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Abstract Introduction: Models characterizing intermediate disease stages of Alzheimer’s disease (AD) are
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needed to inform clinical care and prognosis. Current models, however, use only a small subset of
available biomarkers, capturing only coarse changes along the complete spectrum of disease progres-
sion.We propose the use of machine learning techniques and clinical, biochemical, and neuroimaging
biomarkers to characterize progression to AD.
Methods: We used a large multimodal longitudinal data set of biomarkers and demographic and ge-
notype information from 1624 participants from the Alzheimer’s Disease Neuroimaging Initiative.
Using hidden Markov models, we characterized intermediate disease stages. We validated inferred
disease trajectories by comparing time to first clinical AD diagnosis. We trained an L2-regularized
logistic regression model to predict disease trajectory and evaluated its discriminative performance
on a test set.
Results: We identified 12 distinct disease states. Progression to AD occurred most often through one
of two possible paths through these states. Paths differed in terms of rate of disease progression (by
5.44 years on average), amyloid and total-tau (t-tau) burden (by 10% and 69%, respectively), and hip-
pocampal neurodegeneration (P, .001). On the test set, the predictive model achieved an area under
the receiver operating characteristic curve of 0.85.
Discussion: Progression to AD, in terms of biomarker trajectories, can be predicted based on
participant-specific factors. Such disease staging tools could help in targeting high-risk patients for
therapeutic intervention trials. As longitudinal data with richer features are collected, such models
will help increase our understanding of the factors that drive the different trajectories of AD.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Machine learning; Trajectory; Longitudinal; Staging; Biomarkers
no conflicts of interest to report.

paration of this article were obtained from the Alz-

roimaging Initiative (ADNI) database (adni.loni.usc

estigators within the ADNI contributed to the design

ADNI and/or provided data but did not participate in

this report. A complete listing of ADNI investigators

://adni.loni.usc.edu/wp-content/uploads/how_to_app

ement_List.pdf.

thor. Tel.: (734) 647-4832; Fax: (734) 763 1260.

iensj@umich.edu

/j.dadm.2018.06.007

e Authors. Published by Elsevier Inc. on behalf of the Alzhe

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Patients with Alzheimer’s disease (AD) are believed to
progress through intermediate disease stages, characterized
by their pathophysiological and cognitive characteristics
[1,2]. Failures of multiple drug therapeutics could, in part,
be attributed to heterogeneity of disease presentation,
staging, and response to treatment [3,4]. Models of disease
progression could be used to assess and predict patients’
intermediate disease stages in clinical trials [5] and predict
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potentially heterogeneous treatment response in the absence
of clinical symptoms. In this study, we aimed to develop
such models and characterize the complexity of AD via an-
alyses of disease trajectories by prospectively leveraging
clinical, biochemical, and neuroimaging parameters.

Several models of the temporal evolution of biomarkers
[6–9] in AD have been proposed. However, these models
focus on only a small subset of the available biomarkers
and rely on a dichotomous definition of abnormality. AD,
however, is known to be heterogeneous in terms of clinical
presentation [10] and pathophysiology [11], making such bi-
nary cutoffs difficult to determine [12].

Therefore, we propose a comprehensivemachine learning–
based approach tomodeling disease progression that leverages
a largemultimodal subset of the available data from the under-
lying pathophysiological processes of neurodegeneration
(magnetic resonance imaging [MRI] and fludeoxyglucose F
18 positron emission tomography [FDG-PET] scans),
amyloidosis (amyloid PET, cerebrospinal fluid [CSF] amyloid
levels), tauopathy (CSF tau levels), and cognitive decline (neu-
ropsychological exams) in addition to patient demographics
and risk factors. We hypothesize that leveraging multiple
data modalities and machine learning techniques will lead to
a more accurate characterization of disease stages. The pro-
posed approach models disease stages as distributions over
biomarkers that are learned using the data, thus obviating the
need for dichotomous cutoffs to define abnormality. Further-
more, our model leverages data across participants misaligned
in time and with varying follow-up durations.

We report on the application of the proposed approach to
a large longitudinal cohort of participants. Such comprehen-
sive data-driven models of disease progression can help shed
light on the underlying pathophysiology of AD and are
increasingly relevant as a result of the widespread availabil-
ity of these biomarkers and the rapidly advancing diagnostic
criteria for the disease [13,14].
2. Methods

2.1. Study design and participants

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). ADNI was launched
in 2004 as a public-private partnership, led by a principal
investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD.

