
Received: 29 January 2019 Revised: 21 July 2019 Accepted: 12 September 2019

DOI: 10.1002/sim.8385

R E S E A R C H A R T I C L E

Regression analysis of recurrent-event-free time from
multiple follow-up windows

Meng Xia1 Susan Murray1 Nabihah Tayob2

1Department of Biostatistics, University of
Michigan, Ann Arbor, Michigan
2Department of Data Sciences,
Dana-Farber Cancer Institute, Boston,
Massachusetts

Correspondence
Susan Murray, Department of
Biostatistics, University of Michigan,
Ann Arbor, MI 48109.
Email: skmurray@umich.edu

This research develops multivariable restricted time models appropriate for
analysis of recurrent events data, where data is repurposed into censored
longitudinal time-to-first-event outcomes in 𝜏-length follow-up windows. We
develop two approaches for addressing the censored nature of the outcomes: a
pseudo-observation (PO) approach and a multiple-imputation (MI) approach.
Each of these approaches allows for complete data methods, such as general-
ized estimating equations, to be used for the analysis of the newly constructed
correlated outcomes. Through simulation, this manuscript assesses the perfor-
mance of the proposed PO and MI methods. Both PO and MI approaches show
attractive results with either correlated or independent gap times in an individ-
ual. We also demonstrate how to apply the proposed methods in the data from
azithromycin in Chronic Obstructive Pulmonary Disease Trial.
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1 INTRODUCTION

Recurrent events are frequently seen in participants of clinical trials and observational studies of chronic diseases. For
instance, patients in the azithromycin in Chronic Obstructive Pulmonary Disease (COPD) Trial1 were followed for recur-
rent acute pulmonary exacerbations. Other settings with recurrent events include recurrent ischemic cardiovascular
events after acute coronary syndrome,2 recurrent clostridium difficile infection,3 and even repetitive head injuries in
high-contact sports.4 Poisson and negative binomial count models have been used to analyze recurrent event data per
time at risk.5-8 These approaches to not take advantage of the timing of events, however, and may therefore not provide
the most powerful analysis.9

The most commonly used multivariable regression analysis methods for recurrent events data are extensions of the
Cox proportional hazards model to the recurrent event setting. The extension proposed by Anderson and Gill10 analyzes
the time between recurrent events, called gap times, assuming independence between these gap times within an individ-
ual. Prentice et al11 considered an extension of the Cox model that allowed stratification of the baseline hazard to depend
on time-dependent features including previous recurrent event time information; both gap time models and models of
time from beginning of follow-up are considered. Wei et al12 proposed a multivariate proportional hazards model, where
the multivariate outcomes are based on separate recurrent events modeled from the beginning of follow-up. An arbitrary
covariance structure is allowed between the different event times, fit with a robust sandwich variance estimate. Pepe and
Cai13 described several manners of modeling recurrent event rates based on the number of previous recurrent events,
advocating for a Markov approach that models each recurrent event conditional on information from the immediately
preceding event. Lawless and Nadeau14 and Lin et al15 developed models for the cumulative mean number of events,
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assuming proportionality on the cumulative means over time. Random effects or frailties have been suggested for captur-
ing dependence between recurrent event times.16-23 Methodology for the analysis of recurrent events continues to evolve
via gap time, intensity process or cumulative mean event approaches; a more thorough review is available in a textbook
by Cook and Lawless.24

In pursuing any new modeling framework for recurrent events, three issues are paramount to address (1) the poten-
tial correlation between times between recurrent events, (2) the potentially censored nature of the data, and (3) the
interpretability of results. In addressing each of these issues in this manuscript, we take an entirely different approach
to modeling recurrent event data that provides a natural way to handle correlation between event times and is highly
interpretable. In short, we transform the recurrent event data structure into a very tractable censored longitudinal data
structure. The longitudinal outcomes are 𝜏-restricted times-to-first-event as captured in follow-up windows that are reini-
tiated at regularly spaced intervals. Instead of modeling the rate or cumulative number of recurrent events, our model
estimates time free from recurrence over a 𝜏-length follow-up period.

In Section 2, we describe notation required to repurpose traditional recurrent events data into a series of censored longi-
tudinal endpoints. Section 3 describes differences between this data structure and that of the multivariate distribution of
gap times between recurrent events. In Section 4, we develop a model framework that can be fit using generalized estimat-
ing equation (GEE) methods, along with two methods for handling the censored nature of the data: a pseudo-observation
(PO) approach (Section 4.1) and a multiple-imputation (MI) approach (Section 4.2). Section 5 describes finite sample prop-
erties of our methodology in scenarios where times between recurrent events are independent (Section 5.1) and correlated
(Section 5.2). We then reanalyze data from the azithromycin in COPD Trial using our methodology in Section 6. Discussion
follows in Section 7.

2 NOTATION

Suppose i = 1, … ,N independent patients are followed for recurrent events. Without loss of generality, we assume each
patient's follow-up period starts from a baseline time of 0; hereafter, we refer to baseline and time 0 interchangeably. For
each individual patient, i, let Tij, j = 1, … , Ji, be the time from baseline to the jth recurrent event, so that 0 < Ti1 <

Ti2 < · · ·TiJi . Let Ci be the censoring time from baseline for patient i, where Ci is independent of Tij, for j = 1, … , Ji.

Correlation between recurrent event times in an individual i (or lack thereof) is typically formulated in terms of gap times
between events, {Gi1 = Ti1,Gi2 = Ti2 − Ti1, … ,GiJi = TiJi − TiJi−1}. We allow an arbitrary multivariate distribution for
{Gi1,Gi2, … ,GiJi} with an unspecified dependence structure. Traditional observed recurrent event data for patient i is
recorded in data pairs {Xij = min(Tij,Ci), 𝛿ij = I(Tij ≤ Ci)}, 𝑗 = 1, … , J̃i, where J̃i ≤ Ji; in most cases, the J̃ th

i data pair
corresponds to a censored event time.

In this manuscript, we construct a streamlined censored longitudinal data structure from the recurrent event times.
That is, each longitudinally measured outcome contributed by patient i is a censored time-to-first-event in a follow-up
window starting at time t, where t ∈ {t1, … , tb} with t1 = 0 and tk = tk−1 + a, k = 2, … , b. As only one time-to-first-event
in each follow-up window is measured, we incorporate at most b outcomes from each individual, regardless of how many
recurrent events they experience. Hence, for a fixed overall study duration, the choice of spacing, a = tk − tk−1, k =
2, … , b, between initiation of each subsequent follow-up window increases the proportion of recurrent events captured
by the censored longitudinal data structure. It is theoretically possible to create a censored longitudinal dataset with
follow-up windows initiated every day (a = 1), although the computational burden of working with this extended dataset
becomes cumbersome. Xia and Murray25 showed that, in the case of exponentially distributed times between events with
common intensity 𝜆, using a = 1∕(2𝜆) captures approximately 80% of the recurrent events in at least one of the constructed
follow-up windows over a fixed follow-up period.

