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Objective. Accurate prediction of treatment responses in rheumatoid arthritis (RA) patients can provide 
 valuable information on effective drug selection. Anti–tumor necrosis factor (anti- TNF) drugs are an important 
second- line treatment after methotrexate, the classic first- line treatment for RA. However, patient heterogeneity 
hinders identification of predictive biomarkers and accurate modeling of anti- TNF drug responses. This study 
was undertaken to investigate the usefulness of machine learning to assist in developing predictive models for 
treatment response.

Methods. Using data on patient demographics, baseline disease assessment, treatment, and single- nucleotide 
polymorphism (SNP) array from the Dialogue on Reverse Engineering Assessment and Methods (DREAM): Rheu-
matoid Arthritis Responder Challenge, we created a Gaussian process regression model to predict changes in the 
Disease Activity Score in 28 joints (DAS28) for the patients and to classify them into either the responder or the non-
responder group. This model was developed and cross- validated using data from 1,892 RA patients. It was evaluated 
using an independent data set from 680 patients. We examined the effectiveness of the similarity modeling and the 
contribution of individual features.

Results. In the cross- validation tests, our method predicted changes in DAS28 (ΔDAS28), with a correlation 
coefficient of 0.405. It correctly classified responses from 78% of patients. In the independent test, this method 
achieved a Pearson’s correlation coefficient of 0.393 in predicting ΔDAS28. Gaussian process regression effectively 
remapped the feature space and identified subpopulations that do not respond well to anti- TNF treatments. Genetic 
SNP biomarkers showed small contributions in the prediction when added to the clinical models. This was the best- 
performing model in the DREAM Challenge.

Conclusion. The model described here shows promise in guiding treatment decisions in clinical practice, based 
primarily on clinical profiles with additional genetic information.

INTRODUCTION

Rheumatoid arthritis (RA) patients show great heteroge-
neity in their responses to treatments (1), and accurate pre-
diction of these responses would provide valuable information 
for optimal drug selection (2). In current practice, patients who 
respond inadequately to conventional therapies usually receive 
anti–tumor necrosis factor (anti- TNF) drugs as a second- line 

therapy (3). These expensive drugs are mainly chosen on a 
trial- and- error basis (4), and ~30% of patients respond poorly 
to them (5). Nonresponders incur costly drug expenses (6) and 
experience unimproved disease conditions (6,7), treatment side 
effects (8,9), and infection risks (10). In order to provide effective 
treatment to these patients, physicians need the ability to pre-
dict in advance how individual patients will respond to various 
anti- TNF drugs.
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However, patient heterogeneity hinders the identification 
of predictive biomarkers and accurate modeling of anti- TNF 
responses. Early studies showed that demographic and clinical 
markers such as sex and baseline disease activity are related to 
treatment responses (11,12), but these markers are not predic-
tive enough independently to identify nonresponders (13). Recent 
genome- wide association studies have identified multiple genetic 
markers that are associated with poor drug responses, and these 
variants were used to facilitate the identification of nonresponders 
(5,14–16). However, results obtained using these variant mark-
ers are often confounded by cohort or ethnic group (17). RA 
patients exhibit great genotypic and phenotypic heterogeneity, 
and markers found in one ethnic population or cohort may not 
be applicable to others (18). Thus, effective modeling of patient 
heterogeneity is the key to accurate drug response prediction.

In the present study, we used a Gaussian process regres-
sion (GPR) model to predict anti- TNF responses. This model 
was awarded first- place in the Dialogue on Reverse Engineer-
ing Assessment and Methods (DREAM): Rheumatoid Arthritis 
Responder Challenge (19,20). The GPR model combines demo-
graphic, clinical, and genetic markers, predicts changes in dis-
ease activity scores 24 months after baseline assessment, and 
identifies nonresponders to anti- TNF treatments. Specifically, the 
model predicts changes in the Disease Activity Score in 28 joints 
(DAS28) (21) of patients who have received 12 months of anti- 
TNF treatment and also classifies patient responses according 
to the European League Against Rheumatism response criteria 
(22). Using this model, we examined the transformation that the 
GPR kernel applied to the patient data as well as the distribution 
of the patients in the transformed space. Using an independ-
ent testing data set, we aimed to evaluate the potential of the 
GPR model in improving anti- TNF drug selection and the effect 
of genetic markers across multiple cohorts.

