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The theoretical and empirical implications of a static and dynamic logistic diffusion 
model are compared. The dynamic model relaxes some assumptions of the static model 
by allowing for a flexible adoption ceiling, for changes in the technology, and for 
disadoption. Both models were used to estimate the diffusion of  semi-dwarf wheat 
varieties in the United States. The dynarnic model provides a better fit to the data and 
provides additional insights into the economic determinants of adoption. In particular, 
the importance of technological change in other areas (here, in fertilizer) on the 
diffusion path of  an innovation was shown. 
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In constructing diffision models, economists have 
faced a difficult trade-off. A host of probabilis- 
tic frameworks (such as the logistic, probit, and 
Gompertz; see Griliches 1957, Dixon) permit 
straightforward estimation of the diffusion trend 
of an innovation. Ease of estimation, however, 
comes at the cost of exogenously determined (and 
often theoretically unjustified) constraints on the 
rate of adoption and on the point at which the 
greatest rate of adoption occurs. For example, 
the logistic model requires the greatest rate of 
adoption to occur when 50% of the population 
has adopted the innovation. (For further criti- 
cisms of the static diffusion framework, see Ma- 
hejan and Peterson 1985.) 

A number of the theoretically troublesome as- 
sumptions of the static diffusion model have been 
relaxed by Metcalfe and Gibbons. They present 
a dynamic diffusion framework which allows the 
inflection point of the diffusion curve to arise 
endogenously from the specifications of the 
model. Their model is of further interest be- 
cause it depicts explicitly the interactive rela- 
tionship between research and development and 
diffusion/adoption. Unfortunately, the data re- 
quirements for estimation of the Metcalfe and 
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Gibbons model are onerous. For example, input 
costs, including research costs, are required. 
However, firms are typically unwilling to re- 
lease such input data. 

This paper presents a method for overcoming 
data limitations in estimating dynamic diffusion 
models while incorporating additional variables 
to explain technological change. This method- 
ology has potential application to a variety of 
diffusion cases, including the adoption of her- 
bicide-resistant crop varieties and low-input ag- 
ricultural practices. The technique is applied to 
estimating the diffusion of semi-dwarf wheat 
varieties (SDWVs). SDWVs are an important 
yield-increasing biological innovation which has 
substantially altered the agricultural practices of 
wheat growers in the United States. To empha- 
size the value of the dynamic approach, results 
from the dynamic model will be compared to 
estimates from a more traditional static diffusion 
model. As shall be shown, the dynamic model 
not only provides better estimates of the diffu- 
sion of semi-dwarf wheat, but also allows the 
researcher to determine the impact on the dif- 
fusion process of a variety of factors not incor- 
porated within the traditional static model. 

This paper is organized as follows. The first 
section presents the traditional static diffusion 
model, followed by Metcalfe and Gibbon's gen- 
eralization to the dynamic case. The third sec- 
tion indicates how market data can be used to 
yield estimates for dynamic diffusion trends. The 
fourth section presents the results of a general- 
ized least squares estimation of the traditional 
static diffusion model and of a dynamic diffu- 
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sion model for semi-dwarf wheat. Finally, some 
concluding remarks are made. 

A Basic Diffusion Model 

The basic diffusion process contains four com- 
ponents: the innovation, the social system in 
which the innovation is being adopted, channels 
of communication, and time (Metcalfe and Gib- 
bons, Mahajan and Peterson 1985, Bayer and 
Melone). The innovation component represents 
the new product being diffused. Inherent in the 
new product are characteristics that affect its 
diffusion. ~ A social system is comp¡ of in- 
dividuals, organizations, or agencies and their 
adopting strategies. How a total group of adop- 
ters transmits information about an innovation 
depends on how heterogenous and cohesive a 
group of adopters is. The ways that adopters pass 
on information about an innovatioon are the 
channels of communication. Finally, time is the 
period over which a social system adopts ah in- 
novation. Because these four components are 
present in every diffusion process, any realistic 
model of diffusion must incorporate them. 

In addition, six basic assumptions underlie the 
diffusion model (See, for example, Mahajan and 
Peterson 1985.): (Al)  The adoption decision is 
binary. An individual adopts or does not adopt. 
(A2) A fixed, finite ceiling N M exists. (A3) The 
coefficient of diffusion (defined below) is fixed 
over time. (A4) The innovation is not modified 
once introduced, and its diffusion is indepen- 
dent from the diffusion of other innovations. (A5) 
One adoption is permitted per adopting unit and 
this decision cannot be rescinded. (A6) A social 
system's geographical boundaries stay constant 
over a diffusion process. 

Incorporating the four components, and as- 
suming (A1)-(A6), the basic diffusion model 
takes the following functional forro (This dis- 
cussion follows the notation found in Mahajan 
and Peterson 1985.): 

(1) d N ( t ) / d t  = g(t)  [N M - N(t)], 

where d N ( t ) / d t  is the rate of diffusion at time 

~ Economists sometimes classify innovations into process and 
product. A process innovation is an input to a production process. 
A product innovation is an end product. Generally,  product inno- 
vations are easier to assess than process innovations because their 
performance can be rneasured directly. However,  many innovations 
fall into both categories. That is, one f irm's  product innovation, 
say a seed variety, may become a process innovation for another 
firm. For the purposes of  this paper, what category the innovation 
falls into does not matter as long as it is measurable. For simplicity,  
product is used. 
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t, (or, more simply, changes in adoption over 
time) where t begins at to; g(t)  is the coefficient 
of diffusion. This coefficient indicates how fast 
and to what degree adoption occurs. The higher 
the coefficient, the earlier and greater degree of 
adoption of an innovation. 

