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Abstract Service-oriented computing (SOC) has changed the way of how
software applications are designed, delivered and used. Web services is the
widely used technology to implement service-oriented architectures (SOA).
The Web service interface is a critical component in an SOA since it is the
only source of interactions with the user to adopt the services in real-world
applications. Although several studies focused on the quality of services (QoS),
very few work addressed the problem of improving the design quality of Web
service interface. A common bad service design practice is to group together
several operations implementing different abstractions into a single interface.
In this paper, we propose a many-objective search-based approach to automat-
ically refactor service interfaces. A refactoring solution consists of a sequence of
interface changes that optimizes five objectives of cohesion, coupling, number
of interfaces, the interfaces size deviation, and the number of service antipat-
terns in the generated interfaces. We validated our approach on a benchmark
of 22 real-world Web services provided by Amazon and Yahoo. Our results
provide evidence that the produced interfaces are able to improve the service
design quality and achieve results similar, on average, to manually performed
refactorings by developers at 81% of precision and 80% of recall.
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1 Introduction

Service-oriented computing (SOC) has emerged as a paradigm that changed
the way software applications are designed, delivered and consumed. Within
the SOC paradigm, the composition of loosely coupled and coarse-grained
pieces of software, called services, drives the low-cost development of dis-
tributed applications in heterogeneous environments namely service-based sys-
tems (SBSs) [I]. According to a recent statistics from Seekda.conﬂ a major
service provider, there are 28,606 Web services available on the Web, offered
by over 7,739 different providers.

The interfaces are the main source of interactions with the user to adopt
and reuse the proposed services in real-world applications. Thus, it is impor-
tant to ensure that the interface is easy to understand, maintain and use which
may lead to a better usability and popularity of the proposed services [23}41[5]
0L7L[8LQLTO,TTL12]. However, existing work in the area of the quality of services
(QoS) focus on providing solutions to improve the quality from the service
providers perspective, such as availability, response time and security, but not
from the service users perspective. Thus, very few studies addressed quality
issues related to the services interface design level [I3[[I4L[15].

The structure of a service interface is critical in SOA. However, developers
tend to take little care of their service WSDL descriptions as several researchers
have pointed out [I3|[I4LT5L16]. Most of these existing descriptions are designed
in only one interface grouping all the operations together. To this end, Web
service bad design practices and antipatterns have been recently studied, and
different approaches found that several of existing Web service interfaces are
suffering from bad design practices and proposed solutions to detect them [14]
TRI7,18).

In this paper, we propose an approach, namely MOWSIR, (Many-Objective
Web Service Interface Refactoring), that aims at improving the design quality
of service interfaces by improving its structure and modularization while fix-
ing existing antipatterns. MOWSIR generates a refactoring solution which is a
sequence of changes to restructure the list of operations provided by a Web ser-
vice through appropriate interfaces, i.e., port types in terms of size and design.
In fact, the number of possible refactoring combinations to explore is exponen-
tially high, leading to a large and complex search space. The best refactoring
solution should optimize 5 objectives: (1) maximize interfaces cohesion; 2)
minimize interfaces coupling; (3) maximize the number of interfaces; and (4)
minimize the interface size deviation; and (5) minimize the number of service
antipatterns in the generated interfaces. We, thus, consider the Web service
interface refactoring task as a many-objective optimization problem using the

I https://seekda.com/about
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new many-objective non dominated sorting genetic algorithm (NSGA-III) [19].
NSGA-IIT was recently used to address the problem of the modularization of
object-oriented programs using a set of quality attributes[20]. However, the
problem addressed in this paper is different from [20] since the modularization
process is just limited to regrouping classes in terms of packages. In addition,
the used objectives and inputs/outputs are different from [20].

To validate our approach, we conducted an empirical study on a benchmark
of 22 real-world services, provided by Amazon and Yahoo. The study aimed
to evaluate the potential that a design quality improvement of an interface
refactoring solution proposed by our approach will achieve. We then compared
our approach to the only existing service refactoring approach in the current
literature by Athanasopoulos et al. [I3]. The approach proposed by [13] is
based on a greedy algorithm for the refactoring of service interfaces based
on cohesion metrics, using one type of refactorings (interface partitioning),
without consideration of antipatterns and did not use intelligent exploration
of the search space such as metaheuristic search algorithms. The obtained
results confirm that our many-objective formulation improved the quality of
the interfaces and the generated refactoring solutions are similar to manually
performed refactorings by developers at 81% of precision and 80% of recall,
on average.

The rest of this paper is organized as follows. Section [2] provides the neces-
sary background along with a motivating example. Our approach is discussed
in Section [3] Our empirical study design is described in Section [d while the
obtained results are presented and discussed in Section [5] Threats to validity
are analyzed in Section [6] while the related work is discussed in Section
Finally, we conclude and describe future research directions in Section

2 Background and Motivation

In this section, we present the necessary background for Web service interface
refactoring and antipatterns, along with a real-world motivating example for
our problem.

2.1 Definitions

A Web Service is defined according to the W3(E| (World Wide Web Con-
sortium), as “a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered as XML arte-
facts. Its interface is described as a WSDL (Web service Description Language)
document that contains structured information about the Web service’s loca-
tion, its offered operations, the input/output parameters, etc.”

A Web service interface corresponds to a WSDL port type, which is the
most important WSDL element. A Web service has at least one interface. This

2 http://www.u3.org/TR/wsd120/
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WSDL element describes a Web service, the operations that can be performed,
and the messages that are involved. It can be compared to a function library
(or a module or a class) in a traditional programming language.

Modularity. Service interface modularity can be defined as the degree to
which the operations of a service belong together and well partitioned into
cohesive interfaces. A good modularization of a design leads to a service which
is easier to use, design, develop, test, maintain, and evolve. The importance of
design modularity was best articulated by David et al. [21]: “perhaps the most
widely accepted quality objective for design is modularity”. Although modular-
ity tends to be a subjective concept, measuring the degree of modularization
of a software design can be achieved through two quality measures: cohesion
and coupling [22].

Antipatterns are symptoms of poor design and implementation practices
that describe bad solutions to recurring design problems. They often lead to
software which is hard to maintain and evolve [23].Different types of antipat-
terns presenting a variety of symptoms have been recently studied with the
intent of improving their detection and suggesting improvements paths [I5]
[1I7] [24]. Common Web service interface antipatterns include:

— God object Web service interface (GOWS): exposes a multitude of methods
related to different business and technical abstractions in a single interface.
Consequently the service is often unavailable to end users because it is
overloaded [24].

— Fine grained Web service interface (FGWS): is a too fine-grained service
interface whose overhead (communications, maintenance, and so on) out-
weighs its utility. This antipattern refers to a small Web service interface
with few operations implementing only a part of an abstraction[24].

