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S1 AILFT method

This method was developed by Atanasov, in a first time with Daul using DFT calculations [1]
then with Neese for WFT [2]. The SO-CASSCF calculations provide the energies EI and wave
functions ΨAI

I of all the M states arising from the 4fN configuration. They are developed as

ΨAI
I =

M∑
J=1

CIJΦJ (S1)

with ΦJ a Slater determinant with N occupied f orbitals. The Hamiltonian matrix HAI is built in
the basis of the ΦJ expressed in terms of the real 4f orbitals. Since the ab initio 4f orbitals are close
to pure metallic 4f orbitals, the correspondence with their model counter-part is easily performed.
The model Hamiltonian of Eq. 1 depends on the parameters pi, (i) the Slater-Condon parameters
for electron-electron repulsion F 2, F 4 and F 6, (ii) the 28 CFPs associated to f orbitals, i.e. one
parameter for each independent ligand field matrix elements 〈fm |v̂CF | fm′〉. Its matrix HLFT (pi)
is expressed in the same basis of Slater determinants as the electronic structure calculations. The
correspondence element by element of the two matrices leads to the equations to be solved. The
problem is by far over-determined, but all equations are linear in the unknowns.

Those M(M − 1)/2 equations arise from HLFT (pi) = HAI (AI stand for ab initio) and may be
written in the form

APPP = Y (S2)

where PPP = {pi} .The parameter vector PPP is then determined by a least-square procedure according
to

PPP =
(
A†A

)−1
A†Y (S3)

S2 ITO method

S2.1 ITO decomposition

This method was developed by Ungur and Chibotaru [3]. A J manifold of the free ion is considered
with wave-functions {|ΨI〉} (I = 1, 2J+1) and energies {EI}, calculated with a CAS based method,
in this work SO-CASSCF. This supposes that this manifold is well separated from the other ones
and easily identifiable. In a first step, the 2J + 1 states must be assigned to the {|J,M〉} (M =
−J, J) kets of the model space. Contrary to the AILFT method where the correspondence is
performed at the orbital level, the assignment is done for the many-electron states and is specific
to a J manifold. Noting that the {|J,M〉} kets are innately eigenvectors of the Z component
of the total angular momentum operator ĴZ , and according to Wigner-Eckart theorem, of the Z
component of the magnetic moment M̂Z . Consequently, diagonalizing the matrix representation

of M̂Z in the set of the {|ΨI〉} provides eigenvectors
{∣∣∣Ψ̃M

〉}
which are the ab initio counterparts

of the model {|J,M〉}. This is true towards a phase factor. In the model space, the relative phase
factors of |J,M〉 and |J,M ± 1〉 are fixed by applying the ladder operators Ĵ±. It follows that
the matrix representations of M̂X and M̂Y in the |J,M〉 are respectively real and pure imaginary.

They are furthermore tridiagonal with a zero main diagonal. The phase factors of the
{∣∣∣Ψ̃M

〉}
are chosen such that the upper diagonal of the M̂X matrix becomes real. As a consequence, the
upper diagonal of the M̂Y matrix is almost pure imaginary. Finally, the Hamiltonian matrix HAI

(AI stands for ab initio), which is diagonal in the original set {|ΨI〉}, is expressed in the
{∣∣∣Ψ̃M

〉}
basis. HAI is the matrix to be decomposed in terms of irreducible tensors operators (ITOs) in
order to obtain the CFPs.
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The correspondence between the ab initio
{∣∣∣Ψ̃M

〉}
and the model {|J,M〉} is based on the

similarity between the MAI
u (u = X,Y, Z) matrix representations of M̂MM in the

{∣∣∣Ψ̃M

〉}
basis and

the MJ
u , matrices of gJĴJJ in the {|J,M〉} basis, where gJ is the Landé factor of the free ion. This

similarity is quantified by the distance between those matrices as

δmu =

√
Tr
(
MJ

u −MAI
u

)† (
MJ

u −MAI
u

)
(S4)

† denotes the conjugate transpose. δmu vanishes in the limit of the free ion in the LS coupling
scheme.