The cumulative number of adopters at time t 
is N( t ) ,  or 

N( t )  = n( t )d t ,  

and n(t)  is the number of adopters per time pe- 
riod t; N M i s  the maximum number of adopters 
in a social system over time t. The number of 
potential adopters left at time t is N M - N( t ) .  

While it is clear how innovation and time fit 
into model (1), the entry of social system and 
channels of communication are not directly ap- 
parent. Their effect is found in the diffusion 
coefficient, g(t) .  The specific forro of g(t)  re- 
flects the influence of the social system and the 
channels of communication on the diffusion 
process. For example, when a social system is 
heterogenous, fragmented, and lacks commu- 
nication, g(t)  = b, where b represents the nat- 
ural rate of diffusion, i.e., that rate which oc- 
curs without any other influence. The resulting 
diffusion model, d N ( t ) / d t  = b [ N  M - N(t)], is 
called the external influence model. However, 
when the social system is homogenous and 
communicative, g(t)  = bN( t ) ,  where b still is the 
natural rate of adoption and N( t )  is the impact 
adopters have on the remaining number of non- 
adopters, N M - N( t ) .  The resulting diffusion 
model, 

(2) d N ( t ) / d t  = bN( t )  ( N  M - N ( t ) ) ,  

is known both as an internal influence model 
andas the logistic model; it was used to estimate 
the diffusion of hybrid com in G¡ (1957) 
seminal piece. 

The logistic model imposes an S-shaped, 
symmetric diffusion trend with a maximum dif- 
fusion rate occurring when 50% of the potential 
cumulative adopters have adopted. 2 It is based 
on the premise that diffusion occurs through in- 
terpersonal contacts among a group of homog- 
enous adopters (Mansfield). But not all diffu- 
sion models require symmetry around a 50% 
inflection point. For example, the Gompertz 
model, d N ( t ) / d t  = bN( t )  (logN M - N( t ) ) ,  im- 

2 For proofs of the logistic model ' s  inflection point and its sym- 
metric diffusion trend, see Mahajan and Peterson 1985, pp. 2 7 -  
28. 
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poses an asymmetric trend with the maximum 
diffusion rate occurring when 37% of the po- 
tential cumulative adopters have adopted. 3 The 
assumption here is that although adopters are 
homogenous, early adopters are relatively more 
cohesive than middle and late adopters; there- 
fore, they adopt at a faster pace. Dixon used the 
Gompertz and traditional logistic models to 
reestimate the diffusion of hybrid com. He found 
the Gompertz model was a more accurate mea- 
sure of hybrid com diffusion. 

Because farmers within a region or country 
often have similar production practices (homog- 
enous) and communicate well with each other 
(cohesive), it makes sense to use a traditional 
logistic model to estimate the diffusion of an ag- 
ricultural innovation (Mahajan and Peterson 
1985). Hence, in this paper, the traditional lo- 
gistic model is uscd to estimate the diffusion of 
semidwarf wheat. Because this model will be 
compared to a dynamic model, the traditional 
logistic model will hereafter be called the static 
logistic model. 

Dynamic Diffusion Models 

Static diffusion models work best when the 
adoption process being modeled satisfies the as- 
sumptions (A1)-(A6) listed above, and when the 
inflection point for the adoption trend occurs at 
the same point as the inflection point for the 
functional forms listed above. For many appli- 
cations, however, static diffusion models are open 
to two objections. First, in many cases there will 
be no rationale ex ante for assuming that dif- 
fusion follows a particular trend. Second, the 
assumption of a fixed ceiling on the adopting 
population is unrealistic in most economic con- 
texts. For example, the potential number of 
adopters of a biological innovation will vary de- 
pending upon the availability of the innovation, 

3 A Gompertz model takes the forro, dN(t)/dt = bN(t) [ logN M 
- N(t)], where b, and N(t) and N Mare as defined in the text. The 
following is a proof  that the Gompertz  model  has a maximum dif- 
fusion rate when 37% of  the potential adopters adopt and is asym- 
metric. 

Let N be expressed a s a  fraction of  N M, so dN(t)/dt = bN(t) 
(logN ~t - logN(t)) becomes (dN(t)/dt) (1 IN M) = b(N(t)/N M) ( log(N~/ 
N M) - log(N(t)/N~t)). Let F(t) = N(t) /N M, and ignore the subscript 
t for convenience; (dN(t)/dt) (1 IN M) becomes dF/dt = bF(log 1 - 
logF)  = bF(log(1 lE)). 

To find the maximurn growth rate, F M, differentiate with respect 
to F ;  (dF/dt)/dF = blog(1/F) - bFM(1/F M) = 0; rearranging, 
blog(1/F M) = b log(1/F M) = 1 or F M =  0.37. The maximum dif- 
fusion rate occurs when 37% of  the potential adopters have adopted 
and is skewed to the left, making the diffusion trend asymmetric.  

which itself is a result of the profit-maximizing 
efforts of firms. 

