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Abstract: We consider the situation where there is a known regression model that can be used to predict an
outcome, Y, from a set of predictor variables X. A new variable B is expected to enhance the prediction of
Y. A dataset of size n containing Y,X and B is available, and the challenge is to build an improved model
for Y|X,B that uses both the available individual level data and some summary information obtained
from the known model for Y|X. We propose a synthetic data approach, which consists of creating m
additional synthetic data observations, and then analyzing the combined dataset of size n+m to estimate the
parameters of the Y|X,B model. This combined dataset of size n+m now has missing values of B for m
of the observations, and is analyzed using methods that can handle missing data (e.g. multiple imputation).
We present simulation studies and illustrate the method using data from the Prostate Cancer Prevention
Trial. Though the synthetic data method is applicable to a general regression context, to provide some
justification, we show in two special cases that the asymptotic variances of the parameter estimates in
the Y|X,B model are identical to those from an alternative constrained maximum likelihood estimation
approach. This correspondence in special cases and the method’s broad applicability makes it appealing
for use across diverse scenarios. The Canadian Journal of Statistics xx: 1–25; 20?? c© 20?? Statistical
Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it
themselves. La revue canadienne de statistique xx: 1–25; 20?? c© 20?? Société statistique du Canada

1. INTRODUCTION

In clinical biomedicine, many well-known models are used to predict a measure of disease from
patient characteristics. Examples include but are not limited to the breast cancer risk calculator
(Gail et al., 1989), and the colorectal cancer risk assessment tool (Freedman et al., 2009). These
models are usually constructed from large datasets using principled statistical methods to predict
a measure of risk or disease state, treating the patient characteristics as predictors. The patient
characteristics, denoted as X, can range from traditional epidemiologic, behavioral variables to
well-known imaging, genetic and other molecular biomarkers. The predicted outcome variable
Y, and the predictors X, are often assumed to be connected through a regression model of the
form Y|X. The individual level original data that were used to construct this model are usually
not available to the public but what are accessible are certain forms of summary-level informa-
tion. This information can be available in the form of coefficient estimates for the fitted model,
individual prediction probabilities or multiple prediction probabilities from competing models
for the same outcome. The equations underlying the existing model may or may not be known.
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While these existing models are often based on traditional epidemiologic and behavioral risk
factors and well-established biomarkers, wider availability of high throughput data and novel
assay technologies are generating new candidate biomarkers, say B, for possible inclusion in
existing risk prediction models. Due to the potential improvement of prediction accuracy of the
current model, it is ideal to incorporate B into the well-established model Y|X, and construct
an expanded prediction model of interest Y|X,B. However, it is very likely that B and X are
assessed only on participants in a study of moderate size and cannot be retrospectively measured
on the much larger population used for Y|X model. It is natural to consider using the information
from the well-established model to increase the accuracy of the expanded model. This represents
a general statistical challenge to build a good model for Y|X,B that uses both the known external
information from the Y|X model and the individual level data from a small sample dataset of Y,
X and B.

There exist proposals in the literature to incorporate external information into regression es-
timation. Imbens & Lancaster (1994) investigate how aggregate data (e.g. the population average
of the response) could be used to improve ML estimates in a regression model. More recently,
Grill et al. (2015) proposed a simple method of incorporating new markers into an existing cal-
culator via Bayes Theorem. Chatterjee et al. (2016) developed a constrained semi-parametric
maximum likelihood (CSPML) method for incorporating external coefficients to calibrate the
current regression model. The performance of various approaches was assessed in a simulation
study by Grill et al. (2017). Cheng et. al (2018, 2019) proposed Bayes and constrained ML
methods to incorporate information obtained from external sources into regression estimation.
In general, the constrained ML approaches require a specific form for the external information,
e.g. estimated coefficients from a correctly specified mean model and assumptions regarding the
transportability of the distribution of Y,X,B across the internal and external sample. The con-
strained maximum likelihood (CML) approach proposed in Cheng et al. (2018) also requires
the specification of a model for B|X and relies on some parametric assumptions. Although the
CSPML approach does not require the Y|X model to be correctly specified or a model for B|X,
it does require the transportability of the X distribution, unless it is known in the external sample.
Estes, Mukherjee & Taylor (2018) and Cheng et al. (2018) have found that the violations of this
assumption and the small sample size in the internal data will cause unstable estimation.

In this paper, we propose a synthetic data framework as a more flexible solution to this genre
of problems, motivated by methods developed in the survey methodology literature (Reiter, 2002;
Raghunathan, Reiter & Rubin, 2003; Reiter & Kinney, 2012). In this approach synthetic data
for Y and X are generated from the Y|X model and added to the observed data, then from
this combined dataset a model for Y|X,B is built. Our method relaxes the requirement on the
information that is available from the external model such that the only requirement is the ability
to generate predictions of Y given X.

The following is the structure of the remainder of this article: in Section 2, we introduce the
notation, assumptions and implementation of the proposed synthetic data method. In Section 3,
under various simulation scenarios, we evaluate the performance of the synthetic data method.
We demonstrate the proposed method through an application to the Prostate Cancer Prevention
Trial (PCPT) data in Section 4. We provide some theoretical justification and insight for the
synthetic data method in Section 5. In two special cases we show that with a very large number
of synthetic observations, our approach gives identical asymptotic variances for the parameters
of the Y|X,B model as the constrained maximum likelihood (CML) estimation approach that
exists in the literature. Because the CML is a maximum likelihood estimator, it is optimal if the
models are correctly specified. Since the synthetic data method has the same asymptotic variance,
it can also be considered optimal. Concluding remarks are presented in Section 6.
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2. METHOD

2.1. General Description of the Problem
Let Y denote the outcome of interest, which can be either continuous or binary. Let X be a set
of p standard variables and let B denote a new biomarker. There are two populations, an external
population for which we do not have individual level data and an internal population for which
we do have a dataset of size n with subject level data. We will assume that the distributions of
Y|X,B are the same in the two populations, and likewise for the Y|X distribution. Our target of
interest is the mean structure of Y|X,B:

g(E(Y|X,B)) = γ0 + γX1X1 + ...+ γXpXp + γBB, (1)

where g is the known link function. We assume that a small dataset of size n with variables Y,X
and a new covariate B is available to us for building the model of interest.

We assume a large, well-characterized previous study from the external population describes
the provided information on the calculated distribution of Y|X. This information can come in
various forms, including partial or full knowledge of the distribution of the Y|X model.

2.2. Synthetic Data Method
We propose an algorithmic approach that can produce synthetic data on (Y,X,B), by using the
combination of the available information from the established model and the observations from
the current dataset. The synthetic data would incorporate the external information as well as
enlarge the sample size, and thus it helps improve the inference about coefficients γ in model
(1), compared to just analyzing the small dataset based on the observed data.

The synthetic data approach consists of creating m additional synthetic data observations,
and then analyzing the combined dataset of size n+m to estimate the parameters of model (1).
The synthetic data are created in two steps as shown in Figure 1. In step 1, we replicate X a
large number (say S) times in blocks of n rows to create m = nS additional records. In step 2,
we generate pseudo data called Y∗ from the known Y|X distribution for these new m records.
Finally, we combine the synthetic observations with the original dataset, and we note that the
combined data will now have missing values of B for m observations. The combined data is then
analyzed to give an estimate of γ.

There may be different ways in which the combined data can be analyzed. In Section 5 we
present two special cases for which a closed-form maximum likelihood estimate γ exists for
the combined dataset of size n+m. In other cases, like the simulation study settings in Section
3, no closed-form solution for the maximum likelihood estimate of γ exists, and our proposed
approach to deal with missing data is to use multiple imputation to impute the m missing values
of B. Multiple imputation is a general procedure for analyzing datasets with missing values. It
consists if defining a procedure to fill in the missing values, then applying that procedure many
times to create many separate complete datasets. Each completed dataset is then analyzed and the
results of these separate analyses are combined to give final estimates. In this particular case the
multiple imputation approach requires us to specify a parametric model (B|X,Y), from which
we draw 50 values of B to give 50 completed datasets. Then we fit model (1) for each complete
data (Y, X, B) of size n+m. We then average the estimates of γ from the 50 complete datasets, and
compute the total variance using Rubin’s rules (Rubin, 1987). We then proceed with inference.