The ADNI cohort consists of participants diagnosed as
cognitively normal (with no memory complaints or signifi-
cant impairment in cognitive function), MCI (some memory
complaints with largely intact cognitive function and no
diagnosis of dementia [15]), and AD patients [16] (based
on a clinical diagnosis). Cognitively normal participants
had Mini–Mental State Examination (MMSE) scores �24
and a Clinical Dementia Rating (CDR) of zero. Patients
with MCI had MMSE scores �24, a rating of 0.5 or greater
on the memory box score on the CDR test and objective
memory loss based on delayed recall on the Wechsler Mem-
ory Scale Logical Memory II. Participants diagnosed with
AD had mild AD according to the National Institute of
Neurological and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disorders Associ-
ation (now known as the Alzheimer’s Association)
(NINCDS-ADRDA) criteria [17] and were recruited with
MMSE scores from 20–26 and a CDR of 0.5 or 1. All partic-
ipants were required to have at least 6 years of education and
be fluent in English or Spanish. The data were obtained from
ADNI [15] on November 1, 2016. We excluded participants
without at least one follow-up visit.
2.2. Procedures

We used a large multimodal subset of the clinical, imag-
ing, laboratory, genetic, and demographic data available for
each ADNI participant in our analysis. Procedures for pa-
tients’ MRI [18], PET [19], CSF [20], and neuropsycholog-
ical tests [21] have been previously described. As the
observed variables, we considered brain volumes extracted
from MRI scans (both 1.5 T and 3.0 T), FDG-PET and amy-
loid standard uptake value ratio (SUVR), CSF protein levels,
neuropsychological test scores, participant age, number of
years of education, and the number of copies of the APOE
e4 allele the participant inherited. Brain volumes from the
hippocampal, entorhinal, fusiform, midtemporal, and ven-
tricular regions were used and were normalized using the
intracranial volume. Levels of amyloid b (Ab)42, t-tau, and
phosphorylated-tau (p-tau) were extracted from CSF (all
CSF data were extracted from analyses performed in a single
batch). The FDG-PET SUVRwas averaged over the angular,
temporal, and bilateral cingulate regions. The amyloid intake
was averaged over the frontal, cingulate, parietal, and tempo-
ral regions and was normalized by the whole cerebellum
intake to obtain the SUVR. The following clinical scores
were used: Alzheimer’s Disease Assessment Scale Cognitive
Test, trails B, Family Activities Questionnaire, ReyAuditory
Verbal Learning Test, MMSE, and the CDR-sum of boxes.
2.3. Statistical analysis

At enrollment, cognitive impairment varies among ADNI
participants. Thus, we used hidden Markov models (HMMs)
to align participant trajectories and estimate a model of dis-
ease progression. Given the model and a participant’s trajec-
tory of observations, one can infer the most likely disease
stage at each visit.

Given the paucity of the data, we chose to discretize the
continuous-valued variables (e.g., clinical scores and biolog-
ical markers such as amyloid and CSF proteins) before infer-
ence. More specifically, we discretized all observed
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variables according to deciles and characterized each disease
stage using independent categorical distributions over each
biomarker. This level of abstraction can help in identifying
relationships between hidden states and observations. Given
the regular visit schedule, we considered discrete time steps,
as opposed to continuous time steps. We assumed 6 months
(with a tolerance of 2 months, consistent with the ADNI
schedule) between successive visits. When a longer period
elapsed between visits, we modeled intermediate visits as
missing.

HMMs, which have been commonly used in speech pro-
cessing [22], model data as a series of observations that
depend on a series of hidden states forming a Markov chain
[23]. Here, the hidden states correspond to disease stages,
and the observations correspond to measurements at each
visit (Supplementary Appendix A1). HMMs are parameter-
ized by transition probabilities (i.e., the probability of tran-
sitioning from one disease stage to another) and emission
probabilities (i.e., the probability of observations given the
current disease stage). To estimate the HMM parameters,
we used the Baum-Welch algorithm. We handled missing
data, both in terms of features at particular visits or entirely
missed visits, by marginalizing over these observations
while training the HMMmodel. To select the number of hid-
den states (i.e., disease stages), K, we minimized the
Bayesian Information Criterion. We generated confidence
intervals around our model parameters using a nonpara-
metric bootstrap approach (Supplementary Appendix A2)
and show the interquartile range (IQR) with error bars.
While we included a “start” stage (i.e., we modeled the prob-
ability of participant entering the study in a specific stage),
since participants can drop out of the study for different rea-
sons, we did not explicitly model an “end” stage. Additional
details on initialization and model selection are included in
Supplementary Appendix A3.

