. We evaluate the finite sample performance of the method via extensive

simulations and use this method to classify post-transplantation rejection types based on pa-

tients’ gene expressions.

KeyWords: Fisher’s multiclass discriminant analysis; jointly informative features; marginally

informative features; multivariate screening; ultrahigh-dimensional classification.

1 Introduction

Ultrahigh-dimensional data, wherein the number of features p is in the exponential order of

the sample size n, have now been routinely collected. For example, in the motivating kidney

transplant study (Flencher et al., 2004), 62 post-transplant kidney tissue samples have been

assayed on 12,625 genes. Distinguishing four types of tissues, namely, those from normal

donors (C), well-functioning kidneys (TX), kidneys with acute rejection (AR), and kidneys with
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1 INTRODUCTION

acute dysfunction but no rejection (NR), based on their molecular biomarkers is important in

balancing the need for immunosuppression to prevent rejection and in minimizing drug-induced

toxicities.

Linear discriminant analysis (LDA) is a widely used classification method with ready imple-

mentability and close relationships with many modern machine learning techniques (Dorfer

et al., 2016; Gorban et al., 2018; Cai et al., 2018). In high-dimensional settings, LDA using all

features leads to poor results (Fan and Fan, 2008), and high-dimensional LDA is often preceded

by variable selection procedures. Many variable selection methods are based on regularization

approaches (Guo, 2010; Witten and Tibshirani, 2011; Xu et al., 2014; Fan et al., 2012; Mai

et al., 2012; Cai and Liu, 2011; Gaynanova et al., 2016; Safo and Ahn, 2016), which require

iterative estimation of high-dimensional parameters, including computation of a p×p precision

matrix (Xu et al., 2014). It is unclear whether these regularization methods can be directly

applied to ultrahigh-dimensional classification. Furthermore, the conditions that guarantee

selection consistency may fail to hold for ultrahigh-dimensional cases.

Computationally more efficient screening methods (Fan and Fan, 2008; Fan and Lv, 2008; Pan

et al., 2016; Yu et al., 2016) and Bayesian methods (Johnson, 2013; Johnson and Rossell, 2012;

Nikooienejad et al., 2016; Rossell and Rubio, 2018) have also been developed for (ultra)high-

dimensional variable selection. However, most of the screening methods in literature require

the informative features to have strong marginal discriminant effects and ignore the inter-

feature correlations, therefore are not designed for weak signal selection. While in ultrahigh-

dimensional settings, many marginally weak signals have strong predictive effects on the out-

come classes. As shown in Figure 1, gene IPO5 does not have a sufficient power to distinguish

tissues with C and AR rejection types. However, jointly with gene TTC37, a marginally infor-

mative (MI) feature, the classification accuracy can be much improved. In this case, we call

gene IPO5 a marginally weak but jointly informative (JI) feature.

Furthermore, many of the high-dimensional classification methods aforementioned are designed

for binary classifications. Multiclass classification is more challenging than binary cases (Hastie

et al., 2009; Gaynanova et al., 2016). Most multiclass classification methods rely on sequential

binary classifications by way of one-versus-the rest (Bishop, 2006), direct pairwise compari-

son (Bishop, 2006), direct graph traversal (Platt et al., 2003), error-correcting output coding

(Allwein et al., 2000), multiclass objective functions (Weston and Watkins, 1998), sequential

approaches (Cai and Liu, 2011; Mai et al., 2012; Witten and Tibshirani, 2011), or simultaneous

canonical vector estimation (Mai et al., 2017; Gaynanova et al., 2016). However, the choice

of reduction method from multiclass to binary is on a case-by-case basis and is not a trivial

task (Allwein et al., 2000). In particular, commonly used pairwise comparisons are involved

with a large number of individual classifiers, which is likely to incur misclassification error and

numerical instability with small sample sizes (Wu et al., 2004). On the other hand, LDA can

perform multiclass classification without resorting to pairwise comparisons.

This article is protected by copyright. All rights reserved.
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Figure 1: The roles of marginally informative (MI) and jointly informative (JI) features on
classification. (a) the marginal scores of gene IPO5 between C and AR in the kidney transplant
data are similar and thus IPO5 is not MI; (b) the marginal scores of a MI gene TTC37 ; (c)
classification of C (circles) and AR (triangles) based on gene TTC37 ; (d) classification based
on both TTC37 and IPO5 gives the better performance than TTC37 only. This figure appears
in color in the electronic version of this article.
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2 ULTRAHIGH DIMENSIONAL MULTICLASS CLASSIFICATION

The covariance-enhanced discriminant analysis method proposed by Xu et al. (2014) requires

estimating the p × p-dimensional precision matrix of the covariates and is not computation-

ally feasible in ultrahigh-dimensional settings. The pairwise sure independent screening for

multiclass LDA (pairwiseLDA) proposed by Pan et al. (2016) uses the independence rule and

ignores the inter-feature correlations. It cannot detect marginally weak signals. Furthermore,

the marginal sliced inverse regression (SIR) for model-free feature selection and multiclass

classification proposed by Yu et al. (2016) selects the linear combinations of features, and can-

not select individual features. It therefore lacks interpretation for the selected features. The

general sparse multi-class LDA proposed by Safo and Ahn (2016) projects the original feature

space to a low-dimensional canonical subspace, and therefore cannot select individual features

either. The work of Cai et al. (2018) is designed for analyzing dependent data with a large

number of samples, but not particularly for high-dimensional feature selection.

