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§1. Introduction. Hilbert's inequality asserts that

aras

for arbitrary complex numbers ar. The constant n was first obtained by Schur
[5], and is best possible. Following a suggestion of Selberg, Montgomery and
Vaughan [4] showed that

aras

where the yr are distinct real numbers and

5 = min | yr — ys \.

(1)

(2)

Still more generally, they showed also that

I
ar

Yr-

as

-Ys

where

5r = min | yr - y

(3)

(4)

This latter inequality is considerably more delicate than (1), and it contains
(1) apart from the larger constant. (It remains unknown whether (3) holds
with the constant n.) We now formulate a still more general inequality which
includes (3) apart from a further imprecision in the constant.

THEOREM. Let pr = fir + iyr be complex numbers with /?r

given by (4). Then

aras

r,s Pt + Ps

0, and let Sr be

(5)
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Since the possibility that this inequality might hold was proposed by
researchers considering the distribution of zeros of L-functions on the one
hand, and those considering questions of metric Diophantine approximation
on the other, it may be hoped that this inequality will be of use in a variety of
investigations. It is not difficult to construct examples from which it may be
seen that the weaker hypotheses /?r ^ 0, | pr - p, | ^ 8r do not imply an inequality
of the above sort. On the other hand, Graham and Vaaler have established
an inequality intermediate to (1) and (5) in which 8 is given by (2) and all the
P's are equal but with the best possible constant (see [1], equation (5.11)).

COROLLARY. Under the above hypotheses, for any £/>0,

i= £ \ar\
r=\

R

z
r= 1

+ 1680 £ |a,|2<5r~'

for some 9, - l

If pr > 0 for all r then we can let U-* oc in the above.

§2. Proof of the Theorem. Let p'r= 8r + pr. We note that

1 1 _ _ , , _ , _ ,

Pr + Ps Pr + Ps

Since | pr + ps \^\jr~Js\ and | p'r + p's \ ̂  i yr ~ Y>-I, it follows that

aras

r,s Pr

aras

r,s >
r^ts

(8r + Ss)

However, Montgomery and Vaughan [4] have shown (see the estimate of 7"6

on pp. 80-81) that the expression on the right above is at most

17 2>r |
25r ' . (6)

Here the constant 17 is not optimal, and it would be interesting to know what
the best constant is. By taking yr = r, ar=\ for all r, it is evident that the best
constant is at least as large as 2^2/3.

In view of (6), it is enough to show that

I-¥Tr,s Pr + Ps

To simplify notation, from this point on we write pr for p'r, and assume that
Pr^8r. Clearly

r,s Pr + Ps
Z — p,u

are du. (7)
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Here the right-hand side is non-negative, and the terms r = s on the left contri-
bute an amount \ £ r | ar \

 2p7' ^ 5 I , I ar\
 28;'. Hence

——r>-il\a r \ <5, ,
r,s Pr + Ps

and to complete the proof it suffices to show that

By the basic duality principle, as expressed for example by taking p = q = 2 in
Theorem 286 of Hardy, Littlewood and Polya [2], the above is equivalent to
the assertion that

R

15, f(u)e~p'udu \f{u)\2du

for all/eLfo.oc)- Write s=a + it, and for cr>0 put

(8)

F(s)=\ f(u)e-sudu.
0

This function is analytic for a > 0, and is in the Hardy class H2 on the half-plane
CT^O. From the basic properties of such functions, as discussed in Chapter 8
of Hoffman [3], for example, we know that limCT̂ 0

+ F(s) exists for almost all
t\ we call its value F(it). Moreover, F(it)eL2(U), and

\F{it)\ 2dt = 2n \\f(u)\2du. (9)

For a > 0 we may express F(s) in terms of F(it) by means of the Poisson kernel:

F(s)=-
a f F(iv)

n J CTz+(v-ty
:dv. (10)

Let

\F(iv)\dv
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be the Hardy-Littlewood maximal function of F{iv). On integrating by parts
in (10) we find that

n

As \v-x\\v-t\^\x — t\\v — t\+(v — if, we find that the above is at most

In this relation we take s = pr, divide both sides by the expression in parentheses,
square both sides, and integrate with respect to x, yr — Sr/2^x^yr + Sr/2.
This gives

Yr+S,/2

f — ) \6{x)\2dx.

Yr-Sr/2

Here p\ ̂  8r and the intervals of integration are disjoint for distinct r. Hence
it follows that the left-hand side of (8) is

6{xfdx.

By the Hardy-Littlewood inequality (see p. 33 of Zygmund [6]), this latter
integral is less than or equal to 8 J ^ \F(it)\2dt. Hence by (9) we see that (8)
holds with constant 16;r(l + l/zr) = 66-265 . . . < 67. This completes the proof.

To derive the Corollary it suffices to square out, integrate term-by-term,
and apply the Theorem twice.
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