For patient i and follow-up window starting at t, we index the first recurrent event occurring after time t with the
subscript 𝜂i(t) = min{j = 1, … , Ji ∶ Tij ≥ t} so that Ti(t) = Ti𝜂i(t) − t is the time-to-first-recurrent-event measured
from t, sometimes called the residual event-free time from t. We collect individual i's newly formatted longitudinal out-
comes, {Ti(t1),Ti(t2), … ,Ti(tb)}, into a vector, i, for i = 1, … ,N. For notational simplicity, we occasionally submerge
the individual i index when it is not required for clarity. For example, we will often use Pr{T(t) > u} to stand in for
Pr{Ti(t) > u}.

The observed data counterpart to 𝜂i(t) is �̃�i(t) = min{𝑗 = 1, … , J̃i ∶ Xi𝑗 ≥ t}. For each follow-up window starting at
time t where Ci > t, patient i contributes the observed data triplet {�̃�i(t),Xi(t) = Xi�̃�i(t) − t, 𝛿i(t) = 𝛿i�̃�i(t)}. For follow-up
windows starting at t where Ci ≤ t, we use the convention that �̃�i(t) = Xi(t) = 𝛿i(t) = 0.
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FIGURE 1 Creating censored
longitudinal data from recurrent
event data for an example
participant of the azithromycin
in Chronic Obstructive
Pulmonary Disease Trial. AE,
acute exacerbation [Colour
figure can be viewed at
wileyonlinelibrary.com]

Figure 1 displays how censored longitudinal data is created from traditional recurrent event data using a participant
from the azithromycin in COPD Trial. During 353 days of follow-up for this patient, J̃i = 4 traditional recurrent event data
pairs emerge: (Xi1 = 53 days, 𝛿i1 = 1), (Xi2 = 111 days, 𝛿i2 = 1), (Xi3 = 170 days, 𝛿i3 = 1), and (Xi4 = 353 days, 𝛿i4 = 0),
where the first three data pairs denote acute exacerbation (AE) event times and the last data pair reflects a censored event.

Two examples of converting these data into a censored longitudinal data structure are given, one based on follow-up
windows starting at a = 120 day intervals and one constructed with a = 60 day intervals. As with all longitudinal data
structures, the additional data triplets included using a = 60 day intervals as opposed to a = 120 day intervals afford
capturing more time-to-first events supplied by the recurrent event times.

Data triplets based on follow-up windows starting at t = {0, 120, 240} days become

{�̃�i(0) = 1,Xi(0) = Xi1 − 0 = 53, 𝛿i(0) = 1},
{�̃�i(120) = 3,Xi(120) = Xi3 − 120 = 170 − 120 = 50, 𝛿i(120) = 1},
{�̃�i(240) = 4,Xi(240) = Xi4 − 240 = 353 − 240 = 113, 𝛿i(240) = 0}.

Data triplets based on follow-up windows initiated every a = 60 days include the above data triplets plus those starting
at days t = {60, 180, 300} days

{�̃�i(60) = 2,Xi(60) = Xi2 − 60 = 111 − 60 = 51, 𝛿i(60) = 1},
{�̃�i(180) = 4,Xi(180) = Xi4 − 180 = 353 − 180 = 173, 𝛿i(180) = 0},
{�̃�i(300) = 4,Xi(300) = Xi4 − 300 = 353 − 300 = 53, 𝛿i(300) = 0}.

3 TIMES-TO-FIRST-EVENT FROM t ∈ {t1 , … , tb} VERSUS GAP TIMES

The marginal distribution of the time-to-first recurrent event after t, Ti(t), is a quite different creature from the marginal
distribution of a gap time between recurrent events, Gij, j = 1, … , Ji. On a practical note, the random variable, Ti(t), better
reflects the recurrent event time one might seek advice about at a regularly scheduled clinic visit at time t or at entry into
a clinical trial at t. These patient interactions rarely coincide exactly with a recurrent event, so that a gap time random
variable measured from an individual's previous event is not the most appropriate random variable for these settings. On
a statistical note, when gap times within an individual are correlated there is a well-known dependent censoring bias
that must be addressed in any analysis of the gap time data.26 This dependent censoring issue is circumvented by our
censored longitudinal data structure since times-to-first-event are measured from pre-specified times {t1, … , tb} rather
than a correlated time-to-event.

For these different random variables to coincide with one another, the distributions of Ti(t) and Gij must both be entirely
memoryless. This is formally demonstrated in the following, where we show that the only case where the marginal distri-
bution of a gap time, Gij, coincides with that of a time-to-first-recurrent-event, Ti(t), is the special case with independent
and identically distributed (i.i.d.) exponential gap times {Gi1, … ,GiJi} for each patient, i = 1, … ,N. For settings with
gap times that are not exponentially distributed, or for settings with correlated, but otherwise identically distributed,
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exponential gap times, the marginal distribution of Ti(t) shifts from a memoryless distribution to a distribution very much
influenced by the series of recurrent events with positive probabilistic support for occurring in the follow-up period after t.

Consider the event-free probability function for Ti(t) that is written in terms of gap time random variables as follows:

Pr{Ti(t) > u} = Pr{Ti1 > t + u} + lim
Ji→∞

Ji∑
𝑗=2

Pr{Ti𝑗−1 ≤ t,Ti𝑗 > t + u}

= Pr {Gi1 > t + u} + lim
Ji→∞

Ji∑
𝑗=2

Pr

{
𝑗−1∑
l=1

Gil ≤ t,
𝑗−1∑
l=1

Gil + Gi𝑗 > t + u

}
. (1)

For independently and identically distributed exponential gap times with intensity 𝜆, Appendix A of the Supplementary
Materials shows that these terms reduce to exp(−𝜆u), so that Ti(t) also has an exponential distribution with intensity 𝜆.

However, when the gap times are correlated, the term

Pr

{
𝑗−1∑
l=1

Gil ≤ t,
𝑗−1∑
l=1

Gil + Gi𝑗 > t + u

}
(2)

from the previous equation does not reduce to a simple expression. Term (2) is the probability that an individual's
jth recurrent event will be the first to occur in the follow-up window starting at t, but that it has not yet occurred as of
time t + u.

