Enzyme Models

Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation

Emilie Mathieu ${ }^{+}{ }^{[b]}$ Audrey E. Tolbert ${ }^{+},{ }^{[a]}$ Karl J. Koebke, ${ }^{[a]}$ Cédric Tard, ${ }^{[\mathrm{cc]}}$ Olga Iranzo, ${ }^{[d]}$ James E. Penner-Hahn, ${ }^{[a]}$ Clotilde Policar,*[b] and Vincent Pecoraro*[a]

Abstract

Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. These metalloproteins contain a redox-active metal ion in their active site ($\mathrm{Mn}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ni}$) with a tightly controlled reduction potential found in a close range around the optimal value of 0.36 V versus the normal hydrogen electrode (NHE). Rationally designed proteins with well-defined three-dimensional structures offer new opportunities for obtaining functional SOD mimics. Here, we explore four different copper-binding scaffolds: $\mathrm{H}_{3}\left(\mathrm{His}_{3}\right), \mathrm{H}_{4}$

Abstract

$\left(\mathrm{His}_{4}\right), \mathrm{H}_{2} \mathrm{DH}\left(\mathrm{His}_{3} \mathrm{Asp}\right.$ with two His and one Asp in the same plane) and $\mathrm{H}_{3} \mathrm{D}$ (His_{3} Asp with three His in the same plane) by using the scaffold of the de novo protein $G R \alpha_{3} \mathrm{D}$. EPR and XAS analysis of the resulting copper complexes demonstrates that they are good $\mathrm{Cu}^{\prime \prime}$-bound structural mimics of Cu-only SODs. Furthermore, all the complexes exhibit SOD activity, though three orders of magnitude slower than the native enzyme, making them the first de novo copper SOD mimics.

Introduction

Superoxide dismutases (SODs) are highly conserved metalloenzymes that have evolved to protect organisms from oxidative stress. ${ }^{[1,2]}$ Four types of SODs have been identified, but only three have been extensively studied (Table 1). ${ }^{[1,3]}$ The first wellcharacterized class of SODs is the Fe/MnSOD, which can function with iron only, manganese only, or either metal in the case of cambialistic enzymes. These proteins have high sequence identity and the same His_{3} Asp metal-binding site regardless of the active metal. ${ }^{[4]}$ The second is the NiSOD, which contains a $\mathrm{His}_{2} \mathrm{Cys}$ binding site. ${ }^{[5]}$ The third type of well-characterized SODs are $\mathrm{Cu} / \mathrm{ZnSODs}$. General features of $\mathrm{Cu} / \mathrm{ZnSODs}$ include a Greek key β-barrel backbone, an electrostatic loop, a disulfide bond, and a conserved active site. ${ }^{[1-3]}$ In its reduced

[^0]| Table 1. Summary of SODs activities. | | |
| :--- | :--- | :--- |
| SOD | Activity $\left[\mathrm{M}^{-1} \mathrm{~s}^{-1}\right]$ | pH |
| $\mathrm{Fe}^{[11]}$ | 3.25×10^{9} | 7.8 |
| $\mathrm{Mn}^{[11]}$ | 3.78×10^{9} | 7.8 |
| $\mathrm{Ni}^{[12]}$ | 1.3×10^{9} | 7.0 |
| $\mathrm{Cu} / \mathrm{Zn}^{[6]}$ | 1.2×10^{9} | 7.0 |
| Cu only ${ }^{[6]}$ | 1.8×10^{9} | 6.0 |
| | 1.1×10^{9} | 7.25 |
| cyclodextran $(\mathrm{Cu} / \mathrm{Zn})^{[13]}$ | 9.90×10^{7} | 7.8 |
| N -term $\mathrm{Cu} / \mathrm{Zn}$ model HADHDHKK ${ }^{[14]}$ | 2.7×10^{7} | 7.0 |

state, the catalytic copper is bound by three histidines in a trigonal plane. Upon oxidation, the $\mathrm{Cu}^{\prime \prime}$ is bound in a distorted square pyramid by an additional, bridging histidine and a water molecule. The bridging histidine also binds to the structural zinc ion, which is further coordinated by two other histidines and an aspartate. ${ }^{[1]}$ Interestingly, a fourth class of SODs, that is, Cu-only SODs, has recently been described containing a single copper metal ion in the active site. ${ }^{[6-10]}$ In these enzymes, the two histidines chelating the zinc ion in $\mathrm{Cu} / \mathrm{Zn}$ SODs are missing, either due to substitution or deletion. Thus, the active site only contains four histidines capable of chelating copper. All four His residues coordinate Cu^{11} in a pseudo-trigonal pyramid, whereas Cu^{\prime} is coordinated by only three His residues in a pseudo-trigonal-planar arrangement with the fourth His at a longer distance. ${ }^{[6]}$ In C. albicans Cu-only SOD5, the role of the zinc ion in promoting pH -independent catalysis is adopted by a glutamate residue (Glu110) that interacts through hydrogen bonding with the bridging histidine. ${ }^{[10]}$

Despite their differences in structure, active site, and metal center, all SODs catalyze superoxide dismutation at diffusion-
limited rates between pH 4 and $10{ }^{[1]}$ Their reduction potentials are tightly controlled and fall in a close range around the optimal value of 0.36 V versus the normal hydrogen electrode (NHE) at physiological pH , corresponding to the midpoint potential between the oxidation (-0.18 V vs. NHE) and the reduction (+0.91 V 26 vs. NHE) of superoxide. ${ }^{[1]}$

Low-molecular-weight complexes mimicking SODs with a manganese, iron, or copper metal ion have been thoroughly described in the literature. ${ }^{[2,15-22]}$ The challenges faced in their design include stability, flexibility to adapt the coordination of different metal redox states, and tuning the reduction potential to enable superoxide dismutation. For $\mathrm{Cu} / \mathrm{Zn}$ SOD mimics, cyclodextrin ${ }^{[13,20]}$ and bisdioxocyclan derivatives ${ }^{[23,24]}$ are among the most efficient SOD mimics reported, with $k_{\text {cat }}$ values only ten-fold lower than that of the native enzyme under similar conditions. Peptidic Cu/Zn SOD mimics have also been studied, ${ }^{[14,25-33]}$ with the aim to reproduce the active site of the enzyme by using short sequences of amino acids (three to ten residues) that contain two to four histidine moieties. One of the most active peptidic mimics of $\mathrm{Cu} / \mathrm{ZnSOD}$ s was reported by Árus et al. ${ }^{[14]}$ These unstructured peptide sequences contain three histidines (HADHDHKK) and bind copper in a 1:1 ratio. At pH 7.0 its $k_{\text {cat }}$ value is $2.710^{7} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$, which is only two orders of magnitude lower than that of the native Cu/Zn SOD. As many of these peptidic models are mononuclear Cu catalysts, they can provide some amount of insight into the Cu-only SOD system, but no models of Cu-only SODs have previously been described.
Widening possibilities beyond low-molecular-weight complexes, rationally designed self-assembling peptidic scaffolds with well-defined secondary and tertiary structures are tools of choice to mimic the structure and activity of an enzyme. ${ }^{[34-42]}$ Only one manganese SOD mimic has been reported, which uses this type of construct with modest SOD activity ($k_{\text {cat }}=$ $3.710^{5} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ at pH 7.4$)^{[43]}$ By using protein redesign Benson et al. have obtained a functional iron SOD mimic by introduc-
ing a His_{3} metal-binding site and a pocket for O_{2} binding into E. coli thioredoxin ($k_{\text {cat }}=6.410^{6} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ at pH 8$)^{[44,45]}$

