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NUMBER of linear programming problems of importance to agri-
culture belong to the general class called assignment problems:
i.e., those in which specified requirements (in different uses, at different
locations, etc.) are to be optimally satisfied by the assignment of amounts
of a homogeneous resource available for the purpose (from different proc-
esses, at different locations etc.) The transportation problems, in which
deficiencies at specified locations are to be satisfied by the shipment of
surpluses from specified locations in such fashion as to minimize transpor-
tation cost, is a prototype of the assignment problem.

Several methods for the solution of such problems have been dis-
cussed.! In this paper a new procedure will be illustrated in which the
directed graph is used as the central tool. Although the direct application
of this method is limited to relatively small problems,? as a pedagogical
device the graph is without equal. The graph provides the student with
a concrete expression of the problem, and gives insight into the steps of
the solution entirely lacking in abstract algebraic methods. In the fol-
lowing presentation the pedagogical aspects of the method will be
emphasized.

A directed graph is defined as any collection of points, some of which
are connected by directed lines which we may, for simplicity, call
“arrows.” Each of the figures of Figure 1 is a directed graph. A consists
of four points with arrows pointing out from point (1) to each of the
others; the three points of B are connected by two arrows emanating
from point (3), the other going from (1) to (2). Although four of the five
points of C are connected by arrows, the fifth point is isolated.

In general any number of points and any pattern of interconnecting
arrows is permissible in a graph. Moreover the only thing that matters
is the identification of the points and the arrows. The physical representa-
tion, e.g. the selection of lengths and shapes for the arrows, the layout
of the graph on the page, etc., may be selected to suit convenience, For
example, Graph D of Figure 1 is the same as Graph A.

!See, for example, Milton M. Snodgrass and Charles E. French, “Simplified
Presentation of “Transportation-Problem Procedure’ in Linear Programming,” Journal
of Izlarm Economics, Vol. 39, No. 1, January, 1957, pp. 40-51, and the literature there
cited.

2 A problem involving N locations will require N(N-1) entries in Table L (See
below.) Although half of these are simply copied with a change in sign, the burden
of computation still increases approximately as the square of the nurber of locations.
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The study of graphs and their properties involves an extensive mathe-
matics.* For the present purpose, however, it is only necessary to dis-
tinguish two properties of graphs. A graph is called connected when,
for every pair of points in the graph, it is always possible to find a path
of arrows leading from one to the other. It is not required that this path
coincide with the directions of the arrows over which it passes, nor does
it matter how many intermediate points are passed through on the trip.
If we think of the arrows simply as members that connect the points
together, a connected graph is any one that can be picked up in a single
piece. In Figure 1, graphs A, B, and D are connected; graph C is not.

A graph is cyclical, or contains a cycle, whenever there exists a closed
path of arrows permitting a round trip which can be followed without
passing over the same arrow twice. B is a cyclical graph; the others of
Figure 1 are not. Note that the cycle need not follow all arrows in the
same direction.

The great advantage of using the graph is precisely that it can be
represented by points and lines on paper. Discussion in the text, however,
and any algebraic manipulation require an alternative notation. For this
purpose we will denote a point by enclosing its number in parentheses:
e.g. (4). An arrow will be represented by A,;, the first subscript designat-

* An excellent introduction to graph theory with particular emphasis on applications
in social sciences will be found in Frank Harary and Robert Z. Norman, Graph
Theory as a Model in Social Science (Research Center for Group Dynamics Mono-
graph No. 2), Institute for Social Research, University of Michigan, Ann Arbor,
1953.
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ing the origin of the arrow, the second the point at which the tip rests:
A;. is the arrow extending from (5) to (2). Finally, it is convenient to
refer to the direction of a given path over an arrow. If the direction of
a path coincides with the direction of the arrow, the arrow is said to
be traversed in a positive direction. The arrow is traversed negatively
when the direction of the path is opposed to the direction of the arrow.

The nature of the transportation problem is generally known and we
need make only a few remarks about it. We are given a set of output
(export, surplus, or source) points, each endowed with a specified amount
of homogeneous output; also a set of input (import, deficit, or disposition)
points, each with a specified requirement of the homogeneous commodity
as input. We are also given a list of possible point-to-point shipping paths
and the unit cost of shipping along each. We are required to assign
quantities of goods to the available shipping paths in such fashion (a) that
the requirements of the input points are satisfied and (b) that the total
shipping cost is a minimum.