To better appreciate the influence of term (2) on the expression in (1), we consider special cases with correlated and
independent exponential(𝜆i) distributed times between recurrent events. Figure S3 in the Supplementary Materials dis-
plays term (2) as a function of time, u, for different combinations of recurrent event index, j, and follow-up window start
time, t, with 𝜆i = 1∕3. The solid blue and dashed red lines show the cases with independent and correlated event times,
respectively. For the independence case, the curves have a closed-form shown to be (𝜆it)𝑗−1e−𝜆i(t+u)∕Γ( 𝑗) in Appendix A of
the Supplementary Materials. For the correlated case, we first simulated correlated exponential event times using a Gaus-
sian copula approach described in further detail in Section 5; the approximate correlation between recurrent event times
was 0.8. We then empirically estimated and plotted term (2) from a large number (N= 10 000) of simulated individuals.

In nearly every panel of Figure S3, term (2) is smaller when times between recurrent events are correlated. As j
increases relative to t the depicted probability curves get lower, and the curves generated from the two different correla-
tion structures also get closer together. Overall, these curves indicate that Pr{Ti(t) > u} tends to be much smaller than
the exponential(1/3) survival curve that Equation (1) reduces to in the case with independent event times.

Of course, we were immediately curious to know whether the distribution of the time-to-first-event from t, in this
special case with correlated exponential(1∕3) gap times, stabilizes. The intuition behind this thought was that the mixture
distribution of gap time histories preceding t and likely to influence the distribution of Ti(t) might stabilize. As seen in
Figure S4, where (again using the large simulated dataset of 10 000 individuals) Pr{Ti(t) > u} is plotted for increasing
values of t, this does seem to be the case. The distribution of Ti(t) seems to stabilize for values of t ≥ 3, or 1∕𝜆i. Stabilization
of the distribution of Ti(t), for t > 1∕𝜆i was further explored for different values of 𝜆i and found to be a reliable pattern.
This feature will be utilized later in Section 5.2, when we simulate a stable time-to-first-event distribution given covariates
in the setting with correlated exponential gap times.

4 MULTIVARIABLE REGRESSION MODEL OF 𝝉-RESTRICTED
TIMES-TO-FIRST-RECURRENT-EVENT MEASURED ACROSS MULTIPLE
OVERLAPPING FOLLOW-UP PERIODS

To study the association between patient covariates, Z(t), and 𝜏-restricted times-to-first-recurrent event across follow-up
windows starting at times {t1, … , tb}, we consider the following model:

E{log[min(𝜏,  )]|Z(t)} = 𝛽TZ(t). (3)

For simplicity in what follows, we submerge the time-dependent nature of the covariates unless needed for clarity. As
with standard 𝜏-restricted mean time-to-event models, 𝜏 is a user-defined parameter that is chosen to reflect a time-period
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of clinical interest. For instance 𝜏 = 6 months in model (3) reflects interest in estimating the typical event-free period that
an individual can expect over the next 6 months. For each follow-up window starting at tk, k = 1, … , b, the 𝜏-restricted
event time for individual i is min[𝜏,Xi(tk)] with censoring indicator max(𝛿i(tk), I{Xi(tk) ≥ 𝜏}). If individual i does not
experience an event within a particular observed follow-up window starting at tk, the observed 𝜏-restricted event-free
time is 𝜏.

Two features of our data need to be addressed for successful estimation of model (3): (1) the censored nature of the
vector of newly formatted longitudinal outcomes, i, from patient i, and (2) the correlated nature of these longitudinal
outcomes. We develop two approaches that address the censoring aspect of the data, a PO approach in Section 4.1 and a MI
approach in Section 4.2. Each of these approaches converts the censored longitudinal outcomes into a format appropriate
for complete data methods.

Once this feature of the data is addressed, we tackle the correlated nature of the longitudinal outcomes i from each
patient, i = 1, … ,N using existing methods, such as GEEs. Because our recurrent events data have been restructured into
times-to-first event from regularly spaced follow-up periods and because we consider 𝜏-restricted times-to-first-events in
these periods, the correlation structure of the outcomes can be modeled via well-organized correlation matrices.

Two underlying layers of correlation are at work: the natural correlation between recurrent events within an individual
and the possibility that the same event is captured as the first-time-to-event in more than one follow-up period. In the
most general case, we assume an b × b unstructured correlation matrix with components

⎡⎢⎢⎢⎣
1 corr{Ti(t1),Ti(t2)} corr{Ti(t1),Ti(t3)} · · · corr{Ti(t1),Ti(tb)}

corr{Ti(t2),Ti(t1)} 1 corr{Ti(t2),Ti(t3)} · · · corr{Ti(t2),Ti(tb)}
· · · · · · · · · · · · · · ·

corr{Ti(tb),Ti(t1)} corr{Ti(tb),Ti(t2)} corr{Ti(tb),Ti(t3)} · · · 1

⎤⎥⎥⎥⎦ .
Of course, pre-specified follow-up windows that begin after a patient's last observed follow-up time do not contribute any
information for analysis, resulting in variable cluster sizes per subject in practice. This does not pose any difficulty for the
GEE method.27,28

However, for settings with fairly stable time-to-first-event distributions over time, we consider a (banded) Toeplitz cor-
relation structure that allows for correlation to decrease as the degree of overlap between 𝜏-restricted follow-up periods
decreases. The degree of overlap in 𝜏-restricted follow-up windows can be determined from a and 𝜏 and follows a regu-
lar pattern. For instance with a = 𝜏∕3 and b = 4 windows starting at times t = {0, 𝜏∕3, 2𝜏∕3, 𝜏}, the Toeplitz correlation
matrix is

⎡⎢⎢⎢⎣
1 𝜌1 𝜌2 𝜌3
𝜌1 1 𝜌1 𝜌2
𝜌2 𝜌1 1 𝜌1
𝜌3 𝜌2 𝜌1 1

⎤⎥⎥⎥⎦ ,
where 𝜌1 is the correlation between times-to-first event in adjacent 𝜏-restricted follow-up windows that overlap by 2𝜏∕3
follow-up units, 𝜌2 is the correlation between times-to-first event in windows that start 2a units apart from one another
and overlap by 𝜏∕3 units. Finally, 𝜏-restricted follow-up windows starting a = 3 units apart from one another do not
overlap and are assumed to have correlation 𝜌3.

The Toeplitz correlation structure requires fewer parameters than the unstructured matrix. For very large b, the Toeplitz
correlation structure may be more feasible to implement that an entirely unstructured variance matrix. GEE also provides
model results based on robust sandwich variance estimation, which provides protection against misspecification of the
working correlation matrix. The general recommendation when working with large datasets is to use the sandwich esti-
mator, regardless of the working correlation matrix assumed by the model. We follow this recommendation throughout
the remainder of the manuscript.