Herein, the $G R \alpha_{3} \mathrm{D}$ de novo protein scaffold was used to design a functional mimic of Cu-only SODs. The α_{3} D family of proteins, originally designed by DeGrado et al., consists of seven amino acid repeats in which the first and fourth residue of each heptad is hydrophobic. ${ }^{[36]}$ In solution, these hydrophobic residues collapse to form the core of an antiparallel threehelix bundle ${ }^{[35,46]}$ Metal-binding residues can then be introduced into this core to construct metalloproteins, though a loss of stability is incurred. ${ }^{[47-49]}$ This scaffold has previously been used to study both electron-transfer proteins, such as cupredoxins and rubredoxins, and catalytic proteins, such as carbonic anhydrase. ${ }^{[47,49-52]}$ An elongated version of this peptide, $\mathrm{GR} \alpha_{3} \mathrm{D}$, was designed with an additional heptad for improved thermodynamic stability ${ }^{[53]}$ Four binding sites were introduced into the protein; $\mathrm{H}_{3}\left(\mathrm{His}_{3}\right), \mathrm{H}_{4}\left(\mathrm{His}_{4}\right), \mathrm{H}_{2} \mathrm{DH}\left(\mathrm{His}_{3} \mathrm{Asp}\right.$ with two His and one Asp in the same plane), and $\mathrm{H}_{3} \mathrm{D}\left(\mathrm{His}_{3}\right.$ Asp with three His in the same plane) (Table 2). The stability of the apoand $\mathrm{Cu}^{\prime \prime}$ protein was studied by thermal denaturation and the complexes were characterized by electron paramagnetic resonance (EPR), extended X-ray absorption fine structure (EXAFS), and cyclovoltammetry (CV) experiments. Their SOD activity was assessed by the indirect assay of McCord-Fridovich. ${ }^{[54-56]}$

Results

Protein design

Four constructs were built within the $G R \alpha_{3} D$ de novo protein scaffold with varying active sites meant to recapitulate that of two different classes of SODs, the is, Cu-only SODs and Fe/ MnSODs. Their sequences are listed in Table 2. Constructs with an A98C mutation were used for electrochemical experiments. The four different active sites designed within $\mathrm{GR}_{3} \mathrm{D}$ for this study are represented in Figure 1. $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{3}$ contains three his-

Table 2. Designed protein amino acid sequences with mutations from GRa3D in bold and active site residues in blue. Electrochemical studies were performed with derivatives having a terminal Cys rather than Ala (A98C) indicated by A/C.

Peptide	Sequence
$\mathrm{GRo}_{3} \mathrm{D} \mathrm{H}_{3}$	MGSWAEFKQRLAAIKTRLAAIKSRHDALGGS-EAELAAHEKEIAAFESEIAAFESELQAYKGKG-NPEVEALRKEAAAIRDEAAAIRDEHQAYRLNGSGA/C
$\mathrm{GRo}_{3} \mathrm{DH}_{4}$	MGSWAEFKQRLAAIKTRLAAIKSRHDALGGS-EAEHAAHEKEIAAFESEIAAFESELQAYKGKG-NPEVEALRKEAAAIRDEAAAIRDEHQAYRLNGSGA/C
$\mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$	MGSWAEFKQRLAAIKTRLAAIKSRHDALGGS-EAEHAADEKEIAAFESEIAAFESELQAYKGKG-NPEVEALRKEAAAIRDEAAAIRDEHQAYRLNGSGA/C
$G R \alpha_{3} \mathrm{DH}_{3} \mathrm{D}$	MGSWAEFKQRLAAIKTRLAAIKSRHDALGGS-EAEDAAHEKEIAAFESEIAAFESELQAYKGKG-NPEVEALRKEAAAIRDEAAAIRDEHQAYRLNGSGA/C

Figure 1. PyMol models of the designed $\operatorname{His}_{3}\left(\mathrm{H}_{3}\right)$, $\mathrm{His}_{4}\left(\mathrm{H}_{4}\right)$, His S_{2} AspHis $\left(\mathrm{H}_{2} \mathrm{DH}\right)$, and $\mathrm{His}_{3} \mathrm{Asp}\left(\mathrm{H}_{3} \mathrm{D}\right)$ active sites within $G R \alpha_{3} \mathrm{D}$ based on the crystal structure of $G R \alpha_{3} \mathrm{D}$ (PDB: 6DS9).
tidines that replace leucine or phenylalanine (L25H, F38H, L 88 H) in positions analogous to the carbonic anhydrase mimic $\alpha_{3} \mathrm{DH}_{3}$, which also models the Cu'binding site of Cu-only SODs. ${ }^{[47]} \mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{4}$ contains a fourth histidine in position 35 (L35H) to mimic the Cu"-binding site of Cu-only SODs. ${ }^{[6,7]}$ Constructs in which the fourth His residue was substituted by an Asp were created to test the effects of modulating the reduction potential of the bound Cu . To this end, $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$ and $G R \alpha_{3} \mathrm{D} H_{3} \mathrm{D}$, in which the Asp is either positioned in the same plane as two other His (L38D), or below a plane constituted by the three His (L35D), respectively, were designed. These constructs also model the active site of $\mathrm{Fe} / \mathrm{MnSOD}$ s, providing interesting insight into the selectivity and catalytic efficiency of substituting copper into this system.

Thermal stability of the apo- and Cu" proteins

CD spectra of the apoproteins were obtained to test whether $\mathrm{GR} \alpha_{3} \mathrm{D}$ could properly fold with four large hydrophilic metalbinding residues mutated into the hydrophobic core (Figure S1 in the Supporting Information). The double minima bands at $\lambda=208$ and 222 nm are representative for an α-helical secondary structure and indicate a well-folded three-helical bundle peptide. ${ }^{[57,58]}$ We next sought to compare the destabilization effects of the differing active sites. Thermal denaturation of apo- and $\mathrm{Cu}^{\prime \prime}$ proteins were studied and compared to that of $\mathrm{GRo}_{3} \mathrm{D}$ by following the ellipticity of the proteins at $\lambda=222 \mathrm{~nm}$ at varying temperatures. The midpoint of unfolding $\left(T_{M}\right)$ was determined by fitting the data to a two-state unfolding model by using the program CDpal. ${ }^{[58-60]}$ These values are summarized in Table 3.
$\mathrm{GRo}_{3} \mathrm{D}$ is structurally stable in the temperature range used with a melting temperature above $95^{\circ} \mathrm{C}$, which precludes calculating the aforementioned thermodynamic parameters. Three of the four constructs reported within this study, however, have melting temperatures below $95^{\circ} \mathrm{C}$, allowing for their direct measurement. Comparing these four constructs, we find that addition of a fourth residue destabilizes the protein as the T_{M} decreases over $10^{\circ} \mathrm{C}$ between $\mathrm{GR} \mathrm{\alpha}_{3} \mathrm{D} \mathrm{H}_{3}\left(T_{\mathrm{M}}>95^{\circ} \mathrm{C}\right.$), and $\mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}, \mathrm{H}_{3} \mathrm{D}$, and $\mathrm{H}_{4}\left(T_{\mathrm{M}} \approx 80^{\circ} \mathrm{C}\right)$. Cu"-bound peptide is thermodynamically more stable than the apopeptide, with T_{M} increasing by 5 to $10^{\circ} \mathrm{C}$ depending on the construct. Overall, the data assess that the apoproteins and the $\mathrm{Cu}^{\prime \prime}$ complexes are well folded at room temperature.

Interestingly, $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{4}$ shows two steps in the unfolding process in both the apo- and Cu"-bound form (Figure 2). The

Peptide	Apo peptide $T_{\mathrm{M}}\left[{ }^{\circ} \mathrm{C}\right]$	Cu peptide $T_{\text {M }}\left[{ }^{\circ} \mathrm{C}\right]$
GRor ${ }_{3}$ D	>95	-
$\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$	79.8 ± 0.7	85.1 ± 0.9
$\mathrm{GRa}_{3} \mathrm{DH}_{3} \mathrm{D}$	80.6 ± 0.6	88 ± 6
$\mathrm{GRa}_{3} \mathrm{DH}_{3}$	> 95	>95
$\mathrm{GRo}_{3} \mathrm{DH}_{4}$	83.21 ± 0.01	93.8 ± 0.5

Figure 2. Thermal denaturation circular dichroism fits of $\mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{3} \mathrm{D}, \mathrm{H}_{2} \mathrm{DH}$, H_{3}, and H_{4} (top to bottom). The spectra of the apoproteins are shown with black circles and the ones of the Cu"-bound species with red squares. Only the second denaturation step was fit for $G R \alpha_{3} D H_{4}$.
first transition to an intermediate state occurs at $55^{\circ} \mathrm{C}$. The second step occurs between 70 and $90^{\circ} \mathrm{C}$, similar to the other constructs. Upon cooling, the first state is no longer observed and reheating a sample results in a similar denaturation profile to the renaturation profile (Figure S2 in the Supporting Information).

