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S1. Materials and Methods 

S1.1 Modeling and Correction 

Computational models and slice correction algorithms were implemented in MATLAB R2018b 

(MathWorks) and run on a desktop computer (Intel Xeon E5-1660 v4 @ 3.2 GHz, 32 GB RAM). 

Simulations and corrections completed within several minutes for all models. 

Dose Modeling: Slice images are initially read into the program and stored as a three-

dimensional array. The dimensions of this array correspond to the number of slices and their 

dimensions in pixels. A typical slice image is 1,280 by 800 pixels and the number of slices is 

equal to the height of the designed part divided by the slicing height, ℎ𝑠. In cases where the 

model does not utilize the full slice resolution (e.g., a 200-pixel-wide model in the center of a 

1,280-pixel-wide image), the excess pixels outside the model volume are trimmed from the 

matrix to improve computational performance. The values in this matrix are grayscale pixel 

values (p) ranging from zero to one and correspond to the light intensities that will be projected 

at each pixel during each slice; zero and one represent the minimum and maximum blue-light 

intensities, respectively. The relationship between pixel value and light intensity is not linear, 

and pixel values are converted into intensities using a calibration curve (Figure S1) generated 

with a radiometer (International Light IL1400A). 

 Dose calculation begins at the bottom of the part, where the final slice is projected, and 

proceeds upward. The top cross-section of the part is exposed to every slice and each successive 

layer is exposed to fewer and fewer slices. By starting at the bottom of the part, we consider the 

cross-sections of the part exposed only to the final slice, then those exposed to the final two 

slices, then those exposed to the final three slices, and so on. As shown in Equation (5) and 

Table S2, the total dose at ζ is the sum of the dose contribution from slice n = ζ and the total 

dose at ζ + 1 multiplied by a factor of 10- η. 
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Slice Correction: The unedited images from the slicing software are taken to represent the “true” 

model and are converted into matrix form as above. Each feature within the part is identified. 

As with dose modeling, slice correction begins at the bottom of the part and works upward. 

Pixel values at the backside of the feature are set to reach Dc as quickly as possible (i.e., using 

the maximum intensity), and pixel values inside the feature are set to match a desired internal 

dose profile using Equation (5). All pixel values are assumed to be zero (minimum intensity) 

unless specifically set otherwise. Finally, the matrix of corrected pixel values is converted back 

to a series of image files to be sent to the 3D printer. 

 

S1.2 3D Printing 

Part Design: Test parts were designed in DesignSpark Mechanical 2.0 (SpaceClaim Corp.) and 

exported as STL files. Models were sliced using Autodesk Netfabb Standard 2018 (Autodesk) 

with default settings for the Ember 3D Printer (Autodesk) and 10 μm slice height. Slices from 

Netfabb are used with the MATLAB code to model final printed parts and produce corrected 

slices. 

3D Printer: We printed test parts on a previously-described dual-color continuous 

stereolithographic 3D printer.[1] The DLP LED projector (Optoma ML750) was modified by 

removing power to the green and red LEDs and powering the blue LED by an external 0-5A 

LED driver circuit controlled by a custom LabVIEW virtual instrument. 

Resin Formulations: Polymer resin was formulated as a mixture of oligomer, reactive diluent, 

photoinitiators, photoinhibitor, and light absorbers. For this work, the oligomer Sartomer 

CN991 (Sartomer) was used with 1,6-hexanediol diacrylate (HDDA, TCI America) as a 

reactive diluent. (±)-Camphorquinone (CQ, Esstech) was used as a blue-light photoinitiator and 

ethyl-4-dimethylaminobenzoate (EDAB, Esstech) was used as a co-initiator. 2,2ʹ-Bis(2-

chlorophenyl)-4,4ʹ,5,5ʹ-tetraphenyl-1,2ʹ-biimidazole (o-Cl-HABI, TCI America) was used as a 

UV-activated photoinhibitor. Epolight 5675 (Epolin) was used as the blue light absorber and 
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Tinuvin 328 (BASF) was used as the UV absorber. Commercial blue epoxy pigment 

(Makerjuice Labs) was also used as a light absorber. The compositions of resins used are given 

in Table S1.  

