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ON MULTIPLICATIVE COMPOSITIONS OF INTEGERS

HUGH L. MONTGOMERY AND GÉRALD TENENBAUM

Dedicated to the memory of K. F. Roth

Abstract. We consider an arithmetic function defined independently by John G.
Thompson and Greg Simay, with particular attention to its mean value, its maximal
size, and the analytic nature of its Dirichlet series generating function.

§1. Introduction. In combinatorics, a composition of a positive integer n is
a representation of n as a sum of positive integers in which the order of the
summands matters. For example, 4 = 4 = 3+ 1 = 1+ 3 = 2+ 2 = 2+ 1+ 1 =
1+ 2+ 1 = 1+ 1+ 2 = 1+ 1+ 1+ 1. Thus there are 8 compositions of 4. It is
easy to see that in general there are exactly 2n−1 compositions of n. Analogously,
we let c(n) denote the number of representations of n as a product of primes,
in which the order of the factors matters. Thus c(p) = 1, c(p1 p2) = 2, and
c(p2

1 p2) = 3, and so c(n) is not a multiplicative function. In general, if n =
pν1

1 pν2
2 · · · p

νr
r is the canonical factorization of n and �(n) =

∑
j ν j , then c(n)

is the multinomial coefficient

c(n) =
(

�(n)
ν1, . . . , νr

)
=

�(n)!∏r
i=1 νi !

. (1)

John G. Thompson, in the course of some of his (as yet unpublished) research
on the Riemann zeta function, defined the Dirichlet series

D(s) =
∑
n>1

c(n)
ns (2)

and asked for its abscissa of convergence, while Greg Simay in a private
communication noted the combinatorial interpretation of the coefficients c(n)
and inquired about their asymptotic mean value.

THEOREM 1.1. For σ := <s > 1, and non-negative integers k, let

Gk(s) =
∑

p

(log p)k

ps . (3)

Let σ0 ≈ 1.399433329 denote the unique real number >1 such that

G0(σ0) = 1. (4)
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With c(n) and D(s) defined as in (1) and (2), we have

D(s) =
1

1− G0(s)

for σ > σ0, and σ0 is the abscissa of convergence of this Dirichlet series.

Proof. Suppose that σ > 1. By the multinomial theorem,

G0(s)m =
∑
n>1

�(n)=m

c(n)
ns .

We sum this over m = 0, 1, 2, . . . to obtain (2). Since limσ→σ0+ D(σ ) = +∞,
and the coefficients are non-negative, it follows that D(s) does not converge at
s = σ0. Hence σ0 is the abscissa of convergence of D(s). �

By the Möbius inversion formula it is evident that, for σ := <s > 1,

G0(s) =
∑
d>1

µ(d)
d

log ζ(ds), (5)

G1(s) = −
∑
d>1

µ(d)
ζ ′

ζ
(ds), (6)

and these series actually converge for σ > 0 if the pole and zeros of the
zeta-function are suitably avoided. Moreover G1(s) may be continued to the
half-plane σ > 0 as a meromorphic function with poles of order 1. Since
ζ(s) can be evaluated by the Euler–MacLaurin formula (or by the Riemann–
Siegel formula), one can calculate G0(s) without a detailed knowledge of the
distribution of prime numbers. The function D(s) has poles at points where
G0(s) = 1; the abscissæ of such points are dense in (1, σ0). In addition, D(s)
has a transcendental singularity at points of the form 1/d or %/d for squarefree
d, where % runs through the non-trivial zeros of the zeta-function. By slitting the
complex plane suitably one may continue D(s) to σ > 0, but the imaginary axis
is a natural boundary for D(s), since Landau and Walfisz [4] showed that σ = 0
is a natural boundary of G0(s) = 1− 1/D(s).