Models are needed that allow more flexibility 
with regard to the inflection and symmetry points 
(Mahajan and Peterson 1985, Knudson). Dy- 
namic models allow the determinants of diffu- 
sion to change every time period, and, hence, 
may more accurately measure the rate of adop- 
tion than a static model. For example, as the 
real price of an innovation decreases and sta- 
bilizes, an innovation becomes more attractive 
and is adopted more rapidly. A dynamic model 
could capture this change; a static model could 
not. 

In addition, as a result of its flexible form, 
dynamic models can include more variables that 
affect diffusion and therefore measure more di- 
rectly these factors' impact. For instance, the 
impact of such factors as prices or profit can be 
included in the diffusion model. Conceptually, 
then, a diffusion trend becomes an envelope of 
individual, distinct diffusion trends that a set of 
distinct variables define in each time period 
(Chow; Mahajan and Peterson 1978, 1985; Met- 
calfe and Gibbons; Stoneman). 

Studies by Mahajan and Peterson (1978) and 
by Metcalfe and Gibbons were used to develop 
such a dynamic model. In particular, the Ma- 
hajan and Peterson study established an ap- 
proach for modifying static models. They began 
by relaxing assumption (A2), which states that 
N Mis fixed and finite, claiming that (A2) is in- 
consistent with theory and practice. To make N M 
dynamic, Mahajan and Peterson defined N ~ as 
a functionf(s( t)) ,  where s(t) is a vector of "(po- 
tentially) all relevant exogenous and endoge- 
nous factors, both controllable and uncontroll- 
able, affectin~, NM(t)" (p. 1590). How well f(s(t)) 
represents N'W(t) depends on the accuracy in es- 
timating s(t) and the closeness of s(t) or f (s( t ) )  
in measuring NM(t). Hence, by redefining s(t) 
or f (s( t ) ) ,  this approach can be tailored to mea- 
sure the diffusion of distinctly different inno- 
vations. 

Metcalfe and Gibbons relaxed assumptions 
(A2)-(A4) to build a dynamic model that is 
"based upon the simultaneous development of 
market demand and the accumulation of pro- 
ductive capacity" (p. 5). They take a static lo- 
gistic model and make NM(t) a function of a 
simple market demand equation, c - ap(t), where 
p(t) is prices paid by the consumer at time t. 
Theirp(t) is determined endogenously within an 
industry; hence, it represents the equilibrium price 
(reflecting the growth rate capacity and profit 
rate of a firm). Their model takes the final form; 
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(3) dN( t ) /d t  = g(t) [NM(t) - N(t)], 

where g(t) is a function of technology, the nat- 
ural rate of diffusion, and the capacity for a firm 
to invest in research and development. 

The approach utilized by Metcalfe and Gib- 
bons relaxes many of the basic assumptions of 
the diffusion model listed in the preceding sec- 
tion. By allowing the adoption ceiling to be a 
function of time (as well as technology and the 
parameters of equilibrium demand and supply), 
the assumption of a fixed adoption ceiling (A2) 
is relaxed. All three components g(t) listed above 
may change every time period; hence (A3) (the 
assumption that the diffusion coefficient is fixed) 
is relaxed. (A4) is relaxed as the model allows 
directly for improvements in the innovation and 
for improvements in the means of producing the 
innovation. (For further details of model (3); see 
Metcalfe and Gibbons and Metcalfe.) 

Modeling the Diffusion of Semi-Dwarf 
Wheat 

Metcalfe and Gibbons present their modelas  a 
means of incorporating the full effects of the in- 
vention side in the diffusion process. Unfortu- 
nately, the cost data required for the profit rate 
equation are virtually impossible to obtain. Sim- 
ilarly, revenue for a research project is difficult 
to obtain, a n d a s  a result one cannot estimate 
marginal revenue to approximate marginal cost. 
Furthermore, not many proxies for research costs 
are available. The Metcalfe and Gibbons model, 
while theoretically appealing, is difficult to es- 
timate empirically. 

A model overcoming these data limitations was 
developed to estimate the diffusion of semi-dwarf 
wheat varieties (SDWV) across the U.S. Let the 
maximum number of adopters be a function of 
a wheat supply function, NM(t) = f ( s ( t ) )  -- y(t), 
where y is the supply of wheat from semi-dwarf 
wheat seeds that farmers produce in time t. More 
specifically, 

(4) y(t) = f ( p r ( t ) ,  pp(t) ,  p f ( t ) )  
= c + a l p r ( t -  1) + a 2 p p ( t -  1) 

+ a3pf(t - 1), 

where pr(t  - 1) is the price farmers receive for 
a bushel of grain in year t - 1, pp(t  - 1) is the 
price paid for SDWV seed in time t - 1, and 
p f ( t  - 1) is the p¡ paid for fertilizer in time 
t - 1 .  