 

Table S1. Resin formulations. 

Component Function 
Concentration [wt%] 

Resin 1 Resin 2 Resin 3 

o-Cl HABI photoinhibitor 2.8 2.8 2.8 

camphorquinone photoinitiator 1.9 1.9 1.9 

EDAB co-initiator 0.95 0.95 0.95 

Tinuvin 328 UV absorber 0.47 0.47 0.47 

Epolight 5675 blue light absorber 0.001 0.003 – 

CN991 oligomer 56.3 56.3 56.3 

HDDA reactive diluent 37.6 37.6 37.6 

blue pigment light absorber – – 0.002 

 

S1.3 Measurement of ha and Dgel 

The two resin properties required for input into the correction algorithm are the absorbance 

height ha and the gelation dose Dgel. These properties are fitted using the least-squares method 

with a cured height vs. volumetric dose working curve similar to that developed by Jacobs[2]:  

 0 ln10
logct a

gel a

I t
z h

D h

 
=   

 

  (S1) 

Liquid photopolymer is cured into plugs by exposing to curing light of intensity I0 for varying 

lengths of time t. The height of the cured plug is measured using a digital micrometer with an 

accuracy of 10 μm. Light intensities used in these experiments were measured using an 

International Light IL1400A radiometer with a GaAsP detector (model SEL005), a 10× 

attenuation neutral density filter (model QNDS1), and a quartz diffuser (model W).  
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Figure S1. Measured blue intensity, I0, as a function of the grayscale value, p, of the displayed 

image. The calibration curve is found to be a piece-wise function typical of manufacturer color 

balancing encoded into projector firmware.[3] 
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S2. Derivation of dose equations 

S2.1 Derivation of main equations 

The build platform begins in contact with the window and moves upward as the print proceeds. 

The coordinate system is defined with respect to the build platform, with 𝑧 = 0 at the platform 

and increasing in the direction of the window (downward). Since the projected slices are 

patterned and intensity degrades as the light propagates, dose and intensity are functions of 𝑥, 

𝑦, and 𝑧; however, for simplicity our notation will only include 𝑧 with the understanding that 

each equation applies at a particular (x, y) position. 

Printing consists of both continuous and discrete processes: as the build platform 

continuously ascends, exposure patterns change at discrete intervals with each slice projected 

in sequence. To account for the discrete projection of slices, the total accumulated dose at a 

point is a sum of contributions from each slice projected. DT (z) is the total dose delivered to 

position z in the final part; the contribution of slice n to the total dose is denoted as Dn (z). Thus,  

 
0

( ) ( )
N

T n

n

D z D z
=

=   (S2) 

where slices are numbered from zero to N in the order of exposure. 

To determine the dose contribution from each slice as the build platform continuously 

ascends, we will integrate over the time period when the slice is projected. The change in 

volumetric dose at a point is given by:  

 ( , ) ( , )n n

d d
D z t I z t

dt dz
= −   (S3) 

where t is time and In is the light intensity for slice n. The light intensity at any depth in the 

resin bath, In (z), is given by Beer’s Law. Recalling that z = 0 at the build platform, zw − z gives 

the distance from the position of the window (zw) to the position of interest (z). From Beer’s 

Law,  

   1( )

,

ln10
( , ) 10 w az t z h

n n w

a

d
I z t I

dz h

−− −
= −   (S4) 
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where In,w = In (zw) is the light intensity at the window and ha is the resin absorbance height (the 

propagation distance over which the intensity falls to 10% of its initial value). Movement of the 

build platform is included via the print speed. Since the coordinate system is defined with 

respect to the build platform, the print speed s is represented in terms of the ever-increasing 

value of zw (t):  

 ws dz dt=   (S5) 

Substituting Equation (S4) and (S5) into Equation (S3),  

 
  1( )

,

ln10
( , ) 10 w az t z h

n w n w

w a

d
D z z I

dz sh

−− −
=   (S6) 

To calculate the dose contribution from slice n, Equation (S6) is integrated with respect to zw. 

