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Abstract 
 
Purpose: This study examined the relationships between different aspects of motor dysfunction 

(chorea, dystonia, rigidity, incoordination, oculomotor dysfunction, dysarthria, and gait 

difficulties) and functional status in persons with Huntington disease (HD). 

Methods: 527 persons with HD completed the UHDRS Motor, Total Functional Capacity and 

Functional Assessment.  

Results: Confirmatory factor analysis indicated that a 4-factor model provided a better model fit 

than the existing 5-factor model. Exploratory factor analysis identified 4 factors from the motor 

scale: Dystonia, Chorea, Rigidity, and a General Motor Factor. Regression indicated that 

dystonia (β’s=-0.47 and -0.79) and rigidity (β’s=-0.28 and -0.59) had strong associations with 

function, whereas chorea had modest correlations (β’s=-0.16 and -0.15). 

Conclusions: Dystonia and rigidity have stronger relationships with functional status than 

chorea in persons with HD. Findings underscore the need for further research regarding the 

effects of dystonia and rigidity on functioning. 

 

Key Words: Health-related quality of life; HDQLIFE; Huntington disease; chorea; dystonia; 

motor function  
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Huntington disease (HD) is an autosomal dominant neurodegenerative disease characterized 

by progressive motor, behavioral, and cognitive decline.[1] Motor dysfunction is multifaceted, 

involves all body regions, and profoundly affects day-to-day function. Most studies and 

interventions focus on chorea,[2, 3] which can appear as fidgety, jerky, or dance-like 

movements. Chorea and dystonia are the only motor symptoms known to respond to 

pharmacotherapy.[4-6] By mid- to late-stage HD, motor problems steadily worsen[1, 7] even if 

chorea remains controlled.[8] Motor dysfunction is a major driver of functional loss in HD.[7, 9, 

10] 

  

The UHDRS Motor Scale is one of the most commonly used assessments in HD. While the 

motor scale includes clinician ratings of eye movements, chorea, dystonia, rigidity, speech, gait, 

postural stability, and bradykinesia, prior research suggests that the motor scale could be 

consolidated and further improved.[11, 12] The present study builds on this research by 

examining UHDRS motor and function ratings in a large sample of people with HD. The goal 

was twofold: 1) to repeat a factor analysis on the UHDRS motor scale, comparing it with the 5 

factors identified previously,[11] and 2) to determine which motor factors best relate to functional 

status in HD.  

 

Methods 

Participants. Five-hundred-twenty-seven individuals with premanifest or manifest HD were 

included in this analysis. Participants were at least 18 years of age, able to read and 

comprehend English, and capable of providing informed consent. Participants were recruited 
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from eight HD treatment centers and through the Predict-HD study.[13] Electronic medical 

records,[14] the National Research Roster for HD, and community outreach were utilized to 

bolster recruitment efforts. 

 

Measures. 

The UHDRS motor scale is a 15-item clinician rating scale.[15] Total scores (TMS) range from 0 

(no motor difficulties) to 124 (greater motor difficulties). Participants with a diagnostic confidence 

level on this scale of 4 (≥99% confidence of unequivocal motor signs) were classified as 

manifest HD. 

 

The UHDRS Total Functional Capacity (TFC) [16] is a 5-item clinician rating of day-to-day 

functional status. TFC scores were used to examine functional status and to classify manifest 

HD participants as either early-stage (sum scores of 7-13) or later-stage (sum scores of 0-6).  

 

The UHDRS Functional Assessment (FA) includes 25-items for common tasks related to 

occupation, finances, average daily living, domestic chores, and care level. Clinician-rated 

scores range from 0-25 (higher scores indicate better function; Note. FA scores were missing 

for the n=170 Predict-HD participants that were enrolled in this study given established ceiling 

effects in premanifest HD). 
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The Stroop Color Word Interference Test [17] provides measures of psychomotor speed and 

executive function; higher scores reflect better performance. We examined raw scores on the 

two processing speed components (Color raw score plus Word Naming raw score).  

