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Abstract

Objective: Accurate prediction of the responses of rheumatoid arthritis patients can provide 

valuable information for effective drug selection. An important second-line treatment after 

methotrexate, the classical first-line treatment, is anti-TNF drugs. However, patient heterogeneity 

hinders identification of predictive biomarkers and accurate modeling of anti-TNF drug 

responses.

Methods: We present the best-performing model in predicting anti-TNF response in the 

DREAM Rheumatoid Arthritis Responder Challenge. Given demographic, baseline disease 

assessment, treatment, and SNP array data of a patient, our Gaussian process regression model 

predicts changes in disease activity scores for the patient and classifies the patient into the 

responder or nonresponder group. The model was developed and cross-validated on 1892 

patients. It was evaluated on an independent dataset of 680 patients. We examined the 

effectiveness of the similarity modeling and the contribution of individual features.
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Results: In the cross-validation tests, our method predicts changes in disease activity scores 

with a correlation coefficient of 0.406. It correctly classified responses of 78% of subjects. In the 

independent test, the method achieved a Pearson correlation coefficient of 0.393 in predicting 

ΔDAS, i.e., delta disease activity score. The method won first place in the DREAM Challenge. 

Gaussian process regression effectively re-mapped the feature space and identified 

subpopulations that do not respond well to anti-TNF treatments. Genetic SNP biomarkers show 

small additional contribution in the prediction on top of the clinical models.

Conclusions: The model shows promise in guiding drug selections in clinical practice based 

on primarily clinical profiles with additional genetic information.

Keywords

Rheumatoid arthritis, anti-TNF drugs, Gaussian process regression, drug responses, patient 

heterogeneity

Background

Rheumatoid arthritis (RA) patients show great heterogeneity in their responses to treatments 

[1], and accurate prediction of their responses would provide valuable information for optimal 

drug selection [2]. In current practice, patients who respond inadequately to conventional 

therapies usually receive anti-tumor-necrosis-factor (anti-TNF) drugs [3]. These expensive drugs 

are mainly chosen on a “trial-and-error” basis [4], and about 30% of the patients respond poorly 

[5]. These nonresponders suffer from drug expenses [6], non-improving disease conditions [6,7], 

side effects [8,9], and infection risks [10]. In order to provide effective treatments for these 

patients, physicians need to predict the patients’ responses to different anti-TNF drugs in 

advance.

However, patient heterogeneity hinders identification of predictive biomarkers and accurate 

modeling of anti-TNF drug responses. Early studies reported that demographic and clinical 

markers such as gender and baseline disease activity are related to drug responses [11,12], but 

these markers are not predictive enough to identify nonresponders by themselves [13]. Recent 

genome-wide association studies found multiple genetic markers that are associated with poor 
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drug response, and these variants were used to facilitate the identification of nonresponders 

[5,14–16]. Yet these variant markers are often confounded with cohort or ethnic information 

[17]. RA patients exhibits great genotypic and phenotypic heterogeneity, and markers found in 

one ethnic population or cohort may not be applicable to others [18]. Thus, effective modeling of 

patient heterogeneity is the key to accurate drug response prediction.

Here we present a Gaussian process regression (GPR) model for predicting anti-TNF drug 

responses, the first-place winner in the Dialogue on Reverse Engineering Assessment and 

Methods (DREAM): Rheumatoid Arthritis Responder Challenge [19,20]. The model combines 

demographic, clinical, and genetic markers, predicts patients’ changes in disease activity scores 

24 months after their baseline assessment, and identifies nonresponders to anti-TNF treatments. 

Specifically, the pipeline predicts the changes in DAS of patients who have taken 12 months of 

anti-TNF treatments, and also classifies the patients’ responses based on the EULAR response 

metric. Based on the model, we examined the transformation that the GPR kernel applied to the 

patient data as well as the distribution of the patients in the transformed space. Through 

independent testing dataset, we aimed at evaluate the potential of the GPR model in improving 

anti-TNF drug selection and the effect of genetic markers across multiple cohorts. Based on the 

model, we also investigated the effect of genetic markers across multiple cohorts. 