The limits of integration are the values of zw when slice n is first projected and when the next 

slice, n + 1, is projected: nhs and (n + 1) hs, respectively, where hs is the slicing height. Thus,  

 

 
( )

( )   

1

1 1

1

( )

,

( 1),

ln10
( ) 10

10 10

s

w a

s

s a s a

n h

z t z h

n n w w

anh

nh z h n h z hn w

D z I dz
sh

I

s

−

− −

+

− −

− − − + −

=

= −



  (S7) 

If the cross-section at height z is exposed to slice n (i.e., z ≤ nhs), Equation (S7) gives the 

contribution of slice n to the total dose at that point. If the cross-section is not exposed to slice 

n (i.e., z ≥ (n + 1) hs), the dose contribution is zero. As a simplification, we will consider only 

values of z which are multiples of hs (i.e., z-values of simulated slices). For a treatment of all 

real values of z, see Supporting Information S2.2 below. Note that this model implicitly assumes 

that a packet of resin tends to stay in the same (x, y, z)-position as the print progresses. 

 Combining Equation (S2) and (S7),  

 
( )   

1 1

1

( 1),
( ) 10 10s a s a

s

N
nh z h n h z hn w

T

n zh

I
D z

s

− −

−

− − − + −

=

= −   (S8) 

Equation (S8) allows calculation of the total accumulated dose at any point in the final printed 

part. 



     

8 

 

For convenience we may define several dimensionless variables. The dimensionless 

dose, Ω, is normalized by the critical dose, Dc:  

 n
n

c

D

D
    (S9) 

The critical dose is experimentally determined for each resin formulation and is related to the 

dose at which the resin becomes insoluble in the rinse solvent, IPA (i.e., reaches the gelation 

point). A resin packet with ΩT < 1 is considered uncured, while resin with ΩT ≥ 1 is considered 

cured. The dimensionless light intensity at the window, Φ, is normalized by a critical intensity; 

Ic is the minimum intensity at which it is possible to reach Dc for ha and s (for additional 

discussion, see Supporting Information S2.3 below).  

 
, ,n w n w

n

c c

I I

I D s
  =   (S10) 

The dimensionless z-position, ζ, is normalized by the slice height:  

 
s

z

h
    (S11) 

With this normalization, slice n is first projected when ζw = n. Finally, the dimensionless 

constant η is the ratio of the slicing height to the absorbance height:  

 s

a

h

h
    (S12) 

Rewriting Equation (S8) in dimensionless terms,  

 
( ) ( ) 1

( ) 10 10
N

nn

T n

n

  




− + − − −  

=

 =  −   (S13) 

 As derived in Supporting Information S2.4 below, Equation (S13) can be simplified 

such that ΩT (ζ) is a function of ΩT (ζ + 1):  

 ( )( ) 1 10 ( 1)10T T

 

 − − =  − + +   (S14) 

In Equation (S14), we find the relationship that will allow quick dose calculation and slice 

correction. Starting at the end of the part (i.e., ζ = N), we may calculate the total dose in each 
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layer sequentially by considering only the current layer and the preceding layer. Table S2 gives 

expressions for ΩT at several values of ζ. 

 

Table S2. Total dose by layer from Equation (S14). 

ζ ΩT (ζ) 

N ( )1 10N

− −  

N – 1 ( )1 1 10 ( )10N T N − −

− − +  

… … 

0 ( )0 1 10 (1)10T

 − − − +  

 

S2.2 Fractional values of ζ 

When non-integer values of ζ are considered, there are three important cases for determining 

the value of Ωn (ζ). Recalling that ζw, the window position, increases constantly as the build 

platform ascends, these cases are delineated by the value of ζ and the values of ζw while the 

slice n is projected. As noted above, ζw = n when slice n is first projected, and the next slice is 

projected at ζw = n + 1. 

