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Abstract

We report the results of residue-residue contact prediction of a new pipeline built

purely on the learning of coevolutionary features in the CASP13 experiment. For a

query sequence, the pipeline starts with the collection of multiple sequence alignments

(MSAs) from multiple genome and metagenome sequence databases using two comple-

mentary Hidden Markov Model (HMM)-based searching tools. Three profile matrices,

built on covariance, precision, and pseudolikelihood maximization respectively, are then

created from the MSAs, which are used as the input features of a deep residual con-

volutional neural network architecture for contact-map training and prediction. Two

ensembling strategies have been proposed to integrate the matrix features through

end-to-end training and stacking, resulting in two complementary programs called

TripletRes and ResTriplet, respectively. For the 31 free-modeling domains that do not

have homologous templates in the PDB, TripletRes and ResTriplet generated compara-

ble results with an average accuracy of 0.640 and 0.646, respectively, for the top L/5

long-range predictions, where 71% and 74% of the cases have an accuracy above 0.5.

Detailed data analyses showed that the strength of the pipeline is due to the sensitive

MSA construction and the advanced strategies for coevolutionary feature ensembling.

Domain splitting was also found to help enhance the contact prediction performance.

Nevertheless, contact models for tail regions, which often involve a high number of

alignment gaps, and for targets with few homologous sequences are still suboptimal.

Development of new approaches where the model is specifically trained on these

regions and targets might help address these problems.
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1 | INTRODUCTION

For nearly five decades, the success of computational structure

prediction has been limited to proteins with homologous templates

from solved experimental structures.1-3 Significant progress has been

recently witnessed on ab initio 3D structure prediction,4-7 which is

mainly due to the success of sequence-based contact predictions.8,9

Due to its significant importance to protein structure prediction, the

problem of contact-map prediction has drawn an increasing amount

of attention, and as a result, several new approaches have been pro-

posed within the last decade.10-21

Initial studies on protein contact prediction focused on the analy-

sis of the marginal correlation between two positions in the multiple

sequence alignment (MSA),22,23 the idea of which is attractive, but theYang Li and Chengxin Zhang are considered as co-first authors.
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implementations often introduce transitional noise to the predicted

contact-map. In other words, if both positions A and B are coupled to

position C, the marginal correlation based analysis will report superficial

coupling between positions A and B as well. Direct coupling analysis

(DCA) methods (eg, mfDCA,10 PSICOV,11 CCMpred,12 and GREM-

LIN13), were subsequently proposed to address this problem of transi-

tional noise by excluding effects from other positions. However, for

proteins with few sequence homologs, these coevolutionary methods

could fail due to the fact that the parameters of the inverse Potts model

used in most DCA methods cannot be accurately estimated by limited

number of samples. Supervised machine learning based methods, such

as MetaPSICOV14,15 and NeBcon,16 predict contact-maps by combin-

ing features based on the final results of various coevolutionary

methods with a variety of one-dimensional sequence properties. These

methods outperform the pure DCA methods, especially for proteins

with a limited number of sequence homologs. Most recently, deep

neural network based contact-map predictors which formulate

contact-map prediction as a pixel-level classification problem, have

achieved great success.17-19 However, there is still room for fur-

ther improvements, especially in terms of feature representation.

It is observed that most machine learning methods use the post-

processed scores of coevolutionary analysis methods as features;

as a result, there could possibly be information loss in this post-

processing step.

Unlike many other machine learning predictors, the recently devel-

oped DeepCov20 directly uses the raw sequence covariance matrix as its

only feature, followed by convolutional neural networks to predict the

contact-map; it achieved comparable results to predictors based on fea-

tures of post-processed coevolutionary analysis. Alternatively, ResPRE21

considers the ridge estimation of the inverse of the covariance matrix,

which was shown to be capable of wiping out noisy signal from transla-

tional interactions; when coupled with a fully residual neural network

structure,24 the approach demonstrated superiority to the state-of-the-

art of other approaches. Here, we further extend this approach during

CASP13, where two methods, TripletRes and ResTriplet, are proposed to

ensemble a triplet of raw coevolutionary features, including the covari-

ance matrix, the precision matrix, and the parameter matrix of a pseudo-

likelihood maximized Potts model,25,26 by two complementary strategies,

based on end-to-end training and stacking.