PATIENTS AND METHODS

Data acquisition. The training and testing data sets used 
in this study were provided by the DREAM Challenge organiz-
ers (Table 1). Data on 1,892 of these 2,706 individuals (chosen 
randomly) were provided to the participants in the competition 
before the final evaluation. Data on the remaining subjects were 
withheld for real- time submission evaluation, so that participants 
could assess their models throughout the competition. None of 
these data were included in the final evaluation. The samples in 
the training data set consisted of patients of European ances-
try from the following 13 cohorts: the Autoimmune Biomarkers 
Collaborative Network (US) (23), the Genetics Network Rheuma-
tology Amsterdam (The Netherlands), the Behandelstrategieen 
voor Rheumatoide Arthritis (The Netherlands) (24), the Biologics 
in Rheumatoid Arthritis Genetics and Genomics Study Syndicate 
(UK) (25,26), the Brigham Rheumatoid Arthritis Sequential Study 
(US) (27), the Epidemiological Investigation of Rheumatoid Arthri-

tis (Sweden) (28), the Immunex Early Rheumatoid Arthritis study 
(US) (29), the Karolinska Institutet study (Sweden), the collection 
from Leiden University Medical Center (The Netherlands), the 
Treatment of Early Aggressive Rheumatoid Arthritis study (US), the 
Dutch Rheumatoid Arthritis Monitoring registry, the ApotheekZorg  
database (The Netherlands) (30,31), and the Research in Active 
Rheumatoid Arthritis trial (France) (32). All patients were either 
diagnosed as having RA by a board- certified rheumatologist or 
met the 1987 American College of Rheumatology criteria for RA 

(33). All patients had a baseline DAS28 of >3.2.
The testing data were collected from 680 patients in the 

Corrona registry (34) who participated in the Comparative Effec-
tiveness Registry to study Therapies for Arthritis and Inflamma-
tory Conditions (CERTAIN) study (35). The CERTAIN study was 
conducted using data from the Corrona registry and involved 
adult RA patients who were diagnosed by certified rheumatol-
ogists, who had at least moderate disease activity defined by a 
Clinical Disease Activity Index (36) of >10, and who were starting 
or switching biologic agents.

For all patients in both the training and the testing data sets, 
information on sex, age, methotrexate use, and baseline DAS28 
were collected and provided. Posttreatment DAS28 scores of all 
patients in the training data sets were available to all participants in 
the DREAM Challenge, whereas those of patients in the testing data 
sets were withheld by the organizers until the end of the challenge. 
For each subject, a panel of genotype imputation was provided 
(https ://www.synap se.org/#!Synap se:syn17 34172/ wiki/62201 ).

Treatment response prediction. The proposed model 
in this study adopted GPR to predict changes in the DAS28 
(ΔDAS28). GPR is designed to predict the unknown dependent 
variable for any given independent variable(s) based on known but 
noisy observations of the dependent and independent  variables. 

Table  1. Demographic, treatment, and response information on 
the training and testing (CERTAIN cohort) data sets*

Training 
data set 

(n = 1,892)

CERTAIN cohort 
data set 
(n = 680)

Demographic data
Mean age, years 54.9 55.6
Female, % 75.1 77.9

Treatment 
Methotrexate 1,332 (70.4) 441 (64.9)
Adalimumab 757 (40.0) 210 (30.9)
Etanercept 520 (27.5) 179 (26.3)
Infliximab 609 (32.2) 177 (26.0)
Certolizumab 0 (0) 114 (16.8)

Baseline DAS28, mean 5.87 4.73
Response status
Nonresponder 436 (23) 238 (35)
ΔDAS28, mean 2.15 1.17

* Except where indicated otherwise, values are the number (%) of 
patients. CERTAIN = Comparative Effectiveness Registry to study 
 Therapies for Arthritis and Inflammatory Conditions; DAS28 = 
 Disease Activity Score in 28 joints. 

https://www.synapse.org/#!Synapse:syn1734172/wiki/62201
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GPR does not match its target function to a specific model (e.g., 
linear, quadratic, or cubic). In this study, the GPR model took 
the input ΔDAS28 of known subjects as noisy observations and 
predicted treatment responses based on patients’ clinical and 
genetic features. For more information on the full formulation, 
see Supplementary Table 1, available at on the Arthritis & Rheu-
matology web site at http://onlin elibr ary.wiley.com/doi/10.1002/
art.41056/ abstract. The final model is available at https ://www.
synap se.org/#!Synap se:syn23 68045/ wiki/64596 .

