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ON THE ZEROS OF EPSTEIN’S ZETA FUNCTION
H. M. STARK

1. Introduction. Let Q(x, y) = ax® + bxy + cy® be a positive definite quadratic
form with discriminant d = b* — 4ac. The Epstein zeta function associated with
Q is given by

s =12 0 0™ (> 1), 1)

where I’ means the sum is over all pairs (x, y) of integers not both zero, and as usual,
s = o + it. Except for a first order pole at s = 1, {(s, Q) can be continued through-
out the complex plane and has a functional equation similar to that of the Riemann

zeta function. If we put Q,(x,y) = x? +~z~xy+%y2, then we see that the

zeros of {(s, Q) and (s, Q,) are identical. The discriminant of Q,, d/a® will be
important in discussing the zeros of {(s, Q). As in [1], we let

_ ~1d]
k= @

Potter and Titchmarsh [2] have shown that {(s, Q) has an infinity of zeros on the
line ¢ = 1. However, the analogue of the Riemann hypothesis is not always true
for {(s, Q) since Bateman and Grosswald [1] have shown that {(s, Q) has a real zero
between 4 and 1 if & > 7-0556. In fact, in the case where a, b, ¢ are integers, d is a
fundamental discriminant, and the class number 4(d) > 1, Davenport and Heilbronn
[3] had previously shown that {(s, @) has an infinity of zeros in the half plane ¢ > 1
arbitrarily close to the line ¢ = 1. We prove here two complements to these results.

THEOREM 1. There exists a number K such that if k > K then all the zeros of
{(s, Q) in theregion — 1 < ¢ < 2, — 2k < t < 2k are simple zeros; with the excep-
tion of two real zeros between O and 1, all are on the line ¢ = %.

THEOREM 2. Let N(T, Q) denote the number of zeros of {(s, Q) in the region
—1<06<2,0<t<T Ifk>Kand 0< T < 2k, then
k

N(T, Q) = % log (7:_:) + O{log"® (T + 3)[log log (T + 3)]"/¢}.

The constant implied by <07 is independent of k.

Thus, for large &, the infinity of zeros of {(s, Q) off the line ¢ = 4 found in certain
cases by Davenport and Heilbronn are far removed from the ¢ axis; in any event,

the < first” % k logk + O(k) complex zeros of {(s, Q) are on the line ¢ = 1.

2. Notation and results from other sources. We use the notation f(r) < g(¢) to
mean that there is a positive constant ¢ such that f(¢) < cg(¢). All constants implied
by the < and O notations are absolute constants independent of ¢, ¢, and sufficiently
large k. We make the convention that every equation or statement involving k&
should be interpreted as holding for sufficiently large & only.
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We will use the following three well-known estimates of the gamma function:
fort>2and -1 <0< 2,

T ()l
1< 7112 g2 <1, 3)

fort>2and -1 <0< 2,

I'(s) in 1
m = 10gt+~2—+0(—t—), “
for t > 0,
argI’' + it) = tlogt —t+ O(1). &)

We will also use some refined estimates of {(s) coming from Vinogradoff’s method
[6, part V and p. 226; see also 4, sections 3.10, 3.11]: there is a positive constant 4
such that in the region

A

o>1- Tog r(loglog)™® > * >3

{(s) has no zeros and

{'(s) 2

=21 < log?Pt(log logt)'3, 6

O1RG (log log?) 6

] 1 I

——| < log?? t(log log?). 7

| Toy| < log™ tlloglog) U
The functional equation [4] for {(s) is

1—
{(s) = ns— 12 M ¢l —s). )

L(%s)
We see from [1] that we can write
I's—-3)Jm

Us Q) = {09 + K2 Qs = D E + k), ©)
where A(s) is an entire function. If we put
) = (%) T
a(s) = a’{(s, Q) b(s),
f(s) = {(25) b(s),
g(s) = h(s) b(s), (10)

then (9) can be written as
al(s) = f(s)+f (1 —5)+g(s). (11
As shown in [1], g(s) is an entire function and

g(s) = g1 — ) (12)
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(1] works with the function H(s) = k™*g(s)). As a result,
a(s) = a(l — ), 13)

which is the functional equation for {(s, @). Thus both a(s) and g(s) are real valued
on the line ¢ = 1. Clearly logf(s) is well defined in the region o > 4,5 # 3. We
will have occasion to use argf(s) = Imlogf(s); we use the branch of argf(s) which
is O for real s > 1.

Various estimates of g(s) and A(s) are known. For s near 1, the estimate in [1]
is the best that has yet appeared, but for s well removed from the o-axis, the estimate
of [5] is better: forn > 1 and ¢ > %,

2n \2 [2|s|+ 2n— 1\2»
[h(s)] < 27 (2n_1) ( ) ) . 14)
Only the special case Q(x, y) = x* + xy + p+l y? of discriminant — p was considered

4
in [5], but the proof is the same for Q(x, y) = x* + —z—xy + %yz.