We propose an ultrahigh-dimensional multiclass classification method within the framework

of Fisher’s LDA. Our proposal, termed multiclass LDA (mLDA), embeds a computationally

feasible screening procedure, specially designed for detection of weak signals by accounting for

inter-feature correlations. We show that the proposed method can recover all the informative

features, including both MI and JI features, with probability tending to one and can achieve

an asymptotically negligible misclassification rate.

The rest of the paper is organized as follows. Section 2 introduces mLDA and Section 3 develops

its theoretical properties. In Section 4, the performance of the proposed method is evaluated

using simulation studies. We apply the proposed procedure to analyze the renal transplantation

data in Section 5 and conclude the paper with a discussion in Section 6. Technical details are

provided in the online supplemental materials.

2 Ultrahigh Dimensional Multiclass Classification

2.1 Notation

Denote by A′ the transpose of a p × p matrix A and by Ajk the (j, k)th entry of A, where

1 ≤ j, k ≤ p. Let |S| be the cardinality of a set S and Sc be the complement of S. We denote

the trace of A as tr(A), the minimum and maximum eigenvalues of A as λmin(A) and λmax(A),

and the operator norm and the Frobenius norm as ‖A‖ = λ
1/2
max(A′A) and ‖A‖F = tr(A′A)1/2,

respectively. Let X = (X1, . . . , Xp)
′ be a p-dimensional vector of features. We refer to Xj as

feature j for short, 1 ≤ j ≤ p. Denote by Σ the covariance matrix of X and by Ω = Σ−1

the precision matrix. Let G(V, E ; Ω) be the graph induced by Ω, where V = {1, . . . , p} is the

vertex set and E is the edge set. An edge refers to a pair of two vertices, j and j′, which

satisfies Ωjj′ 6= 0. For a subset Vl ⊂ V, denote by Ωl the principal submatrix of Ω with its

row and column indices restricted to Vl. Denote by El the corresponding edge set. A subgraph

G(Vl, El,Ωl) is a connected component in Ω if any two vertices in Vl are connected, and for

This article is protected by copyright. All rights reserved.
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2.2 Marginally Informative Features and Jointly Informative Features2 ULTRAHIGH DIMENSIONAL MULTICLASS CLASSIFICATION

j ∈ Vcl , then Ωjj′ = 0 for any j′ ∈ Vl. We write G(Ω) = G(V, E ; Ω) for short when there is no

confusion.

2.2 Marginally Informative Features and Jointly Informative Features

Consider a K-class classification problem, where K ≥ 2. Denote by Y the class membership

and assume that the covariate vector X satisfies

X|{Y = k} ∼ N(µk,Σ), k = 1, . . . ,K,

where µk = (µk1, . . . , µkp)
′ is a p-dimensional mean vector of class k and Σ is the common

covariance matrix for all K classes. Let (Y1,X1), . . . , (Yn,Xn) be n independent observations

of (Y,X), where Xi = (Xi1, . . . , Xip)
′, i = 1, . . . , n. Denote by nk the number of observations

in class k such that
∑K

k=1 nk = n. For a pair of classes k and k′, Fisher’s rule, which can also

be considered as a Bayes rule with equal prior probabilities, assigns an observation to class k

over class k′ if (X−µk/2)′Σ−1µk > (X−µk′/2)′Σ−1µk′ . This naturally leads to the following

classification rule:

Ŷ = arg max
1≤k≤K

{(X− µk/2)′Σ−1µk}. (1)

When p < n, µk and Σ can be estimated by µ̂k =
∑

i:Yi=k
Xi/nk and Σ̂ =

∑K
k=1

∑
i:Yi=k

(Xi−
µ̂k)(Xi − µ̂k)

′/(n − K). However, when p > n, (1) is ill-posed as Σ̂ is singular. Hence, a

variable selection procedure is usually required to precede classification under some sparsity

assumption. It can be shown that a sufficient and necessary condition for feature j, where

1 ≤ j ≤ p, to be informative is

S0 =
{

1 ≤ j ≤ p :
∑p

j′=1
Ωjj′(µkj′ − µk′j′) 6= 0, for some 1 ≤ k < k′ ≤ K

}
.

Under the faithfulness condition that any MI features must belong to S0, the informative

features consist of the following two mutually exclusive sets:

S1 =
{

1 ≤ m ≤ p : µkm − µk′m 6= 0 for some 1 ≤ k < k′ ≤ K
}

and

S2 =
{
j ∈ Sc1 :

∑
m∈S1

Ωjm(µkm − µk′m) 6= 0 for some 1 ≤ k < k′ ≤ K
}
, (2)

where S1 and S2 contain the MI and JI features, respectively.

Though identifying marginally weak features is challenging in general, the JI features can

be found by searching the connected components in Ω which contain at least one feature in

S1. Furthermore, Theorem 1 in Section 3 shows that the connected components in Ω can be

accurately recovered by thresholding the corresponding sample covariance matrix.