To facilitate comparison of the graphical method with other techniques
we will illustrate the procedure with the same example used by Snod-
grass and French. Their data for the problem are as follows:*

Point Avdilable Output Required Input
1) - 20
(2) - 10
(3) 5 -
(4) 25 -

Unit Shipping Costs

From/To (1) (2) (3) (4)
(1) - 2 4 6
(2) 2 - 8 2
(3) 4 ¢] - 4
4) 6 2 4 -

The first step in the graphical procedure is to set up a format such
as Table I to receive calculations, In column (1) we list all available
assignments (routes) and in column (2) record the cost of each route as
given in the shipping-cost table. The remaining columns will be ignored
for the moment. We obtain our first basis or tentative solution as follows:
on a sheet of paper set down the output points on the left and the input
points on the right, noting the quantities available or required at each
point. The order in which the points in each set are placed is immaterial.
We now construct a graph on these points by connecting an arrow from
the top output point to the top input point. (See Figure 2.) This arrow

“Snodgrass & French, loc, cit., p. 42. The shipping cost matrix used happens to
be symmetrical. In general this need not be so, and the symmetry plays no role in
the solution.
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TABLE 1
1 ®@) 3 @ (8 (6 (" ®
Bagis 1 Basis 2 Basis 3
Route Direct . . .
unit cost Equiv. Net Equiv, Net Equiv. Net
cost saving cost saving cost saving

Al 2 —4 -— -4 - —2 -

A18 4 —10 - —4 - —4 -

Al4 ] —8 - -6 - —4 —
A2l 2 4 2 4 2 2 0

A23 6 —6 — 0 - —~2 -

A 24 2 —2 - -2 - —2 -
A8l 4 10 6 4 0 4 0
A 82 6 6 0 0 - 2 —4

A 34 4 4 0 -2 - (1] -
A4l [} 6 0 6 0 4 -2
A4e 2 2 0 2 0 2 0

A48 4 —4 - 2 -2 0 -

represents the use of this output point to supply the input requirements
of the top input point. If there is more than enough output for this pur-
pose, connected the top output point to the next input point, and con-
tinue making connections until the top output is exhausted. The amount

QUTPUT INPUT

5 :
5 ovallable 3 IO required

=® 20 required

. 20
25 available 6]
Fic. 2
being assigned to each arrow is marked above it and the unit cost is
recorded underneath in brackets. These will be required later in the
solution. We then follow with connections from the next output point etc.,
until all outputs are assigned to inputs. In this way we form a basis for
the solution. That is, we obtain a program that will supply the input as
required, although not in general at minimum cost. At this point the
program is represented by a directed graph that is (a) connected and

(b) without cycles.®
* The graph will have no cycles because of the nature of its construction. Some-
times, however, the graph is not connected, i.e. some proper subset of the output
goints will precisely .saﬁsfy‘some proper subset of the in ut requirements. Thxs is
egeneracy. It is avoidable in a number of ways, one of which will be noted in our

concluding remarks. We will assume for the present that proper steps have been
taken to preclude its occurrence.
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Since the amounts shipped and the unit costs have been recorded, the
total shipping cost is readily calculated from the graph; (5 X 6) + (5 X 2)
+ (20 X 8) = 160. In order to determine if this cost can be reduced, we
now ask whether or not we could gain by utilizing some route not in-
cluded in the basis. For example, what would happen if we sent a unit
over Aq.P In the first place if a unit is sent over As,, only 4 units could be
sent over Ag,. Therefore an additional unit will have to be sent over Ay,
in order to keep (2) supplied. Another way of expressing this is to say
that if the route A, is to be included in the shipping program, for every
unit sent over it, we must remove a unit from route A, and “remove a
negative unit” (i.e. add a unit) to A,,.

oUTPUT INPUT

5 available 10 required

25 available 20 required

Fic. 2-A

Figure 2-A shows the shipping program modified to include one unit
routed over As.. The amount sent over As, has been decreased by one
and the amount moving over A, is decreased by minus one. The program
still exactly supplies the required inputs from the given outputs. The
relationship among A, As: and Ay, is expressed as Asy = Age — A,,. This
expression means that shipping a unit over A, is the equivalent, so far
as accomplishing the program is concerned, of shipping an extra unit
via A;. and one less unit via Ay As — A, may be called the basis
equivalent of As,.