Matrix HAI is now expanded in spin matrices Ω(k)
q of the ITOs O

(k)
q in the basis {|J,M〉} [4, 5]

HAI =

2J∑
k=0

k∑
q=−k

(−1)qQ(k)
q Ω

(k)
−q (S5)

The expansion coefficients are obtained by orthogonal projection

Q(k)
q =

2k + 1∣∣〈J ∥∥O(k)
∥∥ J〉∣∣2 (−1)q Tr

(
Ω

(k)†
−q HAI

)
(S6)

where
∣∣〈J ∥∥O(k)

∥∥ J〉∣∣ is a reduced matrix element. The normalization of Görller-Walrand [6] is

applied with Q
(k)
q = 1 for

√
4π√

2k+1
Ykq. The Q

(k)
q equals the CFPs Bkq by the multiplication factor αkJ

of Eq. 4. Eq. S5 leads to (2J + 1)
2

coefficients Q
(k)
q , the size of matrix HAI . If HAI is traceless,

Q
(0)
0 is zero. Since the Hamiltonian is a time-even operator, the terms with odd values of k vanish,

and the hermiticity of the Hamiltonian leads to Q
(k)
−q = Q

(k)∗
q (see Section S2.2). Even orders larger

than 6 do not have any reason to vanish, but those components are found to be less than 1 cm−1.
The matrix limited to the 27 CFPs

H̃ =
∑

k=2,4,6

k∑
q=−k

(−1)qQ(k)
q S

(k)
−q (S7)

is compared to the original ab initio one HAI by calculating the distance δh between those two
matrices

δh =

√
Tr
(
H̃−HAI

)† (
H̃−HAI

)
(S8)

In all cases, δh is very small, which confirms the validity of CF theory for 4f orbitals.

S2.2 Symmetry of the decomposition

In order to discuss the symmetry of the spin matrices Ω(k)
q of the ITOs O

(k)
q in the basis {|J,M〉},

two types of symmetries should be considered:

• with respect to the main diagonal, a matrix M is (T denotes the transpose)

– symmetric (S) if M = MT

– antisymmetric (A) if M = −MT

• with respect to the skew diagonal, a matrix M is, with J the exchange matrix

– per-symmetric (S) if M.J = J.MT
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– per-antisymmetric (A) if M.J = −J.MT

Matrices Ω(k)
q fulfill the following properties

• for q 6= 0, Ω(k)
q +

(
Ω(k)
q

)T
is S

• for q 6= 0, Ω(k)
q −

(
Ω(k)
q

)T
is A

• for k + q even, Ω(k)
q is S

• for k + q odd, Ω(k)
q is A

The two last lines are easily shown by recursion since Ω
(0)
0 , Ω

(1)
±1 are S and Ω

(1)
0 is A and

O(k)
q = Nk(−1)q

1∑
q′=−1

(
k − 1 1 k
q − q′ q′ −q

)
O

(k−1)
q−q′ O

(1)
q′ (S9)

Matrix HAI is Hermitian and is the representation matrix of a even-time operator. The first
property implies that for q 6= 0

Im

[
Ω(k)
q +

(
Ω(k)
q

)T]
= 0

Re

[
Ω(k)
q −

(
Ω(k)
q

)T]
= 0 (S10)

The basis set in which HAI is developed is the ab initio counterpart of the {|J,M〉} basis, which
behaves under time inversion K as

K |J,M〉 = (−1)J−M+n |J,−M〉 (S11)

where n is the sum of the orbital quantum numbers of all the electrons in the atom [7]. It follows
that

K
〈
J,M

∣∣∣Ĥ∣∣∣ J,M ′〉 = (−1)−M−M
′
〈
J,−M ′

∣∣∣Ĥ∣∣∣ J,−M〉 (S12)

The per-symmetry connects (M,M ′) ←→ (−M ′,−M). In other words, Eq. S12 means that the

elements of HAI with q = M − M ′ even (odd) are S (A). Matrices Ω(k)
q have only non zero

elements on the qth diagonal below (q > 0) or above (q < 0) the skew-diagonal. In the case of odd

k, Ω(k)
q is S for odd q, and A for even q. Hence, the Ω(k)

q matrices with odd k are orthogonal to

HAI , and do not contribute to the ITO expansion.