Given a participant’s observed longitudinal biomarker data,
we used the Viterbi algorithm [24] to infer the most likely tra-
jectory through disease stages and combined stage assign-
ments across bootstrap samples to assess positional variance.

We sorted inferred hidden states (i.e., disease stages) based
on themedian Alzheimer’s Disease Assessment Scale Cogni-
tive Test score of participants within each disease stage,
breaking ties based on the median amyloid burden. In our
analysis, we focused on transitions among the later disease
stages that primarily consist of MCI or Alzheimer’s partici-
pants because many of the participants in earlier stages
have limited longitudinal data and these later stages exhibited
less positional variance (see Supplementary Appendix A2).

We assessed the clinical predictive utility of our model
for disease progression by training a Cox proportional haz-
ards model of survival, stratified by the paths discovered in
our model. We defined survival as the time between entering
the study in an intermediate disease stage and the first clin-
ical AD diagnosis or the last completed follow-up visit,
whichever came earlier. Furthermore, we estimated the
time taken to progress from an intermediate disease stage
to the terminal stage of our model by simulating paths that
begin in a particular disease stage (using our generative
HMM) and measuring the time to reach the terminal stage
(corresponding to advanced AD).

We estimated the ability to prospectively classify patients as
following one path versus another by training an L2-
regularized logistic regression model. As input to the model,
we used data from participants assigned to intermediate stages,
with the goal of predicting the participant’s inferred trajectory.
Wemeasured discriminative performance of the trained model
in terms of the area under the receiver operating characteristics
curve (AUROC) on a held-out test set (20% of the data).

We used backward feature elimination to identify the
most important biomarkers in predicting path of disease pro-
gression. This analysis was performed by repeatedly split-
ting the data into training and test sets (80/20 split),
training an L2-regularized logistic regression model, and
eliminating features that affected the average AUROC the
least (see Supplementary Appendix A4 for more details).

We assessed statistical significance (with a significance
level of 0.05) using the chi-squared test for categorical
data and analysis of variance (or the Kruskal-Wallis test
when appropriate) for continuous data. We used the permu-
tation test to assess significance across multiple bootstrap
samples. When assessing a significantly higher than zero
value of a variable across bootstrap samples, we used the
t-test (or the Wilcoxon rank-sum test when appropriate).

All preprocessing and statistical analyses were performed
using MATLAB. The code is available here: https://gitlab.
eecs.umich.edu/mld3/ad_profile_hmm.git. Using this code,
others can apply the model to their study cohort to yield es-
timates of disease stage and predictions regarding which dis-
ease trajectory a participant is most likely to follow.
3. Results

Of the 1730 participants in ADNI, we excluded 106 who
lacked a follow-up visit. Our final study population consisted
of 1624 participants with a median follow-up period of
3 years totaling 8647 visits. The final set of observed vari-
ables consisted of 19 variables after preprocessing (i.e., dis-
cretization) the emission vector consisted of 174 dimensions
(Supplementary Appendix A5). All the participants had clin-
ical diagnoses as well as scores on neuropsychological tests.
Ninety-nine percent of the participants had an MRI scan and
71% had a CSF measurement (study population characteris-
tics and the amount of missing data for all variables are re-
ported in Table 1).

Our final model consisted of 12 disease stages. Cogni-
tively normal and dementia participants were primarily as-
signed to earlier (1–4) and later (10–12) disease stages,
respectively, while MCI participants fell into the intermedi-
ate disease stages (5–9) and showed some overlap with both
the earlier and later disease stages (Fig. 1). Here, we focus
our analysis on participants in stage 8 and onward because
when participants in earlier disease stages progress to
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Table 1

Characteristics of study population at baseline enrollment

Variable description

Study population

(n 5 1624)

% Patients with

measurement

Follow-up in months, median

(IQR)

36 (24–49) 100

Age, median (IQR) 74 (69–79)