Methods

Data acquisition

The training and testing datasets were provided by the DREAM Challenge organizers (Table 

1). The training data consist of 2706 individuals, 1892 of which were chosen randomly and 

released to the participants of the competition before the final evaluation. The remaining samples 

were withheld for real-time submission evaluation, so that participants can estimate their models 

throughout the competition. None of these data were included in the final evaluation. The 

samples in the training dataset consists of individuals of European ancestry from 13 cohorts: 

Autoimmune Biomarkers Collaborative Network (ABCoN) from the U.S. [21]; the Genetics 

Network Rheumatology Amsterdam (GENRA); the Dutch Behandelstrategieen voor 

Rheumatoide Arthritis (BeSt) [22]; the U.K. Biological in Rheumatoid arthritis Genetics and 
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Genomics Study Syndicate (BRAGGSS) [23,24]; the U.S. Brigham Rheumatoid Arthritis 

Sequential Study (BRASS) [25]; the Swedish Epidemiological Investigation of Rheumatoid 

Arthritis (EIRA) [26]; the Immunex Early Rheumatoid Arthritis study (eRA) [27]; the Swedish 

Karolinska Institutet study (KI); the Netherlands collection from Leiden University Medical 

Center (LUMC); the U.S. Treatment of Early Aggressive RA (TEAR); the Dutch Rheumatoid 

Arthritis Monitoring registry (DREAM) in the Netherlands; the ApotheekZorg (AZ) database 

[28,29]; and the French Research in Active Rheumatoid Arthritis (ReAct) [30]. All subjects were 

either diagnosed by a board-certified rheumatologist or met 1987 American College of 

Rheumatology criteria (Arnett, et al. 1988). All patients had a baseline DAS > 3.2.

The testing data consist of 680 subjects from the Consortium of Rheumatology Researchers of 

North America (CORRONA) [31], who participated the Comparative Effectiveness Registry to 

study Therapies for Arthritis and Inflammatory Conditions (CERTAIN) study [32]. The study is 

within the CORRONA registry and involves adult RA patients diagnosed by certified 

rheumatologists, having at least moderate disease activity defined by a clinical disease activity 

index (CDAI) score >10 who are starting or switching biologic agents.

For all subjects in both training and testing datasets, gender, age, methotrexate, and a baseline 

disease activity score (DAS28) were collected and provided. Post-treatment disease activity 

scores of all subjects in the training datasets are available for all participants, whereas those of 

testing subjects are withheld by the DREAM Challenge organizers until the end of the challenge. 

For each subject, a panel of genotype imputation is provided. See 

https://www.synapse.org/#!Synapse:syn1734172/wiki/62201 for details.

Drug response prediction

The proposed model in this study adopted GPR to predict ΔDAS. GPR is designed to predict 

the unknown dependent variable for any given independent variables based on known but noisy 

observations of the dependent and independent variables. Gaussian process regression does not 

match its target function to some specific models (e.g. linear, quadratic or cubic models). In this 

study, the GPR model took the input ΔDAS of known subjects as noisy observations and predict 

the drug responses of incoming patients based on clinical and genetic features. See Additional 
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File S1 for its full formulation. The final model is available at 

https://www.synapse.org/#!Synapse:syn2368045/wiki/64596 .

In details, the kernel function of the GPR model accepts the difference in demographic, 

treatment, and genetic features between two patients as input variables. For each input variable, 

the kernel function performs an squared exponential transformation and takes the summation of 

the transformed values. The distance of two patients is then jointly determined by the nonlinear 

transformed difference across all features.

The genetic features included in the model were chosen via literature mining or statistical 

analysis (Table S2). Genetic features from literature were collected based on their reported 

association with either RA risks or anti-TNF drug responses; those from statistical analysis were 

collected based on the correlation between the genotype dosages and the ΔDAS. During the 

DREAM challenge, the organizing team provided a leaderboard set to test the models. Both sets 

of candidate features were then tested through cross-validation and forward feature selection, and 

only features that improved the cross-validation performance and on the leaderboard were 

included. For a SNP collected in literature, even though it does not show substantial correlation 

to the drug response phenotype, we retrain it if it adds on top of the prediction performance. In 

the end, the model included from 10 to 15 SNPs (depends on the drug types) from literature and 

about 5 SNPs from the correlation test. In addition, they were also tested using Fast-LMM [33], a 

Linear Mixed Model-based program for performing both single-SNP and SNP-set genome-wide 

significance test. Unfortunately, none of the genetic features passed the 5x10-8 threshold in the 

Fast-LMM test when clinical variables are available.

All clinical and demographic features provided in the datasets were included in the model. 