In this article, we report the results of TripletRes and ResTriplet in

the contact prediction section of the CASP13 experiment. Careful

analyses will be performed to investigate the strengths and weak-

nesses of the different components of the pipelines, with particular

focuses on the hard free-modeling (FM) targets that lack homologs

from the structure and sequence databases. We will also highlight the

challenges identified from the CASP experiment to our methods and

possible strategies to address these issues.

2 | MATERIALS AND METHODS

The overall pipelines for TripletRes and ResTriplet are shown in Figure 1.

For a given query sequence, a multiple sequence alignment is generated

by incrementally searching against multiple sequence databases using

DeepMSA.27 Three coevolutionary matrix features are then extracted

based on the obtained MSA, including the covariance matrix (COV), the

precision matrix (PRE), and the coupling parameters of the Potts

model by pseudolikelihood maximization (PLM). Two different strat-

egies have been used to integrate coevolutionary features in

TripletRes and ResTriplet respectively. In TripletRes, all features are

fused directly by neural networks, where all networks are trained

end-to-end. In ResTriplet, a two-stage strategy is performed, in

which it first learns three individual contact-map predictors from the

three feature matrices, and then uses stacking to ensemble the

contact-maps from the predictors with secondary structure predic-

tions for the final contact prediction. Here, ResTriplet trains the

models in the first stage and the second stage separately. Below we

explain the pipelines in more detail.

2.1 | Multiple sequence alignment collection

Multiple sequence alignments are critical elements for contact-map

prediction based on coevolutionary analysis. DeepMSA is used to gen-

erate MSAs from three sequence databases and consists of three

steps.27 First, HHblits28 is used to search against UniClust3029 for three

iterations with a minimal coverage equal to 50%. We will proceed to

step 2 if DeepMSA doesn't provide enough sequences (ie, Nf < 128) in

step 1. Here, Nf is the normalized number of effective sequences which

is calculated by:

Nf =
1ffiffiffi
L

p
XN

n=1

1

1+
PN

m=1
I Sn,m≥0:8
� � ð1Þ

where I Sn,m≥0:8
� �

=1 if the sequence identity between m-th sequence

and n-th sequence in the MSA is over 0.8, otherwise I Sn,m≥0:8
� �

=0. In

step 2, Jackhmmer30 is used to search the query sequence against

UniRef90 for three iterations with an E-value cutoff of 10. Instead

of directly using the sequence alignments obtained by Jackhmmer,

the “hhblitdb.pl” script from HH-suite31,32 is used to construct a

custom database from the Jackhmmer hits for further HHblits

searching. If the Nf of the MSA in step 2 still lower than

128, step 3 will be performed, in which HMMbuild from the

HMMER package30 is used to search against the Metaclust33

metagenome sequence database with parameters “-E 10 --incE 1e-

3”. A custom HHblits database is built from the hits, similar to step

2. In both steps 2 and 3, The MSA from the previous steps is used

to jump-start an HHblits search against the custom databases. The

final MSA obtained thereof can be very large, which would result

in long runtimes for the PLM feature calculation. Therefore, an

additional filter for low coverage sequences is applied for MSAs

with an Nf > 128, where we remove sequence homologs with cov-

erage <60% if the resulting MSA retains an Nf > 128. We may addi-

tionally remove sequence homologs with coverage <75% if the

resulting MSA still has an Nf > 128.
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2.2 | Three evolutionary matrix features extracted
from MSA

There are three coevolutionary features used by our methods. The

first one, COV, is the covariance matrix as proposed by DeepCov.20

Considering an MSA with N rows and L columns, we can compute a

21�L by 21�L sample covariance matrix as follows:

Sabij = fi, j a,bð Þ− fi að Þfj bð Þ ð2Þ

where fi, j(a, b) is the observed relative frequency of residue pair a and

b at position i and j and fi(a) is the frequency of occurrence of a resi-

due type a at position i. Each entry of the covariance matrix gives the

covariance of residue type a at position i with residue type b at posi-

tion j. There are in total 21 residue types (20 standard amino acid

types plus a gap type).

Since the covariance matrix in Equation (2) encodes the marginal

correlations between variables, we calculate the second feature, the

precision matrix (PRE),21 by minimizing the objective function:

L= tr SΘð Þ− log Θj j+ ρ Θk k22 ð3Þ

where the first two terms can be interpreted as the negative log-

likelihood of the inverse covariance matrix, that is, the precision

matrix Θ, under the assumption that the data are under a multivari-

ate Gaussian distribution. Here, tr(SΘ) is the trace of the matrix SΘ

and log|Θ| is the log determinant of Θ. The last term in Equation (3) is

the L2 regularization of the precision matrix with ρ being set as e−6.