— Chatty Web service interface (CWS): represents an antipattern where a
high number of operations, typically attribute-level setters or getters, are
required to complete one abstraction[24]. This antipattern may have many
fine-grained operations, which degrades the overall performance with higher
response time .

— Data Web service interface (DWS): contains typically accessor operations,
i.e., getters and setters. In a distributed environment, some Web services
may only perform some simple information retrieval or data access operations[I5].

— CRUDy Interface (CI): is an antipattern where the design encourages ser-
vices the RPC-like behavior by declaring create, read, update, and delete
(CRUD) operations, e.g., createX(), readY(), etc. Interfaces designed in
that way might be chatty because multiple operations need to be invoked
to achieve one goal[24].

In this paper, we focus mainly on these five antipattern types as they are
the antipatterns that occur most frequently in SBSs based on recent studies
[15L17L25.1261[27].

Refactoring. Software refactoring is defined by Fowler [28] as “the pro-
cess of changing the internal structure of a software to improve its quality
without altering the external behavior”. Refactoring is recognized as an essen-
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Table 1: Web service interface refactorings, amd their parameters, pre- and
post-conditions.

Refactoring [ ID [ Parameters [ Pre and Post-conditions

sil: SourcePortTypye| Pre: 3sil A isPortType(sil)A
Interface Partitioning P si2: TargetPortTypye | #1si2 A sil.size > 2 A ops.lengh > 1
(sil,si2,ops| ]) ops| ]: Operations Post: 3si2 A isPortType(si2) A sil.size > 1A

to be extracted to si2| si2.size > 1
Interface Consolidati e sil: SourcePortTypye | Pre: 3sil A isPortType(sil) A 3si2 A isPortType(si2)
(sil,si2) si2: TargetPortTypye | Post: 3sil A isPortType(sil) A Bsi2

. Pre: 3sil AisPortType(sil) A Isi2TisPortType(si2)A
i op: SourceOperation i . )
Move Operation A op.inter face = sil A Jop N —declares(si2, op)A
o MO | sil: SourcePortTypye| |

(op,sil,si2) X sil.size > 2

si2: TargetPortTypye . . . .

Post: sil.size > 1 A ~declares(sil, op) A declares(si2, op)

tial practice to improve software quality. Dudney et al. [24] have defined an
initial catalog of refactoring operations for Web services including Interface
Partitioning, Interface Consolidation, Bridging Schemas or Transforms and
Web Service Business Delegate. Despite being commonly used in the Object-
Oriented Programming (OOP) paradigm and widely supported by OOP in-
tegrated development environments (IDEs), refactoring is still unexplored in
the context of service-oriented computing (SOC). In fact, SOC refactoring is
not a trivial case of recoding existing OOP refacoring techniques.

There are few WSDL refactoring toolsEI that have emerged to provide basic
operations, however these tools do not support developers in decision making
with advanced WSDL refactoring techniques. Our approach proposed in this
paper, defines and supports three WSDL refactoring operations based on the
literature [24128.27]:

— Interface Partitioning: This refactoring decompose a large, multi-abstraction
interface into multiple interfaces that each represents a distinct abstraction.

— Interface Consolidation: This refactoring merges a set of interfaces that
collectively implement a complete, single abstraction. Different service in-
terfaces that operate against the same abstraction are merged into one
interface that represents a single cohesive abstraction.

— Mowe Operation: This refactoring moves an operation from one interface
to another one. It implies deciding what the core abstraction should be,
and moving the operations that do not fit that abstraction to some other
interface(s).

Table [1| presents the set of parameters, pre and post-conditions required
for each of our adopted refactorings[29].

2.2 Motivating Example

To illustrate some of the Web service interface design anomalies, let us con-
sider an example of real-world Web service provided by Amazon, namely the

3 https://www.soapui.org/soap-and-wsdl/wsdl-refactoring
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«interface »
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: +RemoveGrant() : : MessageQueue_2 |
+ChangeMessageVisibility() - |
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|| +setvisibilityTimeout() | | MessageQueue._ |
| +GetVisibilityTimeout() | | +AddGrant() |
| +ListQueue() | | +ListGrants() |
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| -
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N — | = |
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: +GetVisibility Timeout() |
| ) . !
\ Web service container /
N
a) Original interface. efactored interface.
O 1 interf: b) Refactored interf

4

Fig. 1: The Amazon MessageQueue® service interface.

Amazon Message Queue Service (SQS)ﬂ SQS is a scalable queue service that
enables communication via message queues, allocated on the Amazon infras-
tructure. Figure depicts MessageQueue v2007, one of the main interfaces of
the SQS service providing a large number of operations, which enable deleting
a queue, getting/setting certain queue attributes/timeouts, adding/ remov-
ing/listing access permissions for a particular queue, sending messages to a
queue, receiving messages from a queue and changing the visibility of mes-
sages.

One can clearly notice that the MessageQueue interface exposes various
functionalities that do not belong together including queue attributes man-
agement, access rights management, message exchange operations. This de-
sign makes the service harder to understand and reuse in business processes.
Potential developers who aims at implementing a queue client to exchange
messages through this interface should understand the whole API documen-
tation and the WSDL specification of SQS. However, only 4 operations are
actually related to the exchange of messages.

A better SOA design practice could consider partitioning the MessageQueue
interface into appropriately-sized, cohesive and loosely coupled interfaces that
relate to the management of queue attributes, the management of access rights
and the exchange of messages as depicted in Figure This would simplify
the comprehension of the functionalities that the developer actually needs .
Indeed, in the 2008 release of the SQS service, the access rights management

4 http://docs.aws.amazon. com/AWSSimpleQueueService/2007-05-01/
SQSDeveloperGuide/
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Service antipatterns
detection rules

|

= WSDL Web Service Interface New interf
= parser Refactoring eé/\t/rﬂtfurzce
- (NSGA-III)

Service interface
(WsSDL)

Fig. 2: Approach overview.

operations (ListGrants (), AddGrant (), RemoveGrant ()) were removed from
the original MessageQueue interface as an attempt to improve the service
reusability and performance.

3 Web Services Refactoring as a Search Problem

In this section, we describe our approach for Web service interface refactoring
problem using NSGA-III.

3.1 Approach overview

A refactoring solution consists of a sequence of change operations to restruc-
ture the list of operations provided by a Web service within appropriate inter-
faces, i.e., port types. The search space is determined not only by the number
of possible refactoring operations combinations, but also by the number of
provided operation and the order in which they are applied. A heuristic-based
optimization method is used to generate refactoring solutions. The best refac-
toring solution should optimize 5 objectives: (1) maximize interfaces cohesion;
(2) minimize interfaces coupling; (3) maximize the number of interfaces; (4)
minimize the interface size difference (standard deviation of number of oper-
ations per interface); and (5) minimize the number of service antipatterns in
the generated interfaces.