Whenever required, the unique equivalent of any route A;; may be
written down at a glance. We merely follow the path of arrows from (i)
to (j), writing down the arrows traversed positively with a plus sign
and those traversed negatively with a minus sign.® Thus in Figure 2,
Asy = —An + Ay Ais = —Au T A — Agy A = ‘_A42, ete.”

*That such a path always exists is guaranteed by the fact that the graph is
connected. That the path is unique follows from the fact that the graph contains
no cycles.

"In an expression like Aw= —An we can see most clearly the meaning of
equivalence of routes. The expression means that if, in a program already involvin§
shipments from (4) to (2), we include shipments from (2) to (4), every unit move
over the latter route must be sent right back again over the former in order to keep
the requirements of (2) supplied.
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Understanding the nature of equivalent routes can also be approached
in this way: In a connected graph with no cycles, the insertion of a new
arrow will always complete one cycle. The equivalent of the inserted
arrow is then the remainder of the cyclic path.

Now that an equivalent for each Ay can be found, we may ask if it
would pay to insert A in the program and remove its equivalent. To
determine this we must compare the cost of Ay with the cost of its
equivalent. If the former is smaller than the latter, a gain can be had
from the substitution. The cost of A, is already recorded in Table 1.
We need only compute and record the cost of its equivalent. It follows
from the foregoing that this is readily done by inspection of the graph.
We follow the path of arrows from (i) to (j), summing the costs: those
associated with arrows traversed positively enter the total positively,
those with a negative path enter the total negatively. The result is the
unit cost of the basis equivalent and indicates the gross amount that
could be saved if the alternate route were followed. The cost of the basis
equivalent of A;, is thus 6 — 2 = 4. Le., 4 per unit is the gross saving
associated with route Ag,. This is not, of course, the net unit saving,
since the direct cost of As;, must be paid before any saving can be real-
ized. The net unit-cost saving from any Ay is the unit cost of the
basis equivalent minus the unit cost of Ai;. Thus the net saving associated
with the introduction into the program of one unit shipped via A, is
4 —4 = 0, and there is no net gain to be had from the substitution. When
the unit cost of the basis equivalent is negative there is no possibility of
positive net saving, since even if the unit cost of A,; were zero, its use
would entail an increase in cost.?

These costs are quickly computed from the graph, but they need not
all be independently calculated. The basis equivalent of A, is clearly the
negative of the basis equivalent of A,;, and if the cost of one has been
computed, the other may be immediately set down with merely a sign
change. Our next step is to compute column (3) of Table 1 by inspection
of the graph, and, where required, obtain column (4) by subtracting the
entry in column (2) from the entry in column (8).°

Inspection of column (4) indicates that a net saving of 2 per unit would
be associated with introducing route A,, in the program; a net saving

*If we like we can think of any route that enters in a basis equivalent with a
negative sign as complementary to the given route. Thus, since Au=Aun— Aa,
As is complementary to Au. Negative costs of basis equivalents are always associated
with such complementary routes, arising because an increase in the use of As re-

uires an increase in the use of Ae which, despite the saving from reduction of
3ﬁpping along A, may well entail an increase in cost even though the unit cost of
Ay is small.

* Where column (3), the cost of the basis equivalent is a negative number, the

net saving will always be negative and no calculation need be made in column (4).
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of 6 per unit with the introduction of A;, in the program, and that no
other substitutions would be profitable. Which substitution should be
made? In reaching this decision the experience and judgment of the pro-
grammer is of considerable help. In the abscnce of other criteria a good
general policy is to make the substitution with the largest saving in unit
cost. Thus we will elect to substitute A;; in the program in place of its
basis equivalent. Since we gain 6 in net saving for every unit sent over
A, we want to divert as many units as possible to that route. What are
the limitations? In order to determine this we inspect the graph and note
the basis equivalent of As; = Asz — Awz + Ay, This says that diverting a
unit to Ag; permits us to remove a unit from A;; and Ay, provided that
we add (remove a negative unit) a unit to A;;. We can remove no more
units from A;, or Ay than are already moving over these routes. In-
spection of the graph shows that 5 units are moving over As, and 20 units
over A,;. We can divert 5 units to A;,, since we can reduce the traffic on
A, by five units, as required. But we clearly cannot reduce the trafic on
A;; by more than this, and 5 is the maximum number of units we can
divert to A;;. This gives us our second basis: 5 units shipped over Asy, 15
units over A,; and 10 units over A,;.1°

