IC-P-018 FUNCTIONAL NETWORK ANALYSIS OF FLORBETAPIR-LOW AND FLORBETAPIR-HIGH ADNI MCI SUBJECTS

Felix Carbonell¹, Arnaud Charil¹, Andrew Reid², Alex Zijdenbos¹, Alan Evans¹, Barry Bedell¹, ¹Biospective Inc., Montreal, Quebec, Canada; ²Montreal Neurological Institute, Quebec, Canada.

Background: Structural and functional brain network analysis can provide unique insights into the natural evolution of Alzheimer's disease, as well as facilitate the assessment of therapeutic intervention. In order to elucidate the effect of β -amyloid deposition on brain networks at the early disease stage, we have performed a graph theory-based analysis of functional brain networks derived from FDG positron emission tomography (PET) images of florbetapir-low and florbetapir-high MCI subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Methods: T1-weighted MRI, [18F]florbetapir (AV-45) PET, and [18F]FDG PET images were obtained from ADNI-GO/-2 study subjects classified with mild cognitive impairment (MCI). Standardized uptake value ratio (SUVR) images for florbetpir and FDG PET were generated using our fully-automated PIANO TM pipeline. All PET volumes were registered to a customized MRI template in MNI stereotaxic space. Subjects were classified into florbetapir-low and florbetapirhigh groups using lower and upper SUVR thresholds based on a composite ROI. An ROI-based FDG SUVR correlation matrix was then constructed for each group in which SUVR values for each pair of ROIs were correlated across subjects. A Bonferroni correlation threshold was employed to binarize the correlation matrices, and graph theory-based measures, including global, local, and integrated regional efficiencies, were computed for both groups. Results: The florbetapir-low group possessed more hubs and a more densely connected network compared to the florbetapir-high group. The number of intra-lobar connections within the frontal lobe and longrange frontal-to-parietal connections, especially nodes of the defaultmode network (DMN), were reduced in the florbetapir-high group. The florbetapir-high group also demonstrated lower global, local, and integrated regional efficiencies relative to the florbetapir-low group. Conclusions: We have employed graph theory analysis to examine the effects of β -amyloid plaque burden on large-scale brain network properties in MCI subjects. Our analysis identified reduced connectivity and lower network efficiency in subjects with higher amyloid load. While this study examined functional networks based on glucose utilization, future studies will evaluate similar network properties derived from resting-state BOLD and/or ASL perfusion MRI data. Based on this study, network analysis of functional imaging data may serve as a sensitive imaging biomarker for the assessment of therapeutic intervention in early disease studies.

IC-P-019COMBINATION OF GRAY MATTER DENSITY AND
GLOBAL COGNITIVE INFORMATION AS
A BETTER PREDICTOR OF THE CONVERSION TO
ALZHEIMER'S DISEASE IN MILD COGNITIVE
IMPAIRMENT: A TWO-YEAR FOLLOW-UP STUDY

Bo Kyung Sohn¹, Dong Young Lee², Eun Hyun Seo², Il Han Choo², Young Min Choe², Jae-Min Shon², Jae-Hwa Bak³, Jong Inn Woo², ¹Seoul National University, Seoul, South Korea; ²Seoul National University Hospital, Seoul, South Korea; ³Seoul National University Hospital, Seoul, South Korea.

Background: This study aimed to investigate Alzheimer' disease (AD) prediction ability of clinical assessment, neuropsychological tests, apolipoprotein E (ApoE) genotyping, [18 F] fluorodeoxyglucose positron emission tomography (FDG-PET), structural MRI, and diffusion tensor imaging (DTI) at baseline and to search the most effective model to predict Alzheimer's disease (AD) in mild cognitive impairment (MCI) patients after a two-year follow-up period. **Methods:** Thirty two elderly subjects with MCI and 26 cognitively normal (CN) elderly individuals were evaluated at baseline with a sum of boxes score of clinical dementia rating (CDR-SOB), eight CERAD neuropsychological tests, the ApoE genotyping, FDG-PET, MRI, and DTI, and followed up annually for 2 years. Voxelbased statistical comparisons of baseline FDG-PET, MRI, DTI data were performed between AD converted MCI (MCIc) and non-converted MCI (MCInc). A series of logistic regression analyses were conducted to examine the AD prediction ability of each assessment modality alone and various combinations of modalities. Results: Of MCI patients, 12 (37.5%) were converted to clinically evident AD (MCIc) and 20 (62.5%) were still in the MCI state (MCInc) after the 2-year follow-up. Compared with MCInc, MCIc showed reduced regional cerebral glucose metabolism (rCMglc) in the right inferior parietal lobule, right cingulate gyrus and left angular gyrus at baseline, reduced gray matter (GM) density in right inferior parietal lobule, lower CDR-SOB score, and lower mini-mental state examination (MMSE) score. The ApoE genotyping and CERAD neuropsychological tests except MMSE, and fractional anisotropy (FA) and mean diffusivity (MD) values derived from DTI were not significantly different between MCIc and MCInc. In terms of AD prediction after two-years in MCI, logistic regression analyses showed that the combination model including right inferior parietal lobule density on MRI and MMSE score (accuracy: 87.5%) was significantly better than any other models. Conclusions: The combination of GM density information on MRI and global cognitive score is probably the most cost-effective model to predict Alzheimer's disease (AD) in mild cognitive impairment (MCI) patients after a two-year follow-up period.