Cu" protein XAS and EPR characterization

X-ray absorption spectroscopy (XAS), consisting of both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS), was done on $\mathrm{Cu}^{\prime \prime}-\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{3}$, $C u^{\prime \prime}-G R \alpha_{3} D H_{4}, C u^{\prime \prime}-G R \alpha_{3} D H_{2} D H$, and $C u^{\prime \prime}-G R \alpha_{3} D H_{3} D$ and analyzed to investigate the structural differences between these four SOD mimics (Figure 3). The average nearest-neighbor bond lengths was between 1.94 and $1.95 \AA$ for all constructs analyzed, consistent with 4-coordinate N - or O -bound $\mathrm{Cu}^{\prime \prime}$ (Table 4).

All constructs exhibit long distance backscatterers, which best fit to three His ligands. All fits attempted are included within the Supporting Information. This apparent similarity between the structure of the four constructs also extended to XANES analysis, where the $1 \mathrm{~s} \rightarrow 3 \mathrm{~d}$ transitions (peak at 8979 eV) for all four constructs were of similar height indicating an equivalent degree of tetrahedral character to their geometry. ${ }^{[61,62]}$

EPR spectra of the Cu" proteins were collected in 50 mm 4 -(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, pH 7.5 at 100 K with a $2: 1$ protein/Cu" ratio to ensure that all copper is bound (Figure 4). The g values and hyperfine

Figure 3. $1 \mathrm{~s} \rightarrow 3 \mathrm{~d}$ region of the $\mathrm{Cu}^{\prime \prime}$ protein XANES spectra at pH 7.5 for every construct reported.

Figure 4. Electronparamagnetic resonance spectra of the constructs presented in this study recorded at pH 7.5 . Fits were done by using the program SpinCount.
coupling constants of the $\mathrm{Cu}^{\text {II }}$ complexes were determined by fitting with the SpinCount software and are listed in Table 5. ${ }^{[63]}$ Each complex has anisotropic g values with $g_{x} g_{y}<g_{z}$ characteristic of a $d_{x^{2}-y^{2}}$ single-occupied molecular orbital (SOMO). ${ }^{[64]}$ Together with the EXAFS data, the results suggest 4-coordinate copper complexes in a distorted square-planar geometry. ${ }^{[64]}$ Two distinct species (A and B in Table 5) are observed in the EPR spectra of $\mathrm{Cu}^{\prime \prime}-G R \alpha_{3} D H_{3}$ and $\mathrm{Cu}^{\prime \prime}-G R \alpha_{3} D H_{4}$. Simulation of the EPR spectrum of $G R \alpha_{3} D H_{3}$ shows that form A is dominant and accounts for 75% of the signal observed, whereas form B accounts for 25%. For GRa3D H4 the two species are present in the same ratio. The EPR parameters of a Cu-only SOD found

Table 5. EPR parameters obtained from simulation of EPR spectra of Cu" protein solutions.

		g_{x}	g_{y}	g_{z}	$A_{\\| \mid}\left[10^{-4} \mathrm{~cm}^{-1}\right]$	$f=g_{z} / A_{\\| \mid}[\mathrm{cm}]$
$\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{3}{ }^{[a]}$	75\% A	2.05	2.04	2.27	166	136.8
	25\% B	2.05	2.03	2.22	149	149.0
$\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{4}{ }^{[a]}$	50\% A	2.012	2.04	2.26	158	143.0
	50\% B	2.04	2.03	2.23	188	119.6
$\mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}^{[1]}$	N/A	2.06	2.03	2.27	162	140.2
$\mathrm{GR} \mathrm{a}_{3} \mathrm{D} \mathrm{H}_{3} \mathrm{D}^{[a]}$	N/A	2.04	2.04	2.26	168	134.5
Cu only SOD ${ }^{[b]}$	N/A	2.05	2.05	2.26	≈ 140	161.4
Cu -(Fe) SOD ${ }^{[\mathrm{c]}}$	N/A	2.05	2.05	2.37	136	174.3

[a] X-band EPR spectra recorded at 100 K on solutions of 1 mm CuCl 2 and 2 mm protein in 50 mm HEPES buffer containing 30% glycerol at pH 7.5 , $9.3 \mathrm{GHz}, 20.5 \mathrm{~mW}, 1 \mathrm{G}$. [b] Reference [7]. X-band EPR spectra of a Cu-only SOD from Mycobacterium tuberculosis. [c] Reference [70]. X-band EPR spectra recorded at 10 K of a copper-substituted Fe SOD from the archaeon Acidianus ambivalens in Tris/HCl buffer at $\mathrm{pH} 7,9.6452$ GHz, 20 mW , and 10.0 G .

Construct	Model	$\mathrm{Cu}-\mathrm{O} / \mathrm{N}^{*} \mathrm{R}\left[\AA{ }^{\text {] }}\right.$	$\mathrm{Cu}-\mathrm{O} / \mathrm{N}^{*} \sigma^{2}\left[10^{-3} \AA^{2}\right]$	Cu-imid $R[\AA$]	Cu -imid $\sigma^{2}\left[10^{-3} \AA^{2}\right]$	Avg. bond length $[\AA$]	1s $\rightarrow 3 \mathrm{~d}$ area
$\mathrm{GRo}_{3} \mathrm{DH}_{3}$	$\mathrm{His}_{3} \mathrm{O}_{1}$	1.966	5.7	1.935	13.28	1.943	8.27
$\mathrm{GRa}_{3} \mathrm{DH}_{4}$	$\mathrm{His}_{3} \mathrm{~N}_{1}$	1.881	4.4	1.972	6.23	1.949	6.89
$\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$	$\mathrm{His}_{3} \mathrm{O}_{1}$	1.981	1.5	1.933	8.06	1.945	5.41
GR $\alpha_{3} \mathrm{DH}_{3} \mathrm{D}$	$\mathrm{His}_{3} \mathrm{O}_{1}$	1.989	2.0	1.933	7.86	1.947	3.09

in Mycobacterium tuberculosis (His4 active site) and a coppersubstituted FeSOD from the archaeon Acidianus ambivalens (His2AspHis) are given in Table 5. ${ }^{[7,65]}$ The Cu"-GR 3D derivatives have g values similar to these native enzymes and slightly higher $\mathrm{A}_{\|}$values.
One may also attempt to correlate the hyperfine coupling constant observed in EPR to variation in activity between the constructs reported. The empirical factor $f=g_{z} / A_{\|}$correlates with tetrahedral distortions where values between 105 to 135 cm are indicative of square-planar geometry and higher values indicate distortion towards tetrahedral structures. ${ }^{[66,67]}$ According to the values in Table 5, our constructs are more tetragonal than the native examples, which may be correlated to the decreased activity compared to the native enzymes. This is bolstered by the case of $G R \alpha_{3} D H_{4}$ in which two species are evident at a 1:1 ratio. The $G R \alpha_{3} D H_{4}$ species B has an f factor of 119.6 cm , indicating that this species is more tetragonal than $\mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{4}$ species A with an f factor of 143.0 cm or any other construct reported in this manuscript. The activity of $G R \alpha_{3} \mathrm{DH}_{4}$ is also about half that of any of the other de novo constructs, which could be explained by species B being an inactive form. However, the differences in activity observed are too minor to make definitive claims about the requirement of tetrahedral distortion for the activity of CuSODs. Future studies with other designed proteins may allow to elucidate this relationship more clearly.