Multiple imputation has the additional advantage of being able to handle multiple biomarkers
in B, some of which may be discrete and some continuous. It also allows for flexible structure
for the conditional mean model for each biomarker in B given all other variables in the dataset,
such as the possibility to incorporate non-linearity and interactions. For implementing multiple
imputation, we use the R package MICE (Van Buuren & Groothuis-Oudshoorn, 2011). We use
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the function mice with imputation algorithm logreg (the Bayesian logistic regression model
with flat prior) for the imputation of a binary B and the imputation algorithm norm (the Bayesian
linear regression model) for the imputation of a continuous B. In the situation in which there are
multiple Bs, say B1 and B2, imputations are done sequentially. That is, first draw B1 from the
B1|X,Y,B2 distribution, then draw B2 from the B2|X,Y,B1 distribution, and iterate between
B1 and B2.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:

This article is protected by copyright. All rights reserved.



20?? 5

FIGURE 1: Two steps to create the synthetic data

3. SIMULATION STUDY

To assess the performance of the proposed synthetic data method for both estimation and predic-
tion, we conduct simulation studies under four different scenarios. Each scenario has a different
true distribution for Y|X,B and for B|X for the internal data. For both the outcome and the
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predictors we consider both continuous and binary variables to illustrate the computational im-
plementation in a range of situations. We also consider the situation of multiple Bs to evaluate the
applicability of the synthetic method in the multi-dimensional cases. In some cases a misspeci-
fied imputation model is used within the synthetic data approach, thus allowing us to evaluate the
robustness of the method. Only in special cases (see Section 5) can we provide a theoretical jus-
tification for the synthetic data approach, thus the simulations are intended to provide numerical
properties of the synthetic data approach in situations where the relevant theoretical properties
are not yet available.

In real situations, we expect a moderate number of X variables, and their joint distribution
could be quite complex with skew distributions and correlations between different Xs. To achieve
this we adopted a procedure of generating Xs as described in Xu, Daniels & Winterstein (2016).
We generate 9 correlated Xs in each of the four simulation scenarios as described below:
uj ∼ N(0, 1), j=1...5, X1 ∼ N(0, 1)

Xj |u1 , ..., u5 =


u1uj + εj , εj ∼ 2

3N+(0, 0.2) + 1
3N−(0, 0.1) j = 2, ..., 5

u2uj−3 + εj , εj ∼ 1
4N+(0, 0.1) + 3

4N−(0, 0.3) j = 6, ..., 8

u3uj−5 + εj , εj ∼ 4
5N+(0, 0.4) + 1

5N−(0, 0.1) j = 9
where N+ and N− represent half normal distributions, and either one or the other is selected
with the shown probability. We then generate B from the B|X distribution, and finally generate
Y from the Y|X,B distribution. For scenario 1 (where Y is continuous, as described below)
the form of the external model for Y|X is readily available. For cases (scenarios 2, 3, and 4
where Y is binary, as described below) where the closed-form of model Y|X is not available, we
numerically derive the external model Y|X. Specifically, we generate an independent dataset of
(Y,X,B) of size 10000 and fit a linear or logistic regression model g(E(Y|X)) depending on the
type of Y. The estimated coefficients of this model serve as the external information we obtained
from the established model Y|X.

For each simulation scenario, we first simulate 500 datasets of size n. Then we create the syn-
thetic data following the steps introduced in Section 2, and combine them with the original data
to get 500 datasets of size n+m with m missing B values. For each simulated dataset, we create 50
complete datasets by imputing the missing B values given Y and X. In all four scenarios, we use
linear additive models for imputing from the B|X,Y distribution, without including any interac-
tion terms. We compare the results of the synthetic data method to the direct MLE, which uses
the complete dataset of size n, in terms of estimation accuracy and prediction ability. We report
the average estimated coefficients, standard deviation and 95% coverage rate for γ̂. To measure
the predictive performance, we generate a new dataset of size 1500 for each scenario, and eval-
uate the prediction Ŷi in this new dataset. In the new dataset, let p̂ or Ȳ denote the average of
the generated Y values. For the continuous Y, we use the mean squared error (MSE) defined as∑1500

i=1 (Ŷi − Ȳ)2/
∑1500

i=1 (Yi − Ȳ)2. For binary Y, we use AUC and scaled Brier score (defined
as
∑1500

i=1 (Yi − Ŷi)
2/
∑1500

i=1 (Yi − p̂)2) as measures of predictive performance.
The four simulation scenarios and results are described as follows:

• Scenario 1: Y and B are Gaussian distributed. The true model of Y|X,B is Yi|Xi,Bi =
0.5
∑9

j=1 Xji + Bi + ei, ei ∼ N(0, 3), and Bi is simulated as Bi = 0.2(
∑9

j=1 Xji) + fi, fi ∼
N(0, 1). The corresponding Y|X model is Yi = 0.7

∑9
j=1 Xji + Bi + ki, ki ∼ N(0, 4). The

current data sample size n = 200, replication number S = 10, and thus the synthetic data sam-
ple size m = nS = 2000.
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TABLE 1: Simulation results for scenario 1 with Gaussian Y, one Gaussian B and nine correlated Xs: for
each method, we report mean (Monte Carlo standard deviation) [95 % coverage rate] and MSE across 500

simulated datasets.

Not including B True value Direct MLE Synthetic Data Method
γ0 0 0 -0.04 (0.14) [97%] 0.00 (0.18) [96%]
γX1 0.7 0.5 0.50 (0.13) [94%] 0.51 (0.08) [95%]
γX2 0.7 0.5 0.48 (0.13) [94%] 0.50 (0.07) [95%]
γX3 0.7 0.5 0.49 (0.12) [95%] 0.50 (0.07) [95%]
γX4 0.7 0.5 0.50 (0.11) [98%] 0.50 (0.07) [95%]
γX5 0.7 0.5 0.50 (0.13) [93%] 0.50 (0.08) [93%]
γX6 0.7 0.5 0.50 (0.12) [94%] 0.50 (0.07) [95%]
γX7 0.7 0.5 0.50 (0.12) [94%] 0.50 (0.07) [95%]
γX8 0.7 0.5 0.50 (0.11) [97%] 0.50 (0.07) [95%]
γX9 0.7 0.5 0.50 (0.13) [94%] 0.51 (0.07) [95%]
γB - 0.5 1.00 (0.13) [95%] 1.00 (0.11) [95%]
MSE 0.464 0.334 0.355 0.345

The results in Table 1 for scenario 1, show that compared to the direct MLE, the synthetic data
method leads to an obvious reduction in standard deviation of γXs and good coverage rates
of confidence intervals. In addition, it is able to move the MSE closer to the true value by 50%.

• Scenario 2: Y is binary and B is Gaussian distributed. The true model of Y|X,B is
logit(Pr(Yi = 1|Xi,Bi)) = 1 + 2

∑9
j=1 Xji − 3Bi, which gives Pr(Y = 1) ≈ 0.67. Bi is

simulated as Bi = 0.5(
∑9

j=1 Xji) + ei, ei ∼ N(0, 0.1). The current data sample size n = 400,
S = 10, and m = nS = 4000.

TABLE 2: Results for simulation scenario 2 with binary Y, one Gaussian B and nine correlated Xs: for
each method, we report mean (Monte Carlo standard deviation) [95 % coverage rate], average scaled Brier

score and AUC across 500 simulated datasets

Not including B True value Direct MLE Synthetic Data Method
γ0 0.849 1 1.00 (0.17) [94%] 0.96 (0.08) [92%]
γX1 0.435 2 2.01 (0.29) [96%] 1.92 (0.24) [94%]
γX2 0.432 2 2.00 (0.28) [96%] 1.90 (0.23) [94%]
γX3 0.437 2 2.01 (0.28) [95%] 1.90 (0.23) [95%]
γX4 0.433 2 2.01 (0.30) [96%] 1.91 (0.24) [95%]
γX5 0.422 2 2.02 (0.28) [95%] 1.90 (0.24) [93%]
γX6 0.421 2 2.01 (0.28) [97%] 1.89 (0.23) [93%]
γX7 0.431 2 2.01 (0.29) [96%] 1.91 (0.23) [94%]
γX8 0.415 2 2.00 (0.27) [97%] 1.89 (0.23) [94%]
γX9 0.445 2 2.01 (0.29) [96%] 1.92 (0.23) [95%]
γB - -3 -3.02 (0.45) [97%] -2.85 (0.43) [95%]
Scaled Brier score 0.801 0.680 0.702 0.686
AUC 0.767 0.837 0.828 0.835

In Table 2, where Y is binary and B follows Gaussian distribution, including B into the
regression model can reduce the scaled Brier score by 15 %, and improve the AUC by 9 %.
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• Scenario 3: Y and B are both binary. The true model of Y|X,B is logit(Pr(Yi =

1|Xi,Bi)) = −1 + 0.2
∑4

j=1 Xji − 0.2
∑7

j=5 Xji − 0.5
∑9

j=8 Xji + 1.5Bi, and Bi is simu-
lated as logit(Pr(Bi = 1|Xi)) = −0.5 + 0.5

∑5
j=1 Xji −

∑9
j=6 Xji. The Pr(Y = 1) and

Pr(B = 1) are around 0.5 and 0.55, respectively, and n = 400, S = 8, and m = nS = 3200.

