
A Refactoring Documentation Bot
Soumaya Rebai, Oussama Ben Sghaier, Vahid Alizadeh, Marouane Kessentini and Meriem Chater

CIS Department
University of Michigan

Dearborn, Michigan, USA
E-mail: firstname@umich.edu

Abstract—The documentation of code changes is significantly
important but developers ignore it, most of the time, due to
the pressure of the deadlines. While developers may document
the most important features modification or bugs fixing, recent
empirical studies show that the documentation of quality im-
provements and/or refactoring is often omitted or not accurately
described. However, the automated or semi-automated documen-
tation of refactorings has not been yet explored despite the
extensive work on the remaining steps of refactoring including
the detection, prioritization and recommendation. In this paper,
we propose a semi-automated refactoring documentation bot
that helps developers to interactively check and validate the
documentation of the refactorings and/or quality improvements
at the file level for each opened pull-request before being reviewed
or merged to the master. The bot starts by checking the pull-
request if there are significant quality changes and refactorings at
the file level and whether they are documented by the developer.
Then, it checks the validity of the developers’ description of the
refactorings, if any. Based on that analysis, the documentation
bot will recommend a message to document the refactorings,
their locations and the quality improvement for that pull-request
when missing information is found. Then, the developer can
modify his pull request description by interacting with the bot to
accept/modify/reject part of the proposed documentation. Since
refactoring do not happen in isolation most of the time, the bot
is documenting the impact of a sequence of refactorings, in a
pull-request, on quality and not each refactoring in isolation.
We conducted a human survey with 14 active developers to
manually evaluate the relevance and the correctness of our tool
on different pull requests of 5 open source projects and one
industrial system. The results show that the participants found
that our bot facilitates the documentation of their quality-related
changes and refactorings.

Index Terms—Intelligent bot, refactoring, documentation.

I. INTRODUCTION

Documentation is a recommended practice in software de-
velopment and maintenance to help developers understand the
code quickly and improve their productivity [1]. According
to a study [2], the lack of up-to-date documentation is one
of the biggest challenges in software maintenance. In fact,
developers often ignore the documentation of their changes
due to the time pressure to meet deadlines. The situation is
even worse with the documentation of quality improvements
since developers only/mainly focus on documenting functional
changes and bugs fixing [3]–[5].

Refactoring [6] is used to improve the quality of code
while preserving its behavior. Tom Mens et al. [7] defined
the different steps of refactoring including the detection, prior-
itization, recommendation, testing and documentation. While

existing refactoring studies extensively addressed the first four
steps [8]–[10], the last documentation step received the least
attention from the refactoring community and there are no
tools support currently for refactorings documentation.

Github is a well-known collaborative platform used by the
development community to manage their software projects
as part of a continuous integration process. In this context,
programmers need documentation such as commit messages
and pull requests descriptions to understand the rationales
behind changes without digging into the low-level details
[11]–[14]. As part of our preliminary work, we found that
an average of only 12% of commit messages described
applied refactorings for JHot-Draw, Xerces, and three eBay
projects while 46% of these systems’ commits are mainly
about refactorings as detected using REFACTORINGMINER
[8]. Furthermore, developers often do not explain why they do
the refactorings. Software engineering researchers often use
antipatterns as the causes for the refactorings, but they are
not accurately documenting the quality improvements of their
code in terms of quality metrics. Another study highlighted
that several refactoring opportunities or applied refactorings
documented in commit messages could not be captured using
traditional quality metrics or antipatterns [15]. One of the
reasons is that many developers lack the background of exact
(formal) definitions of antipatterns and quality metrics so they
may use them in different ways than the academic settings.
Thus, a tool support is not only needed for the generation
of refactoring documentation but also checking and fixing the
documentation specified by developers to describe their quality
improvements.

To the best of our knowledge, the automated documentation
of refactorings has not been explored yet. Therefore, we
need semi-automated tool support for checking/validating and
recommending refactorings documentation. This documenta-
tion system will enhance the understandability of introduced
quality improvements and the rationale behind that, and will
motivate developers to conduct refactorings. A recent study
of Mcburney et al. [1] shows that documentation needs to be
prioritized for refactoring.

In this paper, we propose a semi-automated bot, imple-
mented as a Git app, to generate documentation for two
different levels of refactorings. The documentation for code-
level refactorings and architectural refactorings will be pro-
vided in one message that, if accepted, will be submitted as a
description for the pull-request. When the developer submits

a pull-request, our documentation bot will generate a natural
language explanation for each introduced quality changes and
refactoring using a rules-based approach, linking the quality
improvements to the applied refactorings. Even though we are
able to automatically generate explanations for refactorings
and quality changes, the developer’s intervention is required
since they may not find all the generated messages important to
integrate into the pull-request description or they may disagree
with some of them. In other words, a developer in the loop to
evaluate the documentation is necessary to make sure that what
we described is actually what he/she intended to change in that
specific pull request. In our interactive documentation frame-
work, the users can accept, reject or modify the suggested
message. An accepted documentation will be automatically
submitted as a description to the pull-request. Since refactoring
do not happen in isolation most of the time, the bot is
documenting the impact of a sequence of refactorings, in a
pull-request, on quality and not each refactoring in isolation.
Programmers frequently floss refactor, that is, they interleave
refactoring with other types of programming activity. Thus,
the documented refactorings and quality changes are actually
appended to other descriptions related to functional changes.