Cu^{\prime} protein XANES characterization

The XANES region of all four constructs were analyzed to investigate the coordination geometry. The $\mathrm{Cu}^{\prime} 1 \mathrm{~s} \rightarrow 4 \mathrm{p}$ transition at $8982-8985 \mathrm{eV}$ was analyzed to determine geometry differences between the constructs. The intensity of this peak is indicative of the coordination number with higher peak intensities correlating with lower coordination number. ${ }^{[68]} \mathrm{GR}_{3} \mathrm{D} \mathrm{H}_{3} \mathrm{D}$ has the lowest $1 \mathrm{~s} \rightarrow 4 \mathrm{p}$ transition signal, indicative of a higher coordination number (Figure 5). GR $\alpha_{3} D H_{3}$ and $G R \alpha_{3} D H_{4}$ have similar intermediate transition signals. $G R \alpha_{3} D H_{2} D H$ has the highest transition signal, indicative of a lower coordination number, likely more 2-coordinate than 3-coordinate.

Figure 5. $1 \mathrm{~s} \rightarrow 4 \mathrm{p}$ region of the Cu^{\prime} protein XANES spectra at pH 7.5 for every construct reported.

Reduction potentials, affinity, and SOD activity

The apparent standard potentials of $\mathrm{Cu}^{\prime \prime}$ complexes containing a C-terminal Cys (Ala98Cys) and grafted on a gold electrode are listed in Table 6 with the cyclic voltammograms given in Figure S3 in the Supporting Information. All four constructs share á similar first-coordination sphere $\mathrm{His}_{3} \mathrm{~N} / \mathrm{O}$ around the metal center as demonstrated by EXAFS analysis, however, the potential of $\mathrm{GR} \alpha_{3} \mathrm{D} H_{3}$ is notably higher than that of the other three at 550 mV versus NHE compared to $420-470 \mathrm{mV}$ versus NHE. The reduction potentials of the four constructs lie in between the potentials for oxidation of superoxide to peroxide $(-0.18 \mathrm{~V}$ vs. NHE) and the reduction of superoxide to dioxygen (+0.91 V vs. NHE), which should enable catalysis of superoxide dismutation.

	$\begin{aligned} & E_{1 / 2{ }^{[a]}}^{[\mathrm{mV}} \\ & \text { vs. NHE] } \end{aligned}$	$\begin{aligned} & \mathrm{Cu}^{11} K_{\mathrm{d}} \\ & {\left[10^{-10} \mathrm{M}\right]} \end{aligned}$	$\begin{aligned} & \mathrm{Cu}^{\prime} K_{\mathrm{d}} \\ & {\left[10^{-16} \mathrm{M}\right]} \end{aligned}$	$\begin{aligned} & \mathrm{IC}_{50}^{[\mathrm{bb]}]} \\ & {[\mu \mathrm{M}]} \end{aligned}$	$\begin{aligned} & k_{\mathrm{MF}[\mathrm{b]}}^{[\mathrm{l}} \\ & {\left[10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right]} \end{aligned}$
$\mathrm{GRa}_{3} \mathrm{DH}_{3}$	550 ± 10	5.00 ± 0.17	1.22 ± 0.04	2.9 ± 0.6	3.0 ± 0.6
$\mathrm{GRo}_{3} \mathrm{DH}_{4}$	463 ± 10	5.7 ± 0.3	41 ± 2	8.0 ± 1.7	1.1 ± 0.2
GR $\alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$	420 ± 10	1.4 ± 0.4	54 ± 15	3.5 ± 1.1	2.6 ± 0.8
$\mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{3} \mathrm{D}$	470 ± 10	1.6 ± 0.2	8.8 ± 1.1	3.3 ± 0.3	2.6 ± 0.2

The Cu" affinities for each of these four constructs were determined in an effort to account for these differences in the reduction potential (Table 6). Interestingly, though $G R \alpha_{3} D H_{3}$ has a much higher reduction potential, it does not have a $\mathrm{Cu}^{\prime \prime}$ affinity that is significantly different from that of $G R \alpha_{3} D H_{2} D H$ and $G R \alpha_{3} D H_{3} D . G R \alpha_{3} D H_{4}$ has the weakest $C u^{\prime \prime}$ affinity with a K_{d} of $5.7 \times 10^{-10} \mathrm{M}$, indicating that a fourth His residue does not play a significant role in the binding of $\mathrm{Cu}^{\prime \prime}$.
The calculated Cu^{\prime} affinities vary by two orders of magnitude across the four constructs. Cu^{\prime} binds tightest to $\mathrm{GR} \alpha_{3} D \mathrm{H}_{3}$, with a K_{d} of $1.22 \times 10^{-16} \mathrm{M} \mathrm{GRo}_{3} \mathrm{D} \mathrm{H}_{3} \mathrm{D}$ has an intermediate Cu^{\prime} affinity ($8.8 \times 10^{-16} \mathrm{M}$), whereas both $G R \alpha_{3} \mathrm{D} \mathrm{H}_{4}$ and $\mathrm{H}_{2} \mathrm{DH}$ have a weaker affinity of 4.1×10^{-15} and $5.4 \times 10^{-15} \mathrm{M}$, respectively (Table 6). Thus, adding a fourth peptide ligand decreases the Cu^{\prime} affinity of the protein but to different extents.
The SOD activities of the Cu proteins were measured by the McCord-Fridovich (McF) assay, ${ }^{[4,55]}$ in which a secondary probe, sodium 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tet-razolium-5-carboxanilide (XTT), is used to determine the amount of superoxide removed from solution by the SOD mimic. ${ }^{[56]}$ This assay is an indirect method to measure $k_{\text {cat }}$, but its reliability has been validated by direct methods (stopped-
flow and pulse radiolysis). ${ }^{[69-73]}$ The assay was performed by using an excess of ligand ($4: 1$ protein/Cu') to ensure no free copper is present. The IC_{50} is the concentration of SOD mimics at which 50% of the superoxide produced are dismutated by the SOD mimics. From this value, the $k_{\text {Mct }}$ which can be compared to a catalytic rate constant, is calculated (Table 6). ${ }^{[2,54,55,69-72]} \mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{3}, G R \alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$, and $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{3} \mathrm{D}$ have similar $\mathrm{IC}_{50}(2.9-3.5 \mu \mathrm{M})$ and $k_{\text {McF }}\left(310^{6} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$ values, whereas $G R \alpha_{3} D H_{4}$ has a lower SOD activity with the highest $\mathrm{IC}_{50}(8.0 \mu \mathrm{~m})$ and lowest $k_{\text {MCF }}\left(1.110^{6} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$. The apoproteins showed no SOD activity in the same concentration range. Additional controls were performed to check that no reaction occurs between the complex and formazan, and that the complex did not inhibit xanthine oxidase.

Discussion

The Cu-only SOD models presented here demonstrate that an exact reproduction of the active site is not necessary for modest SOD activity, but that the native residues play an important role in mediating this activity. Previous work with $\mathrm{Cu} /$ Zn SODs has shown that loss of even a single histidine in the active site results in a loss of SOD activity, typically through a loss of copper binding. ${ }^{[74-76]}$ Although similar work on Cu-only SODs has not been performed, the present work suggests that all four histidine residues are not necessary for copper binding or SOD activity.

Studies of the Cu"-bound forms indicate that all four models are structurally similar to Cu-only SODs. EPR experiments show that all four constructs are similar to both Cu"-bound Cu-only SODs and Cu"-substituted FeSODs. ${ }^{[7,65]}$ The fourth protein ligand is not vital in modulating the structure of the $\mathrm{Cu}^{\prime \prime}$-binding environment as observed by EPR spectroscopy but does determine how many species are present in solution. Both constructs with an Asp ligand contain a single species, whereas a fourth His ligand or lack of a fourth protein ligand results in two species. This is confirmed by CD for $G R \alpha_{3} D H_{4}$ as two unfolding steps are observed. Of these two species, only the more stable is observed upon cooling the sample. The fourth ligand, therefore, is necessary to restrict $\mathrm{Cu}^{\prime \prime}$ binding to only a single confirmation. A fourth aspartate ligand, regardless of the position, may both coordinate the copper and orient a histidine residue in a single geometry. In both $\mathrm{Cu} / \mathrm{Zn}$ and Cu-only SODs, an aspartate ligand orients the histidine residue that is bound only in the Cu" form and loss of this residue results in a decrease of the SOD activity. ${ }^{[10,77]}$ The second species present may simply be a result of different histidine coordination in these systems.