§2. The summatory function. With c(n) as in (1), let

C(x) =
∑
n6x

c(n). (7)

By a basic theorem concerning Dirichlet series (as in Montgomery and
Vaughan [5, Theorem 1.3] or Tenenbaum [7, Theorem II.1.13]) it follows from
Theorem 1.1 that

lim sup
x→∞

log C(x)
log x

= σ0.
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As c(n) > 0 for all n, and

D(s)−
1

G1(σ0)(s − σ0)

is continuous in the closed half-plane σ > σ0, it follows by the Wiener–Ikehara
theorem (as discussed, for example, in Montgomery and Vaughan [5, §8.3]) that

C(x) ∼
xσ0

σ0G1(σ0)
(8)

as x →∞. Here we see that the average size of c(n) is cnσ0−1, but

c(n) 6 �(n)�(n)

for all n, so
c(n) 6 (log n)(1+ε) log3 n

for almost all n (in the sense of natural density), where, here and in the sequel,
logk denotes the k-fold iterated logarithm.

The estimate (8) can be made quantitative by using further information about
D(s). For example, suppose we put α := (log 2)/log 3. Since α is irrational, it
follows that there is no τ 6= 0 such that 2iτ

= 3iτ
= 1. We note that Salykhov [6]

has given a measure of the irrationality of α. In the improved from of Wu and
Wang [8], it asserts that if δ = 4.117, then

‖qα‖ � 1/qδ (q ∈ Z+). (9)

Here ‖ϑ‖ denotes the distance from the real number ϑ to the set of integers. We
note that if s := σ + iτ with σ > 0, then

|1− G(σ0 + s)| =
∣∣∣∣∑

p

p−σ0(1− p−s)

∣∣∣∣ > <∑
p

p−σ0(1− p−s)

�

∑
p

p−σ0 sin2
(

1
2
τ log p

)
> sin2

(
1
2
τ log 2

)
+ sin2

(
1
2
τ log 3

)
.

On putting ϑ := τ(log 3)/(2π), we find that this is

= sin(παϑ)2 + (sinπϑ)2 � ‖αϑ‖2 + ‖ϑ‖2. (10)

If τ0 < |τ | � 1, the above expression is�1. Otherwise there is some q ∈ Z+
such that ε := min(|ϑ − q|, |ϑ + q|) 6 1

2 . If ε 6 κ/qδ with sufficiently small,
absolute κ > 0 then, by (9), we have

‖αϑ‖ > ‖αq‖ −
ακ

qδ
�

1
qδ
.
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If ε > κ/qδ , then ‖ϑ‖ � 1/qδ . Thus the right-hand side of (10) is� 1/q2δ for
all ϑ > 1. Since q � ϑ � τ , we deduce that

D(σ0 + s)� τ 2δ, D′(σ0 + s)� τ 2δ (σ > 0, τ > 1). (11)

Inserting this information into the effective Ikehara–Ingham–Delange Tauberian
theorem of Tenenbaum [7, Theorem II.7.13], we find that, if K := 1/(4δ+ 1) ≈
0.05724, then

C(x) =
xσ0

σ0G1(σ0)

{
1+ O

(
1

(log x)K

)}
(12)

as x → ∞. Although the error term here is not as small as we would like, it
raises the question as to whether lower bounds for linear forms in logarithms of
small primes might be used to obtain a better error term, possibly even a very
good error term.

Due to the many singularities of D(s), the asymptotic estimate (12) cannot
be sharpened so as to save a power of x . Indeed, since (i) the c(n) are non-
negative, (ii) D(s) is regular on the real axis in the interval (1, σ0), and (iii) D(s)
has poles with abscissæ >σ0 − ε, it follows by the Phragmén–Landau theorem
(cf. Montgomery and Vaughan [5, §15.1] or Tenenbaum [7, Theorems 1.11
and 1.12]) that

C(x)−
xσ0

σ0G1(σ0)
= �±(xσ0−ε) (13)

for all ε > 0.

§3. A pole-free region for D(s). Tauberian theorems are easy to employ
because they do not require any knowledge of an analytic continuation for the
Dirichlet series involved. As pointed out by Karamata [3], the corresponding
drawback is that, when available, their remainder terms are necessarily weak.
We now determine a pole-free region for D(s) in order to obtain, via contour
integration, a better error term in the asymptotic estimate for C(x).

For every τ > 10, there exists an X0(τ ) such that if x > X0(τ ), then∑
x6n63x

3(n){1− cos(τ log n)} >
1
4

x . (14)

Of course, by the prime number theorem the left-hand side is ∼2x as x tends
to infinity. The issue is how large must we make x in order to be assured of
obtaining a positive fraction of this amount.