 

Statistical Analyses. Confirmatory factor analysis (CFA) was used to determine whether we 

could replicate the published 5-factor structure.[11] Good fit was defined as: 1) comparative fit 

index (CFI)>0.90, 2) root mean square error of approximation (RMSEA)<0.1,[18-21] and 3) 

residual correlations <.15.[22-24] This was followed by an exploratory factor analysis (EFA) with 

a PROMAX rotation. Eigenvalues >1 and the number of factors before the break in the scree 

plot helped identify discrete factors. Item loadings (criterion >0.4) established which items 

belonged to which factor. In cases with substantial cross-loadings, the item with the highest 

loading was retained. Given that the existing 5-factor model was based solely on a sample of 

manifest HD participants,[11] CFA was conducted using only manifest HD participants in this 

sample; EFA was conducted using the combined sample. These analyses were conducted 

using MPLUS 6.11.[25] 

 

Linear regression (using SAS 9.4) was used to examine the relationship of the identified factors 

(through the procedure described above) and functional outcomes (TFC and FA). Eight sets of 

simple linear regression models were conducted; each of the four factors that were identified as 

part of the previous analysis were regressed on both outcomes of interest (TFC and FA). Two 

separate multiple linear regression models were conducted that included multiple predictors (the 

discrete factors identified in the previous analysis) and the criterion measure (TFC or FA). All 
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simple linear regression and multiple regression models were conducted twice: once without 

covariates, then again with Stroop added as a covariate. 

 

Results 

Table 1 provides descriptive data for the sample.  

 

The initial CFA (in manifest HD participants) did not support the existing 5-factor model 

(CFI=0.93; TLI=0.93; RMSEA=0.14). The follow-up EFA (using the full sample) supported a four 

factor model (Table 2). CFA (using the full sample) on this new 4-factor model indicated a small 

improvement in model fit (CFI=0.94; TLI=0.94; RMSEA=0.13). Akaike Information Criterion 

(AIC) provided additional support for the four factor model over the five factor model 

(AIC=12,945.58 in 5-factor model verses AIC=12,769.22 in the 4-factor model) with regard to 

manifest participants. Factor 1 included the 7 chorea items (i.e., Chorea); Factor 2 included the 

5 dystonia items (i.e., Dystonia); Factor 3 consisted of 2 rigidity items (i.e., Rigidity); and Factor 

4 consisted of the remaining 17 items representing general motor function (i.e., General).  

 

Findings from the simple linear regression models indicated that each of the four factors were 

significant predictors of the Total Functional Capacity and the Functional Assessment scale 

(Supplemental Table A). When cognition was considered in the models, the pattern of findings 

was the same except for chorea (which was no longer a significant predictor of the Functional 

Assessment Scale; Supplemental Table B). We thus concluded that more dystonia, rigidity, and 

general motor manifestations are associated with worse function. 
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Next, all four factors plus cognition were entered into the same multiple linear regression model. 

The general factor was removed from the model due to its high collinearity. Therefore, the 

refined multiple linear regression model examined the impact that chorea, dystonia, and rigidity 

had on overall function (as evaluated by the TFC and FA) while controlling for cognition. For this 

combined model (controlling for cognition) dystonia and rigidity remained significant predictors 

of both the TFC and FA; dystonia was the stronger of the two predictors for both (Supplemental 

Table C). 

 

Discussion 

The purpose of this study was to examine the factor structure of the UHDRS Motor Scale, and 

to determine which motor factors are most associated with functional status in people with HD. 

To this end, our analyses indicated that a 4-factor model provided a slightly superior fit to the 

previously published 5-factor structure [11]. Additionally, the factor structure of the 4-factor 

model was more readily interpretable than the factor structure of the 5-factor model. Our model 

included all chorea items on a single factor, whereas the chorea factor from Siesling’s model did 

not include the face or buccal-oral-lingual items (in the Siesling model these factors loaded with 

the dysarthria, pronate/supinate right hand, and retropulsion test items).[11] Furthermore, while 

both models included a more general factor, the rigidity items cross-loaded on this factor for the 

Siesling model (these items clearly comprised a solitary factor in our findings), as did the 

dysarthria and pronate supinate-right hand items (which clearly loaded on our general 

factor).[11] We suspect that the substantial discrepancy in sample size likely contributes to the 
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different outcomes of the two studies (we included 527 premanifest and manifest participants, 

whereas the Siesling study only included 69 manifest participants), and we suspect that the 

Siesling analysis may have been underpowered (i.e., given that minimal sample size criteria for 

EFA is typically ~5 people per item analyzed[26-28]). Future studies are needed to evaluate 

replicability of our results. 