In terms of CFPs, due to their imaginary character, each Bkq is in principle described by two
degrees of freedom. However, because of Eqs. S10 arising from the hermiticity of the Hamiltonian,
the four degrees of freedom of Bkq and Bk−q reduce to two: ReBkq = ±ReBk−q and ImBkq = ±ImBk−q.

Furthermore, due to time inversion symmetry, all Bkq with odd k vanish. It should be mentioned
that it only holds if the condition that phase factors are appropriately chosen, as proposed in
Section S2.1. Finally, k orders larger than 6 are found negligible (less than 10−4 cm−1). This does
not arise from symmetry reasons but from the relevance of the LS coupling scheme in 4f elements,
as seen from how small δmu are (see Eq. S4 and Tables S1 and S4).
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S3 LnZn16 series

Table S1: CFPs (cm−1) in the LnZn16 series, δmu (µB) and δh (cm−1) distances between ab initio and
model matrices (see Eqs. S4 and S8).

FIT ITO

Ln B2
0 B4

0 B6
0 B2

0 B4
0 B6

0 B2
1 B2

2 B4
4 B6

4 B6
6 δmx δmy δmz δh

Tb -1163 -623 1169 -1162 -620 1182 0 0 12 29 0 0.34 0.34 0.36 10

Dy -1111 -694 684 -1112 -692 685 0 0 10 8 0 0.24 0.24 0.10 7

Ho[Dy]a -1069 -587 565 -1068 -586 564 0 2 4 7 3 0.19 0.19 0.18 4.5

Ho[Er]b -955 -652 577 -954 -652 577 0 5 14 9 0 0.19 0.19 0.18 5.4

Er -958 -669 568 -958 -669 567 0 11 24 19 10 0.09 0.09 0.12 5.8

Yb -958 -495 438 -958 -495 438 0 2 12 7 2 0.02 0.02 0.03 0

a: with the structure of DyZn16. b: with the structure of ErZn16.

Table S2: Energy (cm−1) and |MJ | in parenthesis of the ground J manifold of LnZn16 calculated with
SO-CASSCF.

state 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tb
E 0 19 19 75 83 189 189 353 353 541 541 589 589

|MJ | 0 1 1 2 2 3 3 4 4 5 5 6 6

Dy
E 0.0 32 84 135 174 216 329 704

|MJ | 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

Ho[Dy]a
E 0 1 17 19 55 55 76 78 136 137 161 183 183 263 263 317 317

|MJ | 4 4 3 3 5 5 2 2 1 1 0 6 6 8 8 7 7

Ho[Er]b
E 0 1 23 23 50 51 87 89 151 152 176 176 177 253 253 310 310

|MJ | 4 4 3 3 5 5 2 2 1 1 6 6 0 8 8 7 7

Er
E 0 53 134 150 190 269 284 320

|MJ | 13/2 15/2 1/2 11/2 3/2 5/2 9/2 7/2

Yb E 0 87 397 494

|MJ | 7/2 5/2 3/2 1/2

a: with the structure of DyZn16. b: with the structure of ErZn16.
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S4 [Ln(DPA)3]
3– series

S4.1 Ab initio results

Table S3: Energy (cm−1) of the first excited states of [Ln(DPA)3]3– calculated with SO-CASSCF M:
MOLCAS, O: ORCA. J for the ground state is given. Different J manifolds are separated by a vertical
line.