The kernel function of the GPR model accepts the differences 
in demographic data, treatment, and genetic features between 
2 patients as input variables. For each input variable, the kernel 
function performs a squared exponential transformation and takes 
the summation of the transformed values. The distance between 
each pair of patients is then simultaneously determined by the 
nonlinear transformed difference across all features.

The genetic features included in the model were cho-
sen via literature search or statistical analysis (Supplementary 
Table 2, http://onlin elibr ary.wiley.com/doi/10.1002/art.41056/ 
abstract). Genetic features were collected from the literature 
based on their reported association with either RA risks or anti- 
TNF responses; those from statistical analysis were collected 
based on the correlation between the geno type dosages and 
the ΔDAS28. During the DREAM Challenge, the organizing 
team provided a leaderboard set (used to compare the per-
formance of all participants) to test the models. Both sets of 
candidate features were then tested using cross- validation 
and forward feature selection, and only features that improved 
the cross- validation performance and were on the leaderboard 
were included. Any single- nucleotide polymorphism (SNP) col-
lected from the literature that did not show substantial cor-
relation with the drug response phenotype was nevertheless 
retained if it added to the prediction performance. In the end, 
our model included 10–15 SNPs from the literature (depending 
on drug type) and ~5 SNPs from correlation testing. In addi-
tion, SNPs were tested using FaST- LMM (37), a linear mixed 
model–based program for performing both single- SNP and 
SNP- set genome- wide significance testing. However, none of 
the genetic features passed the 5 × 10−8 threshold in the FaST- 
LMM test when clinical variables were available.

All clinical and demographic features provided in the data 
sets were included in the model. Separate models were devel-
oped for different anti- TNF drugs. Each model was trained 
using data only from patients who received the correspond-
ing anti- TNF treatment. In order to predict the responses of 
patients receiving certolizumab, a general model was devel-
oped using all patients in the training data set, but without 
genetic features. Models to classify patients as responders 
or nonresponders were developed using a binary cutoff of 0 
(responders) or 1 (nonresponders) based on the predicted val-
ues, so that the proportion of nonresponders was consistent 
with that in the training set.

Evaluation. The prediction models were evaluated using 
5- round 2- fold cross- validation (38). Each round of the repeated tests 
started with randomly splitting the training data set into 2 halves. A 
model was trained on 1 half and scored on the other, and the same 
was done with both halves swapped. Five rounds of tests yielded 
a total of 10 scores, and their average was used as the estimated 
performance score of the model. Repeated cross- validation tests 
were performed on the training data set provided by the DREAM 
Challenge. Because we were investigating 3 different drugs, we car-
ried out evaluations on each of them as well as on the combined set.

The predicted ΔDAS28 was evaluated using Pearson’s cor-
relation coefficient. The performance of nonresponder identifica-
tion was measured using the correctly predicted percentage and 
area under the receiver operating characteristic curve (AUC). The 
receiver operating characteristic curve was created by plotting the 
true- positive ratio (the ratio of the number of correctly identified 
patients to the number of all subjects with Alzheimer’s disease or 
mild cognitive impairment) against false- positive ratio (the ratio of 
the number of incorrectly identified patients to the number of all 
subjects) at various threshold settings.

In order to assess the improvement of the GPR models com-
pared to other algorithms, models using different algorithms were 
assessed via bootstrap test. This test is similar to the test method 
used in the original DREAM Challenge to assess the robustness 
of the models. These tests were repeated 100 times. In each of 
these rounds of testing, the training data set was the same size as 
the original challenge training data set (n = 1,892) and was sam-
pled from the original challenge training data with replacement. 
The unsampled data were merged as the testing data. Perfor-
mance was evaluated by examining the number of bootstrap tests 
in which GPR outperformed other methods.

