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ON THE ZEROS OF EPSTEIN'S ZETA FUNCTION

H. M. STARK

1. Introduction. Let Q(x, y) = ax2 + bxy + cy1 be a positive definite quadratic
form with discriminant d = b1 — 4ac. The Epstein zeta function associated with
Q is given by

x,y

where £' means the sum is over all pairs (x, y) of integers not both zero, and as usual,
s = a + it. Except for a first order pole at s = 1, £(s, Q) can be continued through-
out the complex plane and has a functional equation similar to that of the Riemann

b czeta function. If we put Qt(x, y) = x2 -1 xy H y2, then we see that the

zeros of £(.?, 6) and C(s, Qt) are identical. The discriminant of Qu d/a2, will be
important in discussing the zeros of £(s, Q). As in [1], we let

Potter and Titchmarsh [2] have shown that C(s, Q) has an infinity of zeros on the
line (s = \. However, the analogue of the Riemann hypothesis is not always true
for £(s, Q) since Bateman and Grosswald [1] have shown that £(s, Q) has a real zero
between \ and 1 if k > 7-0556. In fact, in the case where a, b, c are integers, d is a
fundamental discriminant, and the class number h{d) > 1, Davenport and Heilbronn
[3] had previously shown that (,{s, Q) has an infinity of zeros in the half plane a > 1
arbitrarily close to the line a = 1. We prove here two complements to these results.

THEOREM 1. There exists a number K such that if k > K then all the zeros of
C(s, Q) in the region — 1 < < 7 < 2 , — 2k ^ t ^ 2k are simple zeros; with the excep-
tion of two real zeros between 0 and 1, all are on the line a — \.

THEOREM 2. Let N(T, Q) denote the number of zeros of £(s, Q) in the region
- 1 < a < 2, 0 ^ t < T. If k > K and 0 < T < 2k, then

T / kT\
N(T, Q) = — log — + Oflog1'3 (T+ 3)flog log (T+ 3)]1'6}.

n \ne)

The constant implied by " 0 " is independent of k.

Thus, for large k, the infinity of zeros of £(s, Q) off the line a = \ found in certain
cases by Davenport and Heilbronn are far removed from the a axis; in any event,

4
the "first" — k \ogk + 0(k) complex zeros of £(.?, Q) are on the line a — \.

2. Notation and results from other sources. We use the notation f{t) -4 g(t) to
mean that there is a positive constant c such that/(?) ^ cg(t). All constants implied
by the < and 0 notations are absolute constants independent of t, a, and sufficiently
large k. We make the convention that every equation or statement involving k
should be interpreted as holding for sufficiently large k only.
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We will use the following three well-known estimates of the gamma function:
for t ^ 2 and - 1 < a < 2,

1 ^ j f f -1 /2 g-irt/2  ^  1> V-V

for * > 2 and - 1 < a < 2,

F(s) ~ °S "T \ t  J'
for f > 0,

arg F(i + iO = Hog f - t + 0(1). (5)

We will also use some refined estimates of C(s) coming from Vinogradoff's method
[6, part V and p. 226; see also 4, sections 3.10, 3.11]: there is a positive constant A
such that in the region

" log2'31 (log logO1'3'

has no zeros and

log2'3<(loglog/)1'3, (6)

log2'3/(log logO- (7)

The functional equation [4] for (,{s) is

Lttls). (8)

We see from [1] that we can write

0sC(s, Q) = C(2«) + ki~2s C(2s - 1) r ( * r ^ " " + h{s), (9)

where h(s) is an entire function. If  we put

A(*)6(i),  (10)

then (9) can be written as

<s)=f(s)+f(l-s) + g(s). (11)

As shown in [1], g(s) is an entire function and

g(s) = g(l-s) (12)
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([1] works with the function H(s) = k *g(s)). As a result,

(13)

which is the functional equation for £(s, Q). Thus both a(j) and g(s) are real valued
on the line a = \. Clearly log/(^) is well defined in the region a ^ \, s # \. We
will have occasion to use arg/(V) = Im log/(j); we use the branch of arg/(.s) which
is 0 for real s > \.

Various estimates of g(s) and h{s) are known. For s near 1, the estimate in [1]
is the best that has yet appeared, but for s well removed from the cr-axis, the estimate
of [5] is better: for n ^ 1 and a > \,

(14)

Only the special case Q(x, y) = x2 + xy + ̂ r~y2 of discriminant — p was considered
be

in [5], but the proof is the same for Q{x, y) = x2 H xy -\ y2.