With the ζw values for each slice known, we may consider the three cases for Ωn (ζ). In 

the first case, the cross-section at ζ is never exposed while slice n is projected (i.e., ζw < ζ during 

the entire period slice n is projected). Here, the value of Ωn (ζ) is simply zero.  

 ( ) 0, 1n n N  = +     (S15) 

with N corresponding to the final slice. 

In the second case, the cross-section at ζ is first exposed during slice n (i.e., ζw = ζ at 

some point while the slice is projected). To handle this case will require a more generic form 

of Equation (S7). Considering a constant exposure from zw = zw,1 to zw = zw,2:  
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−− −
=   (S16) 



     

10 

 

 

 

( ) ( )

,2
1

,1

1 1
,1 ,2

( )

,

,

ln10
( ) 10

10 10

w

w a

w

w a w a

z

z t z h

n w w

az

z z h z z hn w

D z I dz
sh

I

s

−

− −

− −

− − − −

=

 = −
  



  (S17) 

 
( ) ( ),1 ,2( ) 10 10w w     


− − − −  =  −

 
  (S18) 

For this case, the dose contribution is zero while ζw < ζ. Integrating Equation (S18) with limits 

ζw,1 = ζ and ζw,2 = n + 1,  

 

( ) ( ) 
( ) 

1

1

( ) 10 10 , 1

1 10

n

n n

n

n

n n
   

 

 
− + − − −  

− + −  

 =  −   +

=  −   (S19) 

In the final case, ζ is exposed for the entire duration of the slice (i.e., ζw > ζ during the 

entire period slice n is projected). Here, Equation (S18) applies with ζw,1 = n and ζw,2 = n + 1.  

 
( ) ( ) 1

( ) 10 10 , 0
nn

n n n
  

 
− + − − −   =  −     (S20) 

Combining Equation (S15), (S19), and (S20) into a single expression for Ωn (ζ),  
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− + −  
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 +  



 =  −   +

 −  


  (S21) 

Equation (S21) allows us to determine the contribution of any particular slice to the dose at any 

point. 

To use Equation (S2) with a non-integer value of ζ, it is necessary to rewrite the 

conditions in Equation (S21). Using floor bracket notation, where     indicates the value of 

ζ rounded down to the nearest integer, the first case occurs for 0 n      , the second case 

occurs only for n =    , and the third case occurs for n N     . Rewriting Equation 

(S21) with these conditions:  
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  (S22) 

Applying Equation (S22) to Equation (S2),  

 
( ) ( ) ( ) 1

1
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N

nn
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− + −− −  − −    

  
= +  

  =  − +  −
     (S23) 

Equation (S23) allows calculation of the total dose at non-integer values of ζ. 

 

S2.3 Critical intensity Ic and dimensionless intensity Φ 

Ic is defined as the minimum intensity for which it is possible to reach the critical dose. This 

theoretical limit is reached for an infinitely long exposure—that is, when exposure occurs over 

a zw range from z to infinity. Integrating Equation (S16) with these limits, 

 

( )
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  (S24) 

Rearranging and substituting into Φ, 

 c cI D s=   (S25) 

 
, ,n w n w

n

c c

I I

I D s
  =   (S26) 

Similarly, Φ defines the asymptotic value of the dose as the exposure time tends to infinity. 

Substituting ζw,1 = ζ and ζw,1 = ∞ into Equation (S18),  

 

( ) ( )

( )

( ) 10 10

1 0

    


− − − −


  =  −
 

=  −

=    (S27) 
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S2.4 Dependence of ΩT (ζ) on ΩT (ζ+1) 

If we contrast the total doses at ζ and ζ + 1, we will find that the doses are interrelated. ΩT (ζ) 

is given by Equation (S2):  

 
1

( ) ( )

( ) ( )

N

T n

n

N

n

n






 

 

=

= +

 = 

=  + 



   (S28) 

Here, the sum has been split into two terms: first, the contribution from slice ζ and second, the 

contributions from all remaining slices. Looking more closely at the second term:  
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=  +   (S29) 