Figure [2] illustrates the overall architecture of our approach to the Web
service interface refactoring problem. Our approach takes as input a Web ser-
vice interface WSDL file/url to be refactored and Web service antipatterns
detection rules [I4l[I8]. Then, it parses the WSDL sources by tree walking
up the XML hierarchy. It then analyses the parsed WSDL through structural
and semantic analysis in order to extract structural and semantic relation-
ships among operations. The extracted information will be used in an opti-
mization process based on the recent non-dominated sorting genetic algorithm
(NSGA-III) [I9] to generate the suitable refactoring solutions. The output of
our algorithm is a set of optimal refactoring solutions that should find the best
trade-off between the five objectives defined above.
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3.2 Service interface Cohesion and Coupling
3.2.1 Cohesion

Cohesion is a widely used metric in SOC to measure how strongly related are
the operations of a service interface [I3] [30] [31] . Our approach employs three
commonly used interface cohesion metrics that will drive the refactoring search
process: sequential, communicational, and conceptual cohesion. Our cohesion
metrics focus on interface-level relations, as service implementation is typically
not provided by the service providers.

Lack of sequential cohesion (LoCj.,). The sequential similarity Sseq
between two operations quantifies the sequential category of cohesion [31].
Two operations are deemed to be connected by a sequential control flow if the
output from an operation is the input for the second operation, or vice versa.
Formally, let op1,0ps € si, two operations belonging to an interface si, then
Sseq is defined as follows:

MS(I(op1), O(op2)) + MS(O(op1), I(op2))
2

)

Sseq(op1;0p2) =

where I(op) and O(op) refer to the input and output messages of the opera-
tion op, respectively; and M S(I(op1),O(op2)) is the function that returns the
message similarity between two messages I(op1) and O(ops).

To calculate message similarity (MS), we consider two messages as similar
if they have common parameters, or similar types of parameters. To calculate
MS of two messages m; and mo, our approach is based on the number of
common primitive types which corresponds to the Jaccard similarity between
my and meo, i.e., the ratio of common primitive types in m; and ms, divided
by the union of primitive types of m; and ms. The more two messages share
common primitive types, the more they are likely to be related.

The Lack of sequential cohesion LoCj., of an interface si is defined as the
complement of the average Ss., of all pairs of operations belonging to the
interface si [30]. Formally, LoCl., is defined as follows:

Z Sseq (Opia Opj)
V(opi,op;)€Esi
op;iFop;
|si]x (|si]—1) (2)
2

LoCyeq(si) =1—

Lack of communicational cohesion (LoC..,). The Communicational
Similarity Scon between two operations quantifies the communicational cat-
egory of cohesion [31I]. Two service operations are deemed to be connected
by a communication similarity, if they share (or use) common parameter and
return types, i.e., both operations are related by a reference to the same set
of input and/or output data. Formally, let m; and mg, two operations, then
Scom 1s defined as follows:
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MS(I(op1),I(op2)) + MS(O(op1), O(op2)
2

(3)

Scom (0p1,0p2) =

where I(op) and O(op) refer to the input and output messages of the opera-
tion op, respectively; and M.S(I(op1),I(op2)) is the function that returns the
message similarity between two messages I(op1) and I(ops).

The LoC,,,, of an interface si is defined as the complement of the average
Scom of all pairs of operations belonging to the interface si [30]. Formally,
LoC.op, is defined as follows:

Z Scom (Opia Opj)

V(opi,op;)€Esi

N 4 opiFop;
LoCeom(si) =1 |si|><(|25i\71) (4)

Lack of semantic cohesion (LoCjsepn). The Semantic Similarity Ssepm
between two operations quantifies the conceptual category of cohesion. We
define a concrete refinement of the conceptual cohesion, as it is regarded as
the strongest cohesion metric [32].

Ssem 1s based on the meaningful semantic relationships between two op-
erations, in terms of some identifiable domain level concept. We expand the
existing definition to get more meaningful sense of the semantic meanings em-
bodied in the operation names. To this end, we perform a lexical analysis on
the operations signature. Our lexical analysis consists of the four following
steps: (1) we first tokenize all operation names using a camel case splitter,
(2) then we use a stop word list to cut-off and filter out all common English
WordsE| from the extracted tokens, (3) then we lemmatize all extracted terms
using the Stanford’s CoreNLPﬁ to reduce each term to its basic form in order
to group together the different inflected forms of a basic word so they can be
analyzed as a same word, (4) we used Wordeﬂ7 a widely used lexical database
that groups words into sets of cognitive synonyms, each representing a distinct
concept. We use WordNet to enrich and add more informative sense to the ex-
tracted bag of words for each operation. For example, the word customer can
be used with different synonyms (e.g., client, purchaser, etc.), but pertaining
to a common domain concept.

To capture semantics or textual similarity between two bags of words A
and B extracted from two operations op; and ops respectively, we use the
cosine of the angle between both vectors representing A and B in a vector
space using tf-idf (term frequency-inverse document frequency) model. We
interpret term sets as vectors in the n-dimensional vector space, where each
dimension corresponds to the weight of the term (tf-idf) and thus n is the
overall number of terms. Formally, the Ss.,,, between op; and ops corresponds

5 http://www.textfixer.com/resources/common-english-words.txt
6

7

nlp.stanford.edu/software/corenlp.shtml

wordnet.princeton.edu
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to the cosine similarity of their two weighted vectors A and B and defined as
follows:

A-B

Ssem(0p1,0p2) = cosine(A,B) = m

(5)

The LoCje,, of an interface si is defined as the complement of the average
Ssem of all pairs of operations belonging to the interface si. Formally, LoCjsen,
is defined as follows:

Z Ssem(opi70pj)
V(opi,op;)€Esi
op; F#0p; (6)

|si]| x (]si|—1)
2

LoCgem(si) =1 —

Lack of cohesion (LoC) The LoC metric covers all possible aspects of ser-
vice interface cohesion as captured by the previously defined metrics LoCeq,
LoCom and LoCse,y,. Thus, it quantifies the total (overall) cohesion of a service
interface. LoC of an interface si is defined as follows:

LoC(st) = wseq * LoCseq(st) + Weom * LoCeom (st)+
Wsem * LoCsem (si)  (7)

where Wseq + Weom + Wsem = 1 and their values denote the weight of each
similarity measure.