This is corroborated by the XAS data. Although these experiments cannot distinguish between multiple coordination states, the average indicates that all three histidines are bound in all four constructs. The fourth residue is likely an additional histidine in $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{4}$ or an oxygen in the remaining three constructs. This oxygen may be from either the Asp ligand that is present in $G R \alpha_{3} D H_{3} D$ or $H_{2} D H$ or a solvent residue. Thus, the Asp may be binding the copper as a fourth residue or the Cu"
coordination sphere is completed by water and the Asp solely acts to orient a histidine residue.
The $\mathrm{Cu}^{\prime \prime}$ affinity is also affected by this fourth ligand. $\mathrm{GR} \alpha_{3} \mathrm{D}$ H_{4} has the weakest Cu" affinity, though only slightly weaker than $G R \alpha_{3} D H_{3}$. If, however, the fourth ligand is an Asp residue instead, the Cu" affinity increases by a factor of three. The position of this Asp residue does not have a significant effect on the affinity of the cupric ion. This indicates that a fourth oxygen ligand lends to tighter $\mathrm{Cu}^{\prime \prime}$ binding than an imidazole ligand.
The fourth ligand is also important in modulating the copper reduction potential. Though all four constructs are catalytically active, $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{3}$ has a much higher reduction potential than the constructs with a fourth amino acid ligand. Simply adding a fourth ligand decreases the midpoint potential by $80-130 \mathrm{mV}$, depending on the construct. This may be by removing solvent from the active site or by limiting the amount of rearrangement necessary to convert between the Cu^{\prime} - and Cu^{11}-bound forms. ${ }^{[78]}$ None of the constructs is close to the desired 360 mV versus NHE, the midpoint between the reduction and oxidation of superoxide. ${ }^{[2,3]}$ Disrupting the His_{3} plane decreases the reduction potential by 50 mV from approximately 470 to 420 mV versus NHE, even though the Cu" affinity remains unchanged between $G R \alpha_{3} D H_{3} D$ and $H_{2} D H$. The rearrangement of the Asp residue does more to stabilize the $\mathrm{Cu}^{\prime \prime}$ bound enzyme outside of increasing the affinity for $\mathrm{Cu}^{\prime \prime}$. The axial His in $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$ is positioned in a more open, solventexposed cavity, which may allow for easier conversion between the Cu^{\prime} and $\mathrm{Cu}^{\prime \prime}$ forms than in $\mathrm{GRo}_{3} \mathrm{D} \mathrm{H}_{3} \mathrm{D}$. In that construct the three histidines are located in a more spatially confined position within the peptide preventing such easy rearrangement.

Calculated Cu^{\prime} affinities also provide insight into the copperbinding environment. Unsurprisingly given the relatively weak $\mathrm{Cu}{ }^{\prime \prime}$ affinity and high reduction potential, $G R \alpha_{3} D H_{3}$ has the tightest Cu^{\prime} affinity. $\mathrm{GR} \alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$ has the weakest Cu^{\prime} affinity, correlated with the low reduction potential and has the most two-coordinate character measured by XANES. Again, the identity and placement of the fourth ligand significantly affects cuprous binding. The identity of the axial ligand may account for this difference. With no axial peptide ligand $\left(G R \alpha_{3} D H_{3}\right), \mathrm{Cu}^{\prime}$ binds with the highest affinity. In the Cu"-bound form, the coordination sphere is completed with an axial solvent residue. This is most similar to $G R \alpha_{3} D H_{3} D$, containing an axial Asp residue in addition to the His_{3} plane, which results in an 8 -fold loss in the Cu^{\prime} affinity. Maintaining the His_{3} plane and adding an axial His residue $\left(\mathrm{GRo}_{3} \mathrm{D} \mathrm{H}_{4}\right)$ further decreases the Cu^{\prime} affinity ($40 \times$ weaker than $G R \alpha_{3} D H_{3}$). Disruption of the His_{3} plane results in the greatest loss of Cu^{\prime} affinity and corresponds to the lowest reduction potential and highest $\mathrm{Cu}^{\prime \prime}$ affinity. Clearly, $G R \alpha_{3} \mathrm{D} \mathrm{H}_{2} \mathrm{DH}$ most favors the oxidized species.
All four constructs exhibit measurable SOD activity, though still three orders of magnitude slower than the native enzyme. They are more efficient than the previously reported manganese de novo mimic ($k_{\text {MCF }}=3.710^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$), and have a similar activity to the iron SOD mimic reported by Benson et al. ($k_{\text {cat }}$ $\left.6.410^{6} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)^{[43-45]}$ The slowest construct, $\mathrm{GRa}_{3} \mathrm{D} \mathrm{H}_{4}$, also has the weakest overall copper affinity, which is known to decrease
activity ${ }^{[74-76]}$ The remaining three constructs are 2.5 -3-times faster but do not have statistically different rates. Thus, the trends in $\mathrm{Cu}^{1 / 1 /}$ affinity and reduction potential do not correspond to trends in SOD activity. Previously, trends in reduction potential and SOD activity were observed for low-molecularweight manganese SOD mimics, which show a better SOD activity when the reduction potential is closer to 0.36 V versus NHE, the midpoint potential between the oxidation and reduction of superoxide. ${ }^{[1-3,18,19,21]}$ This observation applies for other copper SOD mimics. ${ }^{[1-3,18,19,20]}$
At this point, we are unable to determine if these peptides are rate-limited by product release or conversion between the oxidized and reduced metal species. There may be a measurable difference in substrate conversion among the three more active peptides following the reduction potential trend that is unobservable due to slow product release.
To conclude, this study is the first example of the design of functional Cu-only SOD mimics in de novo proteins and shows that all four His residues from the native active site are not required for SOD activity within a de novo construct. The activity of these constructs is much slower than that of the native enzyme and further studies will be done to address this. The Cu^{\prime} environment and dynamics between the Cu^{\prime} - and $\mathrm{Cu}^{\prime \prime}-$ bound species will be characterized to provide insight into this difference. These states could provide insight into the rate of catalysis and may highlight the importance of the fourth copper ligand. By modifying this fourth ligand, both in ligand type and position, we aim to improve the rate of catalysis and determine the most efficient coordination environment for SOD activity in de novo protein models.

Experimental Section

Protein expression and purification: pET15B recombinant DNA plasmids (Celtek Genes) containing the gene for the $\mathrm{GRa}_{3} \mathrm{D}$ constructs were transformed and expressed in E. coli BL21(DE3) competent cells (Life Technologies). The Ala98Cys derivatives of the $G R \alpha_{3} \mathrm{D}$ constructs were prepared for electrochemical studies.
Colonies were inoculated in lysogeny broth (LB) medium (30 mL) and ampicillin ($100 \mu \mathrm{gmL}^{-1}$) before being incubated at $37^{\circ} \mathrm{C}$ and 175 rpm for $6-7 \mathrm{~h}$. Autoinduction medium was inoculated with $10 \mathrm{~mL} / 1 \mathrm{~L}$ culture flask at $25^{\circ} \mathrm{C}$ and 250 rpm for 18 h to overexpress the proteins. Cells were pelleted, resuspended in 1.0 mm phosphate buffer saline solution containing 2 mm dithiothreitol and 2 mm ethylenediaminetetraacetic acid (EDTA) and lysed with a microfluidizer. The soluble protein was isolated after heat denaturation at $55^{\circ} \mathrm{C}$ and acidification to pH 2 to remove contaminant proteins. The supernatant was filtered through a syringe ($0.2 \mu \mathrm{~m}$) and purified on a reversed-phase C18 HPLC by using a flow rate of $20 \mathrm{~mL} \mathrm{~min}^{-1}$ and a linear gradient of 0.1% trifluoroacetic acid (TFA) in $3: 7 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ to 0.1% TFA in $7: 3 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ over 35 min . The molecular weight of the purified peptide was confirmed by ESI-MS (collected on a Micromass LCT Time-of-Flight Mass Spectrometer) and found to correspond to the expected protein mass after deletion of the N -terminal methionine residue. Protein concentrations were determined by measuring the absorbance with $\varepsilon_{280}=$ $8480 \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$.