RESULTS

Accuracy of GPR predicting anti- TNF responses. 
Given data on patient demographics, baseline DAS28, treat-
ment, and SNP array, the GPR model predicted ΔDAS28 for 
patients and classified them as responders or nonrespond-
ers (Figure  1). It relied on a custom kernel function to weight 
a subject proportionally according to his or her similarity to the 
paired patient based on clinical and genetic data. The model 
predicted treatment outcomes by leveraging the outcomes and 
features of training patients, and it estimated patients’ ΔDAS28 
24 months after the initial disease assessment and classified 
them as responders or nonresponders. It would be expected 
that the estimations derived with our method would be close to 
the outcomes in patients with similar demographic, treatment, 
and SNP array data. We developed separate GPR models for 
different anti- TNF treatments.

There was a major difficulty in developing this method due to 
heterogeneity in the data sets. The DREAM Challenge used dif-
ferent cohorts for training and testing, requiring the  participating 

http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
https://www.synapse.org/#!Synapse:syn2368045/wiki/64596
https://www.synapse.org/#!Synapse:syn2368045/wiki/64596
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
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models to take into account the cohort effects. Post- challenge 
analysis on the 2 data sets, using the Mann- Whitney U test, 
showed that DAS28 (P < 10−23) and ΔDAS28 (P < 10−17) were 
drastically different. To address this heterogeneity, the GPR 
model was able to use data on similar patients from the train-
ing data set to guide the prediction, without explicitly specifying 
the feature distribution across cohorts. We then compared the 
results obtained with our GPR model to those obtained using 
other alternative models.

We evaluated the GPR model through repeated cross- 
validation tests as described above. The GPR model was 
compared to linear models, classification and regression 
tree models, and a support vector machine (SVM) model. 
For ΔDAS28 prediction, GPR achieved the best average cor-

relation (0.405) between predicted and observed ΔDAS28, 
followed by ridge regression, SVM, and regression tree 
models (Figure 2B). In terms of response classification, the 
GPR model was shown to be the best performer overall, cor-
rectly classifying ~78% of subjects, with an AUC of ~0.66 
(Figures 2C and D). Another well- performing model, SVM, is 
also a kernel- based method that shares properties with GPR. 
These methods can be used in clinical settings to inform the 
decision- making process. Compared to random assignment 
(50/50 chance of classification accuracy), using a GPR or 
SVM model increased the rate of accurate classification, and 
therefore of accurate treatment selection, by 28%. To eval-
uate the margin of improvement from our GPR models, we 
performed 100 bootstrap tests on the original data set and 

Figure 1. Overview of the treatment response prediction model. The model uses data on patient demographics, baseline Disease Activity 
Score in 28 joints (DAS28), treatment, and single- nucleotide polymorphism array to predict ΔDAS28 for the patient and to classify the patient 
as a responder or nonresponder. Anti- TNF = anti–tumor necrosis factor.

Figure 2. A, Overview of repeated cross- validation evaluation. All models underwent both treatment- specific and overall evaluations and were 
measured based on the 3 listed metrics. B, Pearson’s correlation coefficients between the observed change in Disease Activity Score in 28 
joints and predictions from tested regression methods. C, Accuracy (percentage correct classification) of tested responder versus nonresponder 
classification methods. D, Area under the receiver operating characteristic (ROC) curve (AUC) of tested responder versus nonresponder 
classification methods. Values are the mean ± SEM. The final model is displayed in red. GPR = Gaussian process regression; SVM = support 
vector machine; L2 = L2 regularization; RF = random forest; GB = gradient boosting regression/decision tree.
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found that GPR showed substantial improvement over all 
other methods (Supplementary Table 1, http://onlin elibr ary.
wiley.com/doi/10.1002/art.41056/ abstract). We also eval-
uated the models for individual drugs separately (Supple-
mentary Figure 1, http://onlin elibr ary.wiley.com/doi/10.1002/ 
art.41056/ abstract). The performance rankings varied, but 
the GPR model achieved the best performance overall, 
closely followed by linear and SVM models. We further opti-
mized the hyperparameter in the model (Supplementary Fig-
ure 2, http://onlin elibr ary.wiley.com/doi/10.1002/art.41056/ 
abstract). The GPR model was then submitted for the DREAM 
Challenge evaluation.