We conducted a human survey with 14 active developers
to manually evaluate the relevance and the correctness of our
tool on different pull requests of 5 open source projects. The
results show that the participants found that our bot facilitates
the documentation of their quality-related changes and refac-
torings. A tool demo of our refactoring documentation bot can
be found in [16].

The primary contributions of this paper can be summarized
as follows:

1) The paper introduces, for the first time, a documentation
bot for refactorings implemented as a Git app that can
be easily integrated to any GitHub repository. The bot
generates in natural language a pull-request description
documenting the applied refactorings, their rationale and
explanations on their impact on quality. It can also detect
inconsistencies in the commit messages or pull-request
description already documented by the developer then
suggests how to fix them.

2) The developer can interact with the bot to ac-
cept/modify/reject the recommended refactorings docu-
mentation after checking the explanation provided by the
bot in a Web app linked to GitHub.

3) The paper reports the results of an empirical study on the
implementation of our approach. The obtained manual
evaluation results by practitioners provide evidence to
support the claim that our bot generates relevant and
consistent documentation for refactorings.

The remainder of this paper is structured as follows. Section
2 presents relevant background details. Section 3 describes our
approach while the results obtained from our experiments are
presented and discussed in Section 4. Threats to validity are
discussed in Section 5. Section 6 provides an account of related
work. Finally, in Section 7, we summarize our conclusions and

TABLE I: Quality attributes and their computation equations.

Quality attributes Definition
Computation

Reusability A design with low coupling and high cohesion is
easily reused by other designs.
0.25 ∗ Coupling + 0.25 ∗ Cohesion + 0.5 ∗
Messaging + 0.5 ∗DesignSize

Flexibility The degree of allowance of changes in the design.
0.25∗Encapsulation−0.25∗Coupling+0.5∗
Composition+ 0.5 ∗ Polymorphism

Understandability The degree of understanding and the easiness of
learning the design implementation details.
0.33 ∗Abstraction+ 0.33 ∗Encapsulation−
0.33 ∗ Coupling + 0.33 ∗ Cohesion − 0.33 ∗
Polymorphism− 0.33 ∗Complexity− 0.33 ∗
DesignSize

Functionality Classes with given functions that are publicly
stated in interfaces to be used by others.
0.12 ∗ Cohesion + 0.22 ∗ Polymorphism +
0.22∗Messaging+0.22∗DesignSize+0.22∗
Hierarchies

Extendibility Measurement of design’s allowance to incorporate
new functional requirements.
0.5 ∗ Abstraction − 0.5 ∗ Coupling + 0.5 ∗
Inheritance+ 0.5 ∗ Polymorphism

Effectiveness Design efficiency in fulfilling the required func-
tionality.
0.2 ∗ Abstraction + 0.2 ∗ Encapsulation +
0.2 ∗Composition+0.2 ∗ Inheritance+0.2 ∗
Polymorphism

present some ideas for future work.

II. PROBLEM STATEMENT

A. Background

Quality attributes. The QMOOD model is one of the
most widespread quality models to estimate the effect of code
changes on software quality. This model is defined as a set
of quality metrics, using the ISO 9126 specification [17]. As
described in table I, each of the used quality metrics is defined
using a combination of low-level metrics. One advantage of
the QMOOD model that makes it widely used in existing
studies and also in industry [18]–[20]. QMOOD model is
based on six high-level design quality attributes (reusability,
flexibility, understandability, functionality, extendibility, and
effectiveness) which helps to assess the quality of the software
from all its perspectives. These six quality attributes can be
easily calculated using the 11 lower level design metrics.

Refactoring documentation: pull-requests description
and commit messages. Nowadays, version control systems
such as Github are widely used to manage the evolving
source code of software projects. Each time a developer
commits a change to his branch in a version-control repository,
a “commit” dedicated for this change is created and the
developer is able to write a textual message called a commit
message to describe the code-level changes that he applied.
After performing a set of code-level changes, the programmer

submits a pull request as an architecture-level change in which
they write a thorough description of the new changes. If the
changes are accepted, the branch is merged into the master
branch. Figure 1 shows the overall architecture refactoring
process in a version-control repository. The list of refactoring
types that can be supported by our bot are described in Table
II.

TABLE II: Refactoring types considered in our study

Refactoring
Types

Definition

Encapsulate
Field

Changes the access modifier of public fields to
private and generates it getter and setter.

Increase Field
Security

Changes the access modifier of protected fields to
private, and of public fields to protected.

Decrease Field
Security

Changes the access modifier of protected fields to
public, and of private fields to protected.

Pull Up Field If two subclasses have the same field then this rule
moves this field to their superclass.

Push Down Field If a field is used by only some subclasses then this
rule moves this field to those subclasses.

Move Field Moves a field to another class.
Increase Method
Security

Changes the access modifier of protected methods to
private, and of public methods to protected.

Decrease Method
Security

Changes the access modifier of protected methods to
public, and of private methods to protected.