EXAFS data were analyzed by using EXAFSPAK ${ }^{[84]}$ and FEFF 9.0. ${ }^{[85]}$ XANES data were normalized by using MBACK. ${ }^{[86]}$ For analysis of the $1 \mathrm{~s} \rightarrow 3 \mathrm{~d}$ transitions, data were fitted with an arctan background with a pseudo-Voigt peak to model the rising edge and the $1 \mathrm{~s} \rightarrow$ 3d peak, and this fitted background was then subtracted from the data. Cu^{\prime} spectra were analyzed in this way to determine the degree of oxidation of XAS samples. The absence of any peak above the noise in these spectra indicate that oxidation was minimal.
Single- and multiple-scattering fitting of EXAFS data were performed by using EXAFSPAK ${ }^{[84]}$ with ab initio amplitude and phase parameters calculated by using FEFF 9.0. ${ }^{[85]}$ An initial model of Cuimidazole coordination was built based on the averaged bond lengths determined by single-scattering fitting of the EXAFS data. An initial model of Cu-imidazole coordination was built based on the average $\mathrm{Cu}-\mathrm{N}$ bond lengths determined by single-scattering fitting of the EXAFS data, with the imidazole bond-lengths and angles taken as the average of all Cu-imidazole structures contained in the Cambridge Structural Database. All significant nonhydrogen paths, defined as those having an amplitude greater than 4% of the $\mathrm{Cu}-\mathrm{N}$ amplitude, from this model were then loaded into EXAFSPAK and modeled as a rigid ligand. Initial estimates of the Debye-Waller factors for each Cu-imidazole shell were taken from calculations by Dimakis and Bunker. ${ }^{[87]}$ The $\mathrm{Cu}-\mathrm{N}$ bond length and Debye-Waller factor were allowed to vary, with the length and Debye-Waller factor for the other paths calculated based on the $\mathrm{Cu}-\mathrm{N}$ values. Thus, the long distance scattering from the Cu-imid was modeled while only varying two independent variables.

Electron paramagnetic resonance (EPR) spectroscopy

X-band EPR spectra were collected on a Bruker EMX electron spin resonance spectrometer with a Varian liquid nitrogen cryostat at 100 K . EPR samples contained $1 \mathrm{~mm} \mathrm{Cu}{ }^{\prime \prime} \mathrm{Cl}_{2}, 1.5-2 \mathrm{~mm}$ peptide, 50 mm HEPES pH 7.4, and 30% glycerol. Each sample was flashfrozen in liquid N_{2} before measurement. To obtain Cu" EPR parameters, each spectrum was simulated on SpinCount. ${ }^{[63]}$

Electrochemistry

Cyclic voltammetry measurements were obtained on a Metrohm AUTOLAB potentiostat (PGSTAT302N).
The electrochemical apparatus contained a gold (Au) disk working electrode (1 mm diameter), a platinum wire counter electrode, and an aqueous saturated calomel electrode (SCE) as the reference electrode ($0.241 \mathrm{~V}+\mathrm{SCE}=$ normal hydrogen electrode). The gold surface was polished with diamond slurries having decreasing particle sizes in the following order: 6-3-1 $\mu \mathrm{m}$. Au electrodes were conditioned in an electrochemical cell containing $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, by scanning from -300 to +1500 mV vs. SCE at $500 \mathrm{mV} \mathrm{s}^{-1}$ until the cyclic voltammograms overlaid to indicate a homogeneous surface. After each electrode had been polished and conditioned, $50 \mu \mathrm{~L}$ of a 0.5 mm Cu"-protein Ala98Cys solution in 50 mm HEPES buffer pH 7.5 were chemically adsorbed on the Au surface for $2-3 \mathrm{~h}$. CVs were collected in 50 mm HEPES buffer, pH 7.5 at varying scan rates at room temperature $\left(22-28^{\circ} \mathrm{C}\right)$.

SOD activity

The SOD activity of the copper complexes was determined by using the indirect assay of McCord-Fridovich observing XTT reduction. ${ }^{[54-56]}$ Superoxide anions were generated by a xanthine- oxidase system and detected by monitoring the formation of forma-
zan at $\lambda=470 \mathrm{~nm}$. The reactions were performed in 50 mm HEPES buffer pH 7.4 with $100 \mu \mathrm{M}$ XTT and $200 \mu \mathrm{~m}$ xanthine. An appropriate amount of xanthine oxidase was added to start the reaction and generate a change in absorbance of $0.025-0.030 \mathrm{~min}^{-1}$. The absorbance at $\lambda=470 \mathrm{~nm}$ was monitored for 1.5 min (slope P1) before addition of the SOD mimic, and for another 1.5 min after addition (slope $P 2$). A plot of the ratio $(P 1-P 2) / P 1$ as a function of SOD mimic concentration was used to calculate the inhibition concentration $\left(\mathrm{IC}_{50}\right)$ at which the reduction of XTT to formazan is inhibited by $50 \%(P 2=1 / 2 P 1)$. A pseudo-catalytic rate constant, $k_{\text {McF }}$ was deduced from the IC_{50} value by using the relation: $k_{\mathrm{xTT}} \times[\mathrm{XTT}]=$ $\left(k_{\mathrm{MCF}}\right)\left(\mathrm{IC}_{50}\right)$, with $k_{\mathrm{XTT}}=5.94 \times 10^{4} \mathrm{~m}^{-1} \mathrm{~s}^{-1}(\mathrm{pH} 7.8) .{ }^{[2]}$ In order to ensure that no free copper was present in solution the experiments were performed with an excess of protein (4:1 protein/metal). The measurements were performed in triplicate for each compound. Controls with the apoproteins showed no SOD activity. Controls were performed to determine that no inhibition of the xanthine-xanthine oxidase system resulted from the addition of the peptides. The rate of conversion of xanthine to urate was monitored at $\lambda=$ 290 nm in the presence and absence of peptide and no inhibition was observed. Possible formazan complexation was monitored at $\lambda=490 \mathrm{~nm}$ after addition of peptide and no decrease in absorbance was detected, indicating no inhibition. ${ }^{[73,88,89]}$

Acknowledgements

V.P., K.K., and A.T. thank NIH grant R01 ES012236 for funding and A.T additionally acknowledges the Chateabriand Fellowship for funding. C.P. and E.M. acknowledge the network FrenchBIC (http://frenchbic.cnrs.fr/) for E.M.'s fellowship for her stay at Michigan. They also wish to thank ANR (ANR-15-CE070027) and Fondation pour la recherche médicale (DIE20151234413) for funding. O.I. acknowledges the financial support from Fundação para a Ciência e a Tecnologia [PTDC/ QUI-BIQ/098406/2008) and the Marie Curie Actions (FP7-PEOPLE-IRG-230896).

Conflict of interest

The authors declare no conflict of interest.