Male gender, percent 55

Education in years, median

(IQR)

16 (14–18)

MMSE, median (IQR) 28 (26–29)

ADAS-Cog, median (IQR) 15 (9–23)

APOE e4 carrier, percent 47

Diagnosis, percent

Cognitively normal 31

Mild cognitive impairment 50

Alzheimer’s disease 19

Hippocampal volume: %TIV,

median (IQR)

0.44 (0.38–0.50) 99

FDG-PET SUVR, median

(IQR)

1.25 (1.14–1.34) 75

Amyloid PET SUVR, median

(IQR)

1.13 (1.02–1.38) 52

CSF t-tau in pg/mL, median

(IQR)

75.30 (52.10–113.00) 71

Abbreviations: IQR, interquartile range; SUVR, standard uptake value ra-

tio;MMSE,Mini–Mental State Examination; ADAS-Cog, Alzheimer’s Dis-

ease Assessment Scale Cognitive Subscale; TIV, total intracranial volume;

FDG, fludeoxyglucose F-18; PET, positron emission tomography; CSF, ce-

rebrospinal fluid; MCI, mild cognitive impairment.

NOTE. All data pertain to patients at their baseline visit. Of the patients

diagnosed as MCI at baseline, 37% were eventually diagnosed clinically

with AD.
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Fig. 1. The Alzheimer’s disease spectrum. Given a participant’s clinical

diagnosis (CN, MCI, or Alzheimer’s disease), we show the empirical distri-

bution of disease stage assignments inferred by our model. CN participants

are more likely to be assigned to the earlier disease stages (79% of all CN

participants in stages 1–4), and dementia participants are likely to be as-

signed to the later disease stages (86% of all Alzheimer’s disease partici-

pants in stages 10–12). The model underscores the role of MCI as an

intermediate stage, as MCI participants are assigned to stages that overlap

with both normal and dementia participants (69% of all MCI participants

in the intermediate stages 5–9, while 21%were in the predominantly normal

stages 1–5). Error bars show the IQR. Abbreviations: MCI, mild cognitive

impairment; IQR, interquartile range; CN, cognitively normal; AD, Alz-

heimer’s disease.
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advanced disease stages, they typically do so over long pe-
riods. ADNI does not yet provide sufficient follow-up for
participants in those earlier stages.

We observed that participants often skip stages when pro-
gressing but that paths always consist of monotonically
increasing stages. Fig. 2 illustrates transitions among disease
stages in the study cohort. It reveals two parallel paths of dis-
ease progression. “Path A” progresses through stages
8/10/12, whereas “path B” progresses through stages
9/11/12. Participants had a 54% chance of taking path A
versus path B. Transitions between the two paths were rare.
We observed a median of 22 transitions (2.5%) between stages
9 and 10 and 8 transitions (0.8%) between stages 8 and 11.

Participants in path B had a significantly faster transition
to a clinical diagnosis of AD than participants in path A
(Fig. 3). The median Cox proportional hazards coefficient,
relative to trajectories that began in stage 8, was 0.47 for
stage 9 (IQR: [0.21–0.76], P , .001). Furthermore, partici-
pants reached the terminal disease stage, on average, 46%
faster when they began in stage 9 compared to stage 8 (ex-
pected time of 11.76 vs. 17.20 years).

In the test set, amyloid SUVR, Rey Auditory Verbal
Learning Test score, age, t-tau levels, and APOE e4 allele
status were most discriminative in predicting which path a
participant would progress through. In the held-out test
set, the classification model achieved an AUROC of 0.85
when predicting participants’ progression through either
path. In Table 2, we compare specific features across the first
stages in either path (i.e., stage 8 vs. 9).

A retrospective comparison of biomarker trajectories
showed that, relative to participants in path A, participants
in path B had on average greater hippocampal volume (by
15%, P , .001), higher levels of amyloid (by 10%
P , .001), and higher levels of t-tau protein (by 69%,
P, .001) (Fig. 4). Trends in amyloid burden differed signif-
icantly across paths (P , .001): amyloid burden was rela-
tively stable in path B (median slope of 20.0037 SUVR
per disease stage, P 5 .0486) compared to path A, which
showed an increasing trend in amyloid (median slope of
0.0522 SUVR per disease stage). In addition, t-tau protein
levels increased more sharply in path A (median slopes of
19.42 vs. 11.16 pg/mL per disease stage, P, .001). Finally,
neurodegeneration was more rapid in path B; hippocampal
volume and FDG-PET SUVR reduced at faster rates (34%
faster, P , .001 and 20% faster, P , .001, respectively).