Equation (S29) shows that the contribution of slice n (where n ≥ ζ) to the dose at ζ is equivalent 

to the contribution of slice n to the dose at ζ + 1, multiplied by a factor of 10−η. Substituting 

back into Equation (S28),  

 
1

( ) ( ) ( 1)10
N

T n

n






   −

= +

 =  +  +   (S30) 

Considering the left term:  
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1
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And the right:  
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  (S32) 

On recombination,  
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 ( )( ) 1 10 ( 1)10T T

 

 − − =  − + +   (S33) 

In Equation (S33), we find the relationship that will allow quick dose calculation and slice 

correction. Starting at the end of the part (i.e., ζ = N) and moving upward slice-by-slice, we may 

calculate the cumulative dose in each layer sequentially by considering only the current layer 

and the preceding layer. Table S2 gives expressions for ΩT at several values of ζ. 
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S3. Effect of finite contrast ratio 

A deeper examination of behavior while black pixels are projected will highlight the 

significance of the projector contrast ratio. The contrast ratio of a display system is defined as 

the ratio of intensities for white and black; this is a finite quantity since pure black (i.e., an 

irradiance of zero) is unachievable. Consider a point ζ in the part envelope with a corresponding 

grayscale pixel value—that is, the pixel value for slice n = ζ—is zero. From Equation (S14), 

the total dose at this position depends on the minimum intensity and the total dose of the layer 

below:  

 ( )( ) 1 10 ( 1)10T min T

  − − =  − + +   (S34) 

When the dose contribution from the minimum intensity matches the exponential decay from 

the dose at ζ + 1, a constant dose is maintained:  

 

( )1 10 10min min min

min

 − − =  − + 

=    (S35) 

This dose, Ωmin, acts as an effective minimum dose: if ΩT ≥ Ωmin at position (x0, y0, z0), then ΩT 

≥ Ωmin for all points (x0, y0, z ≤ z0). The minimum dose is determined by the resin properties and 

the print speed as well as the contrast ratio of the projection system. For our printer, we have 

measured a minimum intensity of 1 mW cm-2, resulting in a minimum dose of approximately 

36 mJ cm-3 (varying with other parameters). 
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S4. Equations for target dose region constraints 

In a region of constant-intensity exposure, the dose at any point can be calculated if the dose at 

one point is known. If ζ0 and Ω0 are the known position and dose and Φ0 is the constant intensity,  

 
( ) ( )0 0

0 0( ) 10 1 10
     


− − − −  =  + −

 
  (S36) 

For the constraint curves defining target dose regions, each curve has a constant intensity 

exposure (Φmax for constraint (ii) and Φmin for constraint (iii)), and the dose at the top and bottom 

edges are known (Ωc). If the upper and lower edges of the feature are located at ζU and ζL (see 

Figure S2),  

 
( ) ( )

( ) 10 1 10L L

ii c max

     


− − − −  =  + −
 

  (S37) 

 
( ) ( )

( ) 10 1 10U U

iii c min

     


− − − −  =  + −
 

  (S38) 

The constraint curves, and thus the target dose region, are dependent on several system 

parameters. The relative effect of a change in each parameter is shown below in Figure S3. 

In Figure 3, we compare dose profiles with varying maximum doses; however, the 

chosen maximum dose may not be reached for some features. As is evident from Figure S3, 

several factors determine the shape of the target dose region for a feature. While most 

parameters are constant throughout the print (Imax, s, and ha), the feature size may vary 

considerably. For a constant set of system parameters, each feature has a maximum achievable 

Ωmax as a function of its height. To determine this value, Equations (S37) and (S38) are first 

equated to determine the point at which the curves meet.  

 
( ) ( )

*

10

1
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10 10U L
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 − −

  − 
=  

 − −  − 
  (S39) 

Using Equation (S39), we can write the maximum dose (assuming the edges are at the critical 

dose) as a function of feature height.  

 L U   −   (S40) 
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Substituting Equation (S41) into Equation (S38),  
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( ) ( )
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c min max min
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−

 −  −
   = + 

 − −  −
  (S42) 

Figure S4 shows Ω* as a function of feature height. 