Two factors stand out in this functional form 
(3). First, the price variables are lagged one year. 
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Because a substantial lag exists between the time 
when production decisions are made to when 
production ends, price variables are often lagged. 
In this case, the hypothesis that a producer's ex- 
pectation of prices is based on relatively recent 
experience is used (Tomek and Robinson). Sec- 
ond, the price variables are not deflated by a 
common deflator. Instead, the price variable that 
would have been the deflector is represented as 
a separate variable. In this case, the effect of 
fertilizer prices is measured. 

Measuring the impact of fertilizer prices as an 
independent variable makes sense for two rea- 
sons. First, for the innovation studied here 
(SDWV), high yields were obtained through the 
use of heavier fertilizer application. Therefore, 
the use of fertilizer a s a  deflator may bias the 
regression results (Tomek and Robinson). Sec- 
ond, because fertilizer prices fluctuated greatly 
in the 1970s, separating prices received and other 
input prices from fertilizer prices allows for more 
accurate measurements of the impact of these 
variables on supply (Meilke). 

The main difference between this model of 
diffusion and that of Metcalfe and Gibbons is 
that prices are now exogenous. However, be- 
cause the supply function depends on factors that 
affect a farmer's decision to adopt, a supply 
function still connects the stages of research and 
development and diffusion/adoption. For ex- 
ample, suppose high fertilizer prices deter the 
adoption of SDWV. A firm may use this infor- 
mation to develop SDWVs that are less depen- 
dent on fertilizer. Furthermore, as prices favor 
a particular production process, such as SDWV 
and increased fertilizer use, farm producers may 
use these inputs to utilize a profitable opportu- 
nity (Schumpeter). Work by Peterson, and Tim- 
mer and Falcon show for va¡ commodities 
that as the real price of the agricultural product 
increases, its supply also increases. Hence, a 
supply function similar to that found in equation 
(4) also captures the ceiling of SDWV adop- 
tion. 4 

Substituting (4) for N M in equation (1) yields 

(5) dN( t ) /d t  = bN(t) (c + a ~ p r ( t -  1) 
+ a Z p p ( t -  1) + a 3 p f ( t -  1) - N(t)) ,  

where dN( t ) /d t  is the rate of diffusion in time 
t, N(t) is the number of adopters in time t, b i s  
the natural rate of adoption, and c, a l a 2, a 3, pr( t  

4 The demand elasticity is assumed not equal to zero since in that 
case firms would not respond to the lowered price of  the innova- 
tion. Therefore, technological change would have no effect on the 
firm. 
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- 1), p p ( t  - 1), and p f ( t  - 1) are defined above. 
In equation (5), as in the Mahajan and Peterson 
model, the maximum number of adopters does 
not remain fixed over time; therefore, (A2) is 
relaxed. Similar to the Metcalfe and Gibbons 
model, the innovation is allowed to change over 
the diffusion process through the supply func- 
tion found in equation (4); hence, (A4) is re- 
laxed. 

E s t i m a t i n g  the D i f f u s i o n  o f  S D W V  

The parameters for the static logistic model (2) 
and the dynamic logistic model (5) are esti- 
mated by rewriting each equation in its discrete 
analogue form and then applying generalized least 
squares (GLS) (Mahajan and Peterson 1985, 
Bass, Chow, Bayer and Melone, White). 5 In 
terms of its discrete analogue form, d N ( t ) / d t  = 
N( t )  - N ( t  - 1). Substituting the discrete ana- 
logue form into the static logistic model (2), and 
multiplying the right-hand side of (2) out, (2) 
becomes 

(6) N( t )  - N ( t  - 1) = (bNM)N(t )  - bN( t )  2, 

where b N  M = A ,  - b = E ,  and N( t )  and N( t )  2 

are the same as they were [in (2)]. Equation (6) 
becomes by substitution, 

(7) N( t )  - N ( t -  1) = AN(t) + E N ( t )  2. 

Doing the same for the dynamic logistic model, 
equation (5) becomes 

(8) N( t )  - N ( t -  1) = (bc)N( t )  

+ (ba l )N( t )  p r ( t  - 1) + (ba2)N( t )pp( t  - 1) 

+ (ba 3 )N(p f ( t  - 1) - (b )N( t )  2. 

Let A = bc ,  B = ba 1, C = ba 2, D = ba 3, and 
E = - b ,  and substitute, A, B, C, D, and E for 
these terms in (8). Now, (8) becomes 

(9) N( t )  - N ( t -  1) = AN(t) + B N ( t ) p r ( t -  1) 

+ C N ( t ) p p ( t -  1) + D N ( t ) p f ( t -  1) + E N ( t )  2. 

One can now apply GLS to both equations (7) 
and (9). 

For both models, the A coefficient is expected 
to be positive and the E coefficient negative. The 
greater the increase in the number of adopters, 
N( t ) ,  between two time periods, the greater the 

5 The Goldfeld-Quandt test for heteroskedasticity was statisti- 
cally significant and was corrected following the methodology of 
White. 

diffusion rate, N( t )  - N ( t  - 1). However, as the 
number of adopters increases, the number of po- 
tential adopters decreases. Adoption continues 
to increase but at a decreasing rate. 

For the dynamic logistic model, a positive B 
coefficient is expected and negative C a n d  D 
coefficients are expected. Producers supply more 
of a commodity as its real market price in- 
creases. Hence, as prices increase, so does 
adoption and the diffusion rate. However, as an 
input price decreases, assuming everything else 
remains constant, the profitability of using that 
input increases, causing its adoption to increase. 