Keywords: bioinorganic chemistry • enzymes
metalloenzymes • metalloproteins • protein design
[1] Y. Sheng, I. A. Abreu, D. E. Cabelli, M. J. Maroney, A.-F. Miller, M. Teixeira, J. S. Valentine, Chem. Rev. 2014, 114, 3854-3918.
[2] C. Policar in Redox Active Therapeutics (Eds.: J. S. Reboucas, I. BatinicHaberle, I. Spasojevic, D. S. Warner, D. St. Clair), Springer, Cham, 2016, pp. 125-164.
[3] I. A. Abreu, D. E. Cabelli, Biochim. Biophys. Acta Proteins Proteomics 2010, 1804, 263-274.
[4] J. D. Aguirre, V. C. Culotta, J. Biol. Chem. 2012, 287, 13541-13548.
[5] D. P. Barondeau, C. J. Kassmann, C. K. Bruns, J. A. Tainer, E. D. Getzoff, Biochemistry 2004, 43, 8038-8047.
[6] J. E. Gleason, A. Galaleldeen, R. L. Peterson, A. B. Taylor, S. P. Holloway, J. Waninger-Saroni, B. P. Cormack, D. E. Cabelli, P. J. Hart, V. C. Culotta, Proc. Natl. Acad. Sci. USA 2014, 111, 5866-5871.
[7] L. Spagnolo, I. Törö, M. D'Orazio, P. O’Neill, J. Z. Pedersen, O. Carugo, G. Rotilio, A. Battistoni, K. Djinović-Carugo, J. Biol. Chem. 2004, 279, 33447-33455.
[8] C. X. Li, J. E. Gleason, S. X. Zhang, V. M. Bruno, B. P. Cormack, V. C. Culotta, Proc. Natl. Acad. Sci. USA 2015, 112, E5336-E5342.
[9] N. G. Robinett, R. L. Peterson, V. C. Culotta, J. Biol. Chem. 2018, 293, 4636-4643.
[10] R. L. Peterson, A. Galaleldeen, J. Villarreal, A. B. Taylor, D. E. Cabelli, P. J. Hart, V. C. Culotta, J. Biol. Chem. 2016, 291, 20911-20923.
[11] H. J. Forman, I. Fridovich, Arch. Biochem. Biophys. 1973, 158, 396-400.
[12] S. B. Choudhury, J.-W. Lee, G. Davidson, Y.-I. Yim, K. Bose, M. L. Sharma, S.-O. Kang, D. E. Cabelli, M. J. Maroney, Biochemistry 1999, 38, $3744-$ 3752.
[13] Y.-H. Zhou, H. Fu, W.-X. Zhao, W.-L. Chen, C.-Y. Su, H. Sun, L.-N. Ji, Z.-W. Mao, Inorg. Chem. 2007, 46, 734-739.
[14] D. Árus, A. Jancsó, D. Szunyogh, F. Matyuska, N. V. Nagy, E. Hoffmann, T. Körtvélyesi, T. Gajda, J. Inorg. Biochem. 2012, 106, 10-18.
[15] D. P. Riley, Chem. Rev. 1999, 99, 2573-2588.
[16] D. Salvemini, C. Muscoli, D. P. Riley, S. Cuzzocrea, Pulm. Pharmacol. Ther. 2002, 15, 439-447.
[17] O. Iranzo, Bioorg. Chem. 2011, 39, 73-87.
[18] I. Batinic-Haberle, A. Tovmasyan, E. R. Roberts, Z. Vujaskovic, K. W. Leong, I. Spasojevic, Antioxid. Redox Signaling 2014, 20, 2372-2415.
[19] I. Batinić-Haberle, J. S. Rebouças, I. Spasojević, Antioxid. Redox Signaling 2010, 13, 877-918.
[20] R. P. Bonomo, G. Impellizzeri, D. La Mendola, G. Maccarrone, G. Pappalardo, A. Santoro, G. Tabbi, G. Vecchio, E. Rizzarelli in Metal-Ligand Interactions: Molecular, Nano-, Micro- and Macro-systems in Complex Environments, (Eds.: N. Russo, D. R. Salahub, M. Witko), Kluwer Academic Publishers, Dordrecht, 2003, pp. 41-63.
[21] I. Batinic-Haberle, A. Tovmasyan, I. Spasojevic, Antioxid. Redox Signaling 2018, 29, 1691-1724.
[22] I. Batinic-Haberle, M. E. Tome, Redox Biol 2019, 25, 101139.
[23] J.-J. Zhang, Q.-H. Luo, D.-L. Long, J.-T. Chen, F.-M. Li, A.-D. Liu, J. Chem. Soc. Dalton Trans. 2000, 1893-1900.
[24] C.-J. Feng, Q.-H. Luo, Z.-L. Wang, M.-C. Shen, H.-W. Wang, M.-H. Zhao, J. Inorg. Biochem. 1999, 75, 1-6.
[25] A. Kotynia, T. Janek, Ż. Czyżnikowska, S. Bielińska, W. Kamysz, J. Brasuń, Int. J. Pept. Res. Ther. 2017, 23, 431-439.
[26] G. Csire, S. Timári, J. Asztalos, J. M. Király, M. Kiss, K. Várnagy, J. Inorg. Biochem. 2017, 177, 198-210.
[27] S. Timári, R. Cerea, K. Várnagy, J. Inorg. Biochem. 2011, 105, 1009-1017.
[28] I. N. Jakab, O. Lőrincz, A. Jancsó, T. Gajda, B. Gyurcsik, Dalton Trans. 2008, 6987.
[29] A. Jancsó, Z. Paksi, N. Jakab, B. Gyurcsik, A. Rockenbauer, T. Gajda, Dalton Trans. 2005, 3187.
[30] B. Bóka, A. Myari, I. Sóvágó, N. Hadjiliadis, J. Inorg. Biochem. 2004, 98, 113-122.
[31] L. L. Costanzo, G. D. Guidi, S. Giuftida, E. Rizzarelli, G. Vecchio, J. Inorg. Biochem. 1993, 50, 273-281.
[32] S. Kubota, J. T. Yang, Proc. Natl. Acad. Sci. USA 1984, 81, 3283-3286.
[33] R. Brigelius, R. Spöttl, W. Bors, E. Lengfelder, M. Saran, U. Weser, FEBS Lett. 1974, 47, 72-75.
[34] P.-S. Huang, S. E. Boyken, D. Baker, Nature 2016, 537, 320-327.
[35] J. W. Bryson, S. F. Betz, H. S. Lu, D. J. Suich, H. X. Zhou, K. T. O'Neil, W. F. DeGrado, Science 1995, 270, 935-941.
[36] J. W. Bryson, J. R. Desjarlais, T. M. Handel, W. F. Degrado, Protein Sci. 1998, 7, 1404-1414.
[37] W. F. DeGrado, C. M. Summa, V. Pavone, F. Nastri, A. Lombardi, Annu. Rev. Biochem. 1999, 68, 779-819.
[38] J. S. Plegaria, V. L. Pecoraro, Isr. J. Chem. 2015, 55, 85 - 95.
[39] M. Tegoni, Eur. J. Inorg. Chem. 2014, 2177-2193.
[40] D. Ghosh, V. L. Pecoraro, Curr. Opin. Chem. Biol. 2005, 9, 97-103.
[41] F. Yu, V. M. Cangelosi, M. L. Zastrow, M. Tegoni, J. S. Plegaria, A. G. Tebo, C. S. Mocny, L. Ruckthong, H. Qayyum, V. L. Pecoraro, Chem. Rev. 2014, 114, 3495-3578.
[42] M. L. Zastrow, V. L. Pecoraro, Coord. Chem. Rev. 2013, 257, 2565-2588.
[43] U. P. Singh, R. K. Singh, Y. Isogai, Y. Shiro, Int. J. Pept. Res. Ther. 2006, 12, 379-385.
[44] A. L. Pinto, H. W. Hellinga, J. P. Caradonna, Proc. Natl. Acad. Sci. USA 1997, 94, 5562 - 5567.
[45] D. E. Benson, M. S. Wisz, H. W. Hellinga, Proc. Natl. Acad. Sci. USA 2000, 97, 6292-6297.
[46] S. T. R. Walsh, H. Cheng, J. W. Bryson, H. Roder, W. F. DeGrado, Proc. Natl. Acad. Sci. USA 1999, 96, 5486-5491.
[47] V. M. Cangelosi, A. Deb, J. E. Penner-Hahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2014, 53, 7900-7903; Angew. Chem. 2014, 126, 8034-8037.