Ln J E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17

Ce 5/2 M 0 0 348 348 389 389 2327 2327 2639 2639 2805 2805 2914 2914

O 0 0 349 349 391 391 2311 2311 2615 2615 2787 2787 2894 2894

Pr 4 M 0 18 43 68 144 152 254 315 471

O 0 20 47 74 145 156 261 320 476

Nd 9/2 M 0 0 48 48 155 155 300 300 374 374

O 0 0 46 46 157 157 298 298 369 369

Sm 5/2 M 0 0 74 74 120 120 1035 1035 1081 1081 1176 1176 1255 1255

O 0 0 74 74 125 125 1029 1029 1070 1070 1161 1161 1239 1239

Eu 0 M 0 340 367 415 1014 1034 1079 1105 1130 1958 1993 2002 2005 2025 2046 2052

O 0 334 360 412 976 994 1037 1063 1084 1856 1888 1896 1901 1918 1939 1944

Tb 6 M 0 1 53 58 68 89 93 171 175 189 189 207 209

O 0 0 65 70 82 103 108 183 187 202 205 218 220

Dy 15/2 M 0 0 19 19 40 40 60 60 99 99 158 158 211 211 261 261

O 0 0 20 20 39 39 55 55 94 94 161 161 215 215 265 265

Ho 8 M 0 6 7 53 65 92 113 117 128 179 184 212 270 272 284 296 297

O 0 6 8 53 64 89 112 116 127 176 180 210 265 266 280 292 293

Er 15/2 M 0 0 20 20 99 99 130 130 181 181 241 241 268 268 324 324

O 0 0 22 22 99 99 131 131 182 182 242 242 268 268 324 324

Tm 6 M 0 18 53 104 126 171 194 200 231 239 261 267 286

O 0 18 55 108 127 172 200 205 241 249 262 275 292

Yb 7/2 M 0 0 42 42 118 118 228 228

O 0 0 41 41 117 117 232 232

Table S4: δmu (µB) and δh (cm−1) distances between ab initio and model matrices (see Eqs. S4 and
S8) for the [Ln(DPA)3]3– series.

Ln J gJ δmx δmy δmz δh

Ce 5/2 6/7 0.30 0.30 0.23 0

Pr 4 4/5 0.30 0.28 0.17 18

Nd 9/2 8/11 0.51 0.48 0.18 36

Sm 5/2 2/7 0.55 0.60 0.28 0

Tb 6 3/2 0.23 0.25 0.17 3

Dy 15/2 4/3 0.24 0.22 0.19 6

Ho 8 5/4 0.22 0.21 0.18 3

Er 15/2 6/5 0.13 0.13 0.09 2

Tm 6 7/6 0.06 0.06 0.04 3

Yb 7/2 8/7 0.03 0.03 0.02 0
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Table S5: g factors of the ground Kramers doublet for the [Ln(DPA)3]3– series with odd number of
electrons. Z‖ is the principal axis of the g tensor with smallest angle α (°) with Z axis (see Fig. S1).
ωZ
MJ

and ωgmax
MJ

are the weights of the wave function on component MJ with quantification axis Z and
the principal direction of the largest g, respectively (the largest weight is given).

g⊥ g⊥ g‖ α ωZ
MJ

(MJ) ωgmax
MJ

(MJ)

Ce 0.9 0.4 2.2 7 0.64 (5/2) 0.64 (5/2)

Nd 3.0 2.6 1.9 48 0.62 (7/2) 0.52 (5/2)

Sm 0.1 0.8 0.2 35 0.79 (1/2) 0.65 (5/2)

Dy 4.3 1.0 14.6 42 0.49 (9/2) 0.53 (15/2)

Er 3.7 12.5 1.6 6 0.47 (7/2) 0.28 (15/2)

Yb 2.4 6.1 1.2 31 0.47 (3/2) 0.79 (7/2)

αZ
g
║

Figure S1: Z axis and principal axis corresponding to g‖ for the DyZn16 complex.