Compared to participants in path B, participants in path A
were older (median age of 81 [IQR: 76–85] at stage 8 vs. 73
[IQR: 69–78] at stage 9, P , .001), had higher education
levels (odds ratio 1.27 of having at least 15 years of educa-
tion, P , .001), and were less likely to have two copies of
the APOE ε4 (odds ratio 0.33, P , .001).
4. Discussion

Patients with AD progress through the disease at different
rates (i.e., time to clinical diagnosis of AD) and with



Fig. 2. (A) Trajectories of disease progression. Each bar is divided up according to the proportion of participants at that time step assigned to each disease stage.

The darker the color in a bar, the higher the proportion of participants with AD in that disease stage (color correspondences to disease stages in our model are

shown in the color bar, where the extremities in the color bar represent stages that constitute either entirelyMCI or AD participants, respectively). Inset gray bars

represent participants whowill drop out at the next time step, while gray bars at the bottom represent the proportion of censored participants at that time step. The

thickness of each arrow is proportional to the transition rate. We do not show transitions that occur,5% or self transitions. (B) The two most common distinct

paths of disease progression. The width of each arrow is proportional to the median empirical count of the particular transition (with the IQR in brackets). The

nodes are spatially arranged based on the median ADAS-Cog (y-axis) and amyloid burden (x-axis) of participants at each disease stage. Participants progress to

AD through either path A (i.e., through stages 8/10/12) or path B (i.e., through stages 9/11/12). We do not visualize edges with fewer than 25 median

transitions. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; ADAS-Cog, Alzheimer’s Disease Assessment Scale Cognitive Test;

IQR, interquartile range; SUVR, standard uptake value ratio.
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different pathophysiological responses (e.g., rate and extent
of neurodegeneration) [4]. Clinically, such heterogeneity
among participants could inform studies pertaining to
participant-specific risk/protective factors that affect disease
progression and estimates of participant response to drugs or
therapies. In light of the failure of many promising treat-
ments for AD when tested in heterogeneous cohorts in phase
3 clinical trials [3], delineating tracks of functional progres-
sionmay allow clinical trials of interventions targeted to spe-
cific AD subtypes. Furthermore, such data could be used in
the development of potential treatments targeting specific
processes associated with AD such as amyloidosis and
cognitive reserve, among others [25]. Along with
participant-specific therapies, comprehensive models of dis-
ease progression could lead to more specific prognoses.
Fig. 3. Dynamic characteristics of the disease paths. Participants who prog-

ress through path B (starting in stage 9) progress through disease faster than

participants who progress through path A (starting in stage 8). An event is

defined as a diagnosis of Alzheimer’s disease. Coefficient values for a

Cox proportional hazards model were found to be statistically significant

for each pairwise comparison of the stages (P , .001).
Leveraging a longitudinal cohort of 1624 ADNI partici-
pants, we characterized the intermediate stages of AD based
on 19 variables that included biomarkers, demographics, and
genotype. Using a comprehensive machine learning
approach, we identified two distinct paths of progression
to AD. Participants in path B progressed to our model’s ter-
minal stage faster and were more likely to be clinically diag-
nosed with AD sooner than those in path A. In a test set, we
showed that by using the observed variables, we could accu-
rately predict participant progression through paths Aversus
B (AUROC of 0.85).

Our work builds upon existing longitudinal studies of
biomarkers in AD. Past work has relied on cutoff scores,
such as Alzheimer’s Disease Assessment Scale Cognitive
Test or CDR-SB, to define abnormality [26–28] and has
used a small subset of biomarkers [27,29,30]. Previous
attempts to stage of AD participants have focused on
dichotomizing amyloidosis and neurodegeneration
[2,31,32] and, more recently, tauopathy [8]. Our study, by
contrast, considers a variety of biomarkers such as glucose
metabolism (as measured by FDG-PET), CSF protein levels,
a number of neuropsychological tests, as well as demo-
graphic characteristics and uses a distribution over each
biomarker instead of a binary cutoff. In addition, previous
work has required strong assumptions about biomarker tra-
jectories [29,33,34], while ours does not, where examples
of strong assumptions include representing biomarker
trajectories as linear or sigmoidal curves. Our approach
provides a more comprehensive pathophysiological picture
of disease progression. Such a comprehensive approach
will become particularly important as amyloid and tau
burden measures become more commonly available at
diagnostic centers.