Var iab l e s  Used  

Both the static and dynamic logistic models use 
the variable N(t) .  In addition, the dynamic model 
also uses the variables p r ( t  - 1), p p ( t  - 1), and 
p f ( t  - 1). N( t )  is measured by the percentage 
of total wheat land planted to SDWV's .  This 
measure is a flexible variable, capable of cap- 
turing disadoption trends. This allows one to take 
advantage of relaxing assumption (A5). 

An alternative measure of N( t )  is the area of 
land planted with SDWV's.  One advantage of 
using the relative measure is to maintain con- 
sistency with other studies that measured the 
diffusion of a new crop variety. Griliches (1957) 
and Dixon used percentage of com land planted 
to hybrid com to measure hybrid com adoption. 
A second justification for using the relative 
measure is that this study addresses the extent 
to which wheat farmers use SDWVs as opposed 
to traditional varieties. Because the only com- 
mercial alternative for wheat farmers is either 
the traditional or the SDW option, the relative 
proportion of wheat land going to SDW allows 
one to track the adoption of SDWV over tra- 
ditional varieties within the adoption population 
of interest, i.e., wheat farmers. By contrast, us- 
ing the absolute measure gives no insight into 
the adopting behavior of wheat farmers because 
increases in the total land planted with SDWVs 
need not reflect displacement of the more tra- 
ditional varieties. 6 

Data on the percent of SDWV acreage rela- 
tive to total wheat acreage are collected from a 

6 A s a  check, the model was rerun using the absolute acreage 
measure. The results were confusing. For example, the coefficients 
for N(t) imply that the adoption occurred first in regions where the 
SDWV technology appeared last and conflicts with evidence (such 
as the data from the Wheat Marketing Survey) that shows other- 
wise. This result may reflect the erratic wheat acreages during the 
1960s and 1970s. 
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wheat marketing survey by U.S. Department of 
Agriculture (USDA) every five years. These data 
are aggregated so the unit of analysis is on a per 
state basis. The survey is run across forty-two 
states. Data on SDWV acreage allotment are 
available for forty-one of these states. Florida is 
excluded because of lack of data for many years 
on their wheat plantings. 

The survey years for which SDWV data are 
available are (a) 1959, 1964, 1969, 1974, 1979, 
and 1984 for Idaho, Montana, Nevada, Oregon, 
and Washington; and (b) 1964, 1969, 1974, 
1979, and 1984 for the remaining thirty-six states. 

The three price variables in the model (Pr, 
Pp, and Pf) are measured as follows: Pr, ex- 
pected wheat prices received, is set equal to the 
average annual price received per bushel of 
wheat. (N(t - 1) refers to the preceding wheat 
survey year. However, the price variables are 
lagged only one year.) The price received "al- 
lows for unredeemed loans and government pur- 
chases values at the average loan and purchase 
rate" (USDA ERS, p. 24). Expected prices paid 
for seed, Pp, equals the average annual price 
paid for seed. The USDA publishes seasonal av- 
erage wheat price data. Finally, Pf, expected 
prices paid for fertilizer, is measured by total 
plant nutrient expenditures (million dollars) 
(Pf*Q_f, where Pf is price of plant nutrients and 
Qf is quantity of plant nutrients) divided by the 
quantity of plant nutrients consumed on the na- 
tional level (1,000 tons), i.e., Pf*Qf/Qf = Pf. 
This price accounts for technological improve- 
ments in fertilizer. As improvements occur, a 
unit of fertilizer will produce more nutrients, 
hence, reducing the real price of fertilizer. Be- 
cause prices using plant nutrients are adjusted 
for quality and USDA fertilizer prices are not, 
USDA fertilizer prices are biased upwards. 
Therefore, this study used this measure (Pf*Qf/ 
Pf) of fertilizer prices. 
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Table 2. Characteristics for States within 
Each Group 

Group Wheat Market Class 

G 1 White 
G2 Hard Red Spring 
G3 Hard Red Winter 
G4 Soft Red Winter 
G5 Soft Red Winter 

Cross-Sectional and Time-Series Data 

Because of the lack of time-series data on a per 
state basis and the abundance of cross-sectional 
data, equations (7) and (9) were estimated using 
cross-sectional and time-series data. The level 
of analysis using cross-sectional and time-series 
data is the individual as opposed to a time point. 
For this study, the movement of SDWV adop- 
tion in one region will be described relative to 
its movement in another region. The advantage 
is that all adopters' behavior will be directly 
comparable. 

Equations (7) and (9) must be reformulated 
for use in cross-sectional and time-series anal- 
ysis using a slope dummy variable framework. 
The forty-one states are divided into five groups 
based on their location and similarity in wheat 
and growing conditions. See tables 1 and 2 for 
a listing of the groups and their characteristics. 