Table S6: CFPs (in cm−1) in the [Ln(DPA)3]3– series calculated with AILFT.

Ln B2
0 B̄2

1 B̄2
2 B4

0 B̄4
1 B̄4

2 B̄4
3 B̄4

4 B6
0 B̄6

1 B̄6
2 B̄6

3 B̄6
4 B̄6

5 B̄6
6

Ce 282 78 62 -740 35 52 941 48 -510 15 113 789 40 120 889

Pr 278 70 69 -672 31 55 823 37 -513 13 98 710 33 95 856

Nd 265 79 60 -589 23 48 699 34 -478 13 85 627 19 89 779

Sm 240 83 56 -471 17 43 525 31 -403 14 67 487 18 71 649

Eu 239 85 54 -427 18 38 466 29 -380 15 60 442 17 65 599

Tb 223 76 50 -351 11 41 363 21 -335 12 49 358 20 49 522

Dy 234 81 54 -325 13 38 328 22 -327 12 47 333 20 47 496

Ho 236 79 49 -294 10 31 289 19 -310 11 40 301 19 39 460

Er 238 75 44 -272 10 31 260 17 -296 12 38 276 17 36 435

Tm 236 85 54 -251 11 31 233 18 -278 12 36 253 20 36 409

Yb 230 87 50 -239 9 27 213 18 -266 12 32 232 19 30 392

S7



Table S7: CFPs (in cm−1) in the [Ln(DPA)3]3– series calculated with ITO.

Ln B2
0 B̄2

1 B̄2
2 B4

0 B̄4
1 B̄4

2 B̄4
3 B̄4

4 B6
0 B̄6

1 B̄6
2 B̄6

3 B̄6
4 B̄6

5 B̄6
6

Ce 276 66 61 -720 26 75 985 71 -687 30 94 897 10 107 838

Pr 206 67 58 -648 41 69 749 31 -523 29 88 662 43 88 774

Nd 123 90 59 -540 22 39 524 17 -423 32 75 602 48 98 733

Sm 217 58 79 -260 45 60 477 99 -362 22 76 412 31 64 636

Eu 240 71 36 -206 10 86 457 38 -491 35 60 335 42 86 490

Tb 223 77 54 -445 16 50 456 13 -471 45 33 397 27 47 628

Dy 207 83 55 -414 8 47 362 31 -340 25 49 337 31 50 546

Ho 211 82 51 -317 7 29 287 20 -327 21 43 317 28 44 500

Er 265 76 41 -319 12 43 317 44 -331 10 43 290 13 36 461

Tm 223 90 57 -258 3 31 249 24 -278 21 38 264 28 41 437

Yb 210 90 52 -251 3 27 222 17 -274 19 36 238 29 35 394

Table S8: Strength parameters (in cm−1) in the [Ln(DPA)3]3– series calculated with AILFT.

Ln S S2 S4 S6 S0 S1 S2 S3 S4 S5 S6

Ce 417 141 509 492 311 52 64 541 27 47 349

Pr 381 139 449 462 293 47 63 478 22 37 336

Nd 337 134 385 417 265 51 55 411 18 35 306

Sm 269 124 294 340 221 53 49 313 16 28 255

Eu 247 124 263 312 207 55 45 280 15 25 235

Tb 206 115 209 267 180 48 42 221 13 19 205

Dy 195 121 190 253 176 52 43 202 13 18 194

Ho 180 121 169 233 168 50 38 180 11 15 180

Er 169 120 154 219 162 48 35 164 11 14 171

Tm 160 123 139 205 155 54 40 148 11 14 160

Yb 152 121 129 194 150 55 36 135 11 12 154

Table S9: Strength parameters (in cm−1) in the [Ln(DPA)3]3– series calculated with ITO.