Table 2

Characteristics of patients in the first stage of path A (stage 8) versus path B (stage 9)

Measurement

Path A

Median (IQR)

Path B

Median (IQR) P-value

Hippocampal volume (%TIV) 0.3552 (0.3500–0.3660) 0.4192 (0.4084–0.4275) .117

FDG-PET SUVR 1.17 (1.16–1.19) 1.19 (1.18–1.20) .300

CSF Ab42 (pg/mL) 159.0 (150.0–170.0) 129.0 (128.0–132.0) .035

CSF t-tau (pg/mL) 70.3 (64.8–76.5) 121.0 (114.0–127.0) .025

CSF p-tau (pg/mL) 29.6 (25.6–33.1) 50.8 (47.5–53.0) .026

Amyloid PET SUVR 1.26 (1.15–1.31) 1.40 (1.38–1.43) .030

ADAS-Cog 18.0 (17.7–18.7) 21.0 (20.0–21.7) .050

TRAILS-B 112.0 (105.0–119.0) 104.0 (98.5–111.5) .332

FAQ 3 (3–4) 5 (4–6) .224

RAVLT 33 (32–34) 30 (29–31) .106

MMSE 27 (27–27) 26 (26–26) .107

CDR 2.5 (2.0–2.5) 2.5 (2.5–3.0) .324

Age (years) 80.8 (79.9–81.6) 72.4 (71.6–73.3) .063

Abbreviations: SUVR, standard uptake value ratio; FDG, fludeoxyglucose F-18; PET, positron emission tomography; TIV, total intracranial volume; ADAS-

Cog, Alzheimer’s Disease Assessment Scale Cognitive Subscale; FAQ, Family Activities Questionnaire; RAVLT, Rey Auditory Verbal Learning Test; MMSE,

Mini–Mental State Examination; CDR, clinical dementia rating; IQR, interquartile range.

NOTE. Based on these measurements, predictions about the trajectory of a patient’s disease through either path A or B can be made.
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The proposed approach to disease staging naturally ex-
ploits variations in demographics and genotype, grouping
participants into distinct paths of progression. The concept
of heterogeneity in AD, that is, variations in its clinical pre-
Fig. 4. Empirical distribution of biomarker values at various disease stages for part

all time points during which a participant was classified as belonging to a particular

in path A, whereas the right splits (shown in red) represent disease stages in path B

path B. The area of each split violin is proportional to the sample size of the data th

normalized) load is the SUVR, t-tau level is in pg/mL, and age is in years. The hori

value of each biomarker. The solid line in each split represents the median of the

viation. Abbreviation: SUVR, standard uptake value ratio.
sentation and biomarker trajectories, has been investigated
previously, and several potential subtypes have been identi-
fied [35–38]. However, these studies are typically based on
cross-sectional data from a small subset of biomarkers. In
icipants in path A (green) versus path B (red). Includes the data pertaining to

stage. The left splits of the violins (shown in green) represent disease stages

. The violin at stage 12 is split for participants who arrive from path Aversus

at it represents. Hippocampal volume is in mm3, amyloid (whole cerebellum

zontal axis represents the disease stage, while the vertical axis represents the

data, and the dashed lines represent the median 6 the median absolute de-
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comparison, we characterized heterogeneity in participant
trajectories as they progress through the disease. Finally,
previous work has sought to model disease progression be-
tween clinical disease states, such as cognitively normal,
MCI, and AD [39], or focused on theMCI to AD progression
only [40]. While we focused our analyses on the later stages,
the proposed approach models disease progression between
and within all three clinical disease states. We included
cognitively normal participants for completeness. The
model/approach can be applied to any individual at a clinic
or in a study to get an idea of where that individual lies along
the disease progression spectrum. In addition, the first four
stages of our model that describe cognitively normal partic-
ipants are consistent with previous studies, which suggest
having at least three groups for such participants [41].