This article is protected by copyright. All rights reserved.
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2.3 Algorithm of Multiclass Linear Discriminant Analysis (mLDA)2 ULTRAHIGH DIMENSIONAL MULTICLASS CLASSIFICATION

2.3 Algorithm of Multiclass Linear Discriminant Analysis (mLDA)

Given the training dataset {Yi,Xi}ni=1, denote by X
(k)
·j = n−1k

∑
i:Yi=k

Xij the sample mean of

feature j within class k ∈ {1, . . . ,K}. Denote by Σ̃ the thresholded sample covariance matrix.

That is, Σ̃jj′ = Σ̂jj′1(|Σ̂jj′ | ≥ α), 1 ≤ j, j′ ≤ p, where Σ̂jj′ is the (j, j′)th entry of Σ̂, 1(·) is the

indicator function, and α is a threshold. For a pair of classes (k, k′), 1 ≤ k < k′ ≤ K, select

the set Ŝ1(k, k′) containing indices m which satisfy∣∣∣X(k)
·m −X

(k′)
·m

∣∣∣ > τ,

where τ > 0 is a thresholding parameter controlling the size of Ŝ1(k, k′). Denote by Ŝ1 =

∪1≤k<k′≤K Ŝ1(k, k′) the set containing all of the MI features.

With Ŝ1, we use the recursive labeling algorithm (Shapiro and Stockman, 2002) to identify the

connected components in G(Σ̃), the graph introduced by Σ̃, that contain any features in Ŝ1.
Suppose there are B ≤ |Ŝ1| such connected components, say, Ĉl, l = 1, . . . , B, each containing

at least one MI feature. Let U =∪Bl=1Ĉl with u = |U|. Notice that Ŝ1 ⊆ U .

Let Σ̃l be the principal submatrix of Σ̃ with the row and column indices restricted to Ĉl, and

compute Ω̂l = (Σ̃l)
−1. Let Ω̂

u
= diag

(
Ω̂1, . . . , Ω̂B

)
be a block diagonal matrix of dimension

u× u. Under the sparsity assumption, Ĉl are of small sizes and u is much smaller than p. To

detect the JI features, we only need to consider U as the candidate set for them. Thus, S2 can

be estimated by:

Ŝ2 =

{
j ∈ U ∩ Ŝc1 :

∣∣∑
j′∈Ŝ1

Ω̂u
jj′(X

(k)
·j′ −X

(k′)
·j′ )

∣∣ ≥ νn for some 1 ≤ k < k′ ≤ K
}
, (3)

where νn > 0 is a thresholding parameter controlling the size of selected JI features.

We denote by Ŝ0 = Ŝ1 ∪ Ŝ2 the set containing all the informative features. Finally, for a new

observation with covariate vector Xnew, we determine the class membership by

arg max
1≤k≤K

dk,

where dk is the Fisher discriminant statistics for class k, defined by

dk = (Xs
new − µ̂sk/2)′Ω̂

s
µ̂sk. (4)

Here µ̂k and Ω̂
u

are estimated from the training data and Xs
new, µ̂sk and Ω̂

s
, respectively, are

subvectors or submatrices of Xnew, µ̂k and Ω̂
u

with the elements indexed by Ŝ0.
For ease of understanding, Figure 2 depicts the flowchart of the mLDA algorithm. The pro-

posed mLDA algorithm utilizes the dependence between the MI and JI features, and when the

informative features are sparse, the proposed screening procedure to identify Ŝ0 is computa-

tionally feasible, as we will demonstrate in Section 4. Moreover, as shown in Section 3, setting

This article is protected by copyright. All rights reserved.
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3 THEORETICAL PROPERTIES

the tuning parameters as τ = O((r log p)s), α = O(n(ξ−1)/2) and νn = O
(

(r(log p) exp(nξ))s
′
)

,

for some 0 < r < 1, 0 < s < 1/2, 0 < ξ < 1 and 0 < s′ ≤ 1/2 guarantees that mLDA has

selection consistency and a zero asymptotic misclassification rate.

3 Theoretical properties

Under regularity conditions (A1) - (A11) listed in the Appendix, mLDA possesses theoreti-

cal properties, such as the sure screening property and asymptotic vanishing post-screening

misclassification rate.

For feature j, denote by C[j] and Ĉ[j] the vertex sets of the connected component containing j

in the graphs induced by Ω and Σ̃, respectively.

Theorem 1 For any feature j, 1 ≤ j ≤ p, suppose that C[j] = O(exp(nξ)) for the ξ given in

Condition (A3), then, together with Conditions (A5) and (A7), we have

P
(
C[j] = Ĉ[j]

)
→ 1 as n→∞.

Therefore, the principal submatrices of Ω corresponding to the relevant connected components

can be estimated by inverting the corresponding submatrices of Σ̃. For a properly chosen

thresholding parameter α, Bickel and Levina (2008) and Fan et al. (2011) showed that the

estimated precision matrix using Σ̃ is consistent.

Theorem 2 (Sure screening property): Under conditions (A1)-(A9) and (A11),

P (S0 ⊆ Ŝ0)→ 1 as n→∞.