The inverse of the covariance matrix provides direct couplings between

pairs of sites conditional on other positions. Thus, the precision matrix

has better performance in the prediction of contact-maps than the

covariance matrix.21

The negative of the inverse of the covariance matrix can also be

interpreted as the Gaussian approximation of the inverse Potts model.

Thus, another way to approximate the inverse Potts model through

pseudolikelihood maximization (PLM)25,26 is also considered. The

starting point for this procedure is approximating the probability of

the sequence by the product of conditional probability of observing

each variable conditional on all the other variables. We use

CCMpred12 to efficiently calculate the PLM coupling parameters.

The covariance matrix, the precision matrix, and the coupling

parameters of the Potts model all assume a form of a 21�L × 21�L
matrix, representing relationships between the specific residue types

of any two positions. In each of the three matrices, the full set of

441 coupling parameters for every position pair is represented as a

21 × 21 sub-matrix. After a reshaping procedure, three input features

of size of L × L × 441 are collected for each sequence.

2.3 | Residual convolutional neural network
architectures for contact model training

As shown in Figure 1, we proposed two architectures based on deep resid-

ual neural networks (ResNet)24 in CASP13 to investigate the best way of

ensembling for contact-map prediction, where the first version of ResNet

is used as the basic residual block. Here, each residual block is defined as:

y = f F x,W1,W2ð Þ+ xð Þ ð4Þ

where x and y are the input and output tensors of the residual block

considered, f denotes the activation function (ReLU34 is used in this

F IGURE 1 The pipeline of TripletRes and ResTriplet for contact-map prediction in CASP13
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work), and the function F represents the residual mapping to be

learned by convolutional operations. Specifically, there are two con-

volutional layers in a residual block. Thus, the residual function is:

F x,W1,W2ð Þ=W2f W1xð Þ ð5Þ

where W1 and W2 are the learnable weights in the first and the sec-

ond convolutional layers respectively. We also have added instance

normalization with default parameters and dropout layers to the basic

block to speed up training of the neural networks and to avoid over-

fitting. The detailed architecture of the basic residual block is shown

in Figure S1. Here, the dropout rate was set to 0.2, which means 80%

of the input signal before a dropout layer would be randomly masked

at each training batch.

The right-upper portion of Figure 1 depicts the architecture of

TripletRes, where the three coevolutionary features are ensembled

directly by neural networks. Each input feature is fed into a set of

24 residual blocks and transformed into the output feature with

64 channels. The three output features are concatenated along the

channel dimension as the input of the last neural networks. The last

set of neural networks try to learn patterns from the three trans-

formed features by another 24 residual blocks. All residual blocks

have a channel size of 64, and the kernel size of convolutional layers

are set to 3 × 3 with padding size equaling to one. Such a padding

parameter set-up can keep the spatial information fixed through dif-

ferent layers. Here, we use a convolutional layer of 1 × 1 kernel size

to transform each coevolutionary input feature and the concatenated

feature into 64 channels. The final contact-map prediction is obtained

by a sigmoid activation function over the output of a convolutional

layer whose output channel is set to one.

The right-lower part shows a two-stage ensemble model, ResTriplet,

using stacking strategy. In Stage I, three individual base models are

trained separately based on the three different sets of coevolutionary

features, PRE, PLM, and COV, as described above. The base models have

the same training data and the same neural network structure consisting

of 22 residual basic blocks. In Stage II, we use a shallow neural network

structure to combine the predictions of base models from Stage I. Thus,

the predicted contact-maps of base models are considered as the input

features in stage II. The predicted secondary structures, denoted as PSS

in Figure 1, by PSIPRED35 are also adopted as an extra feature for the

neural network model in Stage II. For shallow convolutional neural net-

works, the size of receptive fields is usually limited. Hence, a collection

of 5 dilated convolutional neural network layers36 with dilation value set

to 2 and channel size set to 16 is employed in order to enlarge the size

of receptive fields. Different from TripletRes, ResTriplet employs a

dilated convolutional neural network layer with dilation value set to

2 and output channel set to 1 as the last layer. The final output of

ResTriplet is then obtained by applying a sigmoid function over the last

convolutional layer.