IC-P-020

A VOXEL-BASED MORPHOMETRY STUDY OF VOLUMETRIC MRI IN FAMILIAL ALZHEIMER'S DISEASE

David Cash¹, Gerard Ridgway², Natalie Ryan², Kirsi Kinnunen³, Tom Yeatman⁴, Ian Malone¹, Tammie Benzinger⁵, Robert Koeppe⁶, Clifford Jack Jr.⁷, Marc Raichle⁵, Daniel Marcus⁸, John Ringman⁹, Paul Thompson⁹, Andrew Saykin¹⁰, Stephen Salloway¹¹, Stephen Correia¹¹, Keith Johnson¹², Reisa Sperling¹³, Peter Schofield¹⁴, Colin Masters¹⁵, Christopher Rowe¹⁶, Victor Villemagne¹⁶, Ralph Martins¹⁷, Adam Brickman¹⁸, Richard Mayeux¹⁹, Michael Weiner²⁰, Randall Bateman⁵, Alison Goate²¹, Anne Fagan⁵, Chengjie Xiong⁵, Nigel Cairns²¹, Virginia Buckles⁵, Krista Moulder⁵, John Morris⁵, Martin Rossor¹, Sebastien Ourselin¹, Nick Fox¹, ¹University College of London, London, United Kingdom; ²UCL Institute of Neurology, London, United Kingdom; ³University College of London, Institute of Neurology, London, United Kingdom; ⁴University College of London, London, United Kingdom; ⁵Washington University School of Medicine, St. Louis, Missouri, United States; ⁶University of Michigan at Ann Arbor, Ann Arbor, Michigan, United States; ⁷Mavo Clinic, Rochester, Minnesota, United States; ⁸Washington University School of Medicine, St. Louis, Missouri, United States; ⁹UCLA, Los Angeles, California, United States; ¹⁰Indiana University, Indianapolis, Indiana, United States; ¹¹Brown University, Providence, Rhode Island, United States; ¹²MGH HMS, Boston, Massachusetts, United States; ¹³Harvard Medical School, Boston, Massachusetts, United States; ¹⁴Neuroscience Research Australia, Randwick-Sydney, Australia; ¹⁵University of Melbourne, Melbourne, Victoria, Australia; ¹⁶Austin Health, Melbourne, Australia; ¹⁷Edith Cowan University, Perth, Australia; ¹⁸Columbia University, New York, New York, United States, ¹⁹Columbia University Medical Center, New York, New York, United States; ²⁰University of California, San Francisco, San Francisco, California, United States; ²¹Washington University School of Medicine, St. Louis, Missouri, United States.

Background: DIAN (Dominantly Inherited Alzheimer's Network) is an international longitudinal study of autosomal dominant Alzheimer's disease that involves serial clinical, imaging and biomarker studies of individuals at risk of disease and those already mildly affected. Understanding the patterns of atrophy associated with the disease will be important for studies and trials tracking atrophy progression in these cohorts. **Methods:** 158 participants from the DIAN cohort were included of whom 55 were non carriers (NC); 59 were asymptomatic carriers (aMut+) with a Clinical Dementia Rating (CDR) of 0; and 44 were symptomatic carriers (sMut+) with CDR >0. Voxel based morphometry (VBM)

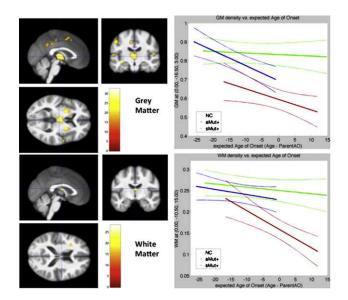


Figure. Summary of VBM study. Left column: centered on a significant cluster in the thalamus. A significant cluster in the putamen can also be seen. Right: significant cluster in the fornix. The plots below are the linear fit (with 95% confidence interval) of the tissue densities with respect to expected age at onset.

of baseline MR imaging was used to investigate differences in grey matter (GM) and white matter (WM) between the different groups. Tissue segmentation and spatial normalization of volumetric T1-weighted images were performed using the VBM8 toolbox of SPM8. One participant was excluded due to severe WM hyperintensities. Images were smoothed using a 6mm full-width-half-maximum Gaussian kernel. Statistical parametric maps were generated of the GM and WM differences between groups, controlling for total intracranial volume (TIV), gender, acquisition site, and APOE genotype. An interaction term between group and the expected age of onset (current age - parental age of onset) was included. Results: Significant clusters (P<0.05 Family-Wise Error corrected) in the GM were observed between groups in the thalamus, precuneus, putamen, and amygdala. Most clusters were primarily driven by differences between the sMut+ and NC group (see Figure). No significant clusters were observed between the aMut+ and NC groups. There were also clusters in the parahippocampal/hippocampal regions. WM differences between groups were observed in the fornix superior to the thalamus, the cingulum inferiorly adjacent to the hippocampus, the splenium adjacent to the cingulate and areas adjacent to the precuneus. **Conclusions:** Symptomatic subjects show widespread differences in GM volume including deep grey structures (e.g. thalamus and putamen) and the precuneus; notable white matter changes included the fornix and the cingulum. The deep grey changes are of interest as PIB PET findings suggest early amyloid deposition in these structures.