Theorem 3 (False positive control property): Under conditions (A1)-(A8) and (A10)-(A11),

for any ζ = o(n log p), we have

P
(
|Ŝ0 ∩ Sc0| ≤ ζ−1|Sc0|

)
→ 1 as n→∞.

Remark. Theorems 2 and 3 hold for any distributions satisfying (A1) given in the Appendix.

Condition (A1) characterizes a rich family of distributions, including distributions with poly-

nomial tails such as the t distribution.

Given the training samples D = {Yi,Xi}ni=1, we can assess the conditional misclassification

rate for a class k of mLDA by

RmLDA(k;D) = P
(

arg max
1≤l≤K

{(Xs
new − µ̂s

l/2)′Ω̂
s
µ̂s
l} 6= k|Ynew = k;D

)
,

where µ̂s
l , and Ω̂

s
are estimated from D. As pointed out in Shao et al. (2011), by the dominated

convergence theorem, it suffices to focus on the conditional misclassification rate, instead of the

This article is protected by copyright. All rights reserved.
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3 THEORETICAL PROPERTIES

Screening step:
Start from a training dataset

Calculate the mean of each feature within each class and
the thresholded sample covariance matrix of all the features

A feature is detected to be a marginally informative (MI) fea-
ture if the absolute value of its mean difference between a pair

of classes is greater than a pre-specified constant. Let Ŝ1 contain
the indices of the MI features. For each MI feature, find its con-
nected components based on the thresholded sample covariance

Find the union of all these connected components, which will
be the candidate set for the jointly informative (JI) features

For each feature in this candidate set, identify all
the features that are correlated with this feature

Compute the sum of weighted mean differ-
ences of these features across all pairs of classes

If, at least for one pair of classes, the absolute value of the sum
is greater than a pre-specified constant, the feature is detected
to be a JI feature. Let Ŝ2 contain the indices of the JI features

The estimated set of informative features is Ŝ0 = Ŝ1 ∪ Ŝ2

Classification step:
Classify a new observation with the Fisher dis-
criminant statistics using features in Ŝ0 only

Figure 2: Flowchart of the mLDA procedure.

This article is protected by copyright. All rights reserved.
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4 SIMULATION STUDIES

unconditional misclassification rate. We define the overall conditional misclassification rate of

mLDA as

RmLDA(D) = K−1
∑K

k=1
RmLDA(k;D).

Theorem 4 (Asymptotic vanishing post− screening misclassification rate): For any pair of

classes 1 ≤ k < k′ ≤ K, let ∆2
p(k, k

′) = min1≤k<k′≤K{(µ0
k − µ0

k′)
′Ω0(µ0

k − µ0
k′)}, where

the superscript “0” denotes subvectors or submatrices with indices restricted to S0. Let ∆2
p =

min1≤k<k′≤K ∆2
p(k, k

′). Under conditions (A2)-(A11), when classifying Xnew based on features

selected from the screening step, for sufficiently large n, we have

RmLDA(D) ≤ KΦ
(
−(1 +OP (an))1/2(1 +OP (ρn))1/2∆p/2

)
+ oP (1),

where Φ is the standard normal distribution function, ρn is given in (A11) and

an ≡ min
1≤k<k′≤K

max

{
|S0|1/2

n1/2∆p(k, k′)
,
|S0|

n∆2
p(k, k

′)
,

1

∆2
p(k, k

′)

}
.

Furthermore, if ∆2
p min{n/|S0|, 1} → ∞, then RmLDA(D)→ 0.

Notice that the condition ∆2
p min{n/|S0|, 1} → ∞ is weaker than n∆2

p/p → ∞, which is

required for achieving an asymptotic zero misclassification rate under the independent rule

(Fan and Fan, 2008).

4 Simulation studies

We compared the finite sample performance of mLDA with that of other ultrahigh-dimensional

classification methods, including the penalizedLDA (Witten and Tibshirani, 2011), the regular-

ized risk minimization package (bmrm) (Teo et al., 2010), the multi-group sparse discriminant

analysis (MGSDA) (Gaynanova et al., 2016), pairwiseLDA (Pan et al., 2016), SIR (Yu et al.,

2016), the feature annealed independence rule (MS) (Fan and Fan, 2008) and the sure in-

dependence screening (SIS) (Fan and Lv, 2008). As an oracle benchmark, we also applied

Fisher’s rule with informative features known a priori. We first investigated the cases where

the variance-covariance matrices of the features were equal across different classes, and, hence,

the classes were linearly separable. We specifically considered the following two models.

Model I (multivariate normal distribution): Set K = 3 with class sizes n1 = n2 = n3 =

100 and p =10,000. Variables 1–30 were generated from a multivariate normal distribution

with the means specified as in Table 1. These 30 features were divided into six independent

blocks: X1–X5, X6–X10, X11–X15, X16–X20, X21–X25 and X26–X30. Features within the

block were governed by the same covariance structures such as compound symmetry (CS),

This article is protected by copyright. All rights reserved.
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4 SIMULATION STUDIES

Table 1: Means of the informative features

Features Class 1 Class 2 Class 3

X1–X4, X11–X14, X21–X24 0 0 0
X5, X15 0 2.5 0
X6–X10, X16–X20 1.5 -1.5 -1.5
X25 0 0 2.5
X26–X30 -1.5 -1.5 1.5

first order autocorrelation (AR1), banded, star and “unstructured” (Un). The explicit form of

the last three covariance structures was given in (5). When the covariance structure required

a correlation coefficient parameter, we used ρ = 0.7. In this case, variables 5–10, 15–20, 25–30

were MI features, whereas X1–X4, X11–X14 were considered JI features for class pair (1,2),

X21–X24 were considered JI features for class pair (1,3) and X1–X4, X11–X14, X21–X24 were

considered JI features for class pair (2,3). The remaining non-informative 9,970 features were

independently generated from N(0, 1) and were independent of the first 30 variables.