Pull Up Method If two subclasses have the same method then this
rule moves the method to their superclass.

Push Down
Method

If a method is used by only some subclasses classes
then this rule moves the method to those subclasses.

Move Method Moves a method to another class.
Extract
Class/Method

Creates a new class/method from an existing one.

Extract
Superclass

If two subclasses have similar features, this rule
creates a superclass and moves these features into
it.

Extract Subclass If two superclasses have similar features, this rule
creates a subclass and moves these features into it.

Rename
Mehtod/Class/Field

Changes the name of a code element.

B. Motivations
During our extensive interactions with software developers

from industry, we observed that a lot of their projects had little
to no refactoring documentation. Developers confirmed that
they consider documentation very important but the limited
time and budget prevented them from adequately document
their work especially related to the quality improvements. They
confirmed in one of the surveys with industry, as part of
an NSF project, that documenting their changes takes time
since they have to write what refactorings they applied, their
locations and what they intended to improve in their code
quality. They also claimed that it is not always straightforward
to specify the quality attributes to improve since several
programmers in the organization may use different jargon to
describe quality improvements.

Developers need documentation to comprehend refactoring,
but they may not use traditional academic words to explain the
refactorings such as antipatterns, code smells, and even their
perception of quality metrics is different from the academic
one [1]. As part of our survey and analysis with the industrial
partners, we found that an average of only 12% of commit
messages described applied refactorings for JHotDraw, Xerces,

and three industrial projects while 38% of these systems’
commits are mainly about refactorings as detected using
REFACTORINGMINER [8]. Software engineering researchers
often use antipatterns as the causes for the refactorings, but
in our preliminary work, we found that only 0.13% of the
commit messages from 1,984 popular projects in GitHub
contain any antipattern. For example, abstraction inversion,
a design antipattern of not exposing a functionality required
by users, does not occur once in all the commit messages. This
observation indicates that developers do not know about the
terms of antipatterns, such as abstraction inversion, or they do
not make connections between refactorings and antipatterns.
Therefore, we need to understand the developers’ intention
when they are performing refactorings from commit messages
without assuming that they have the background knowledge
of antipatterns.

We used the 59 software engineering antipattern terms
defined in Wikipedia. Then, we searched these antipattern
terms in all the commit messages from 1,984 popular projects
(including C and Java) in GitHub. Only 0.13% of the 8.4
million commit messages mention any antipattern term. This
shows that developers do not use antipattern terms in soft-
ware documents, which indicates that developers may not
understand antipattern terms. Furthermore, we searched these
antipattern terms in three large-scale projects’ pull requests,
Redis, React-native, and Git. In all the 9,172 closed pull
requests, we found only 14 “hard code”, four “call super”,
two “magic numbers”, one “circular dependency”, and one
“spaghetti code.” Missing antipattern terms in commit mes-
sages does not mean that developers do not explain refactoring
opportunities.

The two main challenges associated with the current refac-
toring documentation can be presented as follows:

• Poorly written pull request documentation: Figure
3 shows that in the pull request captured in Figure 2,
4 out of 6 QMOOD quality attributes were improved.
Despite the different changes in the quality attributes, the
developer did not accurately document his changes in
a well-written and comprehensive way that shows how
importantly his changes impacted the quality.

• Documenting functional changes rather than quality
changes: Programmers, when working in teams, try to
accurately document their pull request to facilitate the
collaboration. Despite the effort to write good and com-
prehensive documentation, developers often document the
code changes which are related to the functional require-
ments of the software. They often forget to describe
and explain the changes from quality perspective. Non-
functional requirements such as the ” quality attributes”
improvement are often neglected by developers in their
documentation as described in Figure 4 that shows the
significant quality improvements before and after the pull
request.

Fig. 1: An architecture refactoring process in a version-control
repository

Fig. 2: Pull Request with Poor Documentation

III. REFACTORING DOCUMENTATION BOT

Figure 5 gives an overview of our refactoring documentation
bot consisting mainly of three main components: 1) the
analysis of the pull-request changes to identify the changed
files and evaluate the quality changes; 2) the check of the doc-
umentation written by the developer to identify any missing or
potential incorrect documentation about the refactorings; and
3) the rules-based generation of the documentation. To gener-
ate commit messages, there are three types of approaches: (a)

Fig. 3: The quality metrics change in the pull request.

Fig. 4: PR with only functional changes are documented

rule-based natural language generation systems; (b) search-
based systems that find the most similar commits in the
history and use their commit messages; and (c) deep learning
models as natural language generation systems. Rule-based
approaches, such as DeltaDoc [21], ChangeScribe [22], [23],
and others [24], [25], extract the information of a commit’s
changes and generate commit messages based on rules. Our
bot is using the third category of documentation generation
approaches, for timely response in terms of execution time,
by linking the identified quality changes to specific pre-
defined templates to document them as detailed later. Once the
refactorings documentation of the Pull-Request is generated,
the developer can interact with the bot to accept or reject or
modify some of the generated sentences after checking the
explanations supporting them in a Web app.