It should be noted that we did not apply any kind of pre-

normalization operation to the input features; instead, an instance

normalization layer is added after each convolutional layer except the

last convolutional layer in both TripletRes and ResTriplet. Both

TripletRes and ResTriplet share the same training set as described in

Text S1. For TripletRes, a total of 10 models were trained. The training

set was divided into 10 subsets. Each subset was considered as a valida-

tion set, and the remaining subsets were considered as the training

set of each model. Finally, the output is the average of all 10 models. In

Stage I of ResTriplet, to reduce the risk of over-fitting, predicted

contact-maps produced by each base model are also generated by

10-fold cross validation. In other words, we build 10 models for each

coevolutionary feature using the same data splitting strategy as that in

TripletRes. For each specific coevolutionary feature type, the predicted

contact-maps of the validation set of each model are considered as the

features of Stage II. However, in Stage II, ResTriplet does not perform

cross-validation because of limited time before the CASP experiment.

The neural networks in both TripletRes and ResTriplet are implemented

in Pytorch37 and trained by Adam optimizer38 with a default initial learn-

ing rate, that is, 1e-3, for 50 epochs. The training of TripletRes requires

4 GPUs running concurrently, while the training procedures of Res-

Triplet can be handled with only one GPU. A dynamic batch size strategy

during training is considered due to the limited of GPU resources. A

batch size of 1 is used for sequences with length L > 300, 2 for L in

200 to 300, and 4 for L < 200. The choice of the hyperparameters of

the two models, especially the number of layers, is a compromise

between memory usage and performance. In particular, while deeper

CNN models can, in theory, yield better performance, only a limited

number of layers can fit into the GPU memory for efficient training.

2.4 | Domain splitting and domain-based contact
prediction

Protein domains are subunits that can fold and evolve independently.

Due to the independent evolution of domains, constructing MSAs and

predicting contacts for individual domains can often lead to improved

accurate intra-domain contact prediction compared to that of the full-

length sequence. Since the domain boundary of CASP targets are not

known a priori, for a given CASP full-length target, ThreaDom39 is used

before contact prediction in order to identify domain boundary locations.

The core methodology of ThreaDom is threading the query sequence

through the PDB library using LOMETS40 to construct a template

structure-based multiple sequence alignment. Following this alignment, a

domain conservation score is calculated, where a target-specific scoring

cut-off strategy is then used to assign the domain boundaries. The final

contact-map prediction is derived from both the full-length sequence

and each of its domains. The inter-domain contacts are the results from

the prediction of the full-length sequence, and the intra-domain contacts

are replaced by the prediction of individual domains.

3 | RESULTS

3.1 | Overall performance

CASP13 had a total of 90 full-length protein targets, where 82 have

had their final structure released, which have been split into

122 domains by the assessors. In Table S1, we give a list of Nf values of
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MSAs and the top L, L/2, and L/5 contact prediction accuracy by Res-

Triplet and TripletRes for all the 122 domains in three ranges (short,

medium and long), where L is the length of the query sequence. Among

them, the average results of FM domains are summarized in Table 1,

following the official assessment of the CASP accessors, for three cate-

gories of short, medium and long-range contacts. Here, a contact is

defined as two residues (i and j) whose Cβ atoms are less than 8 Å apart.

A short-range contact is where 6 ≤ |i − j| ≤ 11, a medium-range contact

is where 12 ≤ |i − j| ≤ 23, and a long-range contact is where |i − j| ≥ 24.

It is shown that the two proposed methods have comparable perfor-

mance, although the TripletRes has a slightly higher accuracy than the

ResTriplet program, by 1.2% and 0.9% for the top L and L/5 long-range

contacts, respectively. Nevertheless, the corresponding P-values of the

difference are 0.82 and 0.65, showing that the difference is statistically

insignificant. If we count the number of targets with a top L long-range

contact accuracy >0.5, TripletRes met this criterion in 23 out of the

31 domains, which is also slightly higher than ResTriplet (22). This dif-

ference is probably due to the fact that the TripletRes pipeline is trained

end-to-end and therefore does not suffer from the shortcomings of the

stacking strategy used by ResTriplet, such as the fact that since the fea-

ture ensemble in ResTriplet is optimized separately, the predicted

contact-map and the secondary structure features could be less reliable

in some extreme cases where sequence homologs are barely obtained.