Model II (multivariate t distribution): It was the same as Model I except that variables 1–

30 were generated from the multivariate t distribution with four degrees of freedom and the

remaining non-informative 9,970 features were independently generated from the univariate t4

distribution and were independent of the first 30 features.

Banded:


1 ρ 0 0 0

ρ 1 ρ 0 0

0 ρ 1 ρ 0

0 0 ρ 1 ρ

0 0 0 ρ 1

 , Star:


1 ρ ρ ρ ρ

ρ 1 0 0 0

ρ 0 1 0 0

ρ 0 0 1 0

ρ 0 0 0 1

 , Un:


1 ρ 0 0 ρ

ρ 1 ρ ρ 0

0 ρ 1 ρ 0

0 ρ ρ 1 0

ρ 0 0 0 1

 . (5)

Even though condition (A7) provides the orders of the tuning parameters so that mLDA will

render the desired theoretical properties, these orders do not provide specific ranges of the

tuning parameters with given p and n in practice. In our numerical studies, we used 5-fold

cross-validation to choose the optimal tuning parameters, α, τ and νn.

To assess the performance in feature selection, we used false positives (FP), false negatives

(FN), and the minimum number of features needed to include all informative features (MMS).

To assess the classification performance, we used the number of misclassified cases (ER). The

simulation results were reported in Table 2. It appears that mLDA had the lowest FP, FN,

ER and MMS under various covariance structures. When features did not follow multivariate

Gaussian distributions, ERs tended to be larger across all of the methods, compared to the

multivariate Gaussian. However, mLDA consistently outperformed the other methods. More

This article is protected by copyright. All rights reserved.
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5 CLASSIFICATION OF POST-TRANSPLANT REJECTION TYPES

simulation results with different correlations were reported in Table S6 in the Web Appendices.

We next investigated the performance of mLDA when the variance-covariance matrices differed

across classes so that the classes were not linearly separable. We compared the classification

performance of mLDA with various nonlinear classification methods, including the mixed dis-

criminant analysis (Hastie and Tibshirani, 1995), the quadratic discriminant analysis (Ripley,

1996), the regularized discriminant analysis (Hastie et al., 1995), the shrunken-centroids regu-

larized discriminant analysis (Guo et al., 2005), neural network (Ripley, 1996), kernel support

vector machine (Hsu and Lin, 2002), k-nearest neighbors (Torgo, 2010) and Naive Bayes (Ng

and Jordan, 2001).

Model III (heterogeneous covariance): We set K = 3, n1 = n2 = n3 = 100 and p =10,000.

The variables in each class were simulated from multivariate normal distributions with the

same mean structure as in Model I and a class-specific covariance matrix. To increase the

heterogeneity and the level of nonlinearity of the class boundaries, we let different classes have

different correlation coefficients in the covariance matrices. The “unstructured” covariance

matrix in (5) was used for each of the six blocks within the first 30 features. Class-specific

correlation coefficients were set to be ρ1, ρ2 and ρ3 for the first, second and third class, re-

spectively. The remaining non-informative 9,970 features were independently generated from

N(0, 1) and were independent of the first 30 features.

The results reported in Tables S4 and S5 in the Web Appendices showed that, in most cases

considered, mLDA still outperformed the other linear classification methods, in terms of se-

lecting JI features and classification accuracy. The mLDA procedure also outperformed the

nonlinear classification methods in classification accuracy when the classes were nearly linear

separable. As expected, the classification performance of mLDA deteriorated as the classes

became more linearly inseparable.

5 Classification of Post-transplant Rejection Types

We applied the proposed mLDA to classify post-kidney transplant rejection types based on

patients’ gene expressions. The kidney transplant study (Flencher et al., 2004) had a total

of 62 kidney tissue samples taken from 17 normal donor kidneys (C), 19 well-functioning

kidneys more than 1-year post-transplant (TX), 13 biopsy-confirmed acute rejection (AR),

and 13 acute dysfunction with no rejection (NR). Each sample was microarrayed (by HG-

U95Av2 GeneChips, Affymetix) with 12,625 genes from kidney biopsies and peripheral blood

lymphocytes at transplant.

For comparisons, we also considered regularization methods including the regularized optimal

affine discriminant (ROAD) by Fan et al. (2012), the linear programming discriminant (LPD)

by Cai and Liu (2011), the covariance-enhanced discriminant analysis (CED) by Xu et al.