A base group was selected to provide a means 
of comparing SDWV diffusion rates between re- 
gions. The other groups were formulated using 
dummy variables. The model measures the dif- 
fusion of SDWV for the base group and how 
the other groups differ directly from the base 
group. Therefore, the base group must be dif- 
ferent enough from the rest of the groups so that 
statistical differences between groups can be 
picked up. In this study, a good base group would 

Table 1. State Groups 

Group One (G1) Group Two (G2) Group Three (G3) Group Four (G4) Group Five (G5) 
(West) (Upper Midwest) (Plains) (South) (East) 

Arizona Michigan Colorado Alabama Delaware 
California Minnesota Illinois Arkansas Indiana 
Idaho Montana Iowa Georgia Kentucky 
Nevada New York Kansas Louisiana Maryland 
New Mexico North Dakota Missouri Mississippi New Jersey 
Oregon South Dakota Nebraska North Carolina Ohio 
Utah Wisconsin Oklahoma South Carolina Pennsylvania 
Washington Texas Tennessee Virginia 

Wyoming West Virginia 
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be one where either high or low SDWV diffu- 
sion occurred. Since SDWV diffusion was most 
rapid in Group 1, the West, this region was cho- 
sen as the base group. 7 

Results and Discussion 

The results of the static logistic model (7) and 
the dynamic logistic model (9) are presented in 
tables 3 and 4, respectively. In both tables, the 
reported coefficients equal the coefficients from 
the base group plus the coefficient from the 
dummy variable for that particular variable in 
that region. The standard errors and T-statistics, 
however, are for the test that the coefficient for 
that region is significantly different from the 
coefficient for the base region (the West). Only 
the T-statistic for the West region is appropriate 
for determining whether the coefficient is sig- 
nificantly different from zero. 

Overall, the dynamic model provides a better 
fit to the data than the static model. Adjusting 

7 Each of the groups actas one unit. The states within each group 
have fairly homogenous SDWV diffusion rates. Some states within 
a group may lag behind. But, because of the spillover effect, close 
locality, and similar market classes of wheat grown, it is assumed 
SDWV technology was similarly transferred among these states. 

In order to check the homogeneity among states within each group, 
each group was run by itself in a cross-section and time-series lo- 
gistic framework. The base states were Oregon, New York, Okla- 
homa, South Carolina, and Virginia. With the exception of Kansas, 
Texas, Indiana, Pennsylvania, North Carolina, and Mississippi, the 
states, within their respective groups, were not significantly dif- 
ferent from the base group. Other groupings were also tested, but 
only this division gave strong results within and between regions. 

for additional explanatory variables in the dy- 
namic model increased the R-squared measure 
from 0.46 to 0.67. In addition, the pattern of 
diffusion in the two models is quite similar. 
Considering the coefficients on N and N 2, both 
models show similar patterns of signs for the 
coefficients. In the West and Upper Midwest, 
increases in the number of cumulative adopters 
leads to increases in the diffusion rate, although 
the increases occur at a diminishing rate for larger 
numbers of cumulative adopters. This deceler- 
ation is not observed in any of the other three 
regions, where both the static and the dynamic 
diffusion models show a positive coefficient for 
the N and N 2 coefficients. However, these pos- 
itive coefficients for N 2 for the Plains, the South, 
and the East may indicate that SDWV have not 
yet fully diffused in these regions. 

Analysis of the value of wheat relative to total 
farm production in each region substantiates the 
patterns revealed in the N and N 2 coefficients. 
As noted in Griliches (1958), the higher the to- 
tal value of a crop, the faster the acceptance rate. 
Wheat has the highest value in the West, the 
upper Midwest, and the Plains. The South and 
the East lag behind. This relationship suggests 
that adoption of SDWVs has progressed most 
fully in the West and upper Midwest, and less 
so in the other regions. If trae, this result sug- 
gests that future empi¡ analysis of the dif- 
fusion of SDWVs in the Plains, South, and East 
should yield the expected negative coefficient 
N 2, as the regions become saturated and in- 
creases in land devoted to SDWVs decelerates. 

Table 3. Results from Estimating a Static Logistic Using Only the Number of Adopters 

Variable  Coeff ic ient  Standard Error  T-Statistic 

W e s t ( G 1 )  

N 0 .8204025 0 .2500690  3 .280704 
N 2 - 0 . 0 0 7 7 1 2 4 8 5  0 .003044787  - 2 . 5 3 3 0 1 3  
U p p e r M i d w e s t  (G2) 

N 0 .4267331 0 .3326181 1.183548 
N 2 - 0 . 0 0 1 1 4 1 1 0 2  - 0 . 0 0 5 1 8 3 0 8 5  1.267852 
Plains (G3) 

N 0 .6785527  0 .3200809  0 .4431686  
N 2 0 .0007691705  0 .00458963  1.848004 
South (G4) 

N 0 .2359555 0 .3761646  1.5537 
N 2 0 .00471732  0 .005530218  2 .247616 
East  (G5) 

N 0.1846409 0 .3420848  1.858491 
N 2 0 .0121731 0 .00550287  3.71505 

RBAR**2 .46 

D . F .  159 

Note: States and characteristics of each group are found in tables 1 and 2. 
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Table 4. Results f rom Estimating a Dynamic Logistic Using the Nurnber of Adopters,  Prices 
Received, Priees Paid, and Fertilizer Priees for Five Groups 

Standard 
Variable  Coeff ic ient  Error  T-Statistic 

Wes t  (G 1) 