TABLE 3: Results for simulation scenario 3 with binary Y, one binary B and nine correlated Xs: for each
method, we report mean (Monte Carlo standard deviation) [95 % coverage rate], average scaled Brier

score and AUC across 500 simulated datasets

Not including B True value Direct MLE Synthetic Data Method
γ0 -0.328 -1 -1.00 (0.21) [94%] -1.00 (0.15) [96%]
γX1 0.305 0.2 0.20 (0.13) [94%] 0.20 (0.05) [96%]
γX2 0.318 0.2 0.21 (0.13) [95%] 0.21 (0.05) [94%]
γX3 0.296 0.2 0.20 (0.13) [95%] 0.21 (0.05) [95%]
γX4 0.296 0.2 0.19 (0.13) [93%] 0.20 (0.05) [95%]
γX5 -0.066 -0.2 -0.21 (0.13) [94%] -0.19 (0.05) [96%]
γX6 -0.405 -0.2 -0.20 (0.13) [96%] -0.20 (0.06) [96%]
γX7 -0.420 -0.2 -0.19 (0.13) [96%] -0.21 (0.06) [95%]
γX8 -0.698 -0.5 -0.50 (0.15) [93%] -0.51 (0.06) [96%]
γX9 -0.713 -0.5 -0.51 (0.14) [95%] -0.52 (0.06) [94%]
γB - 1.5 1.50 (0.28) [96%] 1.49 (0.28) [95%]
Scaled Brier score 0.750 0.666 0.687 0.669
AUC 0.789 0.833 0.823 0.831

The simulation results in Table 3 for scenario 3, in which Y and B are both binary, show that
including B in the regression model can reduce the scaled Brier score by 10.8 %, and increase
the AUC by 5%.

• Scenario 4: Y is binary and two mixed types of B are included, one binary and an-
other Gaussian. The true model of Y|X,B1,B2 is logit(Pr(Yi = 1|Xi,B1i,B2i)) = −0.2−
0.2X1 + 0.2

∑3
j=2 Xji + 0.1

∑5
j=4 Xji − 0.1X6 − 0.3X7 + 0.3

∑9
j=8 Xji + 2B1i − B2i, from

which P(Y=1) is approximately 0.53. The binary B1i is simulated as logit(Pr(B1i = 1|Xi)) =

−0.5 + 0.5
∑5

j=1 Xji −
∑9

j=6 Xji, which gives Pr(B1 = 1) ≈ 0.56. The Gaussian B2i is sim-
ulated as B2i = 0.3

∑2
j=1 Xji − 0.2

∑4
j=3 Xji + 0.5

∑7
j=5 Xji − 0.5

∑9
j=8 Xji + ei, ei ∼ N(0,

0.1), where n = 400, S = 8, and m = nS = 3200.
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TABLE 4: Results for simulation scenario 4 with binary Y, binary B1 and continuous B2 and nine
correlated Xs: for each method, we report mean (Monte Carlo standard deviation) [95 % coverage rate],

average scaled Brier score and AUC across 500 simulated datasets

Not including B True value Direct MLE Synthetic Data Method
γ0 0.250 -0.2 -0.197 (0.21) [96%] -0.13 (0.15) [93%]
γX1 0.441 -0.2 -0.19 (0.19) [96%] -0.14 (0.13) [94%]
γX2 0.779 0.2 0.21 (0.21) [94%] 0.23 (0.13) [94%]
γX3 -0.132 0.2 0.19 (0.17) [95%] 0.17 (0.10) [94%]
γX4 -0.218 0.1 0.09 (0.17) [95%] 0.08 (0.10) [95%]
γX5 1.047 0.1 0.10 (0.26) [96%] 0.15 (0.21) [95%]
γX6 0.705 -0.1 -0.10 (0.28) [94%] -0.06 (0.21) [94%]
γX7 0.529 -0.3 -0.29 (0.27) [94%] -0.25 (0.21) [93%]
γX8 -0.750 0.3 0.29 (0.25) [97%] 0.23 (0.21) [95%]
γX9 -0.757 0.3 0.30 (0.25) [96%] 0.22 (0.21) [94%]
γB1 - 1 0.996 (0.31) [96%] 0.88 (0.30) [93%]
γB2 - 2 1.99 (0.45) [95%] 1.83 (0.43) [93%]
Scaled Brier score 0.637 0.575 0.598 0.582
AUC 0.849 0.876 0.868 0.873

The results in Table 4 show that the synthetic data method does improve the scaled Brier score
and AUC compared to the MLE and these almost attain the best possible values, and that the
coverage rates of the confidence intervals for the γs are good.

Overall, the simulation studies show that: (1) the synthetic data method can improve the
efficiency of estimating γXs and reduce the MSE of the predictions and increase the AUC for
binary Y; (2) In scenario 1 where the B|X,Y model used for imputation is correctly specified,
there is no bias in the estimates of γB and the γXs; (3) In scenarios 2, 3 and 4 where the B|X,Y
model used in the imputation is mis-specified, despite the improved predictive performance there
is some bias in the estimates of γB and the γXs. In future work, we will investigate if even
further improvements in performance can be achieved using alternative or more flexible or more
nonparametric approaches for imputing B.

4. PROSTATE CANCER PREVENTION TRIAL DATA EXAMPLE

To assess the performance of the synthetic data method in a real example, we apply it to the
Prostate Cancer Prevention Trial calculator. The high-grade prostate cancer calculator (PCPThg)
(Thompson et al., 2016), predicts the probability of high-grade prostate cancer derived from a
logistic regression based on standard clinical variables – PSA level, age, DRE findings, prior
biopsy result and ethnicity. The equation for the model is:

logit(pi) = −6.25 + 0.03agei + 0.96racei + 1.29log(PSAi) + 1.00DREi − 0.36biopsyi.
(2)

where pi is the probability of observing high grade prostate cancer for subject i. A detailed
description of the calculator and the external and internal and a validation dataset are given in
Tomlins et al. (2015) and Cheng et al. (2018). We consider incorporating two biomarkers that
have been shown to be predictive of prostate cancer into model (2). One is prostate cancer anti-
gen 3 (PCA3), a continuous variable, and the other is the indicator variable of TMPRSS2:ERG
(T2:ERG) gene fusions. We consider 3 different expanded models, one with the addition of PCA3
only, one with the addition of T2:ERG only and one with the addition of both PCA3 and T2:ERG.
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To compare the coefficient estimation across methods, we show the estimated coefficients and
standard errors in Table 5 from 679 observations in the internal dataset. To compare prediction
power, we calculate the scaled Brier Score and the AUC based on the validation dataset with
1218 observations.

For both of the expanded PCPThg models incorporating PCA3 score or binary T2:ERG, if
we compare the standard errors across different methods, it is easily seen that the synthetic data
method can reduce the standard errors of regression coefficients compared to direct regression
by at least 50%.

The expanded PCPThg model incorporating both PCA3 score and binary T2:ERG fitted to
the training dataset again shows that the method can reduce the standard errors of regression
coefficients compared to direct regression. The results in Table 5 show no improvement in AUC
from using the synthetic data approach compared to direct MLE, but noticeable improvement in
the Brier score.

We also include in Table 5 the estimates from applying the constrained semiparametric max-
imum likelihood method (CSPML). It is a published method that can be applied in this case.
We see it gives similar predictive performance as the synthetic data method, but the estimated
coefficients differ.