3.2.2 Coupling

We define the Coupling metric between two service interfaces si; and sis as
the average similarity between all possible pairs of operations from si; and
si9. Formally, the coupling, Cpl, is defined as follows:

S Sim(op;, opj)
Vop;€siy,Vop;Esig

Cpl(siy, siz) = st [ x 52 ] (8)
where | si; | denotes the number of operations in the interface si;, and
Sim(op;, op;) is defined as the weighted sum of the different operations simi-

larity measures defined in the previous section:

Sim(oph opj) = Wseq * Sseq (Opi, Opj) + Weom * Scom(Opi’ Opj)
+ Wsem * Ssem (Opi7 opj) (9)

where Wgeq + Weom + Wsem = 1 and their values denote the weight of each
similarity measure.

In the following, we describe how coupling, cohesion and other objectives
are considered in our many-objective formulation.
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3.3 Many-objective formulation
3.8.1 NSGA-IIT

NSGA-IIT is a recent many-objective algorithm proposed by Deb et al. [19].
The basic framework remains similar to the original NSGA-II algorithm with
significant changes in its selection mechanism. Algorithm [3] gives the pseudo-
code of the NSGA-III procedure for a particular generation ¢. First, the parent
population P; (of size N) is randomly initialized in the specified domain, and
then the binary tournament selection, crossover and mutation operators are
applied to create an offspring population ;. Thereafter, both populations
are combined and sorted according to their domination level and the best
N members are selected from the combined population to form the parent
population for the next generation.

Input: H structured reference points Zs, population P
Output: population P41
: S 0,01
Q¢ < VARIATION(P;)
Rt < Pt UQ:+
(F1, F2, ...) < NONDOMINATED_SORT(R¢)
repeat
St «+ St UF;
i i+ 1
: until [S¢| > N
9: Fl +— F;
10: if |S¢| = N then
11: Pt+1 <+~ St
12: else
13: Pt+1 < U;;ll Fj
14: K+ N — |Pt+1|
15: NORMALIZE(FM | Sy, Z" | Z%)
16: [7(s),d(s)]  ASSOCIATE(St, Z™)
17 pj e s, m ((r(s)=3) 7 1:0)
18: NICHING(K, pj,(s),d(s), Z", F}, Ps41)
19: end if

SIS v

Fig. 3: NSGA-III procedure at generation t.

The fundamental difference between NSGA-II and NSGA-III lies in the
way the niche preservation operation is performed. Unlike NSGA-II, NSGA-
IIT starts with a set of reference points Z". After non-dominated sorting, all
acceptable front members and the last front F; that could not be completely
accepted are saved in a set S;. Members in S;/F} are selected right away for the
next generation. However, the remaining members are selected from F; such
that a desired diversity is maintained in the population. Original NSGA-II
uses the crowding distance measure for selecting well-distributed set of points,
however, in NSGA-III the supplied reference points (Z") are used to select
these remaining members as described in Figure [} To accomplish this, ob-
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jective values and reference points are first normalized so that they have an
identical range. Thereafter, orthogonal distance between a member in S; and
each of the reference lines (joining the ideal point and a reference point) is
computed. The member is then associated with the reference point having the
smallest orthogonal distance. Next, the niche count p for each reference point,
defined as the number of members in S;/F; that are associated with the refer-
ence point, is computed for further processing. The reference point having the
minimum niche count is identified and the member from the last front F; that
is associated with it is included in the final population. The niche count of the
identified reference point is increased by one and the procedure is repeated to
fill up population Pj1.

'
'

L5
! Reference point
]

’
’

v g Solution,”
U

.
®e—,l Normalized Hyper-plane

Reference line 3

Fig. 4: Normalized reference plane for a three-objective case

It is worth noting that a reference point may have one or more population
members associated with it or need not have any population member associ-
ated with it. Let us denote this niche count as p; for the j-th reference point.
We now devise a new niche-preserving operation as follows. First, we iden-
tify the reference point set Jmin = {j : argmin;(p;)} having minimum p;. In
case of multiple such reference points, one (§* € Jin) is chosen at random.
If p;j» = 0 (meaning that there is no associated P,y1 member to the reference
point j*), two scenarios can occur. First, there exists one or more members in
front F; that are already associated with the reference point j*. In this case,
the one having the shortest perpendicular distance from the reference line is
added to P;11. The count pj, is then incremented by one. Second, the front
F; does not have any member associated with the reference point j*. In this
case, the reference point is excluded from further consideration for the current
generation. In the event of p;, > 1 (meaning that already one member asso-
ciated with the reference point exists), a randomly chosen member, if exists,
from front F; that is associated with the reference point F; is added to Pyy.
If such a member exists, the count p;, is incremented by one. After p; counts
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are updated, the procedure is repeated for a total of K times to increase the
population size of P11 to N.

3.8.2 Solution Approach

Our solution approach uses Search-based Software Engineering (SBSE) [33]
34] that provides best practice for formulation software engineering problems
as search problems. We describe our SBSE formulation in terms of solution
representation, fitness function and change operators.

Solution Representation. To represent a candidate service refactoring so-
lution (individual), we use a vector representation. Each vector’s dimension
represents a refactoring operation. Thus, a solution is defined as a sequence
of operations applied to the service description document (WSDL) to improve
its structure. A randomly generated solution is created as follows. First, we
generate the solution length randomly between the lower (minSize) and upper
(maxSize) bounds of the solution length. Thereafter, for each chromosome di-
mension, we generate a number x between 1 and the total number of possible
operations, then we assign the ith operation to the considered dimension. For
each operation, the parameters, described in Table |1} are randomly generated
from the list of WSDL elements. Moreover, for each refactoring operation, it
is important to check that it satisfies its pre and post-conditions to guarantee
that it is feasible and that it can be legally applied.

An example of a refactoring solution applied to the MessageQueue interface
depicted in Figure [1| consists of three consequent Interface Partitioning
refactorings to extract three additional interfaces, each representing a core
abstraction.

Objective functions. Our approach aims at finding the suitable refactoring
solutions that optimize five objectives.

— Objective 1: Cohesion. The cohesion objective function is a measure of
the overall cohesion of a candidate refactoring solution. This objective func-
tion corresponds to the complement of the average cohesion score of each
interface in the service description document (WSDL) and is computed as
follows:
> LoC(si)

VsieW S

Cohesion(WS) =1 — WS

(10)
where LoC(si;) denotes the total interface lack of cohesion given by equa-
tion [9] and | WS | is the total number of interfaces in the service WS.

— Objective 2: Coupling. The coupling objective function measures the
overall coupling among interfaces in a service WS. This objective func-
tion corresponds to the average coupling score between all possible pairs
interfaces in a the refactored service WS and is calculated as follows:
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> Cpl(si;, sij)
V(sti,515)EWS
81 F#51;

Coupling(WS) = WS (WS—1) (11)
WS (W 5] -1)

where Cpl(si;, si;) denotes the coupling between the interfaces si; and si;
given by equation [8] and | ws | is the total number of interfaces in the
service W S.