Therefore, this strategy suffers a slightly higher loss of contact accuracy

for the FM targets compared to TripletRes.

Since the FM targets have on average a lower number of homolo-

gous sequences than the template-based modeling (TBM) targets, the

contact prediction accuracy for FM is expected to be lower. To examine

this, we also listed the results of contact-map prediction for all domains

in Table S1. In our case, the average Nf is 57.4 and 390.8 for the FM tar-

gets and all targets, respectively. Accordingly, the average accuracy of

the top L long-range contacts of ResTriplet and TripletRes predictions for

all targets is 29% and 25% higher compared to that of FM targets. Inter-

estingly, the increase in ResTriplet is slightly larger, which results in a

slightly higher accuracy by ResTriplet than by TripletRes in all targets,

contrary to the trend present in the FM targets only. The larger discrep-

ancy in accuracy is likely because of the consideration of secondary

structure information in ResTriplet; the prediction of secondary structure

is relatively reliable when more homologous sequences are found.

3.2 | Impact of DeepMSA on contact prediction
accuracy

The quality of the MSA is highly correlated with the predictive accu-

racy of a protein contact-map, especially for TripletRes and ResTriplet

due to their dependence on coevolutionary features derived directly

from the MSA. In CASP13, we utilized DeepMSA to construct MSAs

by searching across multiple databases using complementary

sequence searching engines.27 To examine the impact of such pipeline

on the final contact predictions, Figure 2A,B shows a head-to-head

comparison of the top L long-range predictions on the FM targets by

TripletRes and ResTriplet using two different pipelines of MSA collec-

tion, one with DeepMSA and another with a routine approach of

HHBlits searching through UniClust30 sequence database. The result

shows that 27 (28) out of the 31 FM domains have improved contact

predictions using DeepMSA relative to the HHBlits pipeline for

TripletRes (ResTriplet). On average, DeepMSA improved the precision

of TripletRes/ResTriplet from 33.2%/35.4% to 40.9%/40.4%. The P-

values from a Student's t-test are 2.9e-06/1.1e-04, suggesting that

the improvement is statistically significant. Since the only factor that

was changed between these two pipelines was the method of MSA

collection, the difference can be attributed solely to this factor. In this

regard, the average Nf by DeepMSA is 57.4 for the 31 FM domains,

compared to 11.6 from HHBlits, indicating that DeepMSA indeed

generates more diverse sequences with a deeper alignment.

Interestingly, DeepMSA has a slightly greater improvement with

TripletRes than ResTriplet. Even though TripletRes has lower accuracy

for long-range top L contacts compared to ResTriplet based on HHblits

MSAs, the final accuracy of TripletRes is higher than that of ResTriplet

after both employing deep MSAs. To provide a more quantitative analy-

sis about the impact of MSAs on the performance of the proposed

methods, we present the precision of long-range top L/5 contact predic-

tion by TripletRes and ResTriplet vs the Nf of MSAs for all targets

in Figure 2C and Figure 2D. Note that 8 targets (ie, T0952-D1,

T0953s1-D1, T0960-D1, T0960-D4, T0963-D1, T0963-D4, T0979-D1,

and T0980s2-D1) with no long-range contacts in the experimental struc-

tures are excluded from the figure. The Pearson correlation coefficients

between precision and the common logarithm of Nf are 0.584 and 0.551

for TripletRes and ResTriplet, respectively, for all 122 domains, indi-

cating that the correlations are both modest. The reason is mainly

because of the occurrence of targets with low Nf values but high

precision. 19/21 out of 28 domains that have an Nf lower than

10 predicted by TripletRes/ResTriplet achieve precisions over 0.5, as

shown in the left-upper blocks in Figure 2C,D. To further investigate

this phenomenon, we performed direct coupling analysis by the

CCMpred program on domains with an Nf less than 10; the precision

of long-range L/5 contact prediction was found to be 0.149,

74.8%/75.5% lower than 0.591/0.608 achieved by TripletRes and

ResTriplet. The large gap between the performance of the pure

DCA method and deep-learning based methods demonstrates the

TABLE 1 Overall performance of TripletRes and ResTriplet on CASP13 FM targets

Method

Short range Medium range Long-range

L L/2 L/5 L L/2 L/5 L L/2 L/5

ResTriplet 0.278 0.449 0.691 0.358 0.533 0.759 0.404 0.529 0.640

TripletRes 0.280 0.453 0.671 0.360 0.541 0.744 0.409 0.534 0.646

Note: Bold fonts indicates the better performed method in each category.
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effectiveness of supervised deep neural network training. However,

some targets with highly populated MSAs still have lower precision.