3. Preliminary estimates and lemmas. If in (14) we take

log(10A:)
n =

21og T-r

then we see that for a > \ and \s\ < 2k + 3,

1

T'
For = 1 + I/log&,

n = l

•̂  log A:.

From (3) and (8), we then get for t ^ 2,

C ( - j-^-7 + if) «; (log *) ti+f1'108 *).

For - 1/logA: < a < 1 + 1/logA",

(15)

(16)

As a result, the standard Phragmen-Lindelof theorem for a strip says that for
- 1/logA: < a < 1 + 1/logA: and t Ss 2,

i. (17)
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LEMMA  1. / / \ + (log/c)-7'8 < a < 2, 2 ^ t < 2k + 1, or i/ a = 2,
0 ^ t < 2, Men \f(s)\ > |/(1 - *)| and \f(s) + / (1 - s)| > \g(s)\.

7'8. (18)

2A: + 1, we see from (3) and

Proof. From (7), if s is in the above region,

For | + (logA:)"7'8 < a < 1 +
(17) that

2 log/c
and 2

/( I - *)
b(s)

t1-2' (logA:)(20*[1 +(1/Iog*>

For 1 +
2 logA:

« (logA:)exp[-2(logA:)1'8]

< (logA:)"7'8.

a < 2 and t > 2, we see from (3), (9) and (16) that

(19)

< (logA:)-7'8. (20;

The result of (20) clearly holds for a = 2, 0 s$ t < 2 also. Lemma 1 now follow;
from (15), (18), (19) and (20).

LEMMA  2. / / i - (logA:)"7'8 < a < \ + (logA-)-7'8 and 2k ^ t ^ 2k + 1,

Im j-rr^-ll  < logA:.

Proof.

Re I  7(A\ > logk and

f'(s) ,

Thus,

and,

> logA:,

< log/c.
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LEMMA  3. There exists a number To such that 2k < To < 2k + 1 and

arg/ft + iT0) = 0 (mod 2«).

Thus f{\ + iT0) and /(•£ — iT0) are positive real numbers.

Proof. For 2k < t «; 2k + 1,

> log A:

> 2TT.

The lemma follows.

LEMMA  4. For \ < a ^ | + (logfc)"7'8 and t = To,

l/(*)l  > I/O -*)l a«rf l / (« )+ /0 -s)\ > \g(s)\

with equality in the first part if and only if a — \.

Proof. For the interval /, given by \ — (logA:)"7'8 < a ^ \ + (log£)~7/8, we
have

> log/r.

Thus if ax and <72
 a r e m h ^ I < Oi, then

In particular, | / (cr+ /To)| is strictly increasing on / and this gives the first part of
Lemma 4. In order to derive the second part of the lemma, it is convenient to intro-
duce the number

* ° = i + 3 l ^ P (22)

Then a0 is in /, and (21) therefore gives

iT 0)|. (23)

If  <r0 < a < i + (logA:)"7'8, then

iT0)| > \f(a0 + iT0)\-\M+ »T0)|

and hence

1/(0- + iT0)\-\f(i + iT0)\
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Therefore if  a0 < a < \ + (logA:)"7'8 and t = To, then

\f(s)+f(l-s)\> |/(5)|

I- (24)

We now derive the equivalent of equation (24) with a in the interval \ < a ̂  a0.
If  1 — CT0 < at < o2 ̂  a0 then, by Lemma 2,

|arg/(cr2 + iT0) - arg/(f f l + iT0)| =
J da

JIm {7^7^)

Thus if J < a < c0,

|arg/(ff + iT0) - arg/(i + iT0)\ <  (<r0-

= T"
Therefore, by the definition of To in Lemma 3, if \ ^ c ^ a0 and ? = To, then

cos{arg/(j)}>i. (25)

In like manner, if \ < a <, cr0 and / = To,

cos{arg/(l-j)}>i. (26)

Thus if \ ^ cr < a0 and ? = To then

|/C0 +/ (1 - J)| > |Re{/(5) +/ (1 - J)}|

= |/(5)| cos {arg/(S)} +1/(1 - 5)| cos {arg/(l - s)}

> il/(5)|. (27)

Combining (24) and (27), if \ < <r ̂  i + (log*:)"7'8 and t = To, then

1/(5)

which is the second assertion of Lemma 4.
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LEMMA 5. Let R be the interior of the rectangle with corners at 2 ± iT0,
— 1 + i To. Then the number of zeros of x(s) (multiple zeros counted according to
their multiplicity) in R is exactly

2 + —arg/( i + iT0).