 

A strength of this study is the large cross-sectional sample across the full TFC spectrum, and 

not just earlier disease. The TFC score in particular inexorably declines as HD advances;[29] in 

fact, it is used as a surrogate for disease severity and stage after motor diagnosis. The positive 

association of all identified individual motor factors with lower function is not surprising; HD is a 

progressive disease and all individual motor features are expected to appear, then worsen, to 

varying degrees with time. What is novel in our analysis is the relative associations of individual 

motor factors with functioning (and, thereby, disease stage). We found the most striking 

association between dystonia (accounting for 9% and 14% of the variance in TFC and FA, 

respectively, after controlling for cognition) and functioning. Rigidity (accounting for 1% of the 

variance for both TFC and FA after controlling for cognition) and chorea (accounting for 1% of 

the variance in TFC and FA) more weakly related to functioning and disappeared entirely when 

cognition was added to the model. This suggests that although chorea is the hallmark motor 

manifestation of HD, and one of the only motor manifestations with FDA-approved 

treatments,[4-6] it is not necessarily the most functionally debilitating motor abnormality. Thus, 

treatments that target dystonia and rigidity have potential to substantially improve function in 

these individuals.  
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We acknowledge several study limitations. While this study employed multi-site data collection, 

participants reflected a convenience sample that may not be readily generalizable to the 

broader HD population. Furthermore, our results do not imply that dystonia and rigidity are 

necessarily major drivers of HD functioning. It may be that these are motor markers of later-

stage disease which themselves do not contribute much to loss of function. The general factor 

encompasses a large and diverse set of motor elements, including eye movements, speech, 

motor sequencing, upper limb coordination, gait, and balance. Many of these are clearly critical 

to human function; their elimination in the combined regression model was due to the strong 

correlation of this factor with the other three factors, not due to their lack of importance. 

 

Despite these limitations, findings suggest that research examining motor function in HD should 

focus more broadly on the multifaceted nature of motor dysfunction including dystonia and 

rigidity. Although chorea can impair day-to-day function in these individuals, dystonia and rigidity 

may have a greater impact on function. As such, more extensive longitudinal analysis of motor 

progression, including disease-specific quality of life measures such as HDQLIFE Chorea[30, 

31] and HDQLIFE Speech and Swallowing [30, 32], would shed light on how specific motor 

factors contribute directly to various facets of function loss. Our study also underscores the 

need for further research regarding the effects of dystonia and rigidity on functioning in HD. 
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Table 1 

 
Demographic data for the HDQLIFE participants 
 

Variable 
Premanifest Early Late All 

(n=204) (n=198) (n=125) (n=527) 

Age (Years)*     
M (SD) 42.7 (12.0) 51.4 (12.7) 54.7 (12.0) 48.8 (13.2) 
 
Sex     
Female 65.4 53.5 57.6 59.0 
Male 34.6 46.5 42.4 41.0 
 
Ethnicity*      

Not Hispanic or Latino 92.7 92.9 96.8 93.7 
Hispanic or Latino 1.5 4.6 0.8 2.5 
Not Provided 5.9 2.5 2.4 3.8 
     
Race (%)*     
White 97.5 96.5 92.8 96.0 
African American 0.0 2.0 6.4 2.3 
Other 2.0 1.5 0.0 1.5 
Unknown 0.5 0.0 0.8 0.2 
 
Education (Years)*     
M (SD) 15.9 (2.9) 14.7 (2.8) 14.2 (2.6) 15.1 (2.9) 
 
Marital Status*      
Single, Never Married 15.8 15.2 11.8 14.6 
Married 67.4 52.9 61.3 60.5 
Separated/Divorced 13.8 25.1 23.5 20.4 
Widowed 0.0 2.6 3.4 1.8 
Living with Partner 3.0 4.2 0.0 2.7 
     