3. Preliminary estimates and lemmas. If in (14) we take

log (10k)
n=|— | +1,

4-4
2 log (4—1)

then we see that for ¢ > 4 and [s] < 2k + 3,

41k \los (10 k1o (4%
1
= (15)
For ¢ 2 o, = 1 + 1/logk,
(o)< 5w
< logk. (16)

From (3) and (8), we then get for ¢ > 2,

1
—_— ; ++(1jlog k)
IC( logk+lt)’ < (logk)t .

For — 1/logk < o < 1+ 1/logk,
[{(o +2i)] < 1.

As a result, the standard Phragmén-Lindel6f theorem for a strip says that for
—1l/logk < 0 < 1+ 1/logk and ¢ > 2,

1K) < (logk) AU +tfee ke, (17)
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Lemma 1. If 3+ (logh) " <02, 2<t<2k+1, or if 6=2,
0<1<2, then |f()] > |f (1 —5)| and |f(s)+f(1 —s)| > [g(s)l.
Proof. From (7), if s is in the above region,
LF I = 1b(s)] - 1{(2s)]
> 2|b(s)|(logk)~ "8, (18)

For i+ (loghk)""®* < o < 1+
(17) that

1
<t<g s
2 logk and 2 < t < 2k + 1, we see from (3) and

i S =5  |(k/m)' Tl —5){Q2 - 25)
’ b(s) ’ B (k/m)° T'(s)

< (k/n)l -2¢ tl -2¢ (logk)(2t)*[1 +(1/log k)~(2~20))
< (logk) k*~2¢
< (logk) exp [— 2(logk)"®]

< (logk)™"8, 19)
For 1+2—l(}§7 < o< 2and 2 2, we see from (3), (9) and (16) that
f(l S) 1-2s (s—{;)\/n
b(s) l k ¢@2s~1D r(s)

< kt~% (logk) P
< (logk)~"8, 20

The result of (20) clearly holds for ¢ = 2,0 < ¢ < 2 also. Lemma 1 now follow:
from (15), (18), (19) and (20).

LemMA 2. If $— (loghk)""® < 0 < 4+ (logk)™"/® and 2k < t < 2k +1, ther
Re {f( )} > logk and ‘Im {f (s )}l < logk.

f(s) f(s)
Proof.
Thus,
{j—;((—:))} > log ( ) + logt — (logt)"!® — 0( )
> logk,
and,
II {J}((s))} l —;— + (logt)"/® + 0(%)

< logk.
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LemMMA 3. There exists a number T, such that 2k < Ty, < 2k + 1 and
argf (3 + iT,) = 0 (mod 2xr).
Thus f(3 + iTy) and f(3 — iT,) are positive real numbers.

Proof. For 2k < t < 2k +1,

d N f'G+in
Et—argf(%+ if) = Re {W}
> logk
> 2m.

The lemma follows.
LemMa 4. For 3 < 6 < 3+ (logh)™"® and t = T,,
LFGN = 1fQA =) and [f(s) +f(1 —9)| > |g(s)]
with equality in the first part if and only if ¢ = 1.

Proof. For the interval I, given by 3 — (logk)™"® < 6 < 1 + (logk)™"'8, we
have
fi(o+ iTo))
flo+iTy)
> logk.

d
—log|f(c +iTy)| = Re(
do

Thus if ¢, and g, are in I, 6, < 0,, then

floa+iTy)

flo+iTy)
In particular, |f(o + iT,)| is strictly increasing on I and this gives the first part of
Lemma 4. In order to derive the second part of the lemma, it is convenient to intro-
duce the number

i > ko, Q1)

7
o —%+m. (22)

Then o, is in I, and (21) therefore gives
1f(go + iTo)l > kMG 2D | f(F + i Ty
> 2|fG +iT). (23)
If 0o < 0 < %+ (logh)~7'%, then
|f(o +iTo)—1fG +iTo)l = |f (0o + iTo) =G+ iTy)
> |fG+iTol,

and hence
Ife+iT)l=1fG+iTy)| > 3 f(c +iTy)l.
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Therefore if 6o < ¢ < %+ (logk)™7® and ¢ = T,, then
)+ fA=9) 2 |fI-1f1—3)
> NG+ iTo)l
> S ()l (24)

We now derive the equivalent of equation (24) with o in the interval 3 € ¢ < o,.
If 1 -0, < 6, <0, < 0y then, by Lemma 2,
g2

, ) d ,
largf (o, + iTy) — argf(o,+ iTy)| = [%’ argf(o+ iTy) do

g1

1

< (65— a,) logk.
Thus if 4+ < 0 < oy,
largf(o + iTo) —argf(3 + iTp)| < (oo~ 3) logk

T
3 .