Ln S S2 S4 S6 S0 S1 S2 S3 S4 S5 S6

Ce 434 136 525 521 330 45 64 583 34 42 329

Pr 350 108 416 428 276 48 60 438 22 35 304

Nd 292 88 306 394 222 59 51 342 20 38 288

Sm 241 115 248 316 164 43 65 277 48 25 249

Eu 218 119 230 274 186 47 52 252 24 34 192

Tb 249 116 262 321 221 52 43 265 12 18 246

Dy 212 112 221 271 191 54 46 216 19 20 214

Ho 187 112 173 251 168 53 39 184 14 17 196

Er 188 130 186 234 184 49 37 188 21 14 181

Tm 166 120 147 216 153 58 42 157 16 16 171

Yb 153 115 135 197 147 57 38 140 14 14 155

S4.2 Minor CFPs

Figures S2 represent the CFPs of Tables S6 and S7 with q = 1, 2, 4, 5 and the corresponding
strength parameters Sq of Tables S8 and S9. All those parameters are less than 100 cm−1, in
accordance with the pseudo ternary symmetry of the complexes.
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Figure S2: CFPs and strength parameters (cm−1) in the [Ln(DPA)3]3– series. Solid line: AILFT full
spectrum; Dashed line: ITO.

S4.3 Two electron parameters

Figure S3 represent the Slater-Condon parameters in the series. The parameters increase in the
series since the 4f orbitals become more compact as it usually the case [8, 9].
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Figure S3: Slater-Condon parameters (cm−1) in the [Ln(DPA)3]3– series.

S4.4 J − J coupling and CFPs

Comparison of the CFPs (Fig. 4) and strength parameters (Fig. 5) deduced with AILFT and
ITO show that in the first half of the series they are smaller with the latter method and the
opposite occurs in the second half of the series. With AILFT, the CFPs are extracted at orbital
level and the other effects are described by specific parameters, the spin-orbit coupling by the ζ
parameter and the two-electron interactions by the Slater-Condon parameters depicted in Figure
S3. With ITO, the CFPs include all the effects in an effective way. Spin-orbit coupling leads to
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the so called J − J coupling in the free ion, by mixing LS terms with the same value of J . This
impacts strongly the energies of the first half of the series, and specially the energies of the states
arising from excited J manifold in Table S3. In order to quantify the effect of the J − J coupling
on the CFPs, they are deduced from the ground L manifold: the procedure described in Section
S2.1 is applied by replacing J by L and in Eq. 4 αkJ is replaced by αkL [10]. Strength parameters
deduced from L and J ground manifolds are compared in Figures S4 ; the small discrepancies are
meaningless. It shows that i) the J −J coupling affects the energetic spectrum by moving a whole
J manifold, but does not affect the splitting itself, and consequently, does not affect the CFPs.
ii) the difference between the CFPs calculated with AILFT and ITO must be due to the many
electron terms since they included in an effective way in the latter. In reference [10], it was shown
that the composition of the many electron wave function of the complex was broadly the one of
the free ion, but due to the splitting of the 4f orbitals by the ligands, there are small variations
that might affect the effective CFPs.
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Figure S4: Strength parameters (cm−1) in the [Ln(DPA)3]3– series calculated from the ground J (plain
line) and the L (dashed line) manifolds.

S4.5 CFPs from point charges model

In reference [10], the covalent contributions to CFPs were determined as the difference between
ab initio and a point charges (PC) model. In this PC model, the ligands are replaced by point
charges (PCs) reproducing the multipoles of the ligands. It was shown that these contributions
affect the CFPs, both qualitatively and quantitatively. For the [Ln(DPA)3]3– complexes, the PC
model is built as follow: each atom (including hydrogens) is replaced by a PC according to its
LoProp charge value [11]. The dipole and quadrupole moments of the complex obtained with this
PC model were larger than those of the ab initio complex. A multiplicative factor of 0.9 has been
applied to each charge in order to be closer than the ab initio potential and then, as shown in
Table S10, the PC model reproduces well the electrostatic potential of the ’real’ ligands. In this
model, the lanthanide ion is described by a basis set, such those calculations take into account the
screening of the 4f orbitals by the filled 5s5p orbitals and the polarization of the metal orbitals
by the field of the ligands. The strength parameters calculated with this PC model are shown in
Figure 7 and compared to the full molecule values. This figure is discussed in the main article. A
simplified PC model has been considered: only the coordinating oxygen and nitrogen atoms are
considered and are replaced by PCs Q0 = -0.85 and QN = -0.3 respectively, based on their LoProp
charge. This simplified PC model gives rise to dipole and quadrupole moments rather different
from the previous ones. Strength parameters are compared for the two PC models on Figure S6.
The results are rather similar, except S4 and S3 which are larger with simplified PC model, but
with similar trends.
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Table S10: Dipole (D) and quadrupole (D.Å) moments of the LnZn16series, full ab initio (AI) and with
the point charge model (PC).