(2014), and screening methods including MS (Fan and Fan, 2008), SIS and the iterative-SIS
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5 CLASSIFICATION OF POST-TRANSPLANT REJECTION TYPES

Table 2: Comparisons with the competing methods

Model I Model II

CS AR1 Band Star Un CS AR1 Band Star Un

FP

mLDA 9.4 9.5 16.2 16.3 17.4 7.5 8.5 15.8 19.6 28.0
(0.9) (0.9) (1.0) (2.1) (2.3) (0.9) (1.0) (2.1) (3.5) (4.1)

MS 19.8 24.0 59.4 41.6 59.4 18.2 26.4 59.1 39.3 40.7
(1.2) (1.2) (2.4) (1.3) (2.1) (1.2) (1.1) (2.3) (2.1) (2.0)

pairwiseLDA 16.7 18.9 24.1 20.5 25.7 17.1 20.6 25.5 24.1 27.3
(2.3) (2.6) (3.0) (3.0) (3.1) (2.6) (2.7) (3.1) (2.9) (3.2)

SIR 34.2 35.6 37.1 38.3 37.8 33.9 36.2 35.1 37.7 39.3
(5.7) (6.8) (5.9) (6.0) (7.2) (6.3) (7.7) (6.4) (6.6) (7.8)

bmrm 24.0 26.6 23.9 25.4 27.1 24.3 25.7 25.9 26.1 28.8
(4.6) (5.1) (4.4) (5.2) (5.6) (6.3) (5.9) (6.0) (6.1) (6.6)

MGSDA 45.1 43.2 49.0 47.1 47.3 48.8 49.3 50.1 47.4 51.2
(7.2) (6.7) (6.9) (7.0) (7.3) (8.7) (7.9) (7.4) (7.6) (8.5)

SIS 0.8 1.8 2.2 0.3 1.1 1.4 2.1 2.2 1.0 1.0
(0.02) (0.5) (0.7) (0.09) (0.06) (0.1) (0.3) (0.4) (0.2) (0.1)

FN

mLDA 0.3 0.6 0.5 1.0 1.1 1.7 2.3 2.5 4.7 10.3
(0.9) (1.2) (1.5) (1.4) (1.5) (1.7) (1.9) (2.1) (2.1) (1.1)

MS 12.3 12.0 12.4 13.1 11.9 11.5 12.4 11.9 11.8 11.8
(0.9) (0.9) (1.2) (1.0) (1.4) (0.9) (0.8) (0.8) (0.9) (1.4)

pairwiseLDA 12.2 12.7 12.1 13.0 12.9 12.3 13.1 12.4 13.3 13.4
(0.9) (1.1) (1.0) (1.0) (1.1) (1.0) (1.0) (1.0) (1.1) (1.1)

SIR 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

bmrm 12.0 12.0 12.0 12.0 12.0 12.1 12.0 12.0 12.1 12.1
(0.0) (0.0) (0.0) (0.0) (0.0) (0.2) (0.0) (0.0) (0.2) (0.2)

MGSDA 13.0 12.7 13.4 13.5 13.7 14.1 13.6 13.9 14.2 13.8
(2.4) (1.8) (2.5) (2.2) (2.5) (3.2) (3.0) (3.3) (3.1) (3.2)

SIS 20.7 20.9 20.7 20.4 21.0 20.9 21.3 21.6 20.5 21.0
(1.5) (1.3) (1.3) (1.2) (1.3) (1.4) (1.3) (1.5) (1.5) (1.5)

MMS

mLDA 38.7 36.2 42.1 39.8 44.0 48.9 49.1 44.5 36.3 48.8
(2.1) (3.4) (3.0) (5.8) (3.2) (8.5) (9.1) (4.5) (5.6) (5.9)

MS 9856 9811 9773 9832 9804 9733 9864 9770 9699 9634
(286) (243) (275) (263) (286) (293) (266) (231) (269) (247)

bmrm 9673 9526 9725 9766 9422 9567 9327 9764 9327 9334
(223) (284) (257) (279) (247) (265) (251) (270) (284) (255)

SIS 9463 9634 9721 9644 9579 9842 9756 9688 9720 9591
(232) (243) (257) (234) (261) (270) (225) (291) (256) (248)

ER

mLDA 6.1 6.5 6.3 2.7 5.0 10.4 10.5 7.6 4.1 9.7
(2.1) (2.3) (2.1) (1.8) (2.2) (3.0) (3.0) (2.4) (2.1) (2.9)

MS 10.2 10.3 9.4 3.0 7.8 11.8 11.8 11.0 5.4 10.7
(2.6) (2.7) (2.5) (2.7) (2.6) (3.2) (3.0) (3.1) (2.1) (3.1)

pairwiseLDA 8.8 9.2 8.4 8.0 8.3 12.4 11.5 11.7 10.3 11.4
(3.2) (3.6) (3.3) (3.1) (3.4) (3.7) (3.9) (3.5) (3.4) (3.5)

SIR 43.2 42.1 39.7 36.5 44.0 42.9 41.8 40.5 41.4 46.7
(14.6) (13,2) (13.5) (13.8) (13.9) (14.3) (14.5) (14.3) (13.6) (14.7)

penalizedLDA 47.9 43.3 45.8 47.7 49.3 48.0 49.2 50.4 52.1 51.5
(12.1) (14.0) (13.2) (12.8) (11.9) (14.7) (15.2) (15.0) (14.1) (13.5)

bmrm 28.1 24.6 29.3 28.4 33.3 31.6 28.7 30.9 32.4 36.8
(6.2) (6.7) (6.3) (6.5) (6.8) (7.1) (6.9) (7.0) (7.3) (7.1)