Evaluation on an independent “hidden” cohort. The 
DREAM Challenge also evaluated the GPR model using an inde-
pendent testing cohort (20). The independent data set, released 
after the competition, consisted of information on 680 patients 
from the CERTAIN study, conducted by Corrona (35). The GPR 
model achieved a Pearson’s correlation coefficient of 0.393 when 
predicting ΔDAS28 (P < 1e−6 versus null hypothesis) and an AUC 
of 0.615 when classifying anti- TNF nonresponders. This repre-
sents reduction in correlation coefficient of only ~0.01 from the 
cross- validation, indicating limited overfitting and batch effects. 
The GPR model showed more consistent prediction performance 
than both the cross- validation data set and the independent test-
ing data set.

Treatment response prediction enhanced by 
 similarity modeling. To investigate how GPR effectively mod-
eled patient heterogeneity, we inspected the properties of individual 
features. Among all the features, baseline DAS28 had the highest 
correlation with ΔDAS28 (Supplementary Table 3, http://onlin e 
libr ary.wiley.com/doi/10.1002/art.41056/ abstract). Across all of  
the samples in the training data set, regardless of specific anti- 
TNF treatment, the correlation coefficient between the baseline 
DAS28 and the ΔDAS28 was 0.370. In the CERTAIN cohort, the 
correlation coefficient was 0.351. However, the high correlation 
between baseline DAS28 and ΔDAS28 does not fully explain 
the performance of the GPR model. The difference in the per-
formance of the GPR model and that of a naive baseline DAS28 
linear regression implies some contribution of other demographic, 
clinical, and genetic features.

GPR relies on its kernel function to transform input features. 
To study how the kernel transformation incorporates features to 
help predict treatment responses, we projected the training sam-
ple in the feature spaces before and after the kernel transformation 
(Figure 3 and Supplementary Figures 3 and 4, http://onlin elibr ary.
wiley.com/doi/10.1002/art.41056/ abstract). Principal components 
analysis on the features showed major confounding factors such as 
geographic or cohort information. The major contributing factors to 
the first 2 principal components were genetic features, which cate-
gorized patients based on their cohort information instead of their 
treatment responses. Conversely, principal components analysis 

Figure 3. Feature space analysis of adalimumab users in the training data set. A, Principal components analysis (PCA) of the original feature 
space (without kernel transformation, colored according to change in Disease Activity Score in 28 joints [ΔDAS28]) shows separation by 
cohort. B, PCA of the original feature space (without kernel transformation, colored according to cohort) does not show obvious separation 
of responders and nonresponders. C, PCA of the kernel matrix (colored according to ΔDAS28) shows a clear gradient from responders to 
nonresponders. D, Feature contributions to first 2 principal components, based on the findings shown in C.

http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
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on the kernel- transformed similarity matrix showed a clear gradient 
from anti- TNF responders to nonresponders. Important features 
besides baseline DAS28, such as age, methotrexate use, and sev-
eral genetic markers, correlated well with the first 2 principal com-
ponents. The pattern demonstrated that in the kernel- transformed 
feature space, patients’ similarity correlated well with their similarity 
in ΔDAS28 rather than other confounding factors.

Clinical and genetic heterogeneity in cross- cohort 
evaluation. During the assessment of features described above, 
we noticed a large variation in features among patients receiving 
different anti- TNF treatments. Therefore, in the original submission 
to the DREAM Challenge, we developed specialized models for 
individual drugs. In the post- challenge analysis, we reassessed 
the treatment- specific approach on the testing cohort. Our orig-
inal analysis using the training data set showed that the baseline 
DAS28 correlated more strongly with ΔDAS28 among patients 
taking adalimumab and etanercept than those taking infliximab. 
However, in the CERTAIN cohort, baseline DAS28 scores were 
substantially less predictive of responses to adalimumab and 

infliximab than responses to etanercept. To accommodate the 
variation, we excluded patients receiving different drugs from 
kernel calculation for each drug- specific model. We also curated 
drug- specific genetic feature lists. We compared these models 
to two sets of genetic feature–free models, one trained on all 
patients and the other on those receiving only one correspond-
ing anti- TNF treatment. The performance of these approaches 
was similar (Supplementary Figure 5, http://onlin elibr ary.wiley.
com/doi/10.1002/art.41056/ abstract). The negligible difference 
produced by sample exclusion suggests that variation across 
different drugs may be attributed to sampling biases instead of 
treatment- specific characteristics. The conflict between the afore-
mentioned high contributions of genetic features in treatment- 
specific models and high performance of clinical information–only 
models suggested the need for further analysis on the roles of 
genetic markers in treatment response prediction.

