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SOME APPLICATIONS OF BOMBIERI'S THEOREM

P. D. T. A. ELLIOTT and H. HALBEESTAM

A famous conjecture of Hardy and Littlewood [4] stated that all
sufficiently large integers n could be represented in the form

n=p + x2 + y2, (1)

where p is a rational prime and x, y are integers. G. K. Stanley [9] showed
that this result held for " almost all " integers n if one assumed a hypothesis
concerning the zeros of .L-functions similar to, though weaker than, the
extended Riemann hypothesis.

Important progress was made by Hooley [5], who showed that their
conjecture held if one assumed [Hooley, 5; Lemma 1], that if 7r(y; k, h)
denotes the number of primes £> = h (mod k) and less than y,

E(y,k)= m a x - ' - • '• ^ *V

(A, fc)=l

It is well-known that this result is a direct consequence of the extended
Riemann hypothesis.

The first proof of (1) free of any hypothesis was given by Linnik [6].
His method, the so-called " Dispersion Method ", is very complicated but
leads to an asymptotic formula for the number of solutions of (1). More-
over, the same method was applied successfully by him to estimate the sum

S T (P -O) ,
a<p<n

where, as usual, T denotes the divisor function.
Recently, G. Rodriques [8] showed that by using Bombieri's theorem

[1] on primes in arithmetic progressions, one could give a short proof of
the estimate

( n log log n \— - — I ,
logn /

where b = b(a) is a positive constant. It is our purpose here to show that,
with simple modifications, one can apply Bombieri's theorem to give an
alternative proof of (1) by Hooley's powerful method, freed of any
hypothesis. At the same time, we investigate to what extent the ideas
involved are useful in estimating more general sums of the type

8 = S S f(d), (2)
p<n di(n—p)
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where/is, for the moment, an arbitrary arithmetic function. (Note tha t /
has a different meaning in [5].) A similar analysis can be used to discuss
sums of the type

S S Ad).
a<p<n dl(p-a)

Let us consider (2) in detail. For convenience, we shall use I as an
abbreviation for log n. We begin in a manner similar to Hooley's by writing
the inner sum in (2) as

( S + S + S )/(<*)
\ dl(n-p) d\(n-p) dUn-p) }

for a positive constant G to be chosen later, and, in accordance with this
subdivision, we write

Now in problems of this type it is natural to expect that S1 will be as large
as any term. Let v(m) denote the number of distinct prime divisors of m
and assume f that

(3)

(We use Vinogradov's notation <̂  to indicate an inequality with an
unspecified constant factor.) We require first the result of Bombieri
mentioned earlier, namely

LEMMA (BOMBIERI [1]). For any given constant c1 > 0 there exists
a positive constant B = B{ci) such that

Taking cx = 2 in the Lemma, and G > B(2), we see that

v. Ad) ,. \Ad)\E(n,d)+ S \Ad)\
(d, n ) - l (d, ri)=l (d,

by (3). Now it is well-known (see, for example, Prachar [7; p. 44, Satz
4.1]) that iid<n, {h,d) = l, then

7r(n; d, h)^
<j>(d)log(nld)

f Actually, it will be clear from the sequel that the weaker condition f(p")<l suffices
for the purpose of estimating effectively the sums JSJ and <S2. Hence, if also / is non-
negative, the method will be seen to lead, under these alternative conditions on/, to good
lower bounds for 8.
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holds uniformly with respect to d and h. In [8] this crude upper bound
was used to estimate a sum similar to 82. If we follow that example and
use the fact (Estermann [3]) that

where /3 is a positive constant, we obtain

82< 2 -rrjri  ^ i loglogw.
i a « r ^ P ' f(d)lOgn LOgn

Thus we see easily that, subject to (3),

( I I )  (4)

where the extension of the range of summation in the sum on the right is
justified by the argument used to estimate 8Z.

It is clear that we shall not arrive at an asymptotic formula for 8
unless the sum on the right of (4) is large compared with log log n. If,
for example, f(d) is a non-principal character, ^,f{d)j<j>{d)  converges and

d

we have only an upper bound for 8. In such cases we have the method
of Hooley with which to estimate 82. His idea is to write

82 = 2 2 /(<*)= 2 F(n-p),
p<n d\(n—p) p<n

so that by the Cauchy-Schwarz inequality

p<n I \p<n

The first sum on the right is O(w(logw)""1^l!l for some constant S>0.
To estimate the second sum Hooley introduced the integers w < n having
no prime factors p =% exp{7/(log I)2}; thus

2 F2{n-p)^ £ F2(n-w).
p<n w<n

Now the integers w are well-distributed (modr) for r^ne where 6 is any
fixed constant satisfying 0 < 0 < 1. We can invert the order of summation
to obtain the upper bound OJn (log n)-1+e) for any fixed e>0, provided
that sums of the type

2 ' /(«) (5)
w=n—«A

are of order A~1(logn)~1+e. Here 2 ' indicates that f(s) is "weighted "
by a certain function which is essentially 1. Also, A is an integer satisfying
A ̂  ne, 0 < 6 < 1, and z1; z2 satisfy zt < z2 < n (see Hooley [5; 206-208]).