The documentation-Bot is a Spring Boot application that
is implemented as a GitHub App [26]. The bot can be used
by any public and private GitHub Java repository without
restrictions after simply adding it to the repository. Then, the
bot will start monitoring the repository and get notified by any
new or opened pull-request then it will execute in a sequence
the three main components as detailed in Figure 5.

A. Pull-Request Changes Analysis:

When the documentation-bot gets notified of a new pull
request, it clones the repository on GitHub for local editing
of the source code. The bot extracts automatically all commits
messages and modified files of the submitted pull-request. The
GitHub API was used to identify these changed files. In order
to assess the quality change, it compares the QMOOD quality
attributes value at the file level before and after the pull request
using our own parser. We have also used RefactoringMiner [8]
to find out which refactorings have been applied in that Pull-
Request. We selected RefactoringMiner due its high precision
and recall score of more than 90% as reported in [8].

B. Checking the Current Documentation of the Developer

After the identification of the changed files, the important
QMOOD quality changes and the refactorings from the history
of commits in the pull request as described in the previous step,

Fig. 5: Approach Overview: Refactoring Documentation Bot

the refactoring documentation-bot checks whether refactorings
and their quality change have been documented by developers.
In order to perform this verification step, we manually defined
a large set of keywords that may cover most of the words
used by developers to document quality attributes. Then, we
manually classified those keywords into the 6 QMOOD cate-
gories (extendibility, reusability, flexibility, understandability,
functionality, extendibility, effectiveness). The full list of used
keywords can be found in Table III. These keywords have been
already defined in the literature based on different surveys
including Microsoft developers [27].

The combination of keywords and the detected refactorings
along with the name of the modified files represent a sufficient
set of features that help us checking whether the specific
quality attributes and refactorings detected in the previous
step are documented in any of the commit messages and
the developer’s pull request description. This step serves as
both detecting inconsistencies in the refactoring documentation
manually provided by the developer and detecting missing
refactoring and quality documentation. A recent empirical
study shows that developers may introduce inconsistent doc-
umentation of refactorings and quality changes [15]. The bot
can check, for instance, if reusability was really improved as
claimed by the developer in the commit message or the pull-
request description.

C. Generation of the Refactoring Documentation and Inter-
action with Developers

The previous two steps are important towards the generation
and correction of the refactoring and quality documentation.
The bot will not only be limited to generating or fixing
the documentation but also 1) providing a support of the
recommended documentation based on the identified refactor-
ing and quality attributes change; and 2) enabling developers
interaction to accept or reject or modify the documentation
as shown in Figure 11. To make the interaction easy, we are
providing low-level interactions at the file level by linking the
generated documentation to the changed file(s).

The generated refactoring documentation will follow a
specific set of rules template as described in Figure 7: Our
message will be composed of the location (file name), the
refactoring applied and the quality attributes that have sig-
nificantly changed and the developers missed them in their
documentation. In other words, our bot will document what
has been refactored? Why the refactorings were applied?
What is the impact of these refactorings on quality. Then, the
developers can interact to introduce more details if needed.

After a round of interactions, the developer may decide to
update the current description and messages on the GitHub
repository as shown in Figure 8.

IV. VALIDATION

To evaluate the ability of our refactoring documentation
bot to generate relevant messages for commits and pull-
requests, we conducted a set of experiments based on 5 open

TABLE III: List of used keywords related to refactoring

Abstraction Access Aggregate Anti Pattern Antipattern Architecture
Change design Cleanup Code beauty Code cleansing Code cleanup Code cosmetics

Code improvements Code optimization Code reformatting reordering Code revision Code smells
Cohesion Compatibility Complexity Composition Cosmetic changes Coupling

Dead code Decompose Decoupling Deprecated code Design Design Pattern
Design metric Designed code Divide Duplicate Easy Effectiveness
Encapsulation Enhance Extend Extendibility Extract Fix a design flaw
Fix code smell Fix issue Fix module structure Fix quality Fix technical debt Flexibility
Functionality Getting code out of Hierarchies Improve Inheritance Inline

Less code Long method Maintenance Make easier Messaging Metrics
Modular Modularize Moved code out of Multi module Nicer code Move

Performance Polishing code Polymorphism Poor coding Pull down Push
Pull up Quality Redesign Redundant Refactor Reformat
Rename Remove dependency Reorganize Replace Restructure Reusability
Reuse Rework Rewrite Robustness Scalability Separate

Simplify Split Stability Structural changes Structure Understandability
Understanding Unneeded Unnecessary code Unused Useless Visibility

Fig. 6: Developer’s interaction with the Refactoring Documentation Bot

source systems. A demo of the refactoring documentation bot
can be found in [16]. In this section, we first present our
research questions and validation methodology followed by
experimental setup. Then we describe and discuss the obtained
results.

A. Research Questions

It is important to evaluate, first, the correctness of the gener-
ated refactoring documentation. Developers are not interested,
in practice, to include all the correct refactorings documen-
tation especially at the pull-request level. Thus, we evaluated
the relevance of the recommended refactorings documentation
to include in commits and pull-request messages and analyzed
the interaction data of the users. We defined two main research

questions to measure the correctness, relevance and benefits of
our refactoring documentation bot. The research questions are
as follows:

• RQ1: Correctness and Relevance of the recommended
refactoring documentations. To what extent our bot can
generate correct and meaningful documentations based on
the feedback from participants?