Ln dX dY dZ QXX QXY QXZ QY Y QY Z QZZ

Ce AI 1.55 1.22 -1.01 17.11 -5.48 3.00 42.02 4.68 -59.13

PC 1.42 1.30 -1.10 19.05 -5.08 2.77 43.38 4.70 -62.43

Pr AI -1.02 1.10 0.88 19.37 7.81 4.25 41.21 -4.39 -60.58

PC -0.85 1.17 0.98 20.83 7.73 4.21 42.04 -4.43 -62.87

Nd AI -1.05 1.41 0.74 19.90 7.90 4.49 41.08 -3.80 -60.98

PC -0.90 1.48 0.81 21.50 7.65 4.24 42.00 -3.84 -63.51

Sm AI -0.92 1.46 0.63 20.94 7.75 4.26 41.07 -3.70 -62.02

PC -0.75 1.53 0.71 22.50 7.48 4.00 42.04 -3.85 -64.54

Eu AI -0.99 1.55 0.63 21.17 7.15 3.88 41.30 -3.45 -62.48

PC -0.85 1.60 0.70 23.16 6.97 3.77 41.93 -3.72 -65.08

Tb AI 0.96 1.28 -0.57 20.12 -3.82 2.66 42.77 4.08 -62.90

PC 0.79 1.38 -0.67 21.76 -3.74 2.36 43.76 4.23 -65.52

Dy AI -0.91 1.42 0.58 21.90 6.67 4.03 41.42 -3.83 -63.31

PC -0.75 1.50 0.66 23.39 6.45 3.81 42.38 -3.94 -65.77

Ho AI -0.76 1.40 0.52 22.32 6.38 3.84 41.30 -3.57 -63.62

PC -0.59 1.46 0.61 23.88 6.20 3.61 42.46 -3.67 -66.34

Er AI 0.94 1.31 -0.37 21.01 -3.08 2.85 41.99 3.90 -63.00

PC 0.77 1.40 -0.44 22.76 -3.04 2.52 43.02 4.08 -65.78

Tm AI -0.87 1.45 0.54 22.50 5.97 3.90 41.35 -3.31 -63.84

PC -0.69 1.51 0.63 24.11 5.83 3.65 42.57 -3.52 -66.68

Yb AI -0.80 1.42 0.51 22.97 5.79 3.77 40.87 -3.73 -63.84

PC -0.62 1.51 0.59 24.67 5.78 3.35 42.15 -3.85 -66.82
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Figure S5: Strength parameters (cm−1) in the [Ln(DPA)3]3– series. Full line: PC model, dashed line:
simplified PC model.

With the PC models, the strength parameters are rather constant in the series. Since both the
nature of the metal ion and the position of the point charges change along the series, one expects
two opposite trends. On one hand, the metal-ligand bond shrinks, increasing the electrostatic
interactions and consequently the CFPs. On the other hand, the radial expansion of the 4f
orbitals decreases, and this reduces the interactions, and the CFPs. In order to unravel those
two effects, the nature of the ion and the compression of the coordination sphere were varied
independently. In Figure S8, the distances are varied and the metal atom is kept the same, and
in Figure S7, the metal is varied in a constant environment. S increases by 30% in the former
case, and decreases by 30 % in the latter, more irregularly. The combined effects lead to rather
constant CFPs across the series.
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Figure S6: Strength parameters (cm−1) in the [Ln(DPA)3]3– series obtained with the simplified PC
model. Linear regression lines are indicated as dashed lines.