Taking T0982-D2 as an example, the long-range top L/5 precision of

contact-maps predicted by TripletRes and ResTriplet are 0.462 and

0.385, respectively, despite the Nf value of 207.15. According to the

top template (PDB ID: 3tfzB) provided by CASP, it is highly possible

that the domain interacts with a specific ligand in vivo. Therefore,

the structure determination of this target should be conditional not

only on the sequence information, but also information of the bind-

ing ligand. The negligence of ligand information in our pipeline can

lead to bias in the contact map prediction. Another possible reason

for the low precision values is the inherent roughness of using con-

tacts as the ground truth during the training process. The binary

contact-map representation may cause the loss of detailed distance

information and cannot faithfully represent the elasticity of the pro-

tein. The mean ground truth distance of false positives predicted by

ResTriplet in long-range top L/5 predicted contacts are 10.86, which

means the false positives are still close enough to be in contact. Such

phenomenon can be caused by the fact that the models trained by

binary contact-maps may not be able to distinguish residue pairs

whose distance is near the contact threshold in this case. The studies

of training with distance information are under progress.

While DeepMSA improves contact precision on average, it occa-

sionally has negative effects on targets where MSAs are too aggres-

sively collected. In particular, for the domain T0982-D2, for example,

DeepMSA went through all 3 steps to obtain the final multiple

sequence alignment, and the Nf values of MSAs of three steps are

39.7, 91.6, and 288.9, respectively. TripletRes and ResTriplet

achieved long-range top L/5 precisions of 0.962 and 0.923 respec-

tively based on the MSA generated by step 1. When the MSA gener-

ated from step 2 is used, the precision of ResTripet slightly improves

to 0.962 while that of TripletRes drops to 0.615. The precision of

TripletRes and ResTiplet both drops to 0.577 and 0.423 based on

the MSA of step 3 and become 0.462 and 0.385 at last. The down-

ward trend of the precision for the two predictors in response to the

deeper searching of the DeepMSA pipeline indicates that deeper

MSAs do not necessarily lead to better contact prediction, partly

because there could be the alignment noise introduced with a

F IGURE 2 Illustration of the effect of MSAs on the performance of TripletRes and ResTriplet. A and B, Comparison of top L long-range
contact prediction results using MSAs by DeepMSA vs those by the routine HHblits search for TripletRes and ResTriplet, respectively. C and D,
Precision of long-range top L/5 contact prediction vs Nf of MSAs for TripletRes and ResTriplet, respectively
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deeper MSA. How to quantitatively measure and reduce the align-

ment noise of homologous sequences contained within an MSA is

still an important issue worthy of further study.

When only FM targets are counted, we found that the correla-

tions between precision and the common logarithm of Nf value were

0.559 and 0.659 for TripletRes and ResTriplet, respectively. In other

words, the performance of TripletRes is less dependent on the quality

of MSAs for FM targets. Such an observation further proves the

robustness of TripletRes, in particular for FM targets. We also

observed that the correlation between the precision of ResTriplet

and Nf is much higher than that of TripletRes on FM targets, which

confirms that the performance of ResTriplet is more sensitive to the

content of the MSAs than TripletRes. As pointed out previously, this is

probably because ResTriplet uses extra predicted one-dimensional fea-

tures based on MSAs. The quality of the input MSA thus has more

impact on the performance of the final prediction for ResTriplet. Never-

theless, 11/12 out of the 18 FM targets that have a very low Nf (<10)

for TripletRes/ResTriplet achieve a reasonable contact accuracy >0.5.

These data show that the neural networks fed with coevolutionary fea-

tures still have the ability to learn the underlying contact patterns even

from a very limited number of sequence homologs, which is important

for the modeling of FM targets that lack homologous sequences.