Separate models were developed for different anti-TNF drugs. Each model was trained with only 

patients who take the corresponding anti-TNF drug. For predicting responses of Certolizumab 

users, a general model was developed using all patients in the training dataset, but without 

genetic features.

Models that classify patients into responders or nonresponders were developed by giving a 

binary cutoff for 0 (responders) or 1 (nonresponders) based on the predicted values, so that the 

proportion of the non responders is consistent with the training set.
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Evaluation

The prediction models were evaluated through 5-round 2-fold cross-validation [34]. Each 

round of the repeated tests started with randomly splitting the training dataset into two halves. A 

model was trained on one half and scored on the other, and again with both halves swapped. Five 

rounds of tests gave a total of 10 scores, and their average becomes the estimated performance of 

the model. The repeated cross-validation tests were performed on the training dataset provided 

by the DREAM Rheumatoid Arthritis Responder Challenge. Because we had three different 

drugs, we carried out evaluation on each of the drugs, as well as the entire set.

The predicted ΔDASes were evaluated in terms of Pearson correlation coefficient. The 

performance of nonresponder identification is measured in terms of correctly predicted 

percentage and area under the receiver operating characteristic curve (AUC). The receiver 

operating characteristic curve is created by plotting the true positive ratio (the ratio of correctly 

identified patients out of all AD/MCI subjects) against false positive ratio (the ratio of incorrectly 

predicted “patients” out of all normal subjects) at various threshold settings.

In order to assess the improvement of the GPR models over other algorithms, models of 

different algorithms were tested through bootstrap tests. The tests were repeated for 100 times. In 

each round, the training data were of the same size as the original challenge training dataset 

(N=1892) and sampled from the original challenge training data with replacement. The 

unsampled data were merged as the testing data. The performance was evaluated as how many 

rounds of bootstrap tests that GPR outperformed other methods. The bootstrap test is similar to 

the test method used in the original DREAM Challenge to assess the robustness of the models.

Results

Gaussian process regression accurately predicts anti-TNF drug responses

Given demographic, baseline disease assessment, treatment, and SNP array data of a patient, 

our GPR model predicts ΔDAS for the patient and classifies the patient into the responder or 

nonresponder group (Figure 1). It relies on a custom kernel function to weight collected 

individuals proportionally to their similarity to the new patient in terms of their clinical and 
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genetic data. The model predicts treatment outcomes by leveraging the outcomes and features of 

training patients. The model estimates ΔDAS of the patient 24 months after his or her initial 

disease assessment and classifies the patient as a responder or a nonresponder. By intuition, the 

estimation of our method would be close to the outcomes of patients with similar demographic, 

treatment, and SNP array data. We developed separate GPR models for different anti-TNF 

treatments.

A major difficulty in this challenge is to deal with the heterogeneity in the datasets. The 

challenge took different cohorts for training and testing, requiring the participating models to 

deal with the cohort effects. Post-challenge analysis on the two datasets showed that the on DAS 

(Mann-Whitney U test p < 10-23) and delta DAS (Mann-Whitney U test p < 10-17) are drastically 

different. We chose GPR to deal with the heterogeneity. GPR takes similar patients from the 

training data to guide the prediction without explicitly specifying the feature distribution across 

cohorts. We then moved on to compare our GPR model to other alternative models.

We evaluated the GPR models through repeated cross-validation tests as described in 

Methods. GPR was compared against linear models, classification and regression tree models, 

and a support vector machine (SVM) model. For ΔDAS prediction, GPR achieved the best 

average correlation (0.406) between predicted and observed ΔDASes, followed by ridge 

regression, SVM, and regression tree models (Figure 2B). For response classification, GPR, the 

overall best performer, correctly classified ~78% of subjects, with an area under receiver 

operating characteristic curve (AUC) of ~0.66 (Figure 2C&D). Interestingly, another well-

performing model, SVM, is also a kernel-based method, which shares similar properties to GPR. 