IC-P-021 RATES OF BRAIN AND HIPPOCAMPAL ATROPHY IN PRESYMPTOMATIC FAMILIAL ALZHEIMER'S DISEASE: ACCELERATION AND MUTATION EFFECTS

David Cash¹, Yuying Liang¹, Kelvin Leung², Natalie Ryan², Marc Modat¹, Manuel Cardoso³, Tom Yeatman¹, Sebastian Crutch¹, Felix Woodward¹, Ian Malone¹, Jonathan Bartlett⁴, Kirsi Kinnunen⁵, Martin Rossor¹, Sebastien Ourselin¹, Nick Fox¹, ¹University College of London, London, United Kingdom; ²UCL Institute of Neurology, London, United Kingdom; ³University College of London, London, United Kingdom; ⁴London School of Hygiene and Tropical Medicine, London, United Kingdom; ⁵University College of London, Institute of Neurology, London, United Kingdom.

Background: Subjects at risk of familial Alzheimer's Disease (FAD) offer the best chance to observe the earliest effects of the disease and would be candidates for presymptomatic trials. Currently there is relatively little longitudinal data available on subjects in the earliest stages of disease. Here, we analyze the atrophy rates of key structures in a local longitudinal FAD cohort which has been followed for up to two decades. Methods: 36 individuals (24 from PS1 families and 12 from APP families, mean (SD) age 46.3 (8.6) years) with FAD or at risk were recruited into the study. Each had 2 to 11 MRI scans approximately annually and were followed for up to 16 years. For each subject the scan at first onset of symptoms was identified. Forty-four age- and sex-matched control subjects (mean [sd] age 48.4 [11.2] years) were scanned twice on average 1.3 [0.6] years apart. Brain, ventricles, and hippocampi were segmented using automated techniques. Linear mixed models were fitted to estimate atrophy rates according to time to symptom onset and to test for acceleration in rates. The models also adjusted for TIV and scanner. Results: At time of symptom onset, mutation carriers already had significantly increased rates of atrophy for all structures compared to controls (see Table). Whole brain atrophy rates at symptom onset were similar in the two mutation groups (APP 1.51%/year (95% CI 0.92, 2.10), PS1 1.25% (0.76, 1.74)), but there was evidence of greater acceleration in rates in PS1 subjects (P<0.001). Hippocampal atrophy was greater at symptom onset in APP (2.17% (1.68, 2.65)) compared to PS1 (1.13% (0.70, 1.56)), with evidence of acceleration in rates in both groups. Rates of ventricular enlargement were similar in APP (13.5% (9.1, 18.1)) and PS1 (11.6% (7.9, 15.4)), but there was evidence of greater acceleration in PS1 (P = 0.006). Conclusions: Increased atrophy rates,

Table

		Controls $(n = 44)$	APP $(n = 12)$	PS1 (n = 24)
Demographics	# of scans	88	56	93
	Male %	20 (45.5)	6 (50)	10 (41.7)
	Age at First Scan	48.4 (11.2)	51.3 (5.5)	43.8 (8.9)
Whole Brain	Atrophy rate (%/year) at symptom onset	-0.01 (-0.27, 0.25)	1.51 (0.92, 2.10)	1.25 (0.76, 1.74)
	Acceleration of atrophy rate (%/year ²)	-	-0.03 (-0.09, 0.03)	$0.17 (0.09, 0.25)^+$
	p-value for acceleration	-	0.40	< 0.001
Ventricles	Atrophy rate (%/year) at symptom onset	0.2 (-1.9, 2.3)	13.5 (9.1, 18.1)	11.6 (7.9, 15.4)
	Acceleration of atrophy rate (%/year ²)	-	0.41 (0.13, 0.69)	$1.14(0.69, 1.59)^+$
	p-value for acceleration	-	0.004	< 0.001
Hippocampi (L+R averaged)	Atrophy rate (%/year) at symptom onset	-0.09 (-0.40, 0.23)	2.17 (1.68, 2.65)*	1.13 (0.70, 1.56)
	Acceleration of atrophy rate (%/year ²)	-	0.23 (0.13, 0.32)	0.20 (0.08, 0.31)
	p-value for acceleration	-	< 0.001	0.001

In all three structures the atrophy rate at symptom onset was significantly higher than controls. The p-values listed test whether the value for acceleration is non-zero. A * indicates that there is strong evidence that hippocampal atrophy rates at symptom onset differ between APP and PS1 (P = 0.001). A ⁺ indicates that there is evidence that the acceleration rates of whole brain (P < 0.001) and ventricular atrophy (P = 0.006) differ between APP and PS1.