We therefore next investigated the contribution of genetic 
markers to treatment response prediction. The genetic markers 
we investigated were chosen based on either literature review 
or statistical analysis on the training data set (Supplementary 

Figure 4. Repeated cross- validation tests of models with different feature sets using the training data set. A, D, and G, Pearson’s correlation 
coefficients between the observed change in Disease Activity Score in 28 joints (ΔDAS28) and predictions from tested regression methods for 
adalimumab, etanercept, and infliximab. B, E, and H, Classification accuracy ratio of predictions from tested responder versus nonresponder 
classification methods for adalimumab, etanercept, and infliximab. C, F, and I, Area under the receiver operating characteristic curve (AUC) of 
tested responder versus nonresponder classification methods for adalimumab, etanercept, and infliximab. Model variations were developed to 
include all features, baseline DAS28 score only, age/sex (G)/methotrexate use (AGM) only, features except for sex (G- free), and genetic features 
only. Values are the mean  SEM. The final model is displayed in red.

http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
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Table 2, http://onlin elibr ary.wiley.com/doi/10.1002/art.41056/ 
abstract). To assess these markers, we developed a baseline 
features–only model, a genetic features–only model, and an 
age/sex/methotrexate use model. These models were com-
pared to the originally submitted GPR models, which incorpo-
rated all of these features. We performed both cross- validation 
tests using the training data set (Figure 4) and an independent 
test using the CERTAIN cohort data set (Figure 5). The results 
showed that while clinical information and genetic markers 
have relatively low predictive power themselves, they can 
improve the accuracy of the GPR model when the baseline 
DAS28 feature is added, especially for ΔDAS28 prediction. 
Our analysis of genetic markers showed a strong cohort asso-
ciation (Supplementary Figure 6, http://onlin elibr ary.wiley.com/
doi/10.1002/art.41056/ abstract). Considering that the training 
cohorts were of European descent only and each cohort was 
from a specific geographic area, it is challenging to apply these 
biomarkers to other cohorts.

DISCUSSION

In this study, we demonstrated the state- of- the- art predictive 
power of the GPR model (39). The similarity modeling approach of 

GPR complements the ongoing development of precision medi-
cine efforts in RA (40). The premise of similarity modeling has been 
widely used in social network analysis and other areas (41,42). 
It is considered to be effective in investigating heterogeneous 
data sets, which are commonly seen in cross- sectional studies 
(43). Additionally, the heterogeneity of diseases often obstructs 
explicit modeling of underlying distributions of individual features, 
which can be even more problematic when the sample population 
is small (44). A GPR model circumvents this issue by matching 
patients to those with similar conditions. The model developed in 
this study can predict which subpopulations will not respond to 
certain treatments, which can help physicians tailor treatments for 
individual patients based on their conditions.

The GPR model, as an interpretable method, has practical 
advantages in clinical application. Many sophisticated machine 
learning algorithms may make accurate predictions but lack inter-
pretability for medical application (45–47). In contrast, GPR is a 
well- studied statistical model. The similarity modeling approach 
is intuitive, and its results are easy to interpret (48). In treatment 
response prediction, the kernel function allows for the identifica-
tion of known subjects with similar conditions. While the kernel 
function for both GPR and SVM models provides information 
regarding the importance of genetic and clinical features, GPR 

Figure 5. Evaluation of treatment- specific models and nonspecific models using the Comparative Effectiveness Registry to study Therapies 
for Arthritis and Inflammatory Conditions cohort data set. A, D, and G, Pearson’s correlation coefficients between the observed change in 
Disease Activity Score in 28 joints (ΔDAS28) and predictions from tested regression methods for adalimumab, etanercept, and infliximab.  
B, E, and H, Classification accuracy ratio of predictions from tested responder versus nonresponder classification methods for adalimumab, 
etanercept, and infliximab. C, F, and I, Area under the receiver operating characteristic (ROC) curve of tested responder versus nonresponder 
classification methods for adalimumab, etanercept, and infliximab.

http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41056/abstract
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also bases its prediction on the most similar individuals in the 
training data set. This allows physicians to inspect the conditions 
of known samples that have the highest weights in the GPR pre-
diction. The additive design of our custom kernel function allows 
new features to be easily incorporated with reduced parameter 
tuning. This model can also estimate confidence intervals for its 
predictions, which can be useful for physicians.