N 
Pr 
Pp 
Pf 
N 2 

Upper  Midwes t  (G2) 

1.179268 .2736722 4 .309052 
- . 0 9 3 2 9 4 6 5  .05053714 - 1 . 8 4 6 0 6 1  

.05736491 .06157601 .9316114 
- 5 . 7 8 7 6 2 1  2.434321 - 2 . 3 7 7 5 0 9  

- . 0 0 2 7 6 5 7 8 3  .002829609 - . 9 7 7 4 4 3 6  

N 1.076938 .3117690 - . 3 2 8 2 2 0 8  
Pr .04508504 .06622319 2 .089596 
Pp .4549232 .1012592 3 .926146 
Pf - 2 1 . 0 7 7 6 4  3.468241 - 4 . 4 0 8 5 8 0  
N 2 - . 0 0 6 1 3 8 4 9 6  .003294418 - 1 . 0 2 3 7 6 6  
Plains (G3) 

N 1.42598 1.301191 .1896052 
Pr - . 3 3 5 1 0 6 6  .4511594 - . 5 3 5 9 7 9 0  
Pp .0971373 .08452221 .4705556 
Pf  - 1 , 7 8 2 9 2  4 .063782 .9854614 
N 2 .001267546 .004928605 .8183510 

South (G4) 

N 
Pr 
Pp 
Pi 
N 2 

East  (G5) 

1.251281 .3435780 .2095975 
- . 5 0 8 0 8 7 5  .1913784 - 2 . 1 6 7 3 9 7  
- . 1 5 1 3 8 0 8  .09975378 - 2 . 0 9 2 6 1 0  
9 .663808 4 .728954 3 .267410 

.001882715 .004080817 1.139110 

N .5686835 .3426880 1.781749 
Pr - . 2 9 4 4 1 0 1  .2310009 - . 8 7 0 6 2 6 4  
Pp - . 0 1 2 1 6 0 1 2  .1352383 - . 5 1 4 0 9 2 9  
Pf 4.847369 7.445705 1.428339 
N 2 .008456703 .004070585 2.756971 

R B A R * * 2  .67 

D . F .  144 

I States and charactefistics of each group are found in tables 1 and 2. 

The price coefficients from the dynamic model 
are less enlightening. In particular, the signs on 
the coefficients for the prices received (Pr) and 
prices paid for seed (Pp) do not follow any clear 
pattern. There ate four potential explanations for 
this failure. 8 First, farmers may not be price re- 
sponsive, at least to these two variables. Sec- 
ond, these price variables may have a signifi- 
cant effect but not in a way that the model 
estimated here can uncover. For example, prices 
paid for seed may interact with another variable 

8 The dynamic model was run using long-term prices for all three 
variables (measured by a five-year lagged average). Long-term prices 
not only gave signs that followed less of a pattern than those ob- 
tained in the short-run priees case, but also had lower t-statistics. 
Thus, it is not the use of short-run output prices per se that is re- 
sponsible for the pattern of coefficients on the price variables. The- 
oretical justification for the use of one-year lagged prices is pre- 
sented in Tomek and Robinson. 

(such as farm income), and through this inter- 
active effect may significantly affect adoption. 
Finally, coefficient estimates may be confused 
because of the lack of variation on the Pr and 
Pp variables. For example, this lack of variation 
may be attributed in the former case to govern- 
ment programs maintaining artificially high prices 
for wheat. Fourth, the estimated model suffers 
from collinearity, since the price variables are 
all multiplied by N, which is also an indepen- 
dent variable in the model. 9 

9 The correlations between N and NPr and between N and NPp 
were roughly 0.9. The correlation between N and NPfwas slightly 
less. Although there are techniques to correct for near multicolli- 
nearity, such as bayesian mixed estimation and adding data, neither 
were feasible here (because of the lack of a second data set). Re- 
sults from models with multicollinearity are unbiased, although in- 
efficient. This implies that multicollinearity cannot account for the 
switched signs on some of the price variables, although it may ac- 
count for the small t-statistics. 
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On the other hand, fertilizer prices (P f )  have 
influenced the diffusion of SDWV, particularly 
in the West, the Upper Midwest, and the Plains 
(the three high value-of-wheat regions). For these 
three regions, the sign is correct, indicating that 
as the price of this input decreases, farmers pur- 
chased more SDWV seed. It is not surprising 
that fertilizer prices have a significant impact on 
SDWV diffusion. The improved yield capacity 
of SDWV over standard tall varieties was largely 
the result of its ability to withstand heavier heads 
brought about by increased fertilizer applica- 
tions. 

Fertilizer prices appear less important in ex- 
plaining the behavior of the late-adopting re- 
gions of the South and the East. This result is 
consistent with Cochrane's treadmill theory 
(Cochrane 1958, 1986). According to Coch- 
rane, as diffusion proceeds, the role of prices 
may diminish if the higher production dampens 
prices. While the initial increase in production 
because of the adoption of a new technology may 
not be enough to increase total supply, early 
adopters reap the benefits of new technologies 
through receiving old prices and increasing out- 
put per unit of input. However, middle and late 
adopters cause supply to increase appreciably. 
A s a  result, middle and late adopters do not ben- 
efit from an increase in the total value product 
over an increase in total costs. 