These methods can be used in clinical settings to inform the decision-making process. Compared 

to random assignment (50-50 chance to be correct), we will be able to correctly make 28% more 

correct treatment to patients. To evaluate the margin of the improvement from our GPR models, 

we performed 100-time bootstrap tests on the original dataset and found GPR showed substantial 

improvement over all other methods (Table S1). We also evaluated the models for individual 

drugs separately (Figure S1). The performance rankings varied, but GPR achieved an overall 

best performance, closely followed by linear and SVM models. We further optimized the 

hyperparameter in the model (Figure S2). The GPR model was then submitted for the DREAM 

Challenge evaluation.
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Evaluation on an independent hidden cohort:

The DREAM Rheumatoid Arthritis Responder Challenge also evaluated the GPR model on an 

independent testing cohort [20]. The independent dataset, released after the competition, consists 

of 680 patients from the Comparative Effectiveness Registry to study Therapies for Arthritis and 

Inflammatory Conditions (CERTAIN) study, conducted by the Consortium of Rheumatology 

Researchers of North America (CORRONA) [32]. The GPR model achieved a Pearson 

correlation coefficient of 0.393 in predicting ΔDAS (p < 1e-6 compared to random hypothesis) 

and an AUC of 0.615 in classifying anti-TNF nonresponders. This represents only a ~0.01 drop 

in correlation from the cross-validation, indicating limited over-fitting and batch effects. in The 

GPR model showed consistent prediction performance over both our cross-validation dataset and 

the independent testing dataset.

Similarity modeling enhances treatment response prediction

To investigate how GPR effectively modeled patient heterogeneity, we inspected the 

properties of individual features. Among all the features, baseline disease activity scores (DAS) 

have the highest correlation coefficient against ΔDAS (Table S3). Across all the samples in the 

training dataset regardless of their anti-TNF drugs, their baseline DAS have a correlation 

coefficient of 0.370 against their ΔDAS. In the CORRONA CERTAIN cohort, the correlation 

coefficient is 0.351. Yet the high correlation of baseline DAS against ΔDAS alone does not fully 

explain the performance of the GPR model. The difference between the performance of the GPR 

model and that of a naive baseline DAS linear regression implies the contribution of other 

demographic, clinical, and genetic features.

GPR relies on its kernel function to transform input features. To study how the kernel 

transformation incorporates features to help predict drug responses, we projected the training 

sample in the feature spaces before and after the kernel transformation (Figure 3 for 

adalimumab, Figure S3 and S4 respectively for etanercept and infliximab). Principal component 

analysis on the features reports major confounding factors such as geographic or cohort 

information. The major contributing features to the first two principal components are genetic 

features, which separate patients based on their cohort information instead of their drug 
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responses. Conversely, principal component analysis on the kernel-transformed similarity matrix 

shows a clear gradient from anti-TNF drug responders to non-responders. Important features 

besides baseline DAS, such as age, methotrexate usage, and several genetic markers, correlated 

well with the first two principal components. The pattern demonstrates that in the kernel-

transformed feature space, patient similarity correlates well to their similarity in disease activity 

changes rather than other confounding factors.

Cross-cohort evaluation shows clinical and genetic heterogeneity

During the inspection of above features, we noticed large variation in features across users of 

different anti-TNF drugs. Therefore, we developed specialized models for individual drugs in the 

original submission to the challenge. In the post-challenge analysis, we re-assessed the drug-

specific approach on the testing cohort. Our original analysis in the training dataset showed that 

the baseline DAS more strongly correlated with  ΔDAS among adalimumab and etanercept 

patients than infliximab ones; whereas in the CORRONA CERTAIN cohort, baseline DAS are 

substantially less predictive of responses to adalimumab and infliximab than those to etanercept. 

To accommodate with the variation, we excluded users of different drugs from kernel calculation 

for each drug-specific model. We also curated drug-specific genetic feature lists. We compared 

these models with two sets of genetic-free models, one trained on all patients, and the other on 

users of only corresponding anti-TNF drug. The performance of these approaches is similar 

(Figure S5). The negligible difference of sample exclusion suggests the variation across 

different drugs may be attributed to sampling biases instead of drug-specific characteristics. The 

conflict between aforementioned high contributions of genetic features in drug-specific models 

and high performance of clinical-only models suggests further analysis on the roles of genetic 

markers in the prediction.

We then investigated the contribution of genetic markers to drug response predictions. The 

genetic markers we curated were chosen based on either literature review or statistical analysis 

on the training dataset (Table S2). To assess these markers, we developed a baseline-only model, 

a genetic-only model, and an age+gender+methotrexate model. These models were compared 

against the original submission GPR models, which used all these features. We performed both 
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cross-validation tests over the training dataset (Figure 4) and an independent test over the 

CORRONA dataset (Figure 5). The result shows that while clinical information and genetic 

markers have relatively low predictive power themselves, they can improve the accuracy of the 

GPR model on top of the baseline DAS feature, especially for ΔDAS prediction. Our analysis of 

genetic markers above has showed the strong cohort association (Figure S6). Considering that 

the training cohorts are of European descents only and associated with different geographic 

areas, it is challenging to apply these biomarkers to other cohorts.