A data-driven analysis such as ours can be used to
generate hypotheses regarding the role of genetic or environ-
mental risk factors toward the clinical presentation of AD.
The comparatively higher education level of participants in
path A suggests that higher education acts as a slowing
mechanism for both the age of onset and the rate of progres-
sion. This protective effect of higher education has previ-
ously been referred to as higher cognitive reserve [42,43].
Despite the smaller hippocampal volumes, participants in
path A progress slower relative to those in path B,
indicating potential resistance to the damage of the
disease. More longitudinal analysis is required to better
understand the complex relationship among cognitive
reserve, education, and hippocampal volume [44]. The
increased risk of amyloidosis in APOE ε4 carriers has
been investigated in the literature [45]. Carriers of
APOE ε4 were found to be at a higher risk of amyloidosis
[8] and faster cognitive decline in the presence of amyloid-
osis [32]. However, we investigate factors such as cognitive
reserve and APOE ε4 genotype longitudinally while using a
large subset of biomarker data and accounting for heteroge-
neity in biomarker trajectories. This allows us to charac-
terize the slight decline in amyloid burden that occurs in
participants in path B as they reach the terminal disease
stage, compared to participants in path A, who show an
increasing trend in amyloid burden throughout disease pro-
gression. Furthermore, our results show an increased risk
from having two copies of the APOE ε4 allele [46] compared
to analyses that define patients broadly as APOE ε4 carriers.

Relative to path B, path A is associated with lower levels
of Alzheimer’s pathology (i.e., tauopathy and amyloidosis)
but greater neurodegeneration. We hypothesize that, due to
their lower age, participants in path B are resistant to neuro-
degeneration, at least for a while. Alternatively, participants
in path A might follow a heterogeneous biomarker trajec-
tory, where neurodegeneration precedes amyloidosis. Such
hypotheses could by tested by observing participants as
they progress through the presymptomatic disease stages.
For example, future studies could make use of data sets
that follow participants through the presymptomatic stages
of the disease (e.g., the Dominantly Inherited Alzheimer
Network database [47]). While such studies collect longitu-
dinal evaluations of presymptomatic participants, it may be
some time before enough data have been collected to apply
the proposed approach.

Our study has a number of limitations. First, a smaller pro-
portion of the population has CSF collections and amyloid
scans compared to the proportion with MRI and FDG-PET
scans. Second, the effect of education on disease progression
is merely an association rather than a causal effect; further
causal inference and potentially additional data are needed
to characterize any potential causal relationships. Third, since
the ADNI data set focuses on those with a classical AD clin-
ical profile, we were unable to investigate the heterogeneity
that occurs with comorbid diseases during the AD state.
Finally, our study population consists of volunteers who
were examined in a clinical research setting. Still, because
our study did not rely onADNI-specific components, the pro-
posed approach can be applied to other data sets. Futurework
should validate our findings on a cohort with greater diversity
in terms of race, comorbidities, and so on. In addition, there
are many directions in which others may build on the work
presented here. In particular, researchers may focus on sub-
sets of the ADNI population (e.g., only MCI participants),
characterizing group-specific heterogeneity.

In summary, our model characterizes intermediate stages
of AD and the heterogeneous biomarker trajectories associ-
ated with its progression. As longitudinal data with richer
features such as clinical histories, omics data, and ecologic
parameters are collected, such models will help increase
our understanding of the factors that drive the different tra-
jectories of AD. Clinically, such models will aid in matching
patients with potential therapies designed to target patho-
physiological processes of the disease, facilitating the devel-
opment of effective patient-specific drugs/therapies.
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RESEARCH IN CONTEXT

1. Systematic review: We searched the literature for re-
ports on disease staging and biomarker trajectories in
Alzheimer’s disease. Previous research has analyzed
transitions between disease stages defined by a sim-
ple two or three biomarker construct, where each
biomarker is dichotomized into a normal or abnormal
state.

2. Interpretation: We model trajectories of disease pro-
gression using a large multimodal longitudinal data
set. Our use of longitudinal data allows us to infer pa-
tients’ trajectories as they progress through interme-
diate disease stages. Our model identifies two
common but distinct paths of disease progression
and characterizes them in terms of biomarker trajec-
tories and clinical outcomes.

3. Future directions: The data suggest that most patients
who progress from mild cognitive impairment to
Alzheimer’s disease do so through one of two paths
that have distinct biomarker characteristics. Progres-
sion through either of these paths is predictable and
could affect treatment response.
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