4.1 PO approach for censored recurrent events
For a single time-to-event, Andersen et al29 introduced the idea of using POs in lieu of censored times-to-event when esti-
mating regression parameters for the restricted mean model. This method has been successfully applied in a variety of
settings where a single event time is of interest.30-35 The appeal of this method is its ease of use. That is, once appropri-
ate POs are estimated for each patient, they can be used as if they are uncensored counterparts to the original censored
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data in standard regression models. In this section, we describe how to create POs that correspond to our censored lon-
gitudinal data structure. In particular, for each follow-up window starting at t, we define POs for the random variables
log[min{𝜏,Ti(t)}], i = 1, … ,N, using a method similar to that described by Xiang and Murray.34

The general intuition behind PO approaches for modeling censored survival data is similar to that of the jackknife
method.36-38 One first defines a consistent nonparametric estimate, �̂�, of the marginal mean of interest, 𝜃. In our setting,
for each t ∈ {t1, … , tb}, we define 𝜃(t) = E[log{min(𝜏,T(t))}] with consistent nonparametric estimator

�̂�(t) = −

𝜏

∫
0

log(u)dP̂(T(t) > u) + log(𝜏)P̂(T(t) > 𝜏),

where Kaplan-Meier estimation is used for P̂(T(t) > u).
The form of an appropriate PO for any setting arises from framing 𝜃 both as a marginal mean and a weighted average

of 𝜃Z, the conditional mean given covariates, Z. Most readers will recognize this relationship when formally depicted as

𝜃 = ∫ 𝜃ZdFZ(z),

where dFZ(z) reflects Riemann-Stieltjes integration across the distribution of Z. When the empirical (discrete) distribution
of Z is used in framing the relationship above, dFZ(z) = 1∕N, and the right-hand side of the expression becomes

1
N

N∑
i=1

𝜃Zi .

One can algebraically isolate 𝜃Zi (individual i's mean given Zi) from the expression above via

𝜃Zi = N

{
1
N

N∑
𝑗=1

𝜃Z𝑗

}
− (N − 1)

{
1

N − 1

N∑
𝑗=1,𝑗≠i

𝜃Z𝑗

}
.

Marginal means corresponding to the terms in curly brackets can be consistently estimated using nonparametric estimates
�̂� and �̂�(−i), respectively, where �̂�(−i) is the “leave-one-out” estimator of 𝜃, ie, estimated without individual i. So, taking
advantage of large sample properties of �̂� and �̂�(−i), a natural PO for individual i to use in modeling 𝜃Z is

N�̂� − (N − 1)�̂�(−i),

a fully observed random variable that asymptotically shares a conditional mean, 𝜃Zi , with patient i.
In our setting, 𝜃Z = E(log[min{𝜏,  }]|Z). For each t, we define POs

POi(t) = N�̂�(t) − (N − 1)�̂�(−i)(t), i = 1, … ,N,

where

�̂�(−i)(t) = −

𝜏

∫
0

log(u)dP̂(−i)(T(t) > u) + log(𝜏)P̂(−i)(T(t) > 𝜏),

where leave-one-out Kaplan-Meier estimation is used for P̂(−i)(T(t) > u), ie, excluding patient i. We denote the vector of
POs contributed by individual i as POi = {POi(t1),POi(t2), … ,POi(tb)}. Parameter estimates for model (3) can be estimated
using the longitudinally created PO data via

E[PO|Z] = 𝛽TZ. (4)

Hereafter, we refer to estimates from Equation (4) as estimates using the proposed PO approach.
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4.2 MI approach for censored recurrent events
Another approach for producing a complete dataset when a single time-to-event is subject to censoring is MI. This
approach has been developed by many authors.35,39-43 For our longitudinal data structure, we propose multiply imputing
outcomes for observed data pairs with {Xi(t) > 0, 𝛿i(t) = 0}, t ∈ {t1, … , tb}.

For our longitudinal data structure, the ith individual requires imputation for times-to-first-event in the set, i, of
follow-up windows starting at times {t ∈ {t1, … , tb} ∶ Xi(t) > 0, 𝛿i(t) = 0}. If i consists of more than one follow-up
window, it suffices to impute the time-to-first-event corresponding to the window starting at follow-up time tsup(i) =
max{follow-up window start time t for windows ∈ i}, which then determines imputes for all times-to-first-event in the
set of follow-up windows, i, that require imputation (see Appendix B of the Supplementary Materials for further details).
For better short-hand terminology, we call the imputed event time corresponding to follow-up window start time tsup(i)
the “sup impute”, denoted as T̃i{tsup(i)}, and the follow-up window starting at time tsup(i) the “sup window”. Then,
imputed event times for follow-up windows in i with start times t∗ < tsup(i) become T̃i{t∗} = T̃i{tsup(i)}+ tsup(i) − t∗.

The gestalt of the imputation strategy is to base the sup impute in the sup window on model (4) using individual i's
covariates, Zi. Random error for the sup impute is sampled nonparametrically from a set of residuals contributed by
individuals in a risk set, i, similar to individual i. Further details are described below.

The first step of the imputation procedure is to obtain parameter estimates, 𝛽PO, from model (4). For individual i requir-
ing a sup impute, T̃i{tsup(i)}, in the sup window, we then define a risk set, i, of candidate individuals l = 1, … ,Ni
satisfying two constraints: (1) Xl{tsup(i)} > Xi{tsup(i)}, that is, candidate l is still at risk for their first event time in the
sup window as of the time individual i is censored and (2) |𝛽POT Zi − 𝛽POT Zl| ≤ 𝜖, where 𝜖 is a user-defined parameter that
controls how similar individual l's linear predictor is to individual i's linear predictor. Our algorithm used 𝜖 = 0.01. In
cases where 𝜖 resulted in a risk set with Ni < 5, our algorithm added 0.001 to 𝜖 until Ni ≥ 5.

The next step of the imputation procedure is use candidate individuals, l = 1, … ,Ni,∈ i to estimate the survival func-
tion for T{tsup(i)} given membership in i. Nonparametric Kaplan-Meier estimation is used for this purpose, resulting
in estimate, ŜT{tsup(i)}(v|i). Then, an inverse transform imputation algorithm35,40-43 is used to select an impute follow-
ing the distribution of T{tsup(i)} given membership in i based on ŜT{tsup(i)}(v|i). In particular, the inverse transform
imputation method first generates a uniform(0, 1) random variable, u. If ŜT{tsup(i)}(v|i) > u for all observed event times
v, we impute T̃i{tsup(i)} = 𝜏. Otherwise, we find the smallest value v where ŜT{tsup(i)}(v|i) ≤ u and identify the observed
event time, Tl{tsup(i)}, that corresponds to v.

The inverse transform impute for patient i's time-to-first-event in the sup window would be Tl{tsup(i)}. However, our
proposed imputation algorithm goes one step further, by defining residual 𝜀l = log(min[𝜏,Tl{tsup(i)}]) − 𝛽POT Zl and
then defining our final impute T̃i{tsup(i)} = exp[𝛽POT Zi + 𝜀l]. This extra step allows for variability of the impute to be
contributed by individual l, while further targeting the impute using individual i's covariate structure. If T̃i{tsup(i)} <

Xi{tsup(i)}, we sample another uniform(0, 1), u, and repeat the process. This ensures that the impute occurs beyond the
last observed time participant i was at risk for a recurrent event in the sup window.