Typically, coupling among service interfaces should be minimized as this
indicates that each interface covers separate functionality aspects.

Objective 3: Number of antipatterns. The presence of antipatterns
in a service interface makes it hard to understand, maintain and resue.
A good refactoring solution should reduce the number of antipatterns in
the refactored interface. To this end, we calculate the number of Service
antipatterns after applying the suggested refactorings. The number of an-
tipatterns (NA) is calculated as follows:

NAWS) = Z isAntipattern(si;) (12)
Vsi,€eWS

where the function is Antipattern(si;) return the number of antipatterns in
the interface si; using specific service antipatterns detection rules for each
antipattern type described in Section 2] An antipattern detection rule is a
combination of metrics/thresholds to be used as indicators for the existence
of an antipattern [T4[18]. Indeed, antipatterns are in conflicting consider-
ation with cohesion and coupling, for instance fixing a god object service
interface by applying the Interface Partitioning refactoring can result in an
increase in the overall coupling of the Web service.

Objective 4: Number of interfaces. Our refactoring goal is to maxi-
mize the number of interfaces in order to avoid having all operations in a
single large interface. This objective function refers to the total number of
interfaces in the WSDL document of W'S.

NI(WS) =| WS | (13)

Objective 5: Standard deviation of number of operations per in-
terface. The standard deviation of number operations per interface (STDOI)
in a WSDL document of a Web service is ought to be minimized to aim at
appropriately, equal-sized interfaces. STDOI is computed as follows:
> (st | —p)?
Vsi,€EWS
| WS |

STDOI(WS) = \} (14)
where | si; | is the count of number of operations in the interface si;; p
is the mean value of the number of operations in all the service interfaces

si; € WS; and | si; | is the count of the number of interfaces in the service
WS.
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Variation operators. In order to evolve NSGA-III individuals, we use crossover
and mutation operators. For crossover, we used a single-point crossover with
a probability p.r.ss. Given two parents, a single-point crossover cuts-off them,
i.e., their vector, a random position k, and then all genes after position k
are exchanged to produce two offspring solutions. For mutation, we use the
bit-string mutation operator with a probability p,,.:. Mutation operator picks
probabilistically one or more operations from its or their associated sequence
and replaces them by other operations and other parameters from the initial
list of possible operations as described in Table

4 Empirical study design

In this section, we present the design of the experiment conducted to evaluate
our approach. The purpose of this study is to investigate how well MOWSIR
provides refactoring solutions and compare it with available state-of-the-art
approach [13].

All the materials used in our study as well as the raw results are publicly
available in a comprehensive replication package [35].

4.1 Research questions

We designed our experiments to address the following research questions.

— RQ1. To what extent can MOWSIR improve the service interface design
quality?
This RQ aims at evaluating the impact of the suggested refactorings by
our approach on the interface design quality in terms of cohesion, coupling,
modularity and antipatterns.

— RQ2. To what extent is MOWSIR able to provide appropriate automated
refactoring changes?
This RQ aims at comparing the refactored service interfaces generated
by MOWSIR with those manually performed by developers in terms of
precision and recall. The goal is to see if our approach can actually achieve
results similar to what developers did manually.

— RQ3. Does MOWSIR improve the Web service interfaces design from a
developer’s point of view?
This RQ aims at evaluating our approach with independent developers to
assess how well is the Web services interface design generated by MOWSIR,
and give more qualitative feedback.

— RQ4. How does the proposed approach compared to random search and
other popular metaheuristic search methods?
This RQ is a ‘sanity check’ to investigate whether our formulation is ade-
quate or not. If an intelligent search method does not outperform a random
search then there is a problem with the problem formulation [33].
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4.2 Context selection

Objects. To evaluate our approach, we conducted our experiment on a
benchmark of 22 real-world services provided by Amazorﬁ and Yahodﬂ We
selected services with interfaces exposing at least 10 operations. We chose these
Web services because their WSDL interfaces are publicly available, and they
were previously studied in the literature [I3l[36]. Table [2| presents our used
benchmark.

Subjects. In the context of RQ2 and RQ3, our evaluation involved 14
independent volunteer participants including 6 industrial developers and 8
graduate students. In particular, 3 senior developers from Browser Kingﬂ
3 developers from Accunet Web Serm‘cesﬂ, 3 MSc and 5 PhD candidates in
Software Engineering. We first gathered information about the participant’s
background. All participants are familiar with service-oriented development
and SOAP Web services with an experience ranging from 4 to 9 years. The
participants were unaware of the techniques MOWSIR and Athanasopoulos et
al. neither the particular research questions, in order to guarantee that there
will be no bias in their judgement.

Baseline approach. We compare our results with a recent state-of-the art
approach by Athanasopoulos et al. [13], a Web service refactoring approach
based on a greedy algorithm to refactor and split Web service interfaces based
on different cohesion measures.To the best of our knowledge, currently there
is no significant established state-of-the-art in terms of Web service interface
refactoring. We, thus, attempt to compare our approach against Athanasopou-
los et al. as a baseline approach.

4.3 Method Analysis

To answer RQ1, we evaluate the design improvement that a candidate refacror-
ing solution suggested by MOWSIR will bring to the service. Moreover, we
compare our results with a recent state-of-the art approach by Athanasopou-
los et al. [13], a Web service refactoring approach based on a greedy algorithm
to split Web service interfaces based on different cohesion measures.

To this end, we use four metrics (i) cohesion gain (CohG), (ii) coupling
gain (CplG), (ili) modularity gain (MG), and (iv) number of antipatterns
(NA). For CohG and CplG, we calculate the difference between the service
cohesion (cf. Equation and coupling (cf. of the services after and before
refactoring. Modularity evaluates the balance between coupling and cohesion
by combining them into a single measurement. The aim is to reward increased
cohesion with a higher modularity score and to punish increased coupling
with a lower modularity score. It has been proved that the higher the value

8 http://aws.amazon.com/

9 ldeveloper.searchmarketing.yahoo.com/docs/V6/reference/
10 http://www.browserkings.com
11 http://www.accunet.us
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Table 2: Amazon and Yahoo benchmark overview.