Ce Pr Nd Sm Eu Tb Dy Ho Er Tm Yb

Ln

0

200

400

600

S
k

 (c
m

-1
)

S

S
2

S
4

S
6

PCs = [Tb(DPA)
3
]
3-

Ce Pr Nd Sm Eu Tb Dy Ho Er Tm Yb

Ln

0

200

400

600

S
q

 (c
m

-1
)

S
S

0

S
3

S
6

PCs = [Tb(DPA)
3
]
3-

Figure S7: Strength parameters (cm−1) in the [Ln(DPA)3]3– series obtained with the simplified PC
model keeping the position of the charges fixed. Linear regression lines are indicated as dashed lines.
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Figure S8: Strength parameters (cm−1) in the [Ln(DPA)3]3– series obtained with the simplified PC
model keeping the lanthanide ion fixed. Linear regression lines are indicated as dashed lines.

S4.6 Bkq from pNMR shifts

In reference [12], B2
0 was determined in the [Ln(DPA)3]3– series, towards an arbitrary factor, from

13C and 1H pNMR shifts by applying Bleaney’s theory. In this model, the CF of the ligands is
reduced to only B2

0 and is considered as constant in the Ln series. The aim of this Section is
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to convert the value of B2
0 found in reference [12] from arbitrary units to cm−1 using Wybourne

normalization, in order to compare it to the present work.

In Bleaney’s theory, the paramagnetic shift of a nucleus i, i.e. the fractional shift ∆ν/ν in a
nuclear resonance frequency due the presence of the paramagnetic center, is (Eq. 19 of reference
[13]) expressed with the international system of units,

δpc =
∆ν

ν
= − µ0µ

2
B

4π ∗ 60 (kBT )
2 ∗ 2 ∗

(
g2JJ(J + 1)(2J − 1)(2J + 3) 〈J ‖α‖ J〉

)
∗3 cos2 θ − 1

r3
A0

2 < r2 > (S13)

with µ0 the magnetic constant, µB the Bohr magneton, kB the Boltzmann constant, T the tem-
perature, gJ the Landé term of the paramagnetic ion with J , L and S its total, orbital and spin
electronic angular momenta. θ and r define the position of the nucleus i with respect to the para-
magnetic center. A0

2 < r2 > is the 2nd order CFP within Steven’s notation. Eq. S13 is usually
rewritten as follow

δpc = Gi ∗A0
2 < r2 > CDa (S14)

with

Gi =
3 cos2 θ − 1

r3
(S15)

which depends only on the position of the nucleus of interest, and

CDa = − 2µ0µ
2
B

4π ∗ 60 (kBT )
2X(J) (S16)

with X(J) = g2JJ(J + 1)(2J − 1)(2J + 3) 〈J ‖α‖ J〉. CDa depends only on the nature of the
lanthanide ion, and has been tabulated by Bleaney et al. [14] using arbitrary units with C̃DDy =
100 for Dy.

X(J) = -181 for Dy(III) and using SI units, CDDy= 3.0610−6 m3.J−1 at 298 K. If δpc is expressed in

ppm, r in Å and A0
2 < r2 > in cm−1, CDDy= 60 Å

3
/cm−1. It follows that the values of A0

2 < r2 >

determined using the arbitrary value of CDa should be divided by a factor of 0.6 in order to get the
value in in cm−1. A further factor 2 is needed in order to get B2

0 with Wybourne’s convention.
In reference [12], A0

2 < r2 > was determined from Eq. S14 for the [Ln(DPA)3]3– series to be 51.
The corresponding value is B2

0 = 62 cm−1.
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