 

 

Figure S2. Dose constraint curves (i)–(iii) and target dose region. ζU and ζL are the positions of 

the top and bottom of the feature, respectively. 
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Figure S3. Effect of increasing (yellow curves) and decreasing (blue curves) parameters by 50%: (a) Base case. hs = 50 μm, Δz = 1 mm, ha = 2,000 

μm, s = 1,000 mm h-1, and Imax = 100 mW cm-2. (b) Decreasing feature height. (c) Increasing feature height. (d) Varying absorbance height. (e) 

Varying print speed. From Equation (S10), varying the critical dose has an identical effect. (f) Varying the maximum projector intensity.
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Figure S4. Maximum dose as a function of 𝛿𝜂 = (𝑧𝐿 − 𝑧𝑈)ℎ𝑎
−1. As the feature height increases, 

the maximum dose approaches the limit Ω∞ described in Supporting Information S2.3. 

Parameters: hs = 50 μm, ha = 2,000 μm, s = 1,000 mm h-1, Imax = 120 mW cm-2, Imin = 2 mW 

cm-2. 
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S5. Optimizing Dc and Ωmax 

Effective slice correction requires that correction parameters are optimized for the resin being 

used. Figure S5 illustrates two limits on the maximum achievable dose for printing with Resin 

1 at 750 mm h-1; these limits exist independently from the chosen value of Ωmax. As discussed 

in Supporting Information S2.3, an infinitely long exposure at Φ asymptotically approaches the 

dose Ω∞ (Φ). Thus, the maximum intensity defines a maximum possible dose in the model: 

Ω∞ (Φmax) = Φmax. Figure S5(a) shows the distance that must be exposed at the maximum 

intensity before the critical dose is reached. This relationship suggests than certain feature-dense 

geometries may not be amenable to correction with these print settings; however, slower print 

speeds or higher light intensities may be used to compress the curve downward (for a constant 

exposure height, D  I s-1). 

For individual features, the maximum dose is the lesser of the prescribed Ωmax and Ω* 

as defined in Supporting Information S4. Analogous to Figure S4, Figure S5(b) shows D*/ Dgel 

as a function of feature height for Resin 1 at 750 mm h-1 and several values of Dc. 

In addition to optimizing the critical dose parameter Dc, we also conducted experiments 

investigating the effect of the maximum dose parameter Ωmax, with results shown in Figure S6. 

Setting higher values of Dmax makes the fidelity less sensitive to feature size, though the effect 

is minor. Based on this result and the desire to maximize green strength, we chose to operate 

the correction with an unconstrained maximum dose (Ωmax = ∞). 
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Figure S5. Maximum dose limits for our presented optimization (Resin 1, s = 750 mm h-1, Imax 

≈ 75 mW cm-2). (a) Exposure height to reach the critical dose starting from zero dose. Printing 

at a constant speed, larger height ranges must be exposed to reach higher doses. (b) The 

maximum possible dose for a feature of a given height, as determined by the dose constraint 

equations (Equation (S42) in Supporting Information S4). When the correction is applied, the 

maximum dose within a feature is the minimum of D* and the chosen Dmax. 

 

 

 
Figure S6. Varying Dmax with Dc = 5Dgel. (a) Ratio of height errors (corrected-to-uncorrected) 

for a range of feature sizes and values of Dmax. A ratio of zero corresponds to a perfectly 

corrected feature. Error bars indicate standard error. (b) Parts printed at 750 mm h-1 using slices 

corrected with Dc = 5Dgel and different values for Dmax. 
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S6. Model and correction for non-continuous stereolithography 

While the main body of this work relates to continuous stereolithography, we present here an 

adapted model and correction approach for use with traditional layer-by-layer stereolithography. 

Our dose model is similar to those previously reported.[4,5] While grayscale has previously been 

used to improve 𝑥-𝑦 resolution,[6] it has not, to our knowledge, been explored as a solution for 

cure-through. The compensation zone approach was partly developed to address cure-through 

artifacts on exterior features by adjusting the dimensions of the model through an optimization 

process.[7,8] A compensation-zone-like approach was subsequently developed for internal 

voids.[9] Manual adjustments to account for cure-through have also been reported.[10] These 

references also provide background on the layer-by-layer printing process for unfamiliar readers. 