We repeat the imputation procedure until we obtain M completed datasets and then analyze the M imputed datasets
with methods guided by Little and Rubin.44 For dataset m, we fit model (3) using GEE as described at the beginning of
this section and obtain parameter estimates, 𝛽MI

m , and standard error (SE) estimates, ŜE(𝛽MI
m ), for m = 1, … ,M. Then, the

final estimate of 𝛽 from the MI procedure becomes 𝛽MI =
∑M

m=1 𝛽
MI
m ∕M with corresponding SE estimate

ŜE(𝛽MI) =

√√√√ M∑
m=1

ŜE
(
𝛽MI

m
)2∕M + (1 + M−1) ×

M∑
m=1

(
𝛽MI

m − 𝛽MI
)2∕(M − 1).

5 SIMULATION

We now evaluate the finite sample performance of the proposed PO and MI methods for fitting equation (3) with simu-
lated recurrent event data from N = 500 individuals over 5 years of follow-up. All simulation results are based on 10 000
iterations. Details of how recurrent events times are simulated are described in Sections 5.1 and 5.2, where independent
and dependent recurrent event distributions are considered, respectively. In each simulation scenario, we build our longi-
tudinal data structure with follow-up windows starting every a = 1 years apart at times t = 0, 1, 2, and 3 years with 𝜏 = 2
years. These choices coincide with recommendations from Xia and Murray25 based on the recurrent event distributions
used in simulation.
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We explore scenarios with no censoring, light censoring, and heavy censoring. The uncensored case provides a reference
point to gauge the impact of censoring on analyses conducted using the PO and MI approaches. In the uncensored case,
after restructuring the recurrent events into our recommended longitudinal data structure, a standard GEE approach
is used to fit model (3). When censoring is present in our recommended longitudinal data structure, the standard GEE
approach is no longer appropriate for fitting model (3) until further processing of the data is done via the PO or MI methods
developed in Sections 4.1 and 4.2.

In scenarios where censoring is present, the independent censoring random variable is Ci = 5× I{Vi > 5}+Vi × I{Vi ≤
5}, i = 1, … , 500. For the light censoring case, Vi has an exponential distribution with hazard 1/14, corresponding to
approximately 70% of participants having 5 years of follow-up and 30% of participants being subject to censoring prior to
5 years. In the heavy censoring case, Vi has an exponential distribution with hazard 1/4, corresponding to approximately
70% of participants being subject to censoring prior to 5 years.

With four follow-up windows generating four longitudinal outcomes, we require a 4 × 4 working correlation structure
to use with GEE software. We consider both (1) unstructured and (2) Toeplitz structures, with robust sandwich estimates
ultimately used in all inference. The Toeplitz structure takes the form

⎡⎢⎢⎢⎣
1 𝜌1 𝜌2 𝜌2
𝜌1 1 𝜌1 𝜌2
𝜌2 𝜌1 1 𝜌1
𝜌2 𝜌2 𝜌1 1

⎤⎥⎥⎥⎦ .
Since only adjacent 𝜏-restricted follow-up windows have overlap in our setting with t = 0, 1, 2, 3 and 𝜏 = 2, this structure
requires only two parameters, as opposed to six parameters used with the unstructured working correlation matrix.

5.1 Independent times between recurrent events
We first describe the scenario where times between recurrent events are independent. Recall from Section 3 and
Appendix A that when gap times between events for individual, i, are i.i.d. exponential(𝜆i) random variables, then Ti(t)
is also marginally distributed as an exponential(𝜆i) random variable for each t ∈ {t1, … , tb}. Hence, if we generate
times-to-first-event from i.i.d. exponential gap times, the mean structure for Ti(t), t ∈ {t1, … , tb}, will follow the same
mean structure as the simulated gap times. This offers some computational convenience for generating outcomes that
follow model (3).

For the ith individual, we allow 𝜆i to depend on two covariates, ie, Zi = {Bi,Ui}, where Bi a Bernoulli(0.5) random
variable and Ui is a uniform(0, 1) random variable. We generate mild correlation between Bi and Ui using a Gaussian
copula approach.45 That is, we first generate bivariate normal(0, 1) pairs (Q1i = q1i,Q2i = q2i) with correlation 0.3. We
then define Bi = I(Q1i ≥ 0) and Ui = P(Q2i ≤ q2i); the uniform(0, 1) distribution of Ui follows from the inverse transform
theorem. Finally, we generate times-to-first-event for patient i, i, that satisfy model

E(log[min{𝜏,  }]|Z) = −0.7 + 0.5Bi + 0.5Ui.

This is accomplished by first simulating i.i.d. exponential(𝜆i) gap times with 𝜆i taken as the numerical solution to

log 𝜏−

∫
−∞

𝑦𝜆ie𝑦e−𝜆ie𝑦d𝑦 + e−𝜆i𝜏 × log 𝜏 = 𝛽0 + 𝛽1Bi + 𝛽2Ui

and then converting the resulting recurrent event times into times-to-first event as described in Section 2.
Simulation results for the case with independent times between recurrent events are shown in Table 1. For each method

and each coefficient, we present simulation averages for (1) 𝛽, (2) bias 𝛽 − 𝛽, and estimated robust SEs assuming (3)
unstructured or (4) Toeplitz working correlation matrices. We also report (5) the empirical standard deviation (ESD) of 𝛽
across the 10 000 iterations and empirical coverage probabilities (CPs) for the true coefficient using robust SEs and either
(6) unstructured or (7) Toeplitz working covariance matrices.

All proposed approaches yield approximately unbiased estimates, with absolute bias ≤ 0.01. CPs are suitably close to
0.95. SE results are very close to ESD results in all scenarios, indicating that variability is being estimated well across all
methods. As expected, SEs increase as the percentage of patients subject to censoring increases. SEs attributed to the MI
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Coef. % Cens. Method �̂� Bias ESD SE SE CP CP
Unstr. Toepl. Unstr. Toepl.