TABLE 5: Expanded PCPThg model: for each method, point estimate (standard error) from the internal
dataset, and the scaled Brier score and the AUC from the validation dataset. The sample size of the internal
dataset is 679. The sample size of the validation dataset is 1218. There are S=10 replicates giving m=6790

in the synthetic data method.
Model PSA Age DRE Prior biopsy Race PCA3 T2:ERG Scaled Brier AUC

findings history Score

Original PCPThg 1.29 0.031 1.00 -0.36 0.96 – – 0.933 0.707

Estimated PCPThg 1.06 (0.18) 0.033 (0.012) 1.15 (0.26) -1.44 (0.27) 0.44 (0.29) – – 0.975 0.716

Expanded model with PCA3 score

Direct regression* 0.97 (0.19) 0.009 (0.013) 1.06 (0.27) -1.27 (0.27) 0.05 (0.31) 0.56 (0.08) – 0.953 0.767

Synthetic data method 1.30 (0.08) 0.012 (0.006) 0.91 (0.13) -0.56 (0.12) 0.50 (0.14) 0.57 (0.08) – 0.878 0.765

CSPML 1.22 (0.08) 0.007 (0.005) 0.86 (0.10) -0.20 (0.08) 0.58 (0.11) 0.56 (0.097) – 0.888 0.759

Expanded model with binary T2:ERG

Direct regression* 0.98 (0.18) 0.032 (0.012) 1.02 (0.26) -1.41 (0.27) 0.57 (0.29) – 0.76 (0.20) 0.930 0.744

Synthetic data method 1.21 (0.07) 0.030 (0.005) 0.96 (0.10) -0.59 (0.09) 0.99 (0.11) – 0.76 (0.22) 0.897 0.741

CSPML 1.14 (0.07) 0.032 (0.004) 1.06 (0.14) -0.52 (0.11) 0.80 (0.17) – 0.72 (0.20) 0.931 0.742

Expanded model with PCA3 score and binary T2:ERG

Direct regression* 0.94 (0.19) 0.010 (0.010) 1.00 (0.28) -1.27 (0.28) 0.15 (0.31) 0.52 (0.08) 0.47 (0.21) 0.928 0.776

Synthetic data method 1.23 (0.09) 0.008 (0.007) 0.83 (0.13) -0.53 (0.11) 0.63 (0.15) 0.55 (0.10) 0.45 (0.20) 0.867 0.773

CSPML 1.20 (0.08) 0.008 (0.005) 0.78 (0.11) -0.21 (0.09) 0.67 (0.12) 0.52 (0.10) 0.48 (0.27) 0.879 0.769

*Firth corrected MLE is used

5. ALGEBRAIC JUSTIFICATION IN TWO SPECIAL CASES

5.1. Estimation and Variance of γ
To establish that the synthetic data approach is asymptotically as efficient as constrained ML
approaches, we consider two special cases where closed-form results of MLE for the combined
dataset of size n+m in the synthetic data approach are available, so multiple imputation does
not need to be used. For these cases, we compare the synthetic data approach to the basic con-
strained ML method (CML, Cheng et al., 2018) and the constrained semi-parametric ML method
(CSPML, Chatterjee et al., 2016). These two maximum likelihood approaches are optimal based
on their assumptions. The standard ML approach based on just the observed data without incor-
porating external information is also provided for reference and comparison. For each approach,
we derive the explicit formulas for the asymptotic variance of estimated coefficients, namely, γ̂
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in model (1).
The rationale for studying these two examples in depth is to establish some theoretical un-

derpinning for the synthetic data approach. Given its broad applicability to other more general
situations with a mixed set of continuous and categorical multivariable predictors in X and B, a
justification in simpler cases that can be studied analytically makes the approach more plausible
in other situations where studying the analytical properties is complicated.

We will be considering three different likelihoods, one based on the distribution Y|X,B,
one based on the distribution (Y,B)|X and one based on the joint distribution of Y,X and B.
When writing distributions, we will include the parameters when necessary, e.g. f(Y|X,B,γ),
but parameters will be excluded when not necessary.

For this study we either know the full form of the distribution of Y|X, the mean of which
may be characterized by a linear combination of Xs, as given in equation (3), with known βs
and a known link function g1:

g1(E(Y|X)) = β0 + βX1X1 + ...+ βXpXp. (3)

or we just know the mean structure but not the full distribution of Y|X.
As mentioned earlier, our interest is in building the mean structure of the Y|X,B distribu-

tion as given in model (1). For some approaches, we will also need to consider the relationship
between X and B for which we specify a model, the mean of which is given by

g2(E(B|X)) = θ0 + θ1X1 + ...+ θpXp. (4)

We note that for all of these models there may be additional parameters necessary to define
the full distributions (e.g. the variance σβ for Gaussian Y). But for ease of notation we will not
include these additional parameters unless it is necessary, thus we denote the distributions as
f (Y|X,β), f (Y|X,B,γ) and f (B|X,θ).

For comparison, we will also present results for standard ML estimation on a complete dataset
of size n. In this approach, we estimate the parameters of model (1) using the internal dataset of
Y,X, and B without taking the external summary-level information into account. We obtain
the estimates by maximizing the likelihood

∏n
i=1 f (Yi|Xi,Bi,γ) over γ. Then the asymptotic

covariance matrix of γ̂ is obtained from the inverse of the Fisher information matrix.

• Approach 1: The synthetic data method. In special cases in which a direct solution is possible,
the likelihood for a dataset of size n+m is

∏n
i=1 f (Yi,Bi|Xi)

∏n+m
i=n+1 f (Yi|Xi), and can also

be written as
∏n

i=1 f (Bi|Yi,Xi)
∏n+m

i=1 f (Yi|Xi). This likelihood is then maximized over γ
and θ to obtain the ML estimates and the asymptotic variance is obtained from the inverse of
the Fisher information.
• Approach 2: Constrained ML on a complete dataset of size n. For this approach we posit a

model f(B|X,θ) then maximize the likelihood
∏n

i=1 f (Yi,Bi|Xi), which can be written as

n∏
i=1

f (Yi|Xi,Bi,γ)f (Bi|Xi,θ)

subject to a constraint on the parameters that is derived from the external information. The
equation f (Y|X,β) =

∫
f (Y|X,B,γ)f (B|X,θ)dB gives a relationship between the un-

known parameters γ, θ and the known parameter β. Assuming θ can be written as a func-
tion of γ and β, i.e. as θ(γ, β), then since β is known the optimization problem becomes an
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unconstrained optimization problem, specifically maximization of

n∏
i=1

f (Yi|Xi,Bi,γ)f (Bi|Xi,θ(γ, β = β∗))

with respect to γ using the known value β∗ of β. We consider two variations of the CML
method: Approach 2.1 where only the coefficients β are known, and Approach 2.2 where both
β and σβ are known.

• Approach 3: Constrained semi-parametric ML method applied to a dataset of size n. For this
method, the estimates are obtained by maximizing the likelihood

∏n
i=1 f (Yi,Xi,Bi) over γ

and the empirical distribution of (X, B), subject to a constraint. In this approach the distribu-
tion of (X, B) is treated nonparametrically, and the constraint is derived from the integrated
score equation of model (3). In this case the constraint is EXB

[
EY|XB[ ∂∂β log{f (Y|X,β)}]

]
=

0. The constrained optimization problem is implemented via Lagrange multipliers and gives
both an estimate of γ and the non-parametric MLE of the distribution of (X, B). The asymp-
totic variance of γ̂ for this approach is given by (I + CL−1CT)−1, where

I = EXB

[
EY|XB[− ∂2

∂γ2
log{f (Y|X,B,γ)}]

]
C = EXB

[
EY|XB[

∂

∂γ
log{f (Y|X,B,γ} ∂

∂β
log{f (Y|X,β}]

]
L = EXB

[
uγ(X,B)uT

γ (X,B)
]

with uγ(X,B) = EY|XB

[
∂
∂β log{f (Y|X,β)}

]
.

Intuitively, the asymptotic variance of this constrained ML estimator is the inverse of
information matrix I of f (Y|X,B,γ) plus the additional information due to knowing β from
the external study CL−1CT.