Service interface Provider ID #operations  LoC
AutoScalingPortType Amazon 11 13 0,91
MechanicalTurkRequesterPortType = Amazon 12 27 0,87
AmazonFPSPorttype Amazon 13 27 0,94
AmazonRDSv2PortType Amazon 14 23 0,82
AmazonVPCPortType Amazon 15 21 0,90
AmazonFWSInboundPortType Amazon 16 18 0,87
AmazonS3 Amazon 17 16 0,87
AmazonSNSPortType Amazon 18 13 0,92
ElasticLoadBalancingPortType Amazon 19 13 0,87
MessageQueue Amazon 110 13 0,92
AmazonEC2PortType Amazon 111 87 0,96
KeywordService Yahoo 112 34 0,89
AdGroupService Yahoo 113 28 0,81
UserManagementService Yahoo 114 28 0,95
TargetingService Yahoo 115 23 0,81
AccountService Yahoo 116 20 0,93
AdService Yahoo 117 20 0,85
CompaignService Yahoo 118 19 0,88
BasicReportService Yahoo 119 12 0,94
TargetingConverterService Yahoo 120 12 0,72
ExcludedWordsService Yahoo 121 10 0,69
GeographicalDictionaryService Yahoo 122 10 0,81

of modularity, the better is the design quality [37]. The modularity metric is
computed as the average of the overall cohesion and coupling, whereas the MG
refers to the difference of the modularity after and before refactoring.

To answer RQ2, we asked our group of 14 independent developers de-
scribed in Section [£.2] to manually refactor each of the studied Web service
(cf. Table [2)) in order to improve their interface readability and understand-
ability. The resulted interfaces by the developers were considered as the ground
truth, allowing the calculation of the precision and recall of our approach. We
compute he precision and recall scores as follows:

TP
Precision = ————— (15)
TP+ FP
TP
Recall = ———— (16)
TP+ FN

where TP (True Positive) corresponds to an interface identified by the inde-
pendent developer and also by the proposed approach; FP (False Positive)
corresponds an interface identified by the proposed developer, but not by the
independent expert; FN (False Negative) corresponds to an interface identified
by the independent developer, but not by the proposed approach.

Note that we computed TP, FP and FN at a fine-grained level, meaning
that the interface identified by the proposed approach and by the independent
developer should match with a Jaccard similarity of at least 80% in terms of
their operations.

To answer RQ3, we asked our 14 participants to evaluate the relevance of
three refactoring interfaces, for each of the 22 services: (i) the interfaces re-
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sulted by MOWSIR, (ii) the interfaces resulted by Athanasopoulos et al., and
(ii1) random refactored interfaces using random search. The random refactor-
ing option is considered as a ‘sanity check’ to make sure whether participants
have seriously answered this study, as a random refactoring does not make
sense.

To this end, we used a survey hosted in eSurveyPrE an online Web
application. Specifically, for each refactored interface, we provide a high-level
description of each service interfaces before and after refactoring using UML
classes (as represented in Figure. Then, the participants was asked to answer
the following question for each refactoring solution:

“Does the new refactored interfaces improve the understandability of
the service?”

Possible answers follow a five-point Likert scale [38] to express their level of
agreement: 1: Strongly disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Fully agree.
Note that the Web application used for our survey allowed our participants to
save and complete the study in multiple rounds within a maximum of 7 days
available to respond. At the end of the 7 days we collected the 14 complete
questionnaires.

To draw statistically sound conclusions, we compared the participants eval-
uations of MOWSIR, Athanasopoulos et al. and Random refactorings using
the Wilcoxon rank sum test in a pairwise fashion [39] in order to detect sig-
nificant efficiency differences between MOWSIR and Athanasopoulos et al..
Moreover, to assess the efficiency difference magnitude, we studied the effect
size based on the Cliff’s Delta statistic [40] that will we detail in Section

To answer RQ4, we compare our NSGA-III formulation against random
search (RS) [41] in terms of search space exploration. The goal is to make sure
that there is a need for an intelligent method to explore our huge search space
of possible refactoring solutions. In addition, to justify the adoption of NSGA-
IIT, we compared our approach against two other popular search algorithms
namely Indicator-Based Evolutionary Algorith (IBEA) [42], and the Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA /D) [43].
RQ4 serves the role of a sanity check and standard ‘baseline’ question asked
in any attempt at an SBSE formulation [33].

Unlike mono-objective search algorithms, multi and many-objective evolu-
tionary algorithms return as output a set of non-dominated (also called Pareto
optimal) solutions obtained so far during the search process. A number of per-
formance metrics for multi-objective optimization have been proposed and
discussed in the literature, which aim to evaluate the performance of multi-
objective evolutionary algorithms. Most of the existing metrics require the
obtained set to be compared against a specified set of Pareto optimal refer-
ence solutions. In this study, the generational distance (GD)[44] and inverted
generational distance (IGD) [45] are used as the performance metrics since
thay have been shown to reflect both the diversity and convergence of the
obtained non-dominated solutions.

12 http://www.esurveyspro.com
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— Generational Distance (GD): computes the average distance between the
set of solutions, S, from the algorithm measured and the reference set RS.
The distance between S and RS in an n objective space is computed as
the average n-dimensional Euclidean distance between each point in S and
its nearest neighbouring point in RS. GD is a value representing how “far”
S is from RS (an error measure) [44].

— Inverted Generational Distance (IGD): is used as a performance indicator
since it has been shown to reflect both the diversity and convergence of
the obtained non-dominated solutions [45]. The IGD corresponds to the
average Euclidean distance separating each reference solution set (RS) from
its closest non-dominated one S. Note that for each system we use the set
of Pareto optimal solutions generated by all algorithms over all runs as
reference solutions.

Moreover, we use the Modularity Gain (MG) and Number of Antipatterns
(NA) measures as performance indicators to evaluate the efficiency of each
algorithm.

4.4 Inferential Statistical Tests Used

Due to the stochastic nature of the employed algorithms, they may produce
different results when applied to the same problem instance over different runs.
In order to cope with this stochastic nature, the use of statistical testing is
essential to provide support and draw statistically sound conclusions derived
from analyzing such data [46]. To this end, we used the Wilcoxon rank sum
test in a pairwise fashion [47,?] in order to detect significant performance
differences between the algorithms under comparison. The Wilcoxon test does
not require that the data sets follow a normal distribution since it operates
on values’ ranks instead of operating on the values themselves. We set the
confidence limit, «, at 0.05. In these settings, each experiment is repeated
31 times, for each algorithm and for each system. The obtained results are
subsequently statistically analyzed with the aim to compare our NSGA-IIT
approach with NSGA-II, MOEA/D and random search (RS).

While the Wilcoxon rank sum test verifies whether the results are statis-
tically different or not, it does not give any idea about the difference mag-
nitude. To this end, we investigate the effect size using Cliff’s delta statistic
[40). The effect size is considered: (1) ‘negligible’ if | d |< 0.147, (2) ‘small’
if 0.147 <| d |< 0.33, (3) ‘medium’ if 0.33 <| d |< 0.474, or (4) ‘large’ if
| d|>0.474.