𝛽0 = −0.7 0 GEE −0.699 0.001 0.058 0.057 0.057 0.944 0.945
30 PO −0.701 −0.001 0.062 0.061 0.061 0.944 0.944
30 MI −0.697 0.003 0.062 0.060 0.060 0.943 0.943
70 PO −0.699 0.001 0.071 0.070 0.070 0.942 0.944
70 MI −0.690 0.010 0.070 0.068 0.069 0.938 0.939

𝛽1 = 0.5 0 GEE 0.500 <0.001 0.054 0.054 0.054 0.945 0.946
30 PO 0.500 <0.001 0.058 0.057 0.057 0.945 0.946
30 MI 0.499 −0.001 0.058 0.057 0.057 0.944 0.945
70 PO 0.498 −0.002 0.067 0.066 0.066 0.945 0.945
70 MI 0.496 −0.004 0.067 0.064 0.065 0.937 0.937

𝛽2 = 0.5 0 GEE 0.499 −0.001 0.093 0.092 0.092 0.945 0.945
30 PO 0.499 −0.001 0.100 0.098 0.099 0.945 0.945
30 MI 0.499 −0.001 0.099 0.097 0.098 0.943 0.944
70 PO 0.497 −0.003 0.114 0.113 0.113 0.947 0.948
70 MI 0.497 −0.003 0.114 0.111 0.111 0.941 0.942

(Coef., true value of the coefficient; % Cens., percent of individuals subject to censoring prior to 5 years of follow-up.
For methods: GEE, standard generalized estimating equation approach applied to uncensored version of the data; PO,
pseudo-observation approach; MI, multiple-imputation approach. For remaining column headings: 𝛽, average coef-
ficient estimate; Bias, average 𝛽 − 𝛽; ESD, empirical standard deviation of 𝛽; SE Unstr., the average estimated robust
standard error using an unstructured working correlation matrix; SE Toepl., the average estimated robust standard
error using a Toeplitz working correlation matrix; CP Unstr., empirical coverage probability for true coefficient based
on 95% confidence interval using robust standard error with an unstructured working correlation matrix; CP Toepl.,
empirical coverage probability for true coefficient based on 95% confidence interval using robust standard error with
an Toeplitz working correlation matrix.)

TABLE 1 Simulated finite
sample performance for N = 500
individuals with independently
generated times between
recurrent events. Results are
based on 10 000 iterates

method are negligibly smaller than those using the PO method. Both proposed PO and MI analysis methods perform well
in settings with either light or heavy censoring. In practice, the PO method is particularly easy to program compared to
the MI method and runs a bit more quickly, since the PO method is nested within the MI method. We suspect the PO
method will be implemented more in practice as a result.

Additional simulation results with i.i.d. Weibull gap times are given in Appendix C of the Supplementary Materials, with
window start times {t1, … , tb} treated as time-dependent covariates. Operating characteristics are similarly satisfactory
in this setting.

5.2 Simulating distribution of times-to-first-event based on correlated times between
recurrent events and comparison of proposed methods
Simulating a multivariate time-to-first-event distribution is more complex when times between events are correlated ran-
dom variables. Recall from Section 3 that positive correlation between exponential(𝜆i) gap times causes the corresponding
distribution for  to change; that P{Ti(t) > u} tends to be smaller than an exponential(𝜆i) survival function and stabi-
lizes after approximately t > 1∕𝜆i follow-up units of gap-time history has passed. The intuition behind this phenomenon,
described in Section 3, also suggests the approach for successfully simulating the desired stable multivariable distribution
for  to be used in this section. That is, upon simulating correlated exponential(𝜆i) gap times for individual i, we discard
at least the first 1∕𝜆i follow-up units of generated information, starting t1 = 0 for individual i after this “burn-in” period
has passed.

To verify that our model works correctly for finite sample sizes when exponentially distributed times between event
are correlated, we need (1) to generate data that follows model (3) for this setting and (2) have a way to verify that esti-
mated parameters appropriately represent the data. To address (2), we assume a categorical predictor, Zi = 0, 1, 2, so that
E(log[min{𝜏,Ti(t)}]|Z) can be consistently estimated from a large dataset (N= 10 000) within each level of Z via an empir-
ical mean. From this model-free process, we can determine values, 𝛽, of regression parameters that should be estimated
if model (3) is working correctly. In particular, we assume that individuals with Zi = 0, 1, or 2 have a history of exponen-
tial gap times with 𝜆i = 1∕2, 1∕3 or 1∕5, respectively, where correlation between any two gap times from individual i is
approximately 0.8. Stabilization of the resulting multivariate time-to-first-event process is done by defining t1 = 0 after a
burn-in period of 5 follow-up units has passed for each individual.
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TABLE 2 Simulated finite
sample performance for N = 500
individuals with correlated times
between recurrent events.
Results are based on 10 000
iterates

Coef. % Cens. Method �̂� Bias ESD SE SE CP CP
Unstr. Toepl. Unstr. Toepl.

𝛽0=−0.677 0 GEE −0.669 0.008 0.076 0.075 0.075 0.941 0.940
30 PO −0.667 0.010 0.079 0.078 0.078 0.939 0.939
30 MI −0.669 0.008 0.079 0.077 0.077 0.937 0.939
70 PO −0.662 0.015 0.085 0.083 0.084 0.933 0.936
70 MI −0.668 0.009 0.085 0.082 0.083 0.935 0.936

𝛽1= 0.306 0 GEE 0.301 −0.005 0.103 0.102 0.103 0.948 0.949
30 PO 0.300 −0.006 0.106 0.106 0.106 0.948 0.949
30 MI 0.302 −0.004 0.106 0.106 0.106 0.947 0.949
70 PO 0.295 −0.011 0.114 0.114 0.114 0.948 0.949
70 MI 0.301 −0.005 0.115 0.113 0.113 0.945 0.946

𝛽2= 0.637 0 GEE 0.622 −0.015 0.097 0.097 0.097 0.946 0.946
30 PO 0.618 −0.019 0.100 0.100 0.101 0.943 0.943
30 MI 0.622 −0.015 0.101 0.100 0.100 0.942 0.943
70 PO 0.608 −0.029 0.108 0.108 0.108 0.939 0.941
70 MI 0.623 −0.014 0.109 0.107 0.107 0.942 0.944

(Coef., “true” value of the coefficient; % Cens., percent of individuals subject to censoring prior to 5 years of follow-up.
For methods: GEE, standard generalized estimating equation approach applied to uncensored version of the data;
PO, pseudo-observation approach; MI, multiple-imputation approach. For remaining column headings: 𝛽, average
coefficient estimate; Bias, average 𝛽−𝛽; ESD, empirical standard deviation of 𝛽; SE Unstr., the average estimated robust
standard error using an unstructured working correlation matrix; SE Toepl., the average estimated robust standard
error using a Toeplitz working correlation matrix; CP Unstr., empirical coverage probability for true coefficient based
on 95% confidence interval using robust standard error with an unstructured working correlation matrix; CP Toepl.,
empirical coverage probability for true coefficient based on 95% confidence interval using robust standard error with
an Toeplitz working correlation matrix.)