5.2. Description of two special cases
In the following two special cases, the goal is to derive the asymptotic efficiency of γ̂ =
(γ̂X, γ̂B)T through a closed-form expression for Var(γ̂), and then compare the efficiency gain
among all three approaches through the Asymptotic Relative Efficiency (ARE) of Var(γ̂)s, com-
pared to Var(γ̂) from the standard MLE. This will show how much efficiency we can gain by
incorporating the external information from the Y|X model and what determines that gain. We
provide all the algebraic details of the derivations in the Appendix.

5.2.1. Special Case 1: Y and B are Gaussian distributed
In this section, we assume that Y and B are continuous and have a Gaussian distribution, and
assume the identity link for g1 and g2 in models (3) and (4).

Without loss of generality, we consider a simplified situation where p = 1. We also assume
the marginal means of Yi,Xi and Bi are all equal to zero, thus we use a no-intercept model. Let
σ2

X denote the variance of X. Then

Y|X ∼ N(βX, σ2
β) (5)

Y|X,B ∼ N(γXX + γBB, σ2
γ) (6)
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B|X ∼ N(θX, σ2
θ) (7)

Depending on the information available from the external model Y|X, we consider two pos-
sible situations which correspond to two different constraints. The first situation is when the es-
timated coefficient β = β∗ is known from model (5). This gives the constraint θ = θ∗ = β∗−γX

γB
.

The second situation is when both of the estimated coefficient β = β∗ and the variance σ2
β =

σ∗2β = γ2
Bσ
∗2
θ + σ2

γ are known.
For the standard MLE of the complete dataset of size n, it is easy to show that the asymptotic

variance of γ̂X and γ̂B are equal to
σ2
γ

nσ2
θ
(θ2 +

σ2
θ

σ2
X

) and
σ2
γ

nσ2
θ

, respectively. The detailed algebraic
derivation for each of the three approaches can be found in Appendix A1–A3. The comparison
results for all three approaches are shown in Table 6.

5.2.2. Special case 2: Y,X, andB are all binary
Assume we are interested in a saturated model:

logit{Pr(Y = 1|X,B)} = γ0 + γXX + γBB + γXBXB (8)

describing the joint effect of X,B on Y, when Y,X,B are all binary variables. The external
information from model (3) can be expressed as:

logit{Pr(Y = 1|X)} = β0 + β1X (9)

The association between B and X is defined through the model:

logit{Pr(B = 1|X)} = θ0 + θ1X

We denote P(X = a,Y = b) as the probability of (X = a,Y = b) combination and P(B =
0,X = a,Y = b) as the probability of (B = 0,X = a,Y = b) combination, where a,b ∈ {0, 1}.
The detailed derivation for each of the three approaches can be found in Appendix B1–B4. The
comparison results, showing the AREs, for all three approaches are given in Table 7.

5.3. SUMMARY
Based on the detailed derivation in Appendix, in Tables 6 and 7, we summarize the methods
and the assumed forms of the summary-level external information from the Y|X model for each
approach. The result of ARE of variance γ̂ compared to the variance from the standard MLE is
also given for each of the special cases.

Let the asymptotic relative efficiency under approach M relative to the stan-
dard MLE (without external information) be denoted by AREM(γ̂) = VarM(γ̂)

VarMLE(γ̂) ,
where M ∈ {Synthetic Data,CML(2.1),CML(2.2),CSPML} for Gaussian Y, and
M ∈ {Synthetic Data,CML,CSPML} for binary Y.

Result 1. Special case 1: (Y,B) continuous and normally distributed

• ARESynthetic Data(γ̂X) = ARECML(2.2)(γ̂X) = 1−A− σ2
Xθ
∗2

σ2
Xθ
∗2+σ∗2θ

D

ARECSPML(γ̂X) = ARECML(2.1)(γ̂X) = 1−A
• ARESynthetic Data(γ̂B) = ARECML(2.2)(γ̂B) = 1−D

ARECSPML(γ̂B) = ARECML(2.1)(γ̂B) = 1
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where A = σ2
θ

σ2
θ+σ2

Xθ
∗2

σ2
γ

σ2
γ+γ2

Bσ
2
θ

, D =
2σ2
γγ

2
Bσ
∗2
θ

σ∗4β
, θ∗ = β∗−γX

γB
, and σ∗2θ =

σ∗2β −σ
2
γ

γ2
B

. Table 6 summa-
rizes the results. In summary, the synthetic data method has the same asymptotic variance as the
CML (approach 2.2), and both are more efficient than the CSPML and the CML (approach 2.1).
For γ̂X the CSPML and the CML (approach 2.1) are more efficient than the standard MLE. For
γ̂B the CSPML and the CML (approach 2.1) have the same efficiency as the standard MLE.

Result 2. Special case 2: (Y, X, B) are all binary

• ARESynthetic Data(γ̂0) = ARECML(γ̂0) = ARECSPML(γ̂0) = 1− F
• ARESynthetic Data(γ̂X) = ARECML(γ̂X) = ARECSPML(γ̂X) = 1−G
• ARESynthetic Data(γ̂B) = ARECML(γ̂B) = ARECSPML(γ̂B) = 1
• ARESynthetic Data(γ̂XB) = ARECML(γ̂XB) = ARECSPML(γ̂XB) = 1

where F =
∑

(a,b)∈{(0,1)(0,0)} 1/P(X=a,Y=b)∑
(a,b)∈{(0,1)(0,0)} 1/P(B=0,X=a,Y=b) and G =

∑
a,b∈{0,1} 1/P(X=a,Y=b)∑

a,b∈{0,1} 1/P(B=0,X=a,Y=b) . Table 7
summarizes the results. In conclusion, the synthetic data method, CML and CSPML all converge
to the same asymptotic variance. For γ̂0 and γ̂X, they are more efficient than the standard MLE.
For γ̂B and γ̂XB, they have the same efficiency as the standard MLE.

TABLE 6: Summary of 3 approaches when Y and B are Gaussian

Approach Method for including Available form of the ARE(γ̂)∗

external information external information γ̂X γ̂B

Standard MLE (ref) None NA 1 1

1: Synthetic data method m additional synthetic Ability to draw Y values

data observations from Y|X distribution, 1 −A† − σ2
Xθ
∗2

σ2
Xθ
∗2+σ∗2

θ
D‡ 1 − D

regardless of the form

2: Constrained MLE Constraint 2.1: The estimated 1 − A 1

(Cheng et al., 2018) coefficient β is known.

2.2: Both of the estimated

coefficient β and the 1 −A − σ2
Xθ
∗2

σ2
Xθ
∗2+σ∗2

θ
D 1 − D

standard deviation σβ
are known.

3: CSPML Constraint Known expectation of 1 − A 1

(Chatterjee et al., 2016) Y|X
* ARE(γ̂) = VarM(γ̂)/VarMLE(γ̂), M ∈ {Synthetic Data,CML,CSPML}

† A = σ2
θ

σ2
θ
+σ2

Xθ
∗2

σ2
γ

σ2
γ+γ

2
Bσ

2
θ

, where θ∗ = β∗−γX
γB

‡ D =
2σ2
γγ

2
Bσ
∗2
θ

σ∗4
β

, where σ∗2θ =
σ∗2β −σ

2
γ

γ2B
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TABLE 7: Summary of 3 approaches when Y, X and B are binary

Approach Method for Available form ARE(γ̂)∗

including external of the external γ̂0 γ̂X γ̂B

information information (γ̂XB)

Standard MLE (ref) None NA 1 1 1

1: Synthetic data method m additional Ability to draw Y

synthetic data values from Y|X 1 − F† 1 − G‡ 1

observations distribution,

regardless of the form

2: Constrained MLE Constraint Known estimated 1 − F 1 − G 1

(Cheng et al., 2018) coefficient β

3: CSPML Constraint Known expectation

(Chatterjee et al., 2016) of Y|X 1 − F 1 − G 1

* ARE = VarM(γ̂)/VarMLE(γ̂), M ∈ {Synthetic Data,CML,CSPML}

† F =
∑

(a,b)∈{(0,1)(0,0)} 1/P(X=a,Y=b)∑
(a,b)∈{(0,1)(0,0)} 1/P(B=0,X=a,Y=b)

‡ G =
∑

a,b∈{0,1} 1/P(X=a,Y=b)∑
a,b∈{0,1} 1/P(B=0,X=a,Y=b)

5.4. Justification from another perspective
In the two special cases, we show that using the synthetic data approach with very large m
gives identical asymptotic variance for the parameters of model (1) as the constrained ML
approach. Below we provide a different intuitive justification for the synthetic data approach,
for a more general situation, if certain conditions apply. Assume that Y and B are scalar ran-
dom variables and that X is a vector of covariates. We will assume parametric models for
all the conditional distributions, and that these can be written as f (Y,B|X,φ), f (Y|X,B,γ),
f (Y|X,β), f (B|X, θ) and f (B|X,Y,κ). Assume that f (Y|X,B,γ) is the model of interest,
and that f (Y|X,β) is the form of the model that was fit to the external data, and that the esti-
mate of β from the external data approximates the true value of β. We assume that all these
models represent the true distributions and are compatible with each other in the sense that
f (Y,B|X,φ) = f (Y|X,B,γ)× f (B|X,θ) = f (B|X,Y,κ)× f (Y|X,β). We assume there is
a 1-to-1 mapping between φ and (γ, θ) and between φ and (κ,β), and that κ and β are
distinct and that γ and θ are distinct. With these conditions, we can write f (Y,B|X,φ) as
f (Y,B|X,κ,β).