Discussions

Here we demonstrated the state-of-the-art predictive power of the GPR model [35]. The 

similarity modeling approach of GPR complements the ongoing development of precision 

medicine efforts in RA [36]. The idea of similarity modeling has been widely used in social 

network analysis and other areas [37,38]. It is considered to be effective in dealing with 

heterogeneous datasets, which is commonly seen in cross-sectional studies [39]. Also, the 

heterogeneity of diseases often obstruct explicit modeling of underlying distributions of 

individual features, which can be even more problematic with a small population [40]. GPR 

circumvents the issue by matching patients to those with similar conditions. Specifically in this 

study, our GPR model can predict subpopulations that do not respond to the treatment.This can 

help physicians tailor treatments for individual patients based on their conditions.

The GPR model, as an interpretable method, has practical advantages in clinical application. 

Many sophisticated machine learning algorithms may make accurate predictions but lack 

interpretability for medical application [41]. Uninterpretable models are undesirable in many 

medical applications [42,43]. On the contrary, GPR is a well-studied statistical model. The 

similarity modeling approach is intuitive, and its results are easy to interpret [44]. Specifically 

for drug response prediction, the kernel function allows identification of known subjects with 

similar conditions. While the kernel function for both GPR and SVM provides information 

regarding the importance of the genetic and clinical features, GPR also bases its prediction on the 

most similar individuals in the training dataset. This allows physicians to inspect the conditions 
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of known samples that have the highest weights in the GPR prediction. The additive design of 

our custom kernel function allows easy incorporation of new features with reduced parameter 

tuning. The model can also estimate confidence intervals for its predictions, allowing physicians 

to judge how confident the predictions are.

However, in comparison to many linear methods that come with feature penalty that allows 

built-in feature selection, GPR does not have this benefit. Given millions of genetic features, 

many genes that are by chance correlated with the clinical outcomes. Furthermore, because of the 

model difference, significance in linear model tests does not translate directly to accuracy 

improvement in a GPR model. To address these issues together, we chose a pre-selected set of 

genetic features in our model. The selection is based on cross-validation, with clinical features 

present in the training process. These genes chosen through this process often by themselves not 

informative enough to predict the outcomes, but can improve the performance of the clinical 

only models. Recent advances in deep learning may allow future development of methodologies 

that directly connect genome sequences to phenotypes and drug responses of RA, by using one-

dimensional convolutional neural network which can be used to extract information from DNA 

sequences directly. With the  increase in the amount of sequencing data, we foresee the growth 

of this area in the near future. 

Clinical and genetic heterogeneity may pose a major challenge for predicting anti-TNF drug 

responses. On one hand, clinical and demographic markers worked well across different cohorts. 

The cross-validation showed that although clinical markers themselves possess predictive power, 

they improved accuracy on top of the baseline-DAS-only model regardless of cohorts. Previous 

studies also found several blood biomarkers that are informative of drug responses and are 

validated across different cohorts [45,46]. Genetic features used in our models have been 

reported to be immune-related, including insulin secretion (PDZD2), immunoresponse (CD84), 

eicosanoids synthesis (PLA2G4A). Previous studies reported ethnic differences in genetic 

markers for anti-TNF drug responses in treatment of both rheumatoid arthritis [15,47] and other 

related autoimmune diseases [48,49]. Our principal component analysis over the training dataset 

showed that the genetic markers are associated with cohort information. We showed that genetic 

markers could not improve the prediction accuracy on the CORRONA dataset as they did on the 

training dataset. While both training and testing data in our study involve only European-descent 
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subjects, the variation across different geographic areas still obstruct modeling genetic markers. 

Accurate modeling of drug responses would require a larger panel of  genetic features that covers 

multiple populations. We believe that extending the clinical feature panel to include blood 

markers or other clinical assays would be beneficial for cross-sectional predictions. On the other 

hand, genetic markers were found specific to populations in the context of sufficient genetic 

subtype modeling.

Compared to traditional trial-and-error practice, our model can help up to 40% of European-

descent anti-TNF non-responders avoid ineffective treatments. The model performance is even 

comparable to some published models utilizing additional biomarker data, whose AUROC 

ranges from 55%~74% over various testing sets [46]. We caution the model users that the model 

is built upon European descendants. Considering the heterogeneity of the anti-TNF responses 

among rheumatoid arthritis patients, we do not expect the model to achieve a similar 

performance on other populations. Extension of the model over other populations requires new 

patient data and separate feature selection.