Therefore, by the definition of T, in Lemma 3, if 1 € ¢ < 6, and t = T, then

cos{argf(s)} > 1. (25)
In like manner, if $ € 6 < 65 and ¢t = T,
cos{argf(l —s)} > %. (26)

Thus if 3 € ¢ € 65 and ¢ = T, then
[f()+fA =9 > [Re{f(s) +f(1—s)}
= |f(s) cosfargf(s)} +1/(1 — )] cos{argf (1 — s)}
> 3 (). @7
Combining (24) and (27), if $ < ¢ < }+ + (logk)™"® and ¢t = T,, then
If () + /(1 =) > 3 f )
= 3b(s)].1{(2s)|
> 3|b(s)I(log T)™*

> [5(s)|. %

> |g(s)l,

which is the second assertion of Lemma 4.
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LeMMA 5. Let R be the interior of the rectangle with corners at 2+ iT,,
—14iT,. Then the number of zeros of a(s) (multiple zeros counted according to
their multiplicity) in R is exactly

2+-72t—argf(%+ iTp).

Proof. Let C, be the boundary of R. Since C, is symmetric about the lines
¢ =t and ¢t = 0, we see from (12) and Lemmas 1 and 4 that for s on C,

If () +f(1 =) > lg(s)l-
Let N and P denote the number of zeros and poles of a(s) in R. Rouché’s theorem
then tells us that
1
27
the change in argument being calculated once around C, in the positive direction.

If we let C be the curve consisting of the two straight line segments from 2to 2 + i T,
and then to % + iTy, then due to symmetry

N —P = — Ac, arg{f(s) +f(1 = s)},

N—P == Acarg{f()+/(1 -9, @)
the change in argument now being calculated on C. But now, |f(1 —s)| < |f (s)|
on C except at 3 + iT,, and

arg{f(2) + f(= 1D} = argf(2) = 0 (mod2n),
arg{fG +iTo) + f(3— iTo)} = argf (3 +iTp) = 0 (mod2m).

Therefore, 5
N —P = — Aqargf(s)
i

= 2 argf@ +iTy).
T

Since a(s) has first order poles at 0 and 1 and is analytic elsewhere,

2
N = 2+—n—argf(%+ iTp).

4. Proof of Theorem 1. The zeros of {(s, Q) in R are exactly the same as the
zeros of a(s) in R. 'We now locate these zeros. As ¢—0,

16+9 = [ 11+ oGl toghly-+ 04ai| 55 + 0

_ vk
= 3 + 0(Wk.logh).

Thus n

argf(} +i0%) = -5
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Let 1
n=— argf(3 +iTo), (29)

so that nis an integer. Since argf (% + if) is continuous for £ > 0, there exist numbers
O0<ty<t; <..<t,= T, such that

argfG+it) =nj (G=0,1,...,n). (30)

Thus f(4 + it;) is real valued, positive if j is even, negative if j is odd. From (7) we
see that for § < £ < T,

601+ 2] >

and this is clearly true for 0 < ¢t < . Thus for 0 <t < T,
IfG+ 0] = b + i) .10 + 2in)]
> g} + if)].

Hence, if we put

s;=4%+it; (j=0,1,..,n), G
then we see from

als;) = fs) +f(1—5) +g(s)
= 2£(s) + &(s))

that a(s;) and f(s;) have the same sign. Therefore the sequence of numbers a(so),
a(sy), ..., a(s,) alternates in sign. Thus there exist n distinct points § + iv; with

0<toy <y <8
and

a+iv) =0 (G=1,2,...,n).

The n points 4 — iv; are also zeros of a(s). Bateman and Grosswald [1] have shown
that a(s) has a real zero between 4 and 1 and hence also one between 0 and 4. Thus
we have found 2n + 2 distinct points in R where a(s) = 0. But Lemma 5 tells us
that there are exactly 2n 4- 2 zeros of a(s) in R (multiplicity included). This concludes
the proof of Theorem 1,

5. Proof of Theorem 2. Now we see that v; is unique; that is, there is exactly
one zero of a(s) between 5;_4 and 5;. Asaresult,if t;_, <1< 4 (=0,1,....n
and we let t_; = 0), then

largf(} + it)) — argf (3 +if)| < 2m.

Therefore, if 0 < T < T, then

N(T, 0) = — argf@ +iT) + O(1). (32)
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But, k \4+iT
argf(} +iT) = arg (?) +argl@G +iT) + arg{(1 + 2iT)

I

Tt remains to estimate arg{(1 + 2i 7).
For convenience, when T > 3 put

& = log™13 T(log log T)~ ',
Now, for T > 3, we have
larg{(1 + 8 + 2iT) < logl(l + 6 + 2iT))

z z‘” 1
< — —m(1 +9)
%= o 14

p m=1

< 1/5,
and by (6) we also have
larg{(1 4- 8 + 2iT) — argl(1 + 2iT)| < 1/4.
For 0 < T £ 3, we clearly have
larg{(1 +2iT)| < 1.
Thus for all T > 0,
arg{(1 + 2iT) = Oflog'”® (T + 3)[log log (T + 3)]"/%}.
Theorem 2 follows from (32), (33) and (34).
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