4.5 Parameter Tuning and Setting
we set the different parameter values of our algorithm by trial-and-error method,

which is commonly used by the SBSE community [46/48]. The initial popu-
lation/solution of NSGA-III is completely random. The stopping criterion is
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Fig. 5: Quality improvements achieved by MOWSIR and Athanasopoulos et
al. in terms of CohG, CplG, MG, and NA.

when the maximum number of fitness evaluations, set to 350,000, is reached.
After several trial runs of the simulation, the parameter values of the algo-
rithm is fixed to 100 solutions per population (popSize) and 3,500 iterations.
For the variation operators, we set crossover rate, pcross, is set to 0.9 and
mutation, Py, at 0.4 probability. We used a high mutation rate to ensure
the diversity of the population and avoid premature convergence to occur [49].
After several trial runs of the simulation, these parameter values are fixed.
Indeed, there are no general rules to determine these parameters, and thus we
set the combination of parameter values by trial-and-error, a method that is
commonly used by the SBSE community [461148].

5 Study results

This subsection presents the results obtained for RQs 1-4 defined in Section

Z1

5.1 Results for RQ1

Figure [f] presents the results achieved by both MOWSIR and Athanasopoulos
et al. in terms of CohG, CplG, MG and NA. We expected an increase of
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cohesion (desired effect) due to the split of different operations exposed in
the original interface. However, we also expected an increase of coupling (side
effect), since splitting an interface into several interfaces typically results in
an increment of the total dependencies between these interfaces. For these
reasons coupling and cohesion should be measured together to make a proper
judgment on the complexity and quality of the refactored interfaces (MG).

As depicted in Figure for almost all the services, the cohesion is signifi-
cantly improved by both approaches. In particular, the improvement achieved
by Athanasopoulos et al. is better than MOWSIR. However, Figure [5al shows
the coupling results which is decreased compared to the initial coupling. In-
deed, this is natural as most of the original services has a single interface
(thus its coupling = 0). Consequently, any interface restructuring will result
in some connections between interfaces due to the semantic similarity that is
unlikely to be equals to zero and due to some shared (primitive) data types
in operation messages. As reported in figure [fb) MOWSIR has remarkably
achieved low coupling for all the services. Indeed, improvement of cohesion
usually comes at the expense of increase in coupling and vice versa.

Overall, we assume that a candidate refactoring is a good design solution if
the improvement of cohesion is significantly greater than the deterioration of
coupling. This balance is captured by the MG metric as reported in Figure
For both Amazon and Yahoo services, interesting modularity improvements
was achieved by MOWSIR with an average of 0.07, while Athanasopoulos et al.
approach turns out to be less effective with an average of 0.04. Furthermore, as
reported in Figure[5d, Athanasopoulos et al. produced 3 out of 22 services with
deteriorated modularity due to the high coupling resulted in the new interfaces,
specifically for AmazonS3 (I7), AmazonEC2 (I11) and AccountService (I16).

On the other hand, Figure [d| reports the number of resulted antipatterns
in the refactored services by each approach. On average, MOWSIR generated
refactored interfaces with 2.3 antipatterns per service, while 5.1 are resulted by
Athanasopoulos et al.. Indeed, although antipatterns are sometimes unavoid-
able in service interfaces, reducing them is necessary to improve the service
reusability, extendibility and performance. Moreover, we observed that most
of detected antipatterns in MOWSIR are related to the chatty/CRUDy ser-
vice antipattern. For instance, in the AmazonEC2, most of the operations are
already setters, getters or CRUDy operations leading to several instances of
chatty and CRUDy interfaces.

5.2 Results for RQ2

Table [3] reports the results for RQ2 in terms of precision and recall of each of
MOWSIR and Athanasopoulos et al.. For the 22 services, MOWSIR achieve an
average precision of 81% and an average recall of 80% comparing the manual
refactoring performed by developers. We consider that these values of precision
and recall are high since a deviation between the proposed solution and the
manual one may not be an indication of some wrong recommendations but
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it could be just another possible good solution. In fact, there is no single
good design solutions of Web service interface but multiple ones. On the other
hand, we noticed that Athanasopoulos et al. tends to produce more interface
splits generating several fine-grained interfaces. Indeed, fine-grained interfaces
tend to have higher cohesion. This resulted in low precision and recall with
an average of 27% and 33%, respectively. We noticed that, Athanasopoulos et
al. generated in many cases, several interfaces with only one operation. Such
fine-grained interfaces will make the service more complex and severely limit
its reusability as core abstractions will be split into several small and scattered
interfaces.

We noticed that all fourteen participants were able to identify more inde-
pendent, and sometimes completely disconnected interfaces from the original
interface. These interfaces are usually the best candidates for split since they
present core abstractions and do not bare strong dependency from the rest of
the original interface.

Another interesting observation was that MOWSIR successfully identified
design solutions with 100% of precision and recall in 7 out of the 22 services
while Athanasopoulos et al. succeeded to do so only twice. On the other hand,
Athanasopoulos et al. turns out to completely fail in identifying appropriate
design in 4 cases out of 22 with 0% of precision and recall.

Finally, we identify a main drawback of the Athanasopoulos et al.’s ap-
proach [I3] from our perspective. Diving Web service interface refactoring
with only cohesion metrics would not be enough, and coupling, size of inter-
faces, and number of antipatterns are as important as cohesion for good service
interface design.

5.3 Results for RQ3

Table (] reports the results achieved by our study for the developers assess-
ment. We observed that for all the studied services, the participants rated the
MOWSIR interfaces with an average score of 3.86, an average of 2.59 for the
Athanasopoulos et al. approach, while an average of 1.21 was obtained for the
random refactorings. This provides evidence that the our solutions are more
adjusted to developers needs than those of Athanasopoulos et al.. In addition,
as reported in table 4] the rating results of MOWSIR and Athanasopoulos et
al. was statistically different with a ‘large’ effect size, except for the services
113 and 120, the effect size was negligible, as the refactoring results was similar
with 100% of precision and recall (Table [3)).

It is worth to note that during the evaluation, we discovered some common
operations provided by different Amazon services. For example, we found that
AmazonVPCPortType and AmazonEC2PortType have several common opera-
tions including CreateVpc (), DescribeVpcs (), DeleteVpc (), DeleteVpnConnection(),
CreateVpnGateway () and DeleteVpnGateway (). More interestingly, some gen-
erated interfaces from both AmazonVPCPortType and AmazonEC2PortType ex-
pose exactly the same operations. Although this redundancy can be related to
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Table 3: Comparison results of MOWSIR and Athanasopoulos et al. in terms
of precision and recall.