• RQ2: Insights from practitioners. How do program-
mers evaluate the usefulness of our tool (survey)?

B. Experimental Setting and Studied Projects

To address the different research questions, we used the 5
open source systems in Table IV. We selected these projects
because of their size, number of commits, applied refactorings,

Fig. 7: Developer’s Pull Request Description vs. our Bot’s
Description

Fig. 8: A generated pull request description submitted on
GitHub by our bot

etc. To answer RQ1, we asked a group of 14 active program-
mers to manually evaluate the correctness and relevance of the
messages generated by our bot documenting the quality im-
provements and related refactoring. The correctness is defined
as the number of correctly documented commits and pull-
requests over the total number of generated messages. Since
not all correct refactoring documentations will be actually
applied by developers, we asked them to also report those they
found relevant and actually integrated to expand current pull-
request/commits messages then we calculated the relevance
score which is the number of relevant messages divided by the
total number of messages generated by the bot. We have also
collected the interaction data between the developers and the
bot in terms of the number of accepted, modified and rejected
messages.

Since not all pull-requests are mainly related to refactorings,
we selected the ones that included at least 5 refactoring
operations per pull-request and made significant change in the
average QMOOD quality measure of at least 0.1. The number
of pull-requests per project are described in Table IV.

To answer RQ2, we used a questionnaire that collected the
opinions of the participants about their experience in using
our bot. It contains mainly questions on the usability of the
documentation bot, the use of QMOOD to document quality
changes, the importance of refactoring documentation, and the
need for a refactoring documentation bot.

TABLE IV: Summary of the evaluated systems.

System Release #Classes #Pull Requests
Gson v2.8.5 206 18

JHotDraw v7.5.1 585 11
GanttProject v1.10.2 241 14
Apache Ant v1.8.2 1191 9
JFreeChart v1.0.9 521 12

Fig. 9: The average manual correctness score on the different
5 systems as evaluated by the participants.

All the participants are volunteers and familiar with Java
development and refactoring. The experience of these par-
ticipants on Java programming ranged from 4 to 19 years.
We carefully selected the participants to make sure that they
already applied refactorings during their previous experiences
in development.

Participants were first asked to fill out a pre-study question-
naire containing five questions. The questionnaire helped to
collect background information such as their role within the
company, their programming experience, and their familiarity
with software refactoring. In addition, all the participants
attended one lecture about refactoring. Each participant was
asked to evaluate all the pull-requests selected for our exper-
iments on the different projects during a period of one week.

C. Results

Results for RQ1. Figure 9 summarizes our findings regard-
ing the correctness of the generated pull-request and commit
messages on the 5 systems. We found that a considerable
number of proposed documentation for refactoring, with an
average between 94% and 86% respectively for Gantt and
JFreeChart, were already considered correct by the partici-
pants. The manual correctness score was consistent on all the
five systems which confirm that the results are independent
from the size of the systems, number of refactorings and
quality changes.

We report as well the results of our empirical evaluation
of the relevance (not only correctness) in Figure 10. In fact,
developers may not want to document all quality changes
and associated refactorings in the commits and pull request
message. As reported in this figure, the majority of the
refactoring documentation solutions recommended by our in-
teractive approach were relevant and approved by developers.
On average, for all of our five studied projects,the manual
relevance score is 4.3 based on a Likert scale (from 1 to
5). The highest MC score is 4.6 for both the Gantt and

Fig. 10: The average manual relevance score on the different
five systems

Fig. 11: The average number of AR (percentage of accepted
messages), NMR (percentage of modified messages) and NRR
(percentage of rejected messages) on the different five systems.

Gson projects and the lowest score is 4 for JFreeChart. Most
of the refactorings/quality changes documentation that were
not manually approved by the developers were found to be
introducing minor improvements or they have to be grouped
together to make sense.

Considering three other metrics NAR (percentage of ac-
cepted messages), NMR (percentage of modified messages)
and NRR (percentage of rejected messages), we seek to
evaluate the efficiency of our interactive approach to avoid
a high interaction effort. We recorded these metrics using a
feature that we implemented in our tool to record all the
actions performed by the developers during the evaluation.
Figure 11 shows that, on average, more than the majority of the
generated messages were applied by the developers an few of
them were either modified or rejected. For instance, we found
on the large Gson open source system that 15 out of the 18
generated messages were approved by developers and only two
were rejected. Thus, it is clear that our recommendation tool
successfully suggested a good set of messages to documment
refactorings/quality changes.

Results for RQ2. We asked participants to rate their
agreement on a Likert scale from 1 (complete disagreement)
to 5 (complete agreement) with the following statements:

1) The interactive refactoring documentation bot is desir-
able feature for continuous integration.

Fig. 12: Distribution of the opinions of the participants about
the usability of our refactoring documentation bot

2) The documentation of refactorings based on their im-
pact on the QMOOD changes is effective to explain
the rationale.