With this set-up, the constrained ML estimate is obtained by maximizing the likelihood∏n
i=1 f (Yi,Bi|Xi,φ) over φ, subject to the known β. This can be rewritten as maximizing the

likelihood
∏n

i=1 f (Yi,Bi|Xi,κ,β) over κ, subject to the known β. Then from the combination
of the estimate of κ and the known β we can obtain the estimate of γ.

The synthetic data method consists of maximizing the likelihood

n∏
i=1

f (Yi,Bi|Xi,φ)

n+m∏
i=n+1

f (Yi|Xi,β)

which is equivalent to maximizing

n∏
i=1

f (Yi,Bi|Xi,κ,β)

n+m∏
i=n+1

f (Yi|Xi,β)
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over κ and β. When optimizing over β for fixed κ, the second term
∏n+m

i=n+1 f (Yi|Xi,β) will
dominate the optimization procedure when m is very large. Thus the estimate ofβ will essentially
reproduce the known value from the external data (since this was the value used to generate the
synthetic data). Thus the synthetic data method will reduce to the maximization of the remaining
part of the likelihood

∏n
i=1 f (Yi,Bi|Xi,κ, β) with β fixed, which is identical to the constrained

ML method.
The requirement that all the conditional distributions are compatible with each other will not

usually be true, but it may be a reasonable approximation if flexible enough models are being
used. The conditions do hold for the normal and the tri-binary examples in Section 5.2.1 and
5.2.2 respectively. Another case where they hold is when Y and B follow a bivariate normal dis-

tribution given X, i.e. Y,B|X ∼ N

((
βX

θX

)
,

(
σ2
β ρσβσθ

ρσβσθ σ2
θ

))
. Then the constrained ML is

to maximize the likelihood
∏n

i=1 f(Yi,Bi|Xi,β,θ, σβ , σθ, ρ) over θ, σθ and ρ subject to known
β and σβ .

6. DISCUSSION

In this paper, we have introduced the synthetic data method for incorporating summary-level
information from well-established external models into the regression model estimation based on
internal data. We demonstrated that in some special cases that with a large number of synthetic
data observations, the synthetic data approach is asymptotically as efficient as the constrained
ML approach. This provides some justification for what at first sight might seem to be an ad-
hoc approach. In a simulation study, we demonstrated the ability of the method to improve the
predictive ability of the model

A key advantage of the synthetic data method is that it naturally incorporates the prior knowl-
edge into the internal data by creating a large amount of “fake” data that is compatible with the
Y|X established model. By creating pseudo-data from Y|X instead of using constrained op-
timization, the synthetic data method not only simplified the task from solving complex con-
strained optimization, but also provides a potentially more flexible and general framework to
handle this problem. The only requirement for the synthetic data approach is the ability to gener-
ate Y values given X from the information of the external models, without the need to know the
exact form of model. It is broadly applicable for general data types for Y,X, and B, and when B
is more than one new biomarker. It can be extended to the situation where more than one external
model is available, i.e. Y|X1, Y|X2,...,Y|Xk. In this setting, a combination of external studies
that measured overlapping but necessarily identical covariates can provide joint information to
develop a model for Y|X model, where X is the union of X1,X2, ...,Xk.

The CSPML approach is also broadly applicable, and can handle multiple Bs, and it has some
optimality properties. But it does require knowledge of the form of the Y|X model and requires
that the distribution of the Xs are identical in the external and the internal populations, which
seems unlikely to be satisfied in practice.

When analyzing the synthetic dataset, the value of B can be considered to be missing, which
converts the problem of incorporating external information into a problem of analyzing data with
missing values. If multiple imputation procedures are to be used to impute the value of B, then
further research would be needed to suggest efficient and robust ways in which this should be
implemented. There is the potential to improve even further on the method by using different
ways of imputing B, beyond the approach we illustrated in the simulation study.

Another interesting issue that will need to be investigated is the size of m. The theoretical
result in this paper suggests that m should be very large, but this is under the assumption that
the Y|X and Y|X,B models are compatible with each other. In practice, they are unlikely to
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be exactly compatible, which would suggest limiting the size of m. A pragmatic suggestion is
to make m equal to the size of the external data, if that is known. By doing this the amount of
information in the synthetic data about the relationship between Y and X is similar to the amount
of information in the external data about the relationship between Y and X.
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APPENDIX

Derivation of asymptotic variances for the special case 1.

Appendix A1. Approach 1: Synthetic data method
If the synthetic data approach is applied, and under the assumption that the true value of β and
σβ are used to generate the synthetic data, then the combined data will have the same distri-
bution as a dataset of size n+m in which m values of B have been removed. For this partic-
ular data structure, it is possible to obtain formulas for the asymptotic variance of the maxi-
mum likelihood estimates of γ. In particular, Gourieroux and Monfort (1981) give the exact ex-
pression of the ML estimators and the corresponding asymptotic covariance. The likelihood for
the combined data is

∏
limn

i=1 f (Yi,Bi|Xi)×
∏

limn+m
i=n+1 f (Yi|Xi), which can be rewritten as∏

limn+m
i=1 f (Yi|Xi)×

∏
limn

i=1 f (Bi|Xi,Yi). Based on this they introduce a set of transformed
parameters, and re-parameterized the distributions (5)–(7). They then identify the 1-to-1 relation-
ship among the original parameters and the new set of parameters.

We obtain the estimators of the original parameters by the re-parameterization method, and
then apply the delta method to get the asymptotic variance of γ̂B and γ̂X.

According to Gourieroux and Monfort (1981), we introduce a set of transformed parame-
ters a, b, c, d, and e, and re-parameterized the distributions (5)–(7) as Y|X ∼ N(bX, a2), and
B|Y,X ∼ N(dY + eX, c2). We then identify the 1-to-1 relationship among the original param-
eters and the new set of parameters:

a2 = σ2 + γ2
Bη

2

b = γX + θγB

c2 =
σ2η2

a2

d =
γBη

2

a2

e = θ − db

(1)

The ML estimators â, b̂ and their asymptotic variances are easy to obtain from the linear model
Yi = bXi + ui ,Var(ui) = a2, where i = 1,...,n+m. Similarly, the ML estimators ĉ, d̂, and ê
and their asymptotic variances are easy to obtain from the linear model Bi = dYi + eXi +
vi ,Var(vi) = c2 where i = 1,...,n. The estimators of the original parameters are obtained through
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the relationship derived from equations (1), where

θ = bd+ e

η2 = a2d2 + c2

γB =
a2d

η2

γX = b− γBθ

σ2 =
a2c2

η2

and the asymptotic variance of γ̂B and γ̂X can be derived using the delta method:

Var(γ̂B) = 1
n

[
σ2

η2 + 2(λ− 1)
γ2
Bσ

4

ω4

]
Var(γ̂X) = θ2Var(γ̂B) + 1

n

(
σ2Ω−1 λσ

2+γ2
Bη

2

ω2

)
,

From this we find the relative efficiency gain of Var(γX, γB)T by adding m synthetic data
observations compared to the original dataset of size n is

ARE(Var(γ̂)) = 1− (1− λ)


2σ2
γγ

2
Bσ

2
θ

σ4
β

+
σ2
θ

σ2
θ+σ2

Xθ
2

σ2
γ(2σ2

γ−σ
2
β)

σ4
β

2γ2
Bσ

2
θσ

2
γ

σ4
β

 ,

where θ = β−γX
γB

, and σ2
θ =

σ2
β−σ

2
γ

γ2
B

. When m gets very large such that λ ≈ 0, ARE(Var(γ̂X)) =

1− σ2
θ

σ2
θ+σ2

Xθ
2

σ2
γ

σ2
γ+γ2

Bσ
2
θ

2σ2
γ−σ

2
β

σ2
β
− 2σ2

γγ
2
Bσ

2
θ

σ4
β

, and ARE(Var(γ̂B)) = 1− 2σ2
γγ

2
Bσ

2
θ

σ4
β

. This demonstrates
some gain in efficiency for both γX and γB.