MGSDA 9.3 8.7 9.9 10.0 7.5 11.3 12.0 10.4 9.7 12.5
(3.7) (3.6) (3.7) (4.0) (4.1) (4.3) (4.2) (4.5) (4.5) (4.7)

SIS 17.9 17.3 7.4 5.0 17.7 19.7 19.6 9.3 5.5 20.2
(3.5) (2.8) (3.4) (3.1) (3.9) (3.4) (3.8) (3.1) (3.5) (4.8)

Oracle 5.2 6.0 5.8 2.4 4.6 9.7 8.9 6.5 3.2 8.8
(2.0) (1.9) (1.9) (1.6) (2.1) (3.1) (3.3) (3.0) (2.2) (3.0)

NOTE: • In Model I, features were generated from multivariate normal distribution and in Model II, features were generated from
multivariate t distribution. • CS, compound symmetry covariance matrix; AR1, first order autocorrelation covariance matrix, Band,
Banded structured covariance matrix; Star, star-shape structured covariance matrix; Un, “unstructured” covariance matrix. • FP,
average number of false positives; FN, average number of false negatives; MMS, the minimum number of features needed to include
all informative features; ER, the number of misclassified cases; numbers in parentheses are interquartile ranges for MMS and standard
deviations for FP, FN, and ER. MMS is reported only for methods that output the full ranks of all features. • The competing methods
include penalizedLDA (Witten and Tibshirani, 2011), the regularized risk minimization package (bmrm) (Teo et al., 2010), the multi-
group sparse discriminant analysis (MGSDA) (Gaynanova et al., 2016), pairwiseLDA (Pan et al., 2016), marginal sliced inverse regression
(SIR) (Yu et al., 2016), the feature annealed independence rule (MS) (Fan and Fan, 2008), the sure independence screening (SIS) (Fan
and Lv, 2008).
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6 DISCUSSION

(ISIS) by Fan and Lv (2008). Since ROAD, LPD, CED cannot handle ultrahigh-dimensional

data, we performed variable selection using mLDA before applying the corresponding regular-

ization method.

The classification performance was assessed by the leave-one-out procedure. The thresholding

parameters τ , α and νn in (3) were chosen by 5-fold cross-validation. ROAD, LPD, and the R

package SIS, which implements the SIS and ISIS methods, cannot handle categorical outcomes

with K > 2. When implementing them, we first carried out pairwise comparisons between

rejection types, and then used the majority vote to decide the final membership. The binary

classification approaches inadvertently produced ties, which made the final class membership

assignment difficult. When a tie occurred, we randomly assigned a class membership among

the tied rejection types. On the other hand, mLDA, which performed multiclass classification

without resorting to pairwise comparisons, did not encounter the tie issue. It turned out that

the numbers of misclassified tissues given by mLDA, ROAD, LPD, CED, MS, SIS, and ISIS

were 6, 9, 12, 8, 15, 16, and 13, respectively.

For each gene, we computed the frequency of its being selected during the leave-one-out pro-

cedure. The top ten genes with the highest selection frequency were given in Table 3. Among

them, the JI genes CEACAM8, RNASE3, TCN1, BPI and CRISP3 were all highly correlated

with the MI gene TCF12, while the JI gene IGHV3-23 was highly correlated with the MI

gene HLA-G. Our results have biological explanations. For example, the identified gene TCN1

encodes a member of the vitamin B12 binding protein family and vitamin B12 inefficiency can

cause kidney injury (Gowder, 2014). Gene BPI fold-containing family A member 2/parotid

secretory protein is associated with acute kidney injury (Kota et al., 2017). Gene TCF12

is expressed in the forming collecting ducts in the developing kidney as well as in the liver

(Lazzaro et al., 1992), while HLA-G expression in biliary epithelial cells is associated with

allograft acceptance in liver-kidney transplantations (Xiao et al., 2013). Our study has also

identified some novel genes, such as genes CEACAM8 (a carcinoembryonic antigen related to

cell adhesion), RNASE3 (associated with allergic rhinitis) and CRISP3 (strongly up-regulated

in prostate carcinomas), which are all JI features and have not been reported in transplant

literature.

6 Discussion

The proposed mLDA can be easily extended to accommodate non-Gaussian covariates. Indeed,

the results in Section 4 hinted that mLDA works well for the heavy-tailed t distribution.

Our proposed mLDA is based on the assumption of the common covariance matrix across

classes. We have examined the performance of our proposal when the covariance matrices

vary across classes. Our empirical results show that mLDA performs reasonably well even

under the misspecified models, as long as the common covariance assumption is not severely
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6 DISCUSSION

Table 3: Top ten genes selected from the post-transplant rejection study

Gene Selection frequency MI or JI

CEACAM8 .90 JI
TCN1 .85 JI
HLA-G .84 MI
BPI .82 JI
GUSBP11 .82 MI
IGHV3-23 .79 JI
TAF6L .74 MI
RNASE3 .73 JI
CRISP3 .66 JI
TCF12 .58 MI

violated. The performance of mLDA might deteriorate when the covariance matrices do differ

much across classes. For these cases, the nonlinear classification methods, such as quadratic

discriminant analysis, may be more appropriate.