LEMMA 3.1. Let X0(τ ) be defined as in (14). There exists an absolute
constant c > 0 such that

X0(τ ) 6 exp{c(log τ)2/3(log2 τ)
4/3
}. (15)

If the Riemann Hypothesis (RH) is true, then

X0(τ )� (log τ)2. (16)
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Proof. We may clearly assume τ is arbitrarily large. Write

L (z) := exp
{
(log z)3/5

(log2 z)1/5

}
(z > 3),

β(T ) := (log T )−2/3(log2 T )−1/3 (T > 3).

Using the Vinogradov–Korobov zero-free region σ > 1 − c1β(T ) for the zeta
function with s = σ + iτ , T := 3 + |τ |, where c1 is an absolute constant (see
e.g. [2, Ch. 6]), and the validity of the bound ζ ′(s)/ζ(s) � log T in the same
region, we may employ standard complex integration to get, for x > 3, τ ∈ R,
log T 6 (log x)3/2/(log2 x)2,∑

n6x

3(n)
niτ � x1−c2β(T ) +

x
T
+

x
L (x)c2

, (17)

where c2 is absolute. We omit the details which are very similar to those in the
proof of [7, Lemma III.5.16]. This immediately implies (15).

Assuming RH, we note that∑
x6n63x

3(n){1− cos(τ log n)}

>
1
x

∑
x6n63x

(x − |n − 2x |)3(n){1− cos(τ log n)}

= x + o(x)−
1
x

∑
x6n63x

(x − |n − 2x |)3(n) cos(τ log n).

Thus it suffices to show that∣∣∣∣ ∑
x6n63x

(x − |n − 2x |)
3(n)
niτ

∣∣∣∣ 6 1
5

x2.

The above sum is

=
−1
2π i

∫ 2+i∞

2−i∞

ζ ′

ζ
(s + iτ)

(3x)s+1
− 2(2x)s+1

+ x s+1

s(s + 1)
ds

�
x2

τ 2 +
∑
γ

xβ+1

(γ − τ)2 + 1
.

Assuming RH, the sum over γ is�x3/2 log τ since the number of γ in [u, u+1]
is � log(3 + |u|). The desired bound follows for all x > X0(τ ) by selecting
X0(τ ) = C(log τ)2 with C a sufficiently large absolute constant. �

THEOREM 3.2. There exists an absolute constant c > 0 such that if τ > 10,
then

D(s)� exp{c(log τ)2/3(log2 τ)
4/3
} (18)
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uniformly for
σ > σ0 − exp{−c(log τ)2/3(log2 τ)

4/3
}. (19)

Assuming RH, if τ > 10, then

D(s)� (log τ)4/5 (20)

uniformly for

σ > σ0 −
1

(log τ)4/5
. (21)

Proof. Since
∑

p p−σ0 = 1, it follows that

1−<
∑

p

p−s
=

∑
p

p−σ0 −

∑
p

p−σ cos(t log p)

=

∑
p

p−σ {1− cos(τ log p)} −
∑

p

(p−σ − p−σ0). (22)

Here the last term is

G0(σ )− G0(σ0) = −

∫ σ0

σ

G ′0(α) dα =
∫ σ0

σ

G1(α) dα.

Now G1 is a decreasing function, and G1(1.3) = 2.475639 < 2.5, so if
σ > 1.3, then the above is 65

2 (σ0 − σ). Let X0(τ ) be defined as in (14). Then
the expression (22) is

>
cX0(τ )

1−σ

log X0(τ )
−

5
2
(σ0 − σ).

We now suppose that σ is close enough to σ0 to ensure that the second term
above is at most one half the first term. For such σ we have a lower bound for
the real part of 1 − G0(s) = 1/D(s), and hence an upper bound for |D(s)|.
To complete the argument it suffices to substitute the upper bounds for X0(τ )

derived in Lemma 3.1. �

§4. A stronger quantitative mean value theorem.