Proof. Let CY be the boundary of JR. Since Ct is symmetric about the lines
a = \ and t = 0, we see from (12) and Lemmas 1 and 4 that for s on Cj

Let JV and P denote the number of zeros and poles of tx(s) in R. Rouche's theorem
then tells us that

N-P = ~ACl arg{/(*) +/ (1 - s)},

the change in argument being calculated once around Ct in the positive direction.
If  we let C be the curve consisting of the two straight line segments from 2 to 2 + i To

and then to \ + i To, then due to symmetry

N _ P = i . A C arg {f(s) + /(I - s)}, (28)

the change in argument now being calculated on C. But now, |/(1 — s)\ < \f(s)\
on C except at •£ + iT0, and

arg{/(2) + / ( - 1)} = arg/(2) = 0 (mod27r),

iT0) + / ( ! - iT0)} = arg/(i + iT0) = 0 (mod2n).

Therefore, 2
N - P = — Ac argf(s)

n

= —
n

Since a(^) has first order poles at 0 and 1 and is analytic elsewhere,

N = 2 + — arg/( i+iT0) .
n

4. Proof of Theorem 1. The zeros of ((s, Q) in R are exactly the same as the
zeros of a(s) in R. We now locate these zeros. As e -> 0,

= /-£

Thus
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Let j
n = — arg/(i + iT0), (29)

71

so that n is an integer. Since arg/(J + it) is continuous for t > 0, there exist numbers
0 < t0 < tl < ... < tn = To such that

arg/G- + itj) = n/ (j = 0, 1, ..., n). (30)

T h u s / ( | + i77) is real valued, positive if j is even, negative if/ is odd. From (7) we
see that for f ^ t ^ To,

and this is clearly true for 0 < t < f. Thus for 0 < t ^ To,

l/(} + f0l = l&(i +  *0l. ICO+2/01

> If (i + iOI-

Hence, if we put

*j = i + iO 0' = 0,1, ...,«), (31)

then we see from

= 2f(Sj) + g{Sj)

that a(sj) and f(sj) have the same sign. Therefore the sequence of numbers cc(s0),
aCst), ..., a(sn) alternates in sign. Thus there exist n distinct points \ + ivj with

0 < 0-i < vj < tj

and

uQ + ivj) = 0 (j = 1,2, ...,»)•

The « points  ̂— iPy are also zeros of x(s). Bateman and Grosswald [1] have shown
that a(s) has a real zero between •£ and 1 and hence also one between 0 and %. Thus
we have found 2n + 2 distinct points in R where <x(s) = 0. But Lemma 5 tells us
that there are exactly 2n + 2 zeros of a(s) in R (multiplicity included). This concludes
the proof of Theorem 1.

5. Proof of Theorem 2. Now we see that Vj is unique; that is, there is exactly
one zero of a(s) between $,-_! and Sj. As a result, if tj_x < t ^ tj (j = 0, 1, ..., n
and we let ?_t = 0), then

i ^ - a r g / G + iOl < 2n.

Therefore, if 0 < T ^ To, then

N(T, Q) = — arg/(i + iT) + 0(1). (32)
n
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But, / p.
/(i i T) /arg/(i + i T) = arg / — j + arg F(| + i T) + arg «1 + 2/ T)

= Tlogf—) + TlogT-T+argC(l+2JT) + O(l). (33)

It remains to estimate arg£(l + 2iT).
For convenience, when T > 3 put

(5 = log-^TOoglogT)-1'6.

Now, for T > 3, we have

|argf(l + 3 + 2iT)| < |logf(1 +S + 2iT)\
00

p m=\

< 1/8,

and by (6) we also have

|argC(l + 5 + 2iT) - arg£(l + 2iT)\ < l/S.

For 0 < T < 3, we clearly have

|argC(l + 2iT)\ 4 1.

Thus for all T > 0,

argC(l + 2iT) = Oflog1'3 (T+ 3) [log log(T+ 3)]1'6}.  (34)

Theorem 2 follows from (32), (33) and (34).
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