Concluding Comments 

This paper has presented a method by which dif- 
fusion models can incorporate dynamic factors 
such as changes in the maximum number of 
adopters and in the technology and the possi- 
bility of disadoption. The approach allows the 
researcher to avoid the extreme data burdens (in 
particular, the necessity for cost data) that arise 
in other dynamic diffusion models. This method 
was used to estimate the diffusion of semi-dwarf 
wheat varieties (SDWVs) in the United States 
from 1959-84. Comparisons with results from 
a static diffusion model show that the dynamic 
model provides a better fit to the data as well 
as offering insights into the economic determi- 
nants of adoption. 

The results of this paper also indicate the im- 
portance of including other innovations that af- 
fect the diffusion or development of the inno- 
vation being studied. The pattern of adoption of 
SDWV's  was affected to a considerable extent 
by changes in fertilizer prices, which them- 
selves resulted from technological innovations 

in the fertilizer industry. Incorporating these 
complex relationships may be necessary in order 
to explain satisfactorily the patterns of adoption 
of technological innovations. For example, a firm 
trying to market herbicide resistant varieties must 
consider the price of herbicide and other inputs 
as well as the management skills needed to as- 
sure the prompt adoption of these new varieties. 
Policy analysts may need to consider how price 
affects the adoption of new agricultural prac- 
tices, such as low input agricultural practices. 

This point is pertinent to many agricultural 
process innovations being developed today. Due 
to the poor prices of the 1980s, and the current 
concern over the environment, many agricul- 
tural companies are marketing production pack- 
ages instead of just one input. Hence, they need 
models, such as the one developed in this paper, 
that allow for the impact of another innovation. 

[Rece ived  Apri l  1989; f i na l  revision rece ived  
N o v e m b e r  1990.]  

References 

Bass, F. M. "A New Product Growth Model for Consumer 
Durables." Manag. Sci. 15(1969):215-27. 

Bayer, J., and N. Melone. "Predicting Acquisition and 
Adoption of Software Engineering Innovations." Work. 
Pap. No 42-86-87, Camegie-Mellon University, 1987. 

Chow, G. C. "Technological Change and the Demand for 
Computers." Amer. Econ. Rev. 57(1967): 1117-30. 

Cochrane, W. W. "A New Sheet of Music. How Kenne- 
dy's Farm Adviser Has Changed His Tune About 
Commodity Policy and Why." CHOICES 1 ( 1986): 11- 
15. 

- - .  Farm Prices. Myth and Reality. Minneapolis: Uni- 
versity of Minnesota Press, 1958. 

Dixon, R. "Hybrid Com Revisited." Econometrica 
48(1980): 1451-61. 

Griliches, Z. "Hybrid Com: An Exploration in the Eco- 
nomics of Technological Change." Econometrica 
25(1957):501-22. 

"Research Costs and Social Returns: Hybrid Com 
and Related Innovations." J Polit. Econ. 66(1958):419- 
31. 

Knudson, M. K. The Invention and Diffusion of Two Com- 
peting Technologies: Semi-Dwarf and Hybrid Wheat. 
Ph.D. thesis, University of Minnesota, 1988. 

Mahajan, V., and R. A. Peterson. "Innovation Diffusion 
in a Dynamic Potential Adopter Population." Manage. 
Sci. 24(1978): 1589-97. 

- - .  Modelsfor Innovation. Beverly Hills CA: Sage Pub- 
lications, 1985. 

Mansfield, E. "Technical Change and the Rate of Imita- 
tion." Econometrica 29(1961):741-66. 

Meilke, K. D. "Another Look at the Hog-Corn Ratio." Amer. 
J. Agr. Econ. 59(1977):216-19. 



Knudson Diffusion of Technological Change 733 

Metcalfe, .1. S. "Impulse and Diffusion in the Study of 
Technical Change." Futures (1981):347-59. 

Metcalfe, J. S., and M. Gibbons. "Industrial Policy and 
the Evolution of Technology." Paper presented at con- 
ference, Technological Innovation and Production 
Structure: The Position of ltaly, Milan, Italy, 1983. 

Peterson• W. L. "Intemational Farm Prices and the Social 
Cost of Cheap Food Policies." Amer. J. Agr. Econ. 
61(1979):12-21. 

Schumpeter, J. The Theory of Economic Development. 
Cambridge MA: Harvard University Press, 1934. 

Stoneman, P. The Economic Analysis of Technological 
Change. New York: Oxford University Press, 1983. 

Timmer, C. P., and W. P. Falcon. "The Political Econoiny 
of Rice Production and Trade in Asia." Agriculture in 
Development Theory, ed. L. G. Reynold, pp. 373-410. 
New Haven CT: Yale University Press, 1975. 

Tomek, W. G., and K. L. Robinson. Agricultural Product 
Prices. Second Edition. Ithaca: Comell University Press, 
1981. 

U.S. Department of Agriculture, Economic Research Ser- 
vice. State-Level Wheat Statistics, 1949-1988. Statist. 
Bull. No. 779. Washington DC, 1989. 

White, H. "A Heteroskedasticity-Consistent Covariance 
Matrix Estimator and Direct Test of Heteroskedastic- 
ity." Econometrica 48(1980):817-38. 