In order to make use of the good distribution of the w (the only available
result) it appears necessary to make/(s) depend only upon the residue class
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of s modulo k for some integer k < (log n)c, c> 0. Thus, if/is also completely
multiplicative, / must be a character. If  then f(s) does depend only upon
the class of s (mod k) we see easily that (5) is small when (and only when)

S /(*) = 0. (6)
s(mod k)

(n-s\, kX)=l

Thus, in Hooley's case, & = 4, f(s) = Xi(s)>  a non-principal character
modulo 4, and the conditions (n — A, 4A) = 1, (n — 3A, 4A) = 1 hold together.
Then (6) is true, and

S2 = O(n(log n)-1-^ for some 8 > 0.

For more general sums of the type

S 2 x*0).
V<n n-p=drK

where dr = H (mod k) must hold for certain integers K, H with x(-#) = 1>
we refer to Bredekhin [2]. He connected such sums with the problem of
representing n as p + Q(x, y), where Q is a certain fixed positive definite
quadratic form.

In order to complete the modified Hooley proof we now show that S3 is,
in this case, small. In fact, we have

p<n d\(n—p)

S
qd=n—p

a

= 2 2 i - 2 i
U2;e i>=j i+3j (mod 4?) j>=n+g (mod 4j)

lPc 1

E(n-qnHc,

provided C is sufficiently large, by the Lemma. Thus we have proof of
the following result: f

THEOREM 1 (HOOLEY-LINNIK). The number of representations of
nas p + x2 + y2is

&£y n - ^ J i nlOgWp>2\ P\P—l)/ Pin p —p+i- p\n j
p=l(mod4) ps=3(mod4)

as n->oo.

f In their memoir [4], Hardy and Littlewood actually conjectured the asymptotic
formula of Theorem 1 (without the error term).
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For the best value of 8 to date, the estimate of which depends essentially
upon improving Hooley's estimate for

s i.
p<n

F(n-p)¥-0

we refer to Bredekhin [2], who obtains 8 > 0-0425.
Similarly, a modified simple proof can be given for the infinitude of

primes of the form x2 + y2 + a, with a a fixed integer.
Let us now return to the estimation of the sum (2) when

s m

(d, n)=l

is large. Here, in view of (4), it remains to consider the sum

8>= S S fid),

and we distinguish two possible cases that we can handle. Firstly, it may
be possible to relate S3 to Sv as is the case when f(d) = 1. Here S3 — St

and we conclude that

1 In \
(d) \logn I

id, ?i)=l

By a well-known estimate (see, for example, Estermann [3]) we obtain
the following result, first proved conditionally by Walfisz [10]:

THEOREM 2 (LINNIK-BREDEKHIN).  / / £ denotes, as usual, Riemann's
zeta-function, we have, as ?i->oo,

n v ; ' ?*+
V<n ATT- p\n p*—p+l \lOgn

The sum considered here is, of course, in a sense " conjugate " to that
studied in [8].

Secondly, we can consider those functions f(d) which receive their
biggest contribution from the small divisors of d; this is the case, for
example, if f(d) is of the form

/(rf)= S g(m),

for the summands g(m) are, in a sense, weighted in favour of small values
of m. Taking g = fi, the Moebius function, we have/(d) = /x2(d), so that

dim

Hence we derive the following result.
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THEOREM 3. We have

\logw

Proof. From earlier remarks we deduce by (4) (with/(d) = (j?(d)), that

where

= 2 2
»<»l'a i~° qd=n-p
(Q!,n)=l

= S

say. In each term of the sum $3' we have s2 g < w* i" 0'3; accordingly,
we apply the Lemma to S3', and, if C is large enough but fixed, we obtain

gg ( (7)
(q, n)= l (s, m)=l

A straightforward approach suffices to estimate S3". We have

S

so that

| . (8)

We next consider the multiple sum on the right of (7). This is equal to

]i{n-qn*V>) 2 -jTTT = 2 ^ 2 '
p { q

(8, n )= l (s, n)= l (m,

where S' indicates that s < lcl3 and q<ni l~c. Removing the first of these
conditions on the right-hand side introduces an error of order at most

ii» 2 -!2i!2O_ s U» 2 - S ^
i/2 m a i/2 ^ W» «
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where we have used Euler's result that < (̂m)̂ >m(log logm)"1. We next
replace the condition q ̂  »* l~° by q ̂  rfi l~w, thereby introducing an error
of order at most

li» £ -TTT S l«(li»)loglog» S —

ni/2 i-2C<a«jii./a f<7

Hence, in view of (7) and (8), we have

£3= S "77^ S |*(«)li(»-sn*F) + o(—(loglogn) ' )
ia 9(TO) m = S2« \logW /

(m, n)=l

S 7^ r
m<»i/a <p(TO)
(m, n)=l

- log log n S S i)

(m, n)=l

(m, n)=l

It follows from this this and (4) that

g ^
(m, n)=l

by standard methods with Dirichlet series one can prove that

^ ( T O ) = i M ( Q g n

m<z <p(TO) n \

provided w ̂  25, and this completes the proof of the theorem.
In a similar manner we can show that
THEOREM 4. We have

a<p<» a '" ' ~\logW

It does not appear easy to generalise this result so as to replace 2 by 3.
We are indebted to the referee for his careful scrutiny of an earlier

version of this paper.
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