Conclusions

In this study, we developed a GPR model for predicting anti-TNF drug responses of 

rheumatoid arthritis patients and identifying nonresponders. The model interpretation shows 

promise in guiding drug selection. While we showed that the clinical features here are still the 

most predictive features, the prediction model allows researchers to assess the contribution of 

genetic markers over existing clinical information across cohorts. For the future work, various 

clinical markers may be potentially used for more accurate identification of non-responding 

subpopulations that carry predictive biochemical traits [46,50]. We caution that the model was 

developed for European descendants only. Transferring prediction models to other populations 

may face difficulties [51]. We envision future development involving more diverse, and bigger 

population will result in more robust models for predicting deltaDAS.A
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Figure 1. An overview of the drug response prediction model. The model accepts demographic, 

baseline disease assessment, treatment, and SNP array data of a patient, predicts changes in 

disease activity scores (ΔDAS) for the patient, and classifies the patient into the responder or 

non-responder group.

Figure 2. (A) An overview of the repeated cross-validation evaluation. All models went through 

both drug-specific and overall evaluations and were measured based on the listed three metrics. 

(B) Pearson correlation coefficients between the observed ΔDAS and predictions from tested 

regression methods. (C) Accuracy (the ratio of correct classification) from tested responder-vs-

nonresponder classification methods. (D) Areas under receiver operating characteristic curve 

(AUC) of tested responder-vs-nonresponder classification methods. (The average scores are 

labeled above the X-axis. The final model is colored in red. GPR = Gaussian process regression, 

SVM = support vector machine, GB = gradient boosting regression/decision tree, RF = random 

forest

Figure 3. Feature space analysis of adalimumab users in the training dataset. (A) Principal 

component analysis of the original feature space (without kernel transformation, colored in 

ΔDAS) shows separation of several cohorts. (B) Principal component analysis of the original 

feature space (without kernel transformation, colored in cohort labels) does not show obvious 

separation of responders and nonresponders. (C) Principal component analysis of the kernel 

matrix (colored in ΔDAS) shows a clear gradient from responders to nonresponders. (D) Feature 

contributions to first two principal component in Subfigure C.

Figure 4. Repeated cross-validation tests of models with different feature sets on the training 

dataset. The average scores are labeled above the X-axis. The final model is colored in red. (A, 

D, G) Pearson correlation coefficients between the observed ΔDAS and predictions from tested 

regression methods for adalimumab, etanercept, and infliximab. (B, E, H) Correct classification 

ratio of predictions from tested responder-vs-nonresponder classification methods for 

adalimumab, etanercept, and infliximab. (C, F, I) Areas under receiver operating characteristic 

curve (AUC) of tested responder-vs-nonresponder classification methods for adalimumab, 

etanercept, and infliximab. (AGM = Age + Gender + Methotrexate, G-free: Model without 

Gender, Baseline: model using baseline DAS only)
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Figure 5. Evaluation of drug-specific models and non-specific models on the CORRONA 

dataset. The average scores are labeled above the X-axis. The final model is colored in red. (A, 

D, G) Pearson correlation coefficients between the observed ΔDAS and predictions from tested 

regression methods for adalimumab, etanercept, and infliximab. (B, E, H) Correct classification 

ratio of predictions from tested responder-vs-nonresponder classification methods for 

adalimumab, etanercept, and infliximab. (C, F, I) Areas under receiver operating characteristic 

curve (AUC) of tested responder-vs-nonresponder classification methods for adalimumab, 

etanercept, and infliximab.

Table 1. A summary of training and testing datasets

Training dataset (N=1892) CORRONA dataset (N=680)

Demographic data

Mean age (years) 54.9 55.6

Female % 75.1 77.9

Treatment information

Methotrexate users 1332 (70.4%) 441 (64.9%)

Adalimumab 757 (40.0%) 210 (30.9%)

Etanercept 520 (27.5%) 179 (26.3%)

Infliximab 609 (32.2%) 177 (26.0%)

Certolizumab 0 (0%) 114 (16.8%)

Average baseline DAS 5.87 4.73
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Response

Nonresponders 436 (23%) 238 (35%)

Average ΔDAS 2.15 1.17
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