3.3 | Comparison of ensemble methods with their
components

Both TripletRes and ResTriplet are hybrid approaches integrating

information from three different components. To examine the effect

of the information ensembling method, we present a comparison of

the results of the hybrid methods against three predictors using the

individual component input features on CASP13 FM targets in

Figure 3. The prediction of each component predictor is the average

of 10 models for the corresponding coevolutionary feature type. It is

observed that the impact of the ensemble is quite significant for FM

targets. For example, the mean precision of long-range top L/5 con-

tacts was 64.6% for TripletRes, which is 10.6%, 8.6%, and 12.0%

higher than those of predictors based on PLM, PRE, and COV, respec-

tively. Similarly, the stacked ensemble of ResTriplet also brought a

mean precision of 64.0%, which is 9.6%, 7.6%, and 10.9% higher than

the mean precisions of each component. The same pattern was also

observed in the mean precisions of long-range top L contacts. When

we consider all targets (Figure S2), the results showed that the

ensemble methods (TripletRes and ResTriplet) only slightly out-

performed PLM, PRE, and COV based component predictors. For

example, the top L/5 long-range average precision of TripletRes and

ResTriplet for all targets are 75.4% and 76.2%, which were only mar-

ginally higher than 75.2%, 74.6%, and 71.0% achieved by predictors

based on PLM, PRE, and COV features, respectively. The same is

true when considering the top L long-range predictions. Such an

observation indicates that the ensemble is particularly necessary for

FM targets. This is partly because the FM targets usually have a

lower number of homologous sequences, where complementary

information from different components can help enhance the overall

accuracy of the final contact models. For TBM targets, however, the

MSA is usually deep enough for each of the component predictors to

generate satisfactory contacts and the effectiveness of ensembling is

therefore less pronounced.

In addition, it was observed that predictors based on PLM and PRE

features performed better than the COV based feature in all the com-

parisons. This is because the PLM and the PRE features are both built

on direct coupling analysis, while the COV feature is based on marginal

correlation analysis, which suffers more from indirect transitional noise.

3.4 | Impact of domain splitting on contact
predictions

Both TripletRes and ResTriplet use DeepMSA to create MSAs from

the sequences of individual domains as parsed by ThreaDom. To

examine the effect of the domain splitting on contact prediction,

Figure 4 compares the long-range top L precision before and after the

domain splitting procedure on 26 whole-length proteins that were

assigned as multi-domain sequences by ThreaDom. Out of these

26 proteins, 59 domains have their structure released, where Figure 4

lists the contact prediction results of these 59 domains following the

official domain definitions from CASP13.

The ThreaDom-based domain partitions generated an obviously pos-

itive impact on the contact predictions. There are overall 23 (or 36) out

of the 59 domains that have an increased precision after the domain

splitting procedure for TripletRes (or ResTriplet) relative to the whole-

chain based predictions, while the opposite occurs only in 12 (or 7) cases.

On average, the top L long-range precision of TripletRes and ResTriplet

(52.6% and 54.1%) are also higher than that of the whole-chain predic-

tion (46.9% and 46.6%), which corresponds to a P-value of 1.8e-03 and

9.9e-05, respectively, showing that the difference is statistically

significant.

F IGURE 3 Mean precisions of long-range top L and top L/5
contacts of TripletRes and ResTriplet on FM targets, compared to the
predictors trained on the component features from the covariance
matrix feature (COV), the precision matrix feature (PRE) and the
coupling matrix of the inverse Potts model feature (PLM)
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Among the 59 domains in Figure 4, two domains, T0981-D3 and

T0981-D5, stand out with a very large difference between using and

not using the domain splitting. Both of the domains are from T0981,

which contains five domains, but ThreaDom split the target sequence

into four domains (see Figure S3). A closer look showed that the nor-

malized effective number of sequences in the MSA (Nf) is 0.2, with

only 9 homologous sequences being present in the MSA when the

whole-chain sequence is used. The Nf value increased to 229.6 and

2.8, respectively, for T0981-D3 and T0981-D5 after the domain split-

ting by ThreaDom, which eventually increased the contact prediction

accuracy of TripletRes/ResTriplet from 0.187/0.177 to 0.675/0.818

for T0981-D3, and 0.110/0.244 to 0.803/0.669 for T0981-D5. These

data suggest that the benefit of domain partitioning mainly manifests

as improvement of the MSA construction, since domain splitting helps

DeepMSA to detect more homologous sequences for each individual

domain.