Years Since Diagnosis  (n=154) (n=75) N=230 
M (SD) -- 3.14 (3.74) 5.99 (4.62) 4.05 (4.25) 
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CAG Repeats* (n=190) (n=145) (n=56) (n=391) 
M (SD) 42.2 (2.9) 43.1 (3.9) 44.4 (6.6) 42.9 (4.1) 
Note. Entries in the table represent percentage of participants unless otherwise specified; 
* indicates that there were significant group differences for this variable.  
Premanifest participants (M = 42.7, SD = 12.0) were significantly younger than early-
stage (M = 51.4, SD = 12.7), who were significantly younger than late-stage participants 
(M = 54.7, SD = 12.0; F [2, 524] = 44.25, p< .0001); early-stage (M = 14.7, SD = 2.8) and 
late-stage (M = 14.2, SD = 2.6) participants had 1 to 1.5 years less education relative to 
premanifest HD participants (M = 15.9 years, SD = 2.9; (F [2, 502] = 15.78, p< .0001); late 
stage had more African Americans than early-stage and premanifest groups (Fisher’s 
exact p=.0005); early-stage had fewer married participants than premanifest or late-stage, 
and premanifest had fewer widowed participants than the manifest groups (Χ2[8, N = 527] 
= 21.9, p = .0051); there were marginal differences for gender (Χ2[2, N = 527] = 5.27, p = 
.07), and ethnicity (Fisher’s Exact p=.06).  
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Table 2  
 
Factor loadings for the Total Motor Scale 
 

Item 
 
 

 
Factor 1 
Chorea 

 

 
Factor 2 
Dystonia 

 
Factor 3 
Rigidity 

 

 
Factor 4 
General 
Factor 

 

Siesling 
Factor 

Loading 

Ocular Pursuit – Horizontal 0.049 -0.267 (0.439) 0.833 1 
Ocular Pursuit – Vertical -0.005 -0.198 (0.422) 0.859 1 
Saccade Initiation – Horizontal -0.039 -0.092 0.016 1.013 1 
Saccade Initiation – Vertical -0.021 -0.099 0.022 0.997 1 
Saccade Velocity – Horizontal -0.105 0.153 0.271 0.783 1 
Saccade Velocity – Vertical -0.106 0.140 0.281 0.770 1 
Dysarthia 0.060 0.339 0.014 0.593 1 & 2 
Tongue Protrusion 0.099 0.143 -0.053 0.665 1 
Finger Taps – Right 0.173 0.258 -0.161 0.690 1 
Finger Taps – Left 0.176 0.258 -0.177 0.692 1 
Pronate/Supinate Hands – Right 0.066 0.285 -0.063 0.716 1 & 2 
Pronate/Supinate Hands – Left 0.099 0.298 -0.067 0.690 1 
Luria (fist-hand palm test) 0.081 0.222 -0.068 0.622 1 
Rigidity Arms – Right 0.022 0.249 0.820 0.050 1 & 5 
Rigidity Arms – Left 0.040 0.228 0.805 0.102 1 & 5 
Bradykinesia – Body -0.032 0.342 0.107 0.581 1 & 5 
Maximal Dystonia – Trunk 0.086 0.493 0.194 0.234 4 
Maximal Dystonia – RUE 0.059 0.919 0.149 -0.087 4 
Maximal Dystonia – LUE 0.033 0.919 0.129 -0.053 None 
Maximal Dystonia – RLE -0.065 0.906 0.001 0.115 4 
Maximal Dystonia – LLE -0.021 0.880 0.040 0.092 None 
Maximal Chorea – Face 0.649 -0.128 -0.013 (0.440) 2 
Maximal Chorea – BOL 0.645 -0.155 -0.010 (0.465) 2 
Maximal Chorea – Trunk 0.738 -0.046 0.053 0.230 3 
Maximal Chorea – RUE 0.916 0.068 -0.156 0.095 3 
Maximal Chorea – LUE 0.949 0.050 -0.161 0.063 None 
Maximal Chorea – RLE 0.969 0.066 0.248 -0.186 3 
Maximal Chorea – LLE 0.991 0.051 0.251 -0.197 None 
Gait 0.076 (0.431) 0.022 0.519 1 
Tandem Walking 0.074 0.377 0.001 0.541 1 
Retropulsion Pull Test 0.017 0.336 0.051 0.501 2 
Note. RUE=Right Upper Extremity; LUE=Left Upper Extremity; RLE=Right Lower Extremity; LLE=Left 
Lower Extremity; BOL=Buccal-Oral-Linguistic; bolding indicates primary factors loadings (values in 
parentheses indicate that item loaded on to more than one factor). 
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