A Gaussian copula approach45 is used to generate correlated exponential gap times in this section and in Section 3.
This approach first simulates mean zero multivariate normal random variables {Qi1,Qi2, … ,Qi500} with variance one and
0.8 correlation between Qij and Qi𝑗′ , for j ≠ j′; 500 was chosen to ensure that individuals would have at least 10 years
of gap time history (5-year burn-in period, followed by 5 years of potential follow-up, subject to the previously described
censoring mechanism). We then transform the multivariate normal random variables to multivariate uniform(0, 1) and
then multivariate exponential random variables via repeated applications of the inverse transform theorem. The exponen-
tial random variables that result from this process become the correlated gap times {Gi1,Gi2, … ,Gi500}, which are then
converted into times-to-first event as described in Section 2.

Figure S5 in the Supplementary Materials shows the empirical average of log[min{2,Ti(t)}] for each value of Zi = 0, 1, 2
based on N = 10 000 individuals with correlated exponential gap time histories as generated using the copula approach
described above. As expected based on the stabilization of the survival curves seen in Figure S4 in the Supplementary
Materials, the empirical average of log[min{𝜏,Ti(t)}] seems to stabilize successfully after the 5-year burn-in period.
Results from t = 5 to t = 8 in this figure are averaged to provide nonparametric large sample estimates, 𝛽, of parameters
in model (3)

E(log[min{𝜏,  }]|Z) = −0.677 + 0.306I(Z = 1) + 0.637I(Z = 2).

Finite sample properties of the uncensored case (where GEE is used) and censored cases (where PO and MI methods are
used) shown in Table 2 are based on N= 500 individuals simulated to have an equal chance of following the simulated
time-to-first-event longitudinal data structure governed by covariate values, Z = 0, 1, or 2. Results are laid out in a similar
manner to that seen in Table 1, except that bias is defined in relation to the nonparametric large sample estimate, 𝛽 rather
than a true 𝛽, since a closed-form value for the true 𝛽 is unavailable. Results are very comforting. The MI method slightly
outperforms the PO method with slightly lower SEs and lower bias; bias results for the MI method are comparable to that
seen in the uncensored case. CPs are close to the desired 95%. Parameter estimates corresponding to groups with shorter
suggested simulation burn-in periods (𝛽0 and 𝛽1) have slightly improved bias results compared to 𝛽2. Since we used the
same 5-year burn-in period for all covariate values, the values of 𝛽0 and 𝛽1 had stabilized earlier in the burn-in period, as
seen in Figure S5, and corresponding estimates may have benefited slightly from this feature of the simulation.



XIA ET AL. 11

In the Supplementary Materials, for comparison, we also provide results if data from only the first event time is used
to fit model (3), ie, the data consists of {Xi(t = 0), 𝛿i(t = 0)}, i = 1, … , 500. Both PO and MI methods in this special case
follow those described by Liu et al.42 Standard linear regression is used to fit model (3) in the setting with no censored
data. Tables S2 and S3 summarize results corresponding to Tables 1 and 2, respectively, when only the first event time
is used in the analysis. Table S4 shows the asymptotic relative efficiencies comparing our analyses versus the analyses
with only the time-to-first-event, which vary from 1.179 to 1.880. As expected, there is a loss of efficiency when ignoring
information after the first event time. This efficiency loss is most costly in the setting with independent gap times between
events, but remains substantial when gap times are correlated.

6 EXAMPLE

In this section, we use the proposed methods to analyze results from the azithromycin in COPD Trial. This study followed
1112 patients with a history of AEs for recurrent AEs after randomization to either placebo or 250 mg azithromycin daily.
This trial ended with favorable results for the azithromycin arm,1 based on an analysis of the time to first AE using the
logrank test. Multivariable Cox proportional hazard analysis modeling time-to-first-exacerbation confirmed azithromycin
benefit after adjustment for forced expiratory volume in one second (FEV1), age, gender, smoking status, and study sites.

In our analysis, we estimate parameters in model (3) for 𝜏 = 6 months and a longitudinal data structure,  , measuring
times-to-first-recurrent-event in follow-up windows starting at times t = 0, 2, 4, 6 months. Our selections of 𝜏 = 6 and a =
2 months are based on the 6-month historic mean time-to-exacerbation in this patient population and recommendations
from the work of Xia and Murray25 that approximately 90% of recurrent events should be captured when spacing windows
apart by one-third of a historic mean.

We present results from a univariate analysis that evaluates azithromycin versus placebo, a forest plot analysis of treat-
ment effect in subgroups of interest, and a multivariable analysis of treatment effect that adjusts for age, gender, FEV1,
smoking status, and study site. We tested for and found no statistically significant interactions between follow-up window
start times and treatment, indicating relatively stable patterns of treatment effect over time (p > 0.41). The Toeplitz work-
ing correlation structure gave a slightly lower QIC value compared to the unstructured working correlation structure in
our multivariable model and was used in all models of the azithromycin data. All confidence intervals and p-values are
based on robust sandwich estimation of variability.

Forest plots of univariate treatment effects, overall and by subgroup, are shown in Figure 2 for the PO (left panel) and
MI (right panel) methods. Tabulated versions of these results are located in Table S5 of the Supplementary Materials.
Treatment effects are displayed on the scale of e𝛽 and can be interpreted as multiplicative increases (or decreases) on
the time to first exacerbation over the next 6 months of follow-up. Overall, azithromycin is estimated to extend the time
to the first exacerbation over a 6-month period by approximately 14% using either the PO or the MI method (95% CI
approximately 5% to 24% longer, p = 0.002 for PO method and p = 0.001 for MI method). Stated as an absolute difference,

FIGURE 2 Forest plot of
univariate treatment effects,
overall and by subgroups of
interest [Colour figure can be
viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


12 XIA ET AL.

TABLE 3 Multivariable results
using PO and MI methods.
Displayed estimates are
additionally adjusted for center
(data not shown). (CI: confidence
interval; PO: pseudo-observation;
MI: multiple imputation)

PO MI
e
̂𝜷 95% CI P e

̂𝜷 95% CI P
Intercept 60.34 41.17 88.43 <0.001 61.28 42.33 88.72 <0.001
Azithromycin (vs placebo) 1.153 1.063 1.250 0.001 1.150 1.063 1.244 <0.001
FEV1 (per 10% predicted) 1.041 1.013 1.068 0.003 1.039 1.013 1.066 0.003
Age (per 10 years) 1.052 0.999 1.108 0.055 1.052 1.001 1.107 0.046
Male (vs female) 1.181 1.084 1.287 <0.001 1.171 1.078 1.272 <0.001
Current smoker (vs Ex) 1.074 0.967 1.193 0.184 1.071 0.967 1.186 0.188

there was an estimated 0.43 month increase in time-to-first-exacerbation for the azithromycin group compared to the
placebo group over a 6-month period (ie, e𝛽0+𝛽1 − e𝛽0 ≈ 0.43 using either the PO or MI method).