The post-study questionnaire results show the average
agreement of the participants was 4.7 and 4.2 based on a
Likert scale for the first and second statements, respectively.
This confirms the usefulness of our refactoring documen-
tation approach for the software developers considered in
our experiments. Most of the participants mention that our
interactive documentation is faster than the tedious manual
way to document refactorings since they admitted the lack of
refactoring documentation comparing to functional changes.
Thus, the developers liked the functionality of our tool that
helps them to expand the commits and pull-requests message
in an interactive fashion.

The participants also suggested some possible improve-
ments to our refactoring documentation bot. Some participants
believe that it will be very helpful to extend the tool by adding
a new feature to select up-front the types of refactoring and
quality improvements to be documented. Another suggested
improvement is to expand the tool to generate documentation
for both functional and non-functional changes.

Figure 12 shows that over 60% of the participants agreed
that the bot was easy to use especially in the context of con-
tinuous integration. The bot did not require any configuration
and it is installed as a Git app in any GitHub repository.
When the developers can check his pull request to add more
documentation from the bot before submitting it for peer
review.

Over 75% of the participants found that documenting refac-
torings is important as described in Figure 13. The majority
of them highlighted that it is a missing feature in existing
refactoring tools and it can help reviewers in understanding
the code changes that are related to refactorings and why they
were applied. The managers/executives want to check if their
developers care about the quality of their code thus it is easier
for them to check the pull-requests/commits description rather
than looking to the code.

Fig. 13: Distribution of the opinions of the participants about
the importance of our refactoring documentation bot

V. THREATS TO VALIDITY

We discuss in this section the different threats related to our
experiments.

Internal validity. Threats to internal validity can be related
to the list of keywords and their grouping into the QMOOD
categories that we used to identify whether the quality at-
tributes changes and the refactorings were documented by the
developers. However, the impact of this threat was limited
by considering the use of RefactoringMiner to identify the
actual refactorings applied by developers. Furthermore, the
user interaction may help mitigating this threat since our goal
is not fully automating the documentation generation process.

Construct validity is concerned with the relationship be-
tween theory and what is observed. We have used the QMOOD
quality attributes to capture the quality changes between
commits. While the QMOOD model is already empirically
validated by existing studies [28], it is possible that some
of the quality changes may not be detected using QMOOD.
Another threat to construct validity can be related to the
diverge opinions of developers involved in our experiments
when evaluating the documentation. Actually, we received
different opinions about the suggested documentation in terms
of importance and relevance which may impact the validity
of our results. However, some of the participants are the
original programmers of the evaluated systems which may
reduce the impact of this threat where they are confident about
the relevance of the documented quality changes.

External validity refers to the generalizability of our find-
ings. We performed our experiments on 5 open-source systems
belonging to different domains and we conducted our survey
with active developers. However, we cannot assert that our
results can be generalized to other applications and other
developers. Our bot is mainly now limited to object-oriented
programming languages. However, Java, for instance, is one
of the most popular programming language which is used
in a large number of projects. In the future, we will extend
our approach to support other programming languages and
paradigms. Future replications of this study are necessary to
confirm our findings.

VI. RELATED WORK

We summarize, in the following, existing studies in the area
of software documentation. We classify them into three cat-
egories:commit messages generation, pull request description
generation and source code summarization [29]–[39].

Most of the existing studies investigate software documenta-
tion and its importance through surveys. For example, Forward
et al. [40] conducted a survey with software professionals
about existing documentation tools. Their results prove that
software profesionals are looking for new technologies to
improve the automation of the documentation process and
its maintenance. Software documentation was also addressed
in the study [2] where de Souza et al. tried to establish
what documentation artificats are the most useful to software
maintainers through a survey.

We categorize the commit messages generation techniques
into three groups: (1) rule-based natural language generation
systems; (2) search-based systems that find the most similar
commits in the history and use their commit messages; and (3)
deep learning models as natural language generation systems.
Rule-based approaches, such as Delta- Doc [21], Change-
Scribe [22], [23], and others [24], [25], extract the information
of a commit’s changes and generate commit messages based
on rules. For instance, Buse et al. have built DeltaDoc [21],
which extracts path predicates of code source change, then it
generates and follows a set of predefined rules to generate a
summary. ChangeScribe [23] starts first by analyzing source
code changes and Abstract Syntax Trees. Then it generates
a commit message following predefined templates and rules.
To reduce the length of the genrated message, Shen et al.
proposed an approach similar to ChangeScribe where they
used method stereotypes and the type of change to generate
commit messages but they removed repeated information in
the change [24]. The tool proposed by Le et al. in their study
[41] uses dynamic analysis to infer the semantics of changes
between two versions of a code.

The commit messages generated by these approaches can
be lengthy and full of details. In contrast, search-based ap-
proaches,such as the one proposed by Huang et al. [42] and
the one proposed by Liu et al. [43], output human-written
commit messages. Given a commit, these approaches find an
existing commit with the code changes that are most similar
to the given commit. Then, the search-based approaches reuse
the found commit’s commit message as the message for the
new commit. These approaches work for the code changes
that repeat in software repositories, such as updates of API
dependencies. However, these approaches do not work for the
new code changes.