However, in comparison to many linear methods that come 
with feature penalty, which allows for built- in feature selection, GPR 
does not have this benefit. As there are millions of genetic features, 
many genes are correlated with clinical outcomes by chance. Fur-
thermore, because of the model differences, significance in linear 
model tests does not translate directly to accuracy improvement 
in a GPR model. To address these issues together, we chose a 
preselected set of genetic features in our model. The selection 
was based on cross- validation, with clinical features present in the  
training process. The genes chosen through this process were often 
by themselves not informative enough to predict the outcomes 
but may improve the performance of the clinical characteristics– 
only models. Recent advances in deep learning may aid in the 
future development of methodologies that directly connect 
genome sequences to phenotypes and treatment responses in 
RA by implementing one- dimensional convolutional neural net-
works that can be used to directly extract information from DNA 
sequences. With the increase in the amount of sequencing data, 
we foresee growth in this area in the near future.

Clinical and genetic heterogeneity may pose a major chal-
lenge for predicting anti- TNF responses. On one hand, clinical and 
demographic markers worked well across different cohorts. The 
cross- validation showed that although clinical markers themselves 
had predictive power, they also improved accuracy when added 
to the baseline DAS28–only model, regardless of cohort. Previous 
studies also identified several blood biomarkers that were informa-
tive about treatment responses and were validated across differ-
ent cohorts (49,50). Genetic features used in our models have 
been reported to be immune- related, including insulin secretion 
(PDZD2), immunoresponse (CD84), and eicosanoids synthesis 
(PLA2G4A). Previous studies have shown ethnic differences in 
genetic markers for anti- TNF responses in the treatment of both 
RA (15,51) and other related autoimmune diseases (52,53). Our 
principal components analysis on the training data set showed 
that the genetic markers were associated with cohort information. 
We showed that genetic markers could not improve the prediction 
accuracy within the CERTAIN cohort data set as they did within 
the training data set. While both the training and the testing data in 
our study involved only patients of European descent, the variation 
across different geographic areas still obstructed the modeling 
of genetic markers. Accurate modeling of treatment responses 
would require a larger panel of genetic features covering multiple 
populations. We believe that extending the clinical feature panel to 
include blood markers or other clinical assays would be beneficial 
for cross- sectional predictions. On the other hand, genetic mark-

ers were found to be specific to certain populations in the context 
of sufficient genetic subtype modeling.

Compared to traditional trial- and- error methods, our model 
can help up to 40% of European- descent anti- TNF nonre-
sponders avoid ineffective treatments. The model’s performance 
is comparable to that of some published models that used 
additional biomarker data, whose AUCs ranged from 55% to 
~74% using various testing sets (50). We would caution future 
users of this model that it was built upon data from European 
descendants only. Considering the heterogeneity of the anti- TNF 
responses among RA patients, we do not expect the model to 
perform similarly in other populations; the use of this model in 
other populations would require new patient data and separate 
feature selection.

In conclusion, we developed a GPR model to predict 
anti- TNF responses among RA patients and to identify nonre-
sponders. The model interpretation shows promise in guiding 
treatment selection. While we showed that the clinical features 
described here are still the features most predictive of treatment 
response, the prediction model allows researchers to assess the 
contribution of genetic markers using existing clinical information 
across cohorts. In the future, various clinical markers may poten-
tially be used for more accurate identification of nonresponder 
subpopulations that carry predictive biochemical traits (50,54). 
However, since this model was developed using data on Euro-
pean descendants only, transferring prediction models to other 
populations may be difficult (55). Further studies involving larger 
and more diverse populations will result in the development of 
more robust models to predict ΔDAS28.
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