 

S6.1 Derivation of dose model 

As in the continuous case, the total dose at a point is the sum of contributions from all slices. 
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For layer-by-layer exposure, each slice is exposed for time te while the build platform is 

stationary. For slices to which position z is not exposed ( 1

sn zh− ), Dn (z) = 0. If z is exposed to 

slice n ( 1

sn zh− ), the dose is given by: 
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Dimensionless variables for the layer-by-layer model are identical to those used in the 

continuous model with the exception of dimensionless intensity, which is now 
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Substituting dimensionless variables into Equation (S46), 
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Equation (S48) can be used to calculate the total accumulated dose at any point in a part printed 

using layer-by-layer stereolithography. 

 

S6.2 Slice correction 

In non-continuous stereolithography, the exposure time is set such that the far edge of the 

current layer reaches the critical dose. In our notation, this position is ζ = n – 1 for each slice n. 

Since the points of interest are integer values of ζ, we may perform a simplification analogous 

to Equation (S33) from the continuous case to assist in correction: 
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As with the continuous case, the correction is performed starting at the end of the part (ζ = N) 

and moving upward slice-by-slice. From Equation (S49), the intensity required to reach the 

critical dose can be determined for each layer within a designed feature. 

 We applied the dose model and slice correction for layer-by-layer stereolithography to 

a test model identical to that used in Figure 2 and 4. Figure S7(a – d) shows the model results 

for uncorrected slices, while Figure S7(e – h) shows the results for corrected slices. These 

results, along with the discussion below, show how slice correction can be used in combination 

with resin and printer optimization to minimize cure-through in non-continuous 

stereolithography. 
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For both corrected and uncorrected slices, a characteristic sawtooth pattern resulting 

from discontinuous build platform motion is evident in the dose profile. These discontinuities 

together with the nonzero background intensity of the projection system have the effect of 

preventing “perfect” correction using our method. If the top edge of a feature is just at the 

critical dose, there will be cure-through into the region just above it resulting from additional 

exposure at the minimum intensity. The height of the minimum cure-through region, zCT 

(dimensionless: ζCT), is a function of resin and system parameters and can be calculated. The 

dose at the top and bottom boundaries of the cure-through region is equal to Ωc, and the 

projector is at the minimum intensity: 
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If the exposure time is chosen such that the back edge of a feature just reaches the critical dose 

when exposed at maximum intensity, 
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Thus, the size of the minimum cure-through region in layer-by-layer stereolithography is a 

function of the resin absorbance height, the layer height, and the projector contrast ratio. The 

amount of cure-through for a corrected model is reduced by using a high-contrast-ratio 

projection system and a small layer thickness. Once these parameters are set, the resin 

absorbance height can be optimized to minimize zCT using Equation (S54). For the parameters 

used in Figure S7, zCT ≈ 5 µm. 
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Figure S7 also highlights the dose heterogeneity inherent to non-continuous 

stereolithography. We can define the degree of dose heterogeneity ω as the ratio of maximum 

to minimum dose within a layer: 
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The degree of dose heterogeneity thus increases as the layer height increases and decreases as 

the absorbance height increases. For the hypothetical resin in Figure S7, ω = 2.848. 
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Figure S7. Layer-by-layer printing of 3D model in Figure 2(a). Dc = 576 mJ cm-3, hs = 50 μm, 

ha = 110 μm, and s = 1,000 mm h-1. (a) Vertical stack of uncorrected grayscale projections along 

the plane indicated in Figure 2(a). (b) Model prediction from slices in (a) showing areas with 

cure-through (CT, red). Gray regions of the part are correctly cured (CC). (c) Grayscale value 

and dose for the (x, y) position indicated by the dashed line in Figure 2(a). (d) Contributions of 

individual slices to the accumulated dose curve shown in (c) for n = 21 to n = 53. (e–h) Results 

for corrected slices. 
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