Algorithms can be developed more efficiently. For instance, when the whole feature space can

be divided into uncorrelated subspaces, such as blocks of chromosomes in a genome or different

functional regions in a brain, parallel computing on multiple partitioned feature spaces can be

implemented. We are also cognizant that there might be some marginally weak signals that

may not be detected by our method, such as the marginally weak signals with joint pooled

effects (Li and Leal, 2008). In this case, the proposed method may be used with other weak

signal detection techniques to boost weak signal selection and classification performance. We

will pursue this.
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Appendix: Technical conditions

To derive the sure screening property and asymptotic vanishing post-screening misclassification

rate for mLDA, we assume the following conditions.

(A1) For any positive integer l ≥ 1, E|Xj |l ≤ l!C l for some constant C > 0, 1 ≤ j ≤ p.

(A2) (Faithfulness condition) For any j satisfying µkj − µk′j 6= 0 for some 1 ≤ k < k′ ≤ K,∑p
j′=1 Ωjj′(µkj′ − µk′j′) 6= 0.

(A3) p = O(exp(nς)) for some 0 < ς < 1 and Cmax = O(exp(nξ)) for some 0 < ξ < ς, where

Cmax is the maximum size of the connected components in Ω containing at least one MI signal.

For any MI feature j ∈ S1, if µkj − µk′j 6= 0 for some pair (k, k′), 1 ≤ k < k′ ≤ K, we assume

that |µkj − µk′j | >
√
r log p, where 0 < r < 1 controls the overall strength of the marginally

informative features.

(A4) For any subset Vl ⊂ {1, . . . , p} with |Vl| = O(n),

max
1≤k≤K

sup
j
E|Xij1(Yi = k, j ∈ Vl)|2t < Ct <∞

for some constants t > 0 and Ct > 0.

(A5) min(j,j′)∈E |Σjj′ | ≥ Cn(ξ−1)/2 and max(j,j′)/∈E |Σjj′ | = o(n(ξ−1)/2) for the ξ in (A3).

(A6) There exist positive constants κ1 and κ2 such that

0 < κ1 < λmin(Σ) ≤ λmax(Σ) < κ2 <∞.

(A7) τ = O((r log p)s) for some 0 < s < 1/2 and r given in (A3), α = O(n(ξ−1)/2) and

νn = O
(

(r(log p) exp(nξ))s
′
)

for some 0 < s′ ≤ 1/2 and ξ given in (A3).

(A8) There exist positive constants c1 and c2 such that

0 < c1 ≤ min
1≤k≤K

nk
n
≤ max

1≤k≤K

nk
n
≤ c2 <∞

for all n.

(A9) For any pair of classes, the number of informative features that differentiate the pair is

of O(n%), for some uniform constant % > 0 not depending on the pairs.

(A10) There are p−β, 0 < β < 1, fraction of features that are MI and p−γ , 0 < γ < 1, fraction

of features that are JI.
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(A11) ρn = Ct(n
−1C

4/t
max)→ 0 as n→∞, where t and Ct are given in (A4) and Cmax is defined

in (A3).

(A1) is required to prove that the connected components of Ω can be consistently recovered

by Σ̃. Gaussian distributed random variables satisfy (A1). (A2) ensures that all MI features

belong to S0. (A3) implies that for each connected component of a marginally informative

feature, its size cannot exceed the order of exp(nξ) for some ξ ∈ (0, 1). This condition is

required for consistently estimating precision matrices by thresholding covariance matrices

and is also assumed by Bickel and Levina (2008). (A4) ensures that the connected components

in Ω can be adequately estimated from the connected components in Σ̃; see Shao et al. (2011)

and Bickel and Levina (2008) for details. (A5) guarantees that the true zero entries in Ω

can be reliably separated from the nonzero entries in the covariance matrix, and therefore

the connected components containing at least one MI feature in the precision matrix can be

detected accurately (Zhang et al., 2014). (A6) is commonly assumed on design matrices in

high-dimensional settings (Shao et al., 2011; Fan et al., 2011; Bickel and Levina, 2008). (A7)

gives the order of tuning parameters τ , α and νn to achieve the desired theoretical properties

(Shao et al., 2011; Jin, 2009; Fan et al., 2011; Bickel and Levina, 2008). (A8) implies that the

K classes are of comparable sample sizes and the sample size of each class goes to infinity when

n goes to infinity (Shao et al., 2011; Fan and Fan, 2008). (A9) requires that the numbers of

informative features differentiating different pairs of classes have a uniform lower bound of the

order O(n%). (A10) indicates the sparsity of the MI and JI features and is required for proving

Theorem 3. As β and γ get closer to 1, MI and JI features become sparser, respectively (Jin,

2009). (A11) is used to gauge the covariance and precision estimation errors (Shao et al., 2011;

Fan et al., 2011; Bickel and Levina, 2008).
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