Although many refactoring tools have been built [9], [10],
[44], [45], there is no tool for automated architecture refac-
toring documentation. One recently proposed tool, RCLinker
[46] (designed for linking commit messages to the related
issues), may be used for linking pull requests to the cor-
responding issues (bug reports). Another potentially useful
approach is treating pull requests as commit messages, and

using automated commit message generation tools [21]–[25]
for generating pull requests. This approach may work for the
architecture refactorings that have fewer changes, but it does
not work for large-scale refactorings. Similarly, we can treat
pull requests as version updates and use the release notes
generation tools such as ARENA [47]. ARENA combines
changes from the source code, libraries, and licenses with
related issues to generate release notes.

Source code summarization techniques are used to gener-
ate documentation for code changes in commits [48].Some
existing work leverages text retrieval techniques to generate
source code summaries. For instance, Haiduc et al. [49] used
Latent Semantic Indexing (LSI) [50], to generate source code
entities descriptions. Moreover, the study [51] led by Haiduc
et al. shows that a Vector Space Model could also be useful in
automatically generating summaries. Recent existing studies
proposed tools that generate natural language summaries of
source code, such as Java methods and classes [37]–[39], [52]–
[55].For instance, to generate summaries for Java methods,
Sridhara et al. proposed a tool that first extracts relevant
information from Java methods then expresses the extracted
content in natural language based on predefined text templates
[55]. This work was extended to automatically describe high-
level actions within methods [56]. In addition to the previous
mentioned techniques, Iyer et al. used NMT(Neural Machine
Translation) to build Code-NN, a framework that generates
summaries for C and SQL code [57].

VII. CONCLUSION

In this paper, we presented a documentation bot to document
the developers changes in terms of quality attributes improve-
ment and refactorings. The bot also enable the interaction
with the developer to adjust the generated documentation.
To evaluate the correctness and the relevance of our bot,
we selected developers to evaluate our bot on different pull
requests of 5 open-source projects. The results show clear
evidence that our bot helped developers documenting the
quality improvement of the applied refactorings.

Future work will involve extending our experiments on
larger set of systems and participants. We will also evaluate
different documentation generation techniques to adopt them
for documenting refactorings rather than the use of the rules-
based techniques.

REFERENCES

[1] P. W. McBurney, S. Jiang, M. Kessentini, N. A. Kraft, A. Armaly, M. W.
Mkaouer, and C. McMillan, “Towards prioritizing documentation effort,”
IEEE Transactions on Software Engineering, vol. 44, no. 9, pp. 897–913,
2018.

[2] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information. ACM, 2005, pp.
68–75.

[3] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in Proceedings of the 34th Interna-
tional Conference on Software Engineering. IEEE Press, 2012, pp.
255–265.

[4] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE 2007). IEEE,
2007, pp. 70–79.

[5] M. Kajko-Mattsson, “A survey of documentation practice within correc-
tive maintenance,” Empirical Software Engineering, vol. 10, no. 1, pp.
31–55, 2005.

[6] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[7] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[8] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in Pro-
ceedings of the 40th International Conference on Software Engineering.
ACM, 2018, pp. 483–494.

[9] G. Bavota, S. Panichella, N. Tsantalis, M. Di Penta, R. Oliveto, and
G. Canfora, “Recommending refactorings based on team co-maintenance
patterns,” in Proceedings of the 29th ACM/IEEE international confer-
ence on Automated software engineering. ACM, 2014, pp. 337–342.

[10] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort
via clustering-based multi-objective search,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing. ACM, 2018, pp. 464–474.

[11] M. Yan, Y. Fu, X. Zhang, D. Yang, L. Xu, and J. D. Kymer, “Auto-
matically classifying software changes via discriminative topic model:
Supporting multi-category and cross-project,” Journal of Systems and
Software, vol. 113, pp. 296–308, 2016.

[12] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases.” in icsm, 2000, pp. 120–130.

[13] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. D. Kymer, “Automated
classification of software change messages by semi-supervised latent
dirichlet allocation,” Information and Software Technology, vol. 57, pp.
369–377, 2015.

[14] A. E. Hassan, “Automated classification of change messages in open
source projects,” in Proceedings of the 2008 ACM symposium on Applied
computing. ACM, 2008, pp. 837–841.

[15] J. Pantiuchina, M. Lanza, and G. Bavota, “Improving code: The
(mis) perception of quality metrics,” in 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018, 2018, pp. 80–91. [Online].
Available: https://doi.org/10.1109/ICSME.2018.00017

[16] “Interactive Refactoring Documentation Bot Demo.” [Online]. Available:
https://sites.google.com/view/scam-2019

[17] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[18] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software
maintenance,” Journal of Systems and Software, vol. 81, no. 4, pp. 502–
516, 2008.

[19] A. C. Jensen and B. H. Cheng, “On the use of genetic programming
for automated refactoring and the introduction of design patterns,” in
Proceedings of the 12th annual conference on Genetic and evolutionary
computation. ACM, 2010, pp. 1341–1348.

[20] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon, “Automated
scheduling for clone-based refactoring using a competent ga,” Software:
Practice and Experience, vol. 41, no. 5, pp. 521–550, 2011.