However, theoretically, domain splitting may also result in bias in

the estimation of DCA models. Before domain splitting, the probabil-

ity of a certain amino acid at a certain position in DCA models is con-

ditional on all other positions of the full-length sequence. However,

after domain splitting, this probability is only conditional on other

positions of the domain. Moreover, alignment quality of positions

close to the domain boundary could also be negatively affected after

domain splitting. These two factors could be the reason that a small

number of domains have lower precision even with more sequence

homologs being present in the MSA.

3.5 | What went right?

We found that using raw coevolutionary features can provide high-

precision contact-map predictions when coupled with deep con-

volutional neural networks. Among the coevolutionary features, the

F IGURE 4 Comparison of
precisions of long-range top
L contact predictions with domain
partitioning vs those without
using domain partitioning.
A, TripletRes; B, ResTriplet

F IGURE 5 An illustrative example of
CASP13 domain T0957s-D1 showing
false positive contact prediction in the N-

terminal tail region due to the higher
number of gaps in the alignment. A, Bar
plot of the number of gaps along the
query sequence. B, Contacts from the
native structure (lower-right triangle
section) vs predicted contacts by
ResTriplet (upper-left section) where gray
circles and black squares denote false and
true positive predictions respectively.
C, 3D experimental structure of the
T0957s-D1 with the N-terminal tail
marked in black
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DCA-based features, that is, the precision matrix and the coupling

parameters of the pseudolikelihood maximized Potts model, out-

perform the marginal correlation feature, that is, the covariance

matrix. Considering that many methods in literature have used the

covariance matrix feature, this conclusion may help push the bound-

aries of contact-map prediction. Moreover, although a single raw

coevolutionary feature can provide relatively accurate contact-maps,

multiple feature fusion/ensembling with deep convolutional neural

networks is still needed to achieve even better performance.

According to our self-test benchmark and the CASP13 results, a

combination of diverse multiple sequence alignment generation proto-

cols (search algorithms and sequence databases) can significantly

improve contact prediction, especially for FM targets. Another impor-

tant aspect of our prediction procedure is domain splitting. Even when

the predicted domain boundary is not exact, domain splitting still

improves the precision by providing more diverse and deeper MSAs.

3.6 | What went wrong?

Since all evolutionary coupling are inferred from the MSA, strong noise

can be introduced in terminal regions where long stretches of gaps in

the MSA leads to a false positive coupling signal. This is because gaps

are treated as an additional amino acid type in constructing coevolu-

tionary features. This issue has been amplified by T0957s2-D1, where

the top L long-range accuracies are 39.4% and 34.2% for TripletRes

and ResTriplet respectively. As shown in Figure 5A, there is a signifi-

cantly high number of alignment gaps in the first 30 residues. Accord-

ingly, the majority of the false positive predictions (marked as grey

circles in the upper-left corner of the contact map in Figure 5B) are

from the contacts involving these N-terminal residues. Figure 5C pre-

sents the 3D structure of the domain, which shows that the N-terminal

is well-packed with the rest of the domain and has the same secondary

structure as other residues, indicating that the gaps are not due to the

irregular local structure or motif disordering. In this regard, how to

appropriately consider large gaps in MSAs is still an important problem.

4 | CONCLUSION

We have introduced two hybrid contact prediction methods, TripletRes

and ResTriplet, which have been tested in CASP13. Unlike other

methods which use post-processed coevolutionary analysis coupling

potentials, these two methods use the raw coevolutionary matrices as

the only input features, which can result in advanced contact-map pre-

dictions when coupled with deep residual neural networks. Part of the

success of these methods is due to the feature ensembling strategies:

feature fusion by neural networks, denoted as TripletRes, and multiple

predictor stacking, denoted as ResTriplet. Meanwhile, the iterative

MSA construction procedure DeepMSA, which combines multiple

sources of sequence databases, and domain specific MSA collection

also contributed to the improvement of the final contact-map predic-

tion performance. The effects and usefulness of these approaches are

particularly pronounced for FM targets, which typically involve a

smaller number of homologous sequences compared to easier TBM

targets.

Nevertheless, there are still issues in contact-map prediction partic-

ularly in the tail regions of sequences, which often have a higher num-

ber of alignment gaps that result in a lower contact accuracy than other

regions. Meanwhile, contact prediction for hard targets with a lower

number of homologous sequences is still far from satisfactory. Develop-

ment of new pipelines with models specifically trained on these tail

regions and hard targets might help address these shortcomings.
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