[48] J. S. Plegaria, M. Duca, C. Tard, T. J. Friedlander, A. Deb, J. E. PennerHahn, V. L. Pecoraro, Inorg. Chem. 2015, 54, 9470-9482.
[49] J. S. Plegaria, S. P. Dzul, E. R. P. Zuiderweg, T. L. Stemmler, V. L. Pecoraro, Biochemistry 2015, 54, 2858-2873.
[50] A. G. Tebo, A. Quaranta, C. Herrero, V. L. Pecoraro, A. Aukauloo, ChemPhotoChem 2017, 1, 89-92.
[51] A. G. Tebo, T. B. J. Pinter, R. Garcia-Serres, A. L. Speelman, C. Tard, O. Seneque, G. Blondin, J. M. Latour, J. Penner-Hahn, N. Lehnert, V. L. Pecoraro, Biochemistry 2018, 57, 2308-2316.
[52] K. J. Koebke, F. Yu, E. Salerno, C. Van Stappen, A. G. Tebo, J. E. PennerHahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2018, 57, 3954-3957; Angew. Chem. 2018, 130, 4018-4021.
[53] K. J. Koebke, L. Ruckthong, J. L. Meagher, E. Mathieu, J. Harland, A. Deb, N. Lehnert, C. Policar, C. Tard, J. E. Penner-Hahn, J. A. Stuckey, V. L. Pecoraro, Inorg. Chem. 2018, 57, 12291-12302.
[54] I. Fridovich, J. Biol. Chem. 1970, 245, 4053-4057.
[55] J. M. McCord, I. Fridovich, J. Biol. Chem. 1969, 244, 6049-6055.
[56] M. W. Sutherland, B. A. Learmonth, Free Radical Res. 1997, 27, 283-289.
[57] Y.-H. Chen, J. T. Yang, K. H. Chau, Biochemistry 1974, 13, 3350-3359.
[58] T. E. Creighton, Protein structure: A practical approach, Oxford University Press, New York, 1997.
[59] N. J. Greenfield, Nat. Protoc. 2006, 1, 2527-2535.
[60] M. Niklasson, C. Andresen, S. Helander, M. G. Roth, A. Zimdahl Kahlin, M. Lindqvist Appell, L. G. Martensson, P. Lundstrom, Protein Sci. 2015, 24, 2055-2062.
[61] J. E. Hahn, R. A. Scott, K. O. Hodgson, S. Doniach, S. R. Desjardins, E. I. Solomon, Chem. Phys. Lett. 1982, 88, 595-598.
[62] F. de Groot, G. Vankó, P. Glatzel, J. Phys. Condens. Matter 2009, 21, 104207.
[63] A. P. Golombek, M. P. Hendrich, J. Magn. Reson. 2003, 165, 33-48.
[64] E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659-3853.
[65] S. Kardinahl, S. Anemüller, G. Schäfer, Biol. Chem. 2000, 381, 1089-1101.
[66] U. Sakaguchi, A. W. Addison, J. Chem. Soc. Dalton Trans. 1979, 600-608.
[67] A. Diaz, R. Pogni, R. Cao, R. Basosi, Inorg. Chim. Acta 1998, 275-276, 552-556.
[68] L. S. Kau, D. J. Spira-Solomon, J. E. Penner-Hahn, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1987, 109, 6433-6442.
[69] M. Eckshtain, I. Zilbermann, A. Mahammed, I. Saltsman, Z. Okun, E. Maimon, H. Cohen, D. Meyerstein, Z. Gross, Dalton Trans. 2009, 78797882.
[70] I. Spasojevic, I. Batinic-Haberle, R. D. Stevens, P. Hambright, A. N. Thorpe, J. Grodkowski, P. Neta, I. Fridovich, Inorg. Chem. 2001, 40, 726 739.
[71] S. Durot, C. Policar, F. Cisnetti, F. Lambert, J.-P. Renault, G. Pelosi, G. Blain, H. Korri-Youssoufi, J.-P. Mahy, Eur. J. Inorg. Chem. 2005, 35133523.
[72] S. Durot, F. Lambert, J.-P. Renault, C. Policar, Eur. J. Inorg. Chem. 2005, 2789-2793.
[73] F. C. Friedel, D. Lieb, I. Ivanovic-Burmazovic, J. Inorg. Biochem. 2012, 109, 26-32.
[74] M. T. Carri, A. Battistonia, F. Polizio, A. Desideri, G. Rotilio, FEBS Lett. 1994, 356, 314-316.
[75] J. Wang, H. Slunt, V. Gonzales, D. Fromholt, M. Coonfield, N. G. Copeland, N. A. Jenkins, D. R. Borchelt, Hum. Mol. Genet. 2003, 12, 2753 2764.
[76] J. Wang, A. Caruano-Yzermans, A. Rodriguez, J. P. Scheurmann, H. H. Slunt, X. Cao, J. Gitlin, P. J. Hart, D. R. Borchelt, J. Biol. Chem. 2007, 282, 345-352.
[77] C. L. Fisher, D. E. Cabelli, J. A. Tainer, R. A. Hallewell, E. D. Getzoff, Proteins Struct. Funct. Bioinf. 1994, 19, 24-34.
[78] G. R. Moore, G. W. Pettigrew, N. K. Rogers, Proc. Natl. Acad. Sci. USA 1986, 83, 4998-4999.
[79] C. A. Rohl, R. L. Baldwin, Biochemistry 1997, 36, 8435-8442.
[80] P. Luo, R. L. Baldwin, Biochemistry 1997, 36, 8413-8421.
[81] A. Conte-Daban, V. Borghesani, S. Sayen, E. Guillon, Y. Journaux, G. Gontard, L. Lisnard, C. Hureau, Anal. Chem. 2017, 89, 2155-2162.
[82] M. Tegoni, F. Yu, M. Bersellini, J. E. Penner-Hahn, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2012, 109, 1-6.
[83] P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, M. Hagerman, Inorganic Chemistry, 5th ed., Freeman and Company, New York, 2010
[84] G. N. George, I. J. Pickering, EXAFSPAK, http://ssrl.slac.stanford.edu/ \approx george/exafspak/exafs.htm.
[85] A. L. Ankudinov, J. J. Rehr, Phys. Rev. B 1997, 56, R1712-R1716.
[86] T.-C. Weng, G. S. Waldo, J. E. Penner-Hahn, J. Synchrotron Radiat. 2005, 12, 506-510.
[87] N. Dimakis, G. Bunker, Phys. Rev. B 2004, 70, 195114.
[88] K. M. Faulkner, S. I. Liochev, I. Fridovich, J. Biol. Chem. 1994, 269, 23471 23476.
[89] R. H. Weiss, A. G. Flickinger, W. J. Rivers, M. M. Hardy, K. W. Aston, U. S. Ryan, D. P. Riley, J. Biol. Chem. 1993, 268, 23049-23054.

Manuscript received: August 20, 2019
Revised manuscript received: October 4, 2019
Accepted manuscript online: November 11, 2019
Version of record online: December 3, 2019

[^0]: [a] A. E. Tolbert, ${ }^{+}$Dr. K. J. Koebke, Prof. J. E. Penner-Hahn, Prof. V. Pecoraro Department of Chemistry
 University of Michigan
 Ann Arbor, MI 48103 (USA)
 E-mail: vlpec@umich.edu
 [b] Dr. E. Mathieu, ${ }^{+}$Prof. C. Policar
 Laboratoire des biomolécules, LBM, Département de chimie
 École normale supérieure, PSL University, Sorbonne Université, CNRS
 75005 Paris (France)
 E-mail: clotilde.policar@ens.fr
 [c] Prof. C. Tard
 LCM, CNRS, Ecole Polytechnique, IP Paris
 91128 Palaiseau (France)
 [d] Dr. O. Iranzo
 Centrale Marseille, iSm2
 Aix-Marseille Université, CNRS
 Marseille (France)
 $\left.{ }^{[+}\right]$These authors contributed equally to this work