Across the various subgroup analyses shown in Figure 2, the treatment benefit was most pronounced in COPD patients
with better preserved lung function, that is, FEV1 % of predicted > 50 % (approximately 29% longer time to first exacerba-
tion in the next 6 months, 95% CI 10%-51% longer using PO method and 11%-50% longer using MI method). In general,
point estimates shown for the PO and MI methods in Table S5 are very close to one another and 95% CI results for the
methods are also close, but with slightly narrower CI widths using the MI approach. P-values for the MI method are also
slightly smaller using the MI versus the PO method.

As seen in Table 3, the azithromycin group maintains its estimated treatment benefit when adjusted for confounders in
a multivariable model using either the PO or MI method (approximately 15% longer time to first exacerbation in the next 6
months, 95% CI 6%-25% longer, p = 0.001, using PO method, and 6%-24% longer, p < 0.001, using MI method. Interactions
between treatment and FEV1, age, gender, smoking status other than study sites were tested and no significant interactions
were found.

For comparison, Table S6 in the Supplementary Materials gives results from a multivariable proportional means/rates
model,15 which is an alternative attractive method for analysis of recurrent events data. Parameter estimates, e𝛽 , in Table
S6 are interpreted in relation to the estimated number of exacerbations in the clinical trial. For instance, the azithromycin
parameter estimate (0.815) indicates that azithromycin patients experienced only 81.5% of the exacerbations that placebo
patients experienced after adjustment for confounders (95% CI 71.1%-93.4%, p = 0.003). If time-dependent covariates are
used with the proportional means model, the interpretation of parameter estimates applies to the intensity rate of the
recurrent events, rather than the mean counts. Scientifically, conclusions using either our method or the proportional
means/rates model are consistent with one another, although parameter estimates have different interpretations and are
not directly comparable. Statistical significance of the various parameters in their respective models are reasonably similar
in this case, with slightly stronger significance for the treatment effect using our proposed model.

7 DISCUSSION

In this manuscript, we take a fresh look at the manner in which recurrent event data is analyzed. By first restructuring
the data into a censored longitudinal form and then transforming the data via PO or MI models into a complete data
format, we are able to take advantage of existing software from longitudinal data analysis literature. Our model estimates
time free from recurrence over a 𝜏-length follow-up period. In our opinion, this model gives a clear manner of assessing
clinical and statistical significance of associations simultaneously. As with most longitudinal data, our method allows
for either time-independent or dependent predictors. Compared to time-to-first-event analysis estimates of parameters
from model (3), our proposed methods for estimating these parameters, using additional recurrent event information,
are much more efficient.

We are unaware of anyone who has suggested modeling a censored longitudinal data structure as we propose for the
recurrent events setting, along with estimation methods that are valid regardless of the correlation structure between
recurrent events. We are equally unaware of any literature that has described how to effectively simulate correlated
times-to-first-event that follow a stable distribution over time. Our simulation results confirm the success of the simulation
procedure as well as the data analysis methodology.

Compared to time-to-first-event analyses, our methodology for the analysis of recurrent event data gains a great deal of
efficiency with limited additional assumptions required. In the special case where treatment group is the only predictor,
the test of the treatment group parameter is comparable to the two-sample test of Tayob and Murray.46 In that paper,
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power of the Tayob and Murray statistic for detecting treatment differences was compared to power using the proportional
means/rates model with treatment group as the only predictor and compared favorably, particularly when gap times were
correlated. More generally, parameter estimates from our model and the proportional means/rates model do not share a
similar scale or interpretation and the linear predictor from these respective models reflects very different assumptions
regarding the behavior of the recurrent events over time.

A novel contribution of our research is a better understanding of how times-to-first-event fit within the context of
recurrent events data. For many chronic diseases, clinic visits are scheduled at regular intervals and a good understanding
of short-term patient prognosis is desired at these visits. Since these visits are typically scheduled months in advance,
they are more likely to coincide with a period of clinical stability than an emergent event. Summary statistics from a
time-to-next event analysis seem more relevant than a gap-time analysis in this setting. Similarly, in clinical trials of
chronic diseases where patients are stable at study entry, the first event experienced during the trial is not a true gap time
unless event times are independent and memoryless; a feature of the data we outline clearly for the first time. Our method
is especially relevant in these settings.

Alternatively, when patients are in the midst of a recurrent event episode and seeking guidance on their prognosis, a
gap time analysis is more immediately relevant and appropriate. Gap time analyses are also very appropriate for clinical
trials that enroll patients during emergent events.

A possible modification to our MI procedure would be to incorporate an additional bootstrap step, which experts in
MI theory view as a draw from the parameter space, going as far as to say that imputation must include this step to be
proper. For instance, a bootstrap sample could be selected with replacement from the original dataset and used to fit
model (4), providing parameter estimate 𝛽PO. For individual i in the original dataset requiring a sup impute, a risk set i
would then be taken from the bootstrapped sample who satisfy the two constraints defined in Section 4.2. Other steps of
our procedure would proceed without further alteration. The argument for an additional bootstrap step of this nature is
bolstered by noticeably improved CPs when this step is included in some cases.40 In our own work with inverse probability
transform imputation methods, we have not observed a sufficient improvement in CPs to justify the extra computing time
needed to perform this extra step. In particular, CPs for the MI method seen in Tables 1 and 2 are satisfactorily close to
the uncensored case CPs to justify skipping this step. Although purists will likely agree to disagree, we feel comfortable
recommending our imputation algorithm, as is, given the CP results seen in simulation.

Compared to the MI approach, the PO approach is very easy to program and use in exploratory multivariable regression
analysis. Because POs are estimated in a completely nonparametric manner, they may be estimated once and then used
as if they were complete data throughout the remainder of model exploration. MI approaches that incorporate informa-
tion from modeled covariates often require a new set of multiply imputed datasets to be created as additional important
predictors or confounders are identified throughout the data analysis. The advantage of additional efficiency from the MI
approach may be offset by the convenience and ease of the PO approach. One strategy would be to perform model explo-
ration using the PO approach and then use the MI approach at the final stage of the analysis. However, the PO approach
seems more than adequate as a standalone procedure with negligible loss of efficiency compared to the MI method and
very quick results for the busy practitioner.

Further discussion of the choice of the user-defined parameter, a, in the special case where two-sample tests are of
interest is given by Xia and Murray.25 Our regression methodology allows for follow-up windows to start as frequently
as every day (a = 1 day), in which case all recurrent events would be incorporated into the analysis. Xia and Murray,25

however, recommend using a = one-third of the historic mean time-to-recurrent event, capturing approximately 90% of
the recurrent events in at least one follow-up window. Their recommendation is based on minimal loss of power to detect
treatment effects and faster computing time for this larger value of a, which can be important when evaluating many
models in our regression setting.
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