ouTPUT INPUT
5 )
5 avoitable @ 20 required
25 available [2] 10 required

A new graph (Figure 3) is constructed embodying the new program.
Note that we have exercised our privilege of rearranging the points in a
more convenient configuration. Computation of the cost of the new pro-

gram
(5 X 4) + (15 X 8) + (10 X 2) = 130

* The advantage of the graph is that it makes this operation of substitution a
common sense procedure. Once this is grasped, the algebraic treatment can be
approached with confidence. In the algebra of the graph the substitution is treated
as follows: The original program was 5An + 5Ae +20Aa. In order to save cost we
will add 0As to the program and subtract its equivalent 6(Az — Aw -+ Au), so the
new program is 8As 4 (5—0) Ax + (54 0) Aa+ (20— 0) Aa. 8 is now maximized
subject to the condition that no coefficient in the new program be negative. Max. 8 =5
and the new basis becomes 5As + 10Ax -+ 15 Aa.
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verifies that we have made a net saving of 6 per unit for five units di-
verted to As.. The process of evaluating equivalents is now repeated with
the new graph, and the results entered in columns (5) and (6) of Table I.
The only profitable substitution is now A, = —Ays + As. The graph
shows that 15 units of A,, can be substituted into the program and the
new program becomes 15 A,; + 25 A, +5As, giving a total net saving
of 30. The new program is shown in Figure 4.

The evaluation process is repeated in columns 7 and 8 of Table 1. No
profitable substitutions remain, and program 8 is a least-cost program,
the total transportation cost having been reduced to 100.

QUTPUT INPUT

)

5 avaibable 20 required

25 avaibable 10 required

Fic. 4

Concluding Remarks

The graphic technique is merely one method of solving the assignment
problem and as such it is subject to the general considerations pertinent
to any such solution. We have supposed that total a vailable output is
exactly equal to required input. In general this need not be so. If output
exceeds requirements, we convert the problem to one of equality by setting
up a dummy disposal point with input requirements equal to the excess
supply. A unit “shipped” to this point is actually assigned to disposal
(storage, dumping, etc.) at the point from which it is shipped. The unit cost
of this assignment may be set as appropriate. In order to avoid nonsense
solutions, however, no routes out of the disposal point should be per-
mitted.

One interesting by-product of the graphical technique is the illustra-
tion of the problem of degeneracy. In terms of the graph, a problem
degenerates whenever it is possible to represent a program by a non-
connected graph. The problem shown in Figure 5 is degenerate. The
effect of degeneracy is seen as soon as we try to determine equivalent
costs of certain routes. For example we cannot calculate an equivalent
cost for As; or Aye or for any route that would connect the graph, since
there is no alternative path to follow. The problem of degeneracy can
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OUTPUT INPUT
5 .
5 ovailable 8 required
11 available =@ 8 required
IS5 ovailable (3 15 =8 15 required

Fic. 5

always be avoided by changing the quantities of the problem very
slightly. One way to accomplish this is to divide the last significant digit
in the measurement of quantities (outputs and inputs) by 2 m (where m is
the number of output points) and add d, the first significant digit in the
answer, to the supply of each of the output points and (m X d) to the
requirements at an arbitrarily selected input point. The resulting problem
always requires a connected graph for its solution.”* When the optimum
solution has been reached in terms of these adjusted quantities, the an-

OUTPUT INPUT
. 51 .
5.1 availoble @ 8.3 required
IL} available 8.0 required
15.1 available =@ 150 required

Fic. 6

swers are rounded to the original accuracy and the result is the optimum
program for the original problem. This may be applied to Figure 5;
m =3, The last significant digit in the quantities is 1. 1/6 = .16, the first
significant digit of which is .1. Hence .1 is added to each supply and .3
to input requirements at, say, (4). The result is a connected graph as
shown in Figure 6.

" Proof of this proposition is due to A. Orden. See T. C. Koopmans (Editor),
Activity Analysis of Production and Allocation, New York: John Wiley & Soms, 1951,
p. 366, footnote 3