[21] R. P. Buse and W. Weimer, “Automatically documenting program
changes.” in ASE, vol. 10, 2010, pp. 33–42.

[22] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in 2014 IEEE 14th International Working Con-
ference on Source Code Analysis and Manipulation. IEEE, 2014, pp.
275–284.

[23] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2. IEEE, 2015, pp. 709–712.

[24] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic summarization
of what and why information in source code changes,” in 2016 IEEE
40th Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1. IEEE, 2016, pp. 103–112.

[25] T.-D. B. Le, J. Yi, D. Lo, F. Thung, and A. Roychoudhury, “Dynamic
inference of change contracts,” in 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 2014, pp. 451–455.

[26] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
345–355.

[27] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoringchallenges and benefits at microsoft,” IEEE Transactions on
Software Engineering, vol. 40, no. 7, pp. 633–649, 2014.

[28] O. Baysal and R. Holmes, “A qualitative study of mozilla’s process
management practices,” David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada, Tech. Rep. CS-2012-10, 2012.

[29] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi,
“Model transformation modularization as a many-objective optimization
problem,” IEEE Transactions on Software Engineering, vol. 43, no. 11,
pp. 1009–1032, 2017.

[30] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using multi-
objective optimization,” Information and Software Technology, vol. 83,
pp. 55–75, 2017.

[31] H. Wang, M. Kessentini, and A. Ouni, “Bi-level identification of
web service defects,” in International Conference on Service-Oriented
Computing. Springer, Cham, 2016, pp. 352–368.

[32] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and K. Deb,
“A robust multi-objective approach to balance severity and importance
of refactoring opportunities,” Empirical Software Engineering, vol. 22,
no. 2, pp. 894–927, 2017.

[33] M. Kessentini, R. Mahaouachi, and K. Ghedira, “What you like in design
use to correct bad-smells,” Software Quality Journal, vol. 21, no. 4, pp.
551–571, 2013.

[34] A. ben Fadhel, M. Kessentini, P. Langer, and M. Wimmer, “Search-based
detection of high-level model changes,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 2012, pp. 212–
221.

[35] M. Kessentini, H. Sahraoui, M. Boukadoum, and M. Wimmer, “Search-
based design defects detection by example,” in International Conference
on Fundamental Approaches to Software Engineering. Springer, Berlin,
Heidelberg, 2011, pp. 401–415.

[36] M. Kessentini, H. Sahraoui, and M. Boukadoum, “Example-based
model-transformation testing,” Automated Software Engineering, vol. 18,
no. 2, pp. 199–224, 2011.

[37] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum, “Gen-
erating transformation rules from examples for behavioral models,”
in Proceedings of the Second International Workshop on Behaviour
Modelling: Foundation and Applications. ACM, 2010, p. 2.

[38] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-view refac-
toring of class and activity diagrams using a multi-objective evolutionary
algorithm,” Software Quality Journal, vol. 25, no. 2, pp. 473–501, 2017.

[39] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective
code-smells detection using good and bad design examples,” Software
Quality Journal, vol. 25, no. 2, pp. 529–552, 2017.

[40] A. Forward and T. C. Lethbridge, “The relevance of software documen-
tation, tools and technologies: a survey,” in Proceedings of the 2002
ACM symposium on Document engineering. ACM, 2002, pp. 26–33.

[41] T.-D. B. Le, J. Yi, D. Lo, F. Thung, and A. Roychoudhury, “Dynamic
inference of change contracts.”

[42] Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo, “Mining
version control system for automatically generating commit comment,”
in Proceedings of the 11th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE Press, 2017,
pp. 414–423.

[43] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2018, pp. 373–384.

[44] J. Von Pilgrim, B. Ulke, A. Thies, and F. Steimann, “Model/code co-
refactoring: An mde approach,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2013,
pp. 682–687.

[45] H. Li and S. Thompson, “Automated api migration in a user-extensible
refactoring tool for erlang programs,” in 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE, 2012, pp. 294–297.

[46] T.-D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk, “Rclinker:
automated linking of issue reports and commits leveraging rich con-

textual information,” in 2015 IEEE 23rd International Conference on
Program Comprehension. IEEE, 2015, pp. 36–47.

[47] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Arena: an approach for the automated generation of release
notes,” IEEE Transactions on Software Engineering, vol. 43, no. 2, pp.
106–127, 2017.

[48] N. Nazar, Y. Hu, and H. Jiang, “Summarizing software artifacts: A
literature review,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 883–909, 2016.

[49] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program compre-
hension with source code summarization,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
2. ACM, 2010, pp. 223–226.

[50] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284,
1998.

[51] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in 2010 17th Working Conference on Reverse Engineering. IEEE, 2010,
pp. 35–44.

[52] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 279–290.

[53] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in 2013 21st International Conference on Program Compre-
hension (ICPC). IEEE, 2013, pp. 23–32.

[54] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsummarizer:
An automatic generator of natural language summaries for java classes,”
in 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 2013, pp. 230–232.

[55] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 2010, pp. 43–52.

[56] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proceedings of the
33rd International Conference on Software Engineering. ACM, 2011,
pp. 101–110.

[57] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, 2016, pp. 2073–2083.