THEOREM 4.1. There is a constant a > 0 such that

C(x) =
xσ0

σ0G1(σ0)
(1+ O(exp{−a(log2 x)3/2/(log3 x)2}))

uniformly for x > 3. Assuming RH,

C(x) =
xσ0

σ0G1(σ0)
(1+ O(exp{−a(log x)5/9})).
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Proof. Let

C1(x) =
∑
n6x

(x − n)c(n) =
1

2π i

∫ α+i∞

α−i∞
D(s)

x s+1

s(s + 1)
ds.

We move the path of integration to form a rectilinear contour C from σ0 − i∞
to σ0 − iT to σ0 − δ − iT to σ0 − δ + iT to σ0 + iT to σ0 + i∞ where

δ := exp{−c(log T )2/3(log2 T )4/3}, T := exp{a(log2 x)3/2(log3 x)−2
}.

Thus the above is

=
xσ0+1

σ0(σ0 + 1)G1(σ0)
+

1
2π i

∫
C

D(s)
x s+1

s(s + 1)
ds.

We note that

c(log T )2/3(log2 T )4/3 ∼ ca2/3(3
2

)4/3 log2 x .

We take a to be small enough to ensure that the right-hand side above is
<1

3 log2 x . Thus

δ > (log x)−1/3, x−δ < exp{−(log x)2/3},
D(σ0 − δ + iτ)� (log x)1/3 (−T 6 τ 6 T ).

Consequently, ∫ σ0−δ+iT

σ0−δ−iT
� xσ0+1 exp{−(log x)2/3}(log x)1/3,∫ σ0+iT

σ0−δ+iT
�

xσ0+1

T 2 ,

∫ σ0+i∞

σ0+iT
�

xσ0+1

T 2 (log x)1/3.

Thus

C1(x) =
xσ0+1

σ0(σ0 + 1)G1(σ0)
+ O(xσ0+1 exp(−b(log2 x)3/2(log3 x)−2)).

Since c(n) > 0 for all n, it follows that

C1(x)− C1(x − h)
h

6 C(x) 6
C1(x + h)− C1(x)

h
.

We note that

(x + h)σ0+1
− xσ0+1

h(σ0 + 1)
=

1
h

∫ x+h

x
uσ0 du 6 (x + h)σ0 = xσ0 + O(hxσ0−1).

Hence

C(x) 6
xσ0+1

σ0G1(σ0)
+O(hxσ0−1)+O(h−1xσ0+1 exp{−b(log2 x)3/2(log3 x)−2

}).
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We take h = x exp(− 1
2 b(log2 x)3/2(log3 x)−2) to obtain the upper bound part

of our estimate. The lower bound is derived similarly.
When we assume RH we argue similarly, with

T := exp{(log x)5/9}, δ := (log T )−4/5
= (log x)−4/9.

Thus x−δ = exp((log x)−5/9) = 1/T . �

§5. Large values of c(n). From (12) or Theorem 4.1 it follows that
c(n) = o(nσ0) as n → ∞. To complete our discussion we show that there
are n for which c(n) is nearly this large.

THEOREM 5.1. Let σ0 be defined as in (4). There is an absolute constant
C > 0 such that

c(n) > nσ0 exp{−C(log n)1/σ0}

for infinitely many integers n.

From the above it is evident that

C(x)−
c
σ0

xσ0 = �(xσ0 exp{−C(log x)1/σ0}). (23)

Here the order of magnitude is more precise than in (13), but the above does
not guarantee that the error becomes large in both signs.

Numerical studies indicate that large values of c(n) occur only when n is quite
large. For example, the least n for which c(n) > n is

n = 326 918 592 000 = 29
· 36
· 53
· 72
· 11 · 13, (24)

for which

c(n) = 358 500 542 400 =
(

22
9, 6, 3, 2, 1, 1

)
. (25)

Proof. Let y be a large real number, and consider n =
∏

p6y pν(p) where the
ν(p) are of the form

ν(p) =
⌊

yσ

pσ

⌋
. (26)

Here σ > 1 is chosen later, but we assume throughout our calculations that σ is
bounded. For brevity we put

Sk(σ ) =
∑
p6y

(log p)k

pσ
. (27)

First we note that

log n =
∑
p6y

ν(p) log p = yσ S1(σ )+ O(y). (28)
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Similarly,
�(n) =