Appendix A2. Approach 2: Constrained MLE
Depending on the information available from the external model Y|X, there are two possible
situations which correspond to two different constraints:

• Approach 2.1: Only the estimated coefficient β is known from model (5)
For model (5)–(7), it is easy to see that the constraint describing the relationship between the
unknown variable θ, the known variable β and the target variable γ is given by θ = β−γX

γB
. The

log-likelihood is given by

l = l(γ, θ, σ2
γ , σ

2
θ)

= −n

2
log(σ2

γ)− 1

2σ2
γ

∑ n

lim
i=1

(
Yi − γXXi − γBBi

)2 − n

2
log(σ2

θ)− 1

2σ2
θ

∑ n

lim
i=1

(
Bi − θXi

)2
(2)

The goal is to maximize the log-likelihood (2) over γ, σγ and σθ subject to the con-
straint θ = θ∗, where θ∗ = β∗−γX

γB
. By replacing θ with θ∗, taking the derivative over γ,

and taking the inverse of the matrix, we obtain the asymptotic variance of γ̂ equals to
1
n

σ2
γ

σ2
θ

(θ∗2 +
σ4
θγ

2
B

σ2
γ+σ2

θγ
2
B

1
σ2
X
, 1)T. The corresponding AREs can be found in Table 6, where we
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notice that there is some gain in efficiency for γX but no gain in efficiency for γB. We can see
that the largest gain in efficiency is when γB, θ and σX are small.
• Approach 2.2: Both of the estimated coefficient β and the standard deviation σβ are known

from model (5)
In this situation, knowing the true σβ gives us more information which is incorporated through
an additional constraint. In addition to the constraint θ = θ∗ = β−γX

γ∗B
used in approach 2.1, we

add another constraint Var(Y|X) = σ2
β = γ2

Bσ
2
θ + σ2

γ , i.e. σ2
θ = σ∗2θ , where σ∗2θ =

σ∗2β −σ
2
γ

γ2
B

.

Then the log-likelihood (2) is maximized with respect to (γ, σ2
γ at fixed σ2

θ = σ∗2θ , θ = θ∗).
Note that unlike in approach 2.1, σ2

γ and γ are not independent anymore. Thus, we need to
consider σ2

γ in the information matrix, and take the inverse of a 3×3 matrix to get the correct
asymptotic variance.
Let φ = (γ, σ2)T,

I = −EXB(
∂2l

∂φφT
) = n


( 1
σ2 + 1

γ2
Bη
∗2 )Ω ( 1

σ2 + 1
γ2
Bη
∗2 )Ωθ∗ 0

( 1
σ2 + 1

γ2
Bη
∗2 )Ωθ∗ ( 1

σ2 + 1
γ2
Bη
∗2 )(η∗2 + Ωθ∗2) + 1

γ2
B

1
η∗2γ3

B

0 1
η∗2γ3

B

1
2 ( 1
σ4 + 1

γ4
Bη
∗4 )

 ,

By taking the inverse of I, we can get the asymptotic variance of γ̂:


Var(γ̂B) = 1

n
σ2

η∗2
σ4+γ4

Bη
∗4

(σ2+γ2
Bη
∗2)2

= 1
n

γ2
Bσ

2

ω∗2−σ2

σ4+(ω∗2−σ2)2

ω∗4

Var(γ̂X) = 1
n
σ2

η∗2
1

(σ2+γ2
Bη
∗2)2

[
(η∗2Ω−1 + θ∗2)(σ4 + γ4

Bη
∗4)− (σ2 − γ2

Bη
∗2)σ2η∗2Ω−1

]
= (η∗2Ω−1 + θ∗2)Var(γ̂B)− 1

nσ
4Ω−1 σ

2−γ2
Bη
∗2

ω∗4

Thus, we find that the ARE of Var(γ̂) from the constrained MLE compared to the standard
MLE is identical to the synthetic data method (approach 1). This demonstrates the asymptotic
equivalence of the synthetic data approach with large m, to the constrained ML approach that
uses knowledge of all the parameters in the Y|X distribution.

Appendix A3. Approach 3: Constrained semiparametric MLE
This approach assumes that β is known, but does not assume that σβ is known. For this method
calculation of the asymptotic variance of γ̂ requires calculation of the three matrices I, C and L.

After some algebra for the situation that Y|X, B and B|X are both normal it can be shown that
C = Ω

ω2 (1, θ∗)T,L =
nγ2

Bη
∗Ω

ω∗4 . Thus,

Cov(γ̂) = (I + CL−1CT)−1 =
1

n

σ2

η2

 θ∗2 +
η4γ2

B

σ2+η2γ2
B

Ω−1 −θ∗

−θ∗ 1

 ,

which is identical to the covariance matrix in approach 2.1.
�

Derivation of asymptotic variances for the special case 2, Y, X and B binary.

Appendix B1. Standard MLE
We will use the following notation: S ≡ Sγ(X,B) = γ0 + γXX + γBB + γXBXB, M ≡
Mβ(X) = β0 + β1X and K ≡ Kθ(X) = θ0 + θ1X.
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The ML estimators are the solution of maximizing
∏

limn
i=1 f (Yi|Xi,Bi,γ), i.e.

m
γ

ax
{∑

limn
i=1[YiSi − log{1 + exp(Si)}]

}
.

In the tri-binary case, since X = X2, and B = B2, the Fisher information is

I = EXBI(X,B) = EXB

expit(S)(1− expit(S))


1 X B XB

X X XB XB

B XB B XB

XB XB XB XB


 .

There are a total of four possible combinations of binary (X,B). Thus, the expectation terms
of the matrix I(X,B) can be obtained through 1

n

∑
lima,b∈{0,1} I(a,b)P(X = a,B = b). The

asymptotic variance of γ̂ is given by:



Var(γ̂0) = 1
n ( 1

P(BXY=001) + 1
P(BXY=000) ),

Var(γ̂X) = 1
n

∑
lima,b∈{0,1}

1
P(BXY=0ab) ,

Var(γ̂B) = 1
n ( 1

P(B=1|XY=01)P(BXY=001) + 1
P(B=1|XY=00)P(BXY=000) ),

Var(γ̂XB) = 1
n

∑
lima,b∈{0,1}

1
P(B=1|XY=ab)P(BXY=0ab) ,

where P(BXY = 0ab) is the probability of the (B=0, X=a, Y=b) combination, and P(B =
1|XY = ab) is the probability of B=1 given X=a and Y=b, a,b∈ {0, 1}.

Appendix B2. Approach 1: Synthetic data method
Motivated by the ML estimation in the missing data problem (Little, 1992), we re-formulate our
target likelihood as follows:

∏ n

lim
i=1

f(Yi,Xi,Bi)
∏ m+n

lim
i=n+1

f(Xi,Yi) =
∏ n

lim
i=1

f(Xi,Yi)f(Bi|XiYi)
∏ m+n

lim
i=n+1

f(Xi,Yi)

=
∏ n

lim
i=1

f(Bi|Xi,Yi)
∏m+n

lim
i=1

f(Xi,Yi),

(3)

where f(Bi|Xi,Yi) and f(Xi,Yi) are independent from each other. The goal is to maximize like-
lihood 3 over γ.

Let P(XY = ab) ≡ Pr(Xi = a,Yi = b), a, b ∈ {0, 1}, i = 1,...,m+n. With the con-
straint

∑
lima,b∈{0,1} P(XY = ab) = 1, there are a total of three unknown variables in∏

limm+n
i=1 f(Xi,Yi), i.e. P(XY=ab), a,b ∈ {0, 1}. Similarly, denote P(B = 1|XY = ab) ≡

Pr(Bi = 1|Xi = a,Yi = b), i = 1,...,n. Since there are four different combinations of a and b,
there are four unknown parameters (i.e. P(B = 1|XY = ab)) in

∏
limn

i=1 f(Bi|Xi,Yi), which
are independent from each other.

By plugging the four possible combinations of X and B into model (8) in the main text, we
can easily derive the expressions for γ as presented in Table 8.
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TABLE 8: Formulas for γ in terms of P(B|XY) and P(XY)

(X,B) combination transformation of model (8)

(0, 0) γ0 = logP(B=0|XY=01)P(XY=01)
P(B=0|XY=00)P(XY=00)

(1, 0) γ0 + γX = logP(B=0|XY=11)P(XY=11)
P(B=0|XY=10)P(XY=10)

(0, 1) γ0 + γB = logP(B=1|XY=01)P(XY=01)
P(B=1|XY=00)P(XY=00)

(1, 1) γ0 + γX + γB + γXB = logP(B=1|XY=11)P(XY=11)
P(B=1|XY=10)P(XY=10)

Let mn(a,b) denote the number of observations with (X = a,Y = b) in the sample size of m+n.
Since mn(a,b) ∼ Multinomial(m + n,P(XY = ab)), we can easily obtain the ML estimation
of P(XY), and corresponding estimated covariance as follows:

P̂(XY = ab) = mn(a,b)
m+n

Var(P̂(XY = ab)) = P̂(XY = ab)(1− P̂(XY = ab))

Cov(P̂(XY = ab), P̂(XY = a′b′)) = −P̂(XY = ab)P̂(XY = a′b′)

Denote n(a,b) as the number of observations with (X = a,Y = b) in the sample of size n, and
n(B = 1|XY = ab) as the count of B = 1 given (X = a, Y = b). Since n(B = 1|XY = ab) ∼
Binomial(n(a,b),P(B = 1|XY = ab)), the ML estimation of P(B|X,Y) and its estimated co-
variance can be expressed as:

P̂(B = 1|XY = ab) = n(B=1|XY=ab)
n(a,b)

Var(P̂(B = 1|XY = ab)) = P̂(B=1|XY=ab)P̂(B=0|XY=ab)
n(a,b)

Cov(P̂(B = 1|XY = ab), P̂(B = 1|XY = a′b′)) = 0

Therefore, the ML estimation of γ can be expressed as:

γ̂0 = log
( P̂(B=0|XY=01)

P̂(B=0|XY=00)

P̂(XY=01)

P̂(XY=00)

)
γ̂X = log

( P̂(B=0|XY=11)P̂(B=0|XY=00)

P̂(B=0|XY=10)P̂(B=0|XY=01)

P̂(XY=11)P̂(XY=00)

P̂(XY=10)P̂(XY=01)

)
γ̂B = log

( P̂(B=1|XY=01)

P̂(B=0|XY=01

P̂(B=0|XY=00)

P̂(B=1|XY=00)

)
γ̂XB = log

( P̂(B=1|XY=11)P̂(B=1|XY=00)

P̂(B=1|XY=10)P(B=1|XY=01)

P̂(B=0|XY=10)P̂(B=0|XY=01)

P̂(B=0|XY=00)P̂(B=0|XY=11)

)
By the delta method, and replacing estimated proportions by the corresponding probabilities we
obtain the asymptotic variances



Var(γ̂0) = 1
n

∑
lim(a,b)∈{(0,1),(0,0)}

P(B=1|XY=ab)
P(BXY=0ab) + 1

m+n

∑
lim(a,b)∈{(0,1),(0,0)}

1
P(XY=ab)

Var(γ̂X) = 1
n

∑
lima,b∈{0,1}

P(B=1|XY=ab)
P(BXY=0ab) + 1

m+n

∑
lima,b∈{0,1}

1
P(XY=ab)

Var(γ̂B) = 1
n

∑
lim(a,b)∈{(0,1),(0,0)}

1
P(B=1|XY=ab)P(BXY=0ab)

Var(γ̂XB) = 1
n

∑
lima,b∈{0,1}

1
P(B=1|XY=ab)P(BXY=0ab)

where P(BXY = 0ab) = P(B = 0|XY = ab)P(XY = ab).
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Therefore, we find that the ARE of Var(γ̂) by adding m synthetic data observations compared
to the original dataset of size n is

ARE(Var(γ̂)) = 1− (1− λ)



∑
lim(a,b)∈{(0,1)(0,0)} 1/P(XY=ab)∑

lim(a,b)∈{(0,1)(0,0)} 1/P(BXY=0ab)∑
lima,b∈{0,1} 1/P(XY=ab)∑

lima,b∈{0,1} 1/P(BXY=0ab)

0

0

 (4)

Appendix B3. Approach 2: Constrained MLE
The summary-level information from model (9) is available in the form of coef-
ficient estimates β. The constrained ML estimator is the solution of maximizing∏

limn
i=1 f (Yi|Xi,Bi,γ)f (Bi|Xi,θ) subject to the constraint that Pr(Y = 1|X = x,β) =∑

lim1
b=0 Pr(Y = 1|X = x,B = b,γ)Pr(B = b|X = x,θ).

The log-likelihood can be rewritten as

m
γ

ax
{∑ n

lim
i=1

[YiSi − log{1 + exp(Si)}+ BiKi − log{1 + exp(Ki)}]
}

From the constraints we can write θ as a function of γ in the following wayθ0(γ) = logit{ expit(β0)−expit(γ0)
expit(γ0+γB)−expit(γ0)}

θ1(γ) = logit{ expit(β0+β1)−expit(γ0+γX)
expit(γ0+γX+γB+γXB)−expit(γ0+γX)} − θ0(γ)

Then K becomes Kγ(X) = θ0(γ) + θ1(γ)X. Denoteσβ0j ≡ ∂
∂γj
θ0(γ)

σβ1j
≡ ∂

∂γj
θ1(γ)

where j = 0, 1, 2, 3. The asymptotic variance of γ̂ can be derived through the 4×4 matrix
1
n{EXB[EY|XB(uγuγ

T)]}−1, where

uγ =
∂

∂γ
log{f (Y,B|X,γ,θ(γ))}

=


(σβ00

+ σβ10
X)(B− expit(K)) + Y − expit(S)

(σβ01
+ σβ11

X)(B− expit(K))) + (Y − expit(S))X

(σβ02
+ σβ12

X)(B− expit(K))) + (Y − expit(S))B

(σβ03
+ σβ13

X)(B− expit(K))) + (Y − expit(S))XB


Since all Y,X, and B are binary variables, there are a total of eight possible combinations of
(Y,X,B). Thus, the expectation term in the matrix E(uγuγ

T) can be obtained through

1

n

∑
lim

a,b,c∈{0,1}
uγuT

γP(Y = a,X = b,B = c).

A variation on the above approach is when the external summary information comes in the
form of the predicted probability for any X, i.e. we are simply provided with P̄(Xi) = P̂r(Yi =
1|Xi). In these cases, it is easy to construct an estimation method that uses this as a constraint.
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Also in the special case being considered here where Y and X are binary, it is easy to see that
knowing P̄(0) and P̄(1) is equivalent to knowing β0 = logit(P̄(0)) and β1 = logit(P̄(1))−
logit(P̄(0)), so this also fits into the above framework to obtain the asymptotic variance of γ̂.

Appendix B4. Approach 3: Constrained semiparametric MLE
By implementing the specific distribution into the given formulas for I, C and L, we find that I is
the same as the information matrix in approach 1, that the 4×2 matrix C is the first two columns
of matrix I, and that

L = EXB[(1− expit(M))expit(S)− expit(M)(1− expit(S))

(
1 X

X X2

)
],

where S ≡ Sγ(X,B) = γ0 + γXX + γBB + γXBXB and M ≡ Mβ(X) = β0 + β1X. The calcu-
lation of L is simple under the situation where X and B are both binary. Then I, C and L can be
combined to give the variance of γ̂.

Although we have not written out the formulas for the ARE of Var(γ̂) for approaches 2 and 3,
we find that their values are numerically identical to those in equation 4 with λ = 0.
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