∑
p6y

ν(p) = yσ S0(σ )+ O(y/log y). (29)

Hence
log�(n) = σ log y + log S0(σ )+ O(y1−σ /log y). (30)

We appeal to Stirling’s formula in the crude form

log m! = m log m − m + O(log 2m). (31)

Thus

log{�(n)!} =
{

yσ S0(σ )+ O
(

y
log y

)}{
σ log y + log S0(σ )+ O

(
y1−σ

log y

)}
− yσ S0(σ )+ O

(
y

log y

)
= σ S0(σ )yσ log y + S0(σ )yσ log S0(σ )− S0(σ )yσ + O(y). (32)

From (31) we also find that

log{ν(p)!} =
{

yσ

pσ
+ O(1)

}{
σ log

(
y
p

)
+ O

(
pσ

yσ

)}
−

yσ

pσ
+ O

(
log

2y
p

)
=
σ yσ log(y/p)

pσ
−

yσ

pσ
+ O

(
log

2y
p

)
.

Hence∑
p6y

log{ν(p)!} = σ S0(σ )yσ log y − σ S1(σ )yσ − S0(σ )yσ + O(y/log y).

On combining this with (32) we deduce that

log c(n) = {σ S1(σ )+ S0(σ ) log S0(σ )}yσ + O(y).

From (28) we deduce that this is

= f (σ ) log n + O((log n)1/σ ) (33)

where
f (σ ) = σ +

S0(σ ) log S0(σ )

S1(σ )
.

Since S′k(σ ) = −Sk+1(σ ), we find that

f ′(σ ) = 1− log S0(σ )− 1+
S0(σ )S2(σ )

S1(σ )2
log S0(σ )

=

(
S0(σ )S2(σ )

S1(σ )2
− 1

)
log S0(σ ).
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Now S1(σ )
2 6 S0(σ )S2(σ ) by Cauchy’s inequality, and indeed S1(σ )

2 <

S0(σ )S2(σ ) since the summands are not proportional. Thus f ′(σ ) > 0 when
S0(σ ) > 1 and f ′(σ ) < 0 when S0(σ ) < 1. Hence f (σ ) is maximized by
choosing σ so that S0(σ ) = 1. This σ depends on y, but is very close to σ0.
We obtain the same result—and the estimates are easier—if we take the slightly
inferior choice σ = σ0. Since∑

p>y

1
pσ0
∼

y1−σ0

(σ0 − 1) log y
,

it follows that

log S0(σ0)�
y1−σ0

log y
�
(log n)1/σ0−1

log2 n
.

We now obtain the stated result by taking σ = σ0 in (33). �

Although the choice σ = σ0 suffices asymptotically, it may still be the case
in numerical studies with y of moderate size that better results are obtained by
choosing σ so that S0(σ ) = 1.

The estimate (28) can be refined: with more care it can be shown that∑
p6y

⌊
yσ

pσ

⌋
log p = yσ S1(σ )+

{
ζ

(
1
σ

)
+

1
σ − 1

}
y + O(ye−c

√
log y).

However, this does not seem to lead to a sharper result in the present context.
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4. E. Landau and A. Walfisz, Über die Nichtfortsetzbarkeit einiger durch Dichichletsche Reihen

definierte Funktionen. Rend. Circ. Mat. Palermo 44 (1920), 82–86. Landau’s Collected Works, Vol. 7,
Thales, Essen, 1986, 252–256.

5. H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I: Classical Theory (Cambridge
Studies in Advanced Mathematics 97), Cambridge University Press (Cambridge, 2007).

6. V. Kh. Salikhov, On the irrationality measure of ln 3. Dokl. Akad. Nauk 417(6) (2007), 753–755
(Russian); Translation in Dokl. Math. 76(3) (2007), 955–957.

7. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory (Graduate Studies in
Mathematics 163), American Mathematical Society (Providence, RI, 2015).

8. Q. Wu and L. Wang, On the irrationality measure of log 3. J. Number Theory 142 (2014), 264–273.

Hugh L. Montgomery,
Department of Mathematics,
University of Michigan,
Ann Arbor, MI 48109–1043,
U.S.A.
E-mail: hlm@umich.edu
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