MOWSIR Athanasopoulos et al.
Web service Precision  Recall  Precision Recall
AutoScalingPortType 75% 75% 17% 33%
Mechanical TurkRequester 100% 100% 0% 0%
AmazonFPSPorttype 80% 89% 27% 30%
AmazonRDSv2PortType 83% 83% 20% 20%
AmazonVPCPortType 100% 100% 0% 0%
AmazonFWSInboundPortType 67% 67% 40% 33%
AmazonS3 5% 60% 17% 20%
AmazonSNSPortType 80% 67% 17% 20%
ElasticLoadBalancingPortType 50% 67% 0% 0%
MessageQueue 75% 67% 50% 60%
AmazonEC2PortType 82% 90% 14% 18%
KeywordService 78% 88% 11% 14%
AdGroupService 100% 100% 100% 100%
UserManagementService 100% 100% 36% 71%
TargetingService 83% 83% 13% 20%
AccountService 100% 100% 7% 17%
AdService 80% 57% 25% 17%
CompaignService 67% 50% 14% 25%
BasicReportService 100% 100% 57% 80%
TargetingConverterService 100% 100% 100% 100%
ExcludedWordsService 67% 67% 33% 50%
GeographicalDictionaryService 33% 50% 0% 0%
Average 81% 80% 27% 33%

some business constraints/factors, best design practice in SOA suggests that
common core abstractions could be implemented in separate service interfaces,
making them easier to maintain, evolve and reuse.

An interesting point here was that the participants confirmed that the
interfaces refactored by MOWSIR, tend to be more appropriately sized and
describe distinct abstractions with less overlap. We asked one of the partici-
pants to comment on his decision for the generated Amazon EC2 interfaces,
he claimed: “This new interface structure is more understandable to me, it
should allow the service to be reused and maintained more effectively”.

Moreover, we noticed that in most of the cases, Athanasopoulos et al. ap-
proach tend to split core abstractions into many interfaces. For instance, in
AmazonEC2, operations related to image management was dispersed through
many other interfaces: operations RegisterImage() and DescribeImages()
are assigned to a new interface, DescribeImageAttribute() is in another
interface, CreateImage() is in another interface, ResetImageAttribute(),
DeregisterImage() and ModifyImageAttribute() are in another interface
along with other unrelated operations [I3]. We asked another participant com-
ment on this new design, his answer was: “Such scattered abstractions will
result in several connections between interfaces for no benefit as a large num-
ber of resulted interfaces are not representing core abstractions”. On the other
hand, we noticed that due to the high resulted coupling, most of the identified
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Table 4: Developer’s evaluation of the resulted Web service interfaces design
for MOWSIR (M), Athanasopoulos et al. (A), and random refactorings (R).

. Ratings Statistical tests
Service
D M Al R+ M* vs A¥ M* vs RT
p-value effect size p-value effect size
11 3,85 2,57 1,21 <0,01 0.765 (large) <0,01 0.928 (large)
12 4,00 2,43 1,07 <0,01 0.826 (large) <0,01 0.928 (large)
13 3,92 243 1,21  <0,01 0.877 (large) <0,01 0.928 (large)
14 3,79 2,50 1,29 <0,01 0.729 (large) <0,01 0.928 (large)
15 3,79 2,50 1,36  <0,01 0.866 (large) <0,01 0.928 (large)
6 4,00 2,29 1,07  <0,01 0.87 (large) <0,01 0.928 (large)
17 4,00 2,21 1,21 <0,01 0.915 (large) <0,01 0.928 (large)
18 3,64 2,14 1,36 <0,01 0.94 (large) <0,01 0.928 (large)
9 3,92 221 121 <001 0.906 (large) <0,01 0.928 (large)
110 3,93 2,36 1,36 <0,01 0.746 (large) <0,01 0.928 (large)
111 3,71 1,71 1,14 <0,01 0.775 (large) <0,01 0.928 (large)
12 3,93 250 1,21  <0,01 0.639 (large) <0,01 0.928 (large)
113 3,71 3,71 1,07 No. diff -0,23 (neglig.) <0,01 0.928 (large)
114 3,79 2,64 1,14  <0,01 0.81 (large) <0,01 0.928 (large)
115 4,07 2,57 1,14 <0,01 0.75 (large) <0,01 0.928 (large)
116 3,71 2,71 1,35 <0,01 0.751 (large) <0,01 0.928 (large)
117 3,85 3,00 1,29  <0,01 0.562 (large) <0,01 0.928 (large)
118 4,00 2,93 1,29 <0,01 0.58 (large) <0,01 0.928 (large)
119 3,93 2,64 1,00 <0,01 0.775 (large) <0,01 0.928 (large)
120 4,00 4,00 1,36  No.diff  -0,23 (neglig.)  <0,01 0.928 (large)
121 3,64 2,36 1,07 <0,01 0.873 (large) <0,01 0.928 (large)
122 3,64 250 1,15  <0,01 0.843 (large) <0,01 0.785 (large)
Avg. 3,86 2,59 1,21
* MOWSIR * Athanasopoulos et al. + Random refactorings

Athanasopoulos et al. interfaces expose operations related to different core
abstractions. For instance, for the same Amazon EC2 service, a suggested in-
terface by Athanasopoulos et al. contains DetachVolume (), AttachVolume ()
and DescribelInstanceAttribute (). Results show that this design is unlikely
to be desirable for developers [I3]. Moreover, the obtained results suggest that
reducing coupling and antipatterns is as important metric as cohesion to drive
Web service interface refactoring.

5.4 Results for RQ4

Figure [6] and Table [6] present the results of the performance indicators GD,
IGD, MG and NA and the results of the statistical significance and effect
size tests, respectively. For each pair of algorithms, we have eight experiments
(four performance indicators x two categories of Web services, Amazon and
Yahoo). We observe that NSGA-III clearly outperforms RS in all the studied
Amazon and Yahoo services with a Cliff’s delta effect size of ‘large’ in the
four performance indicators GD, IGD, MG, and NA. This is mainly due to
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Table 5: Statistical significance p-value (a=0.05) and Cliff’s d effect size com-
parison results of NSGA-III against IBEA, MOEA/D and RS in terms of
Generational Distance (GD), Inverted Generational Distance (IGD), Modu-
larity Gain (MG), and Number of Anti-patterns (NA). A statistical difference
is accepted at p < 0.05.

Pairs of Quality Amazon Yahoo
Algorithms | measures p-value [ d p-value d
GD 0.028 -0.347 (medium) | 9.773e-05 -0.661 (large)
NSGA-IIT
IGD 0.0001 -0.587 (large) 0.04691 -0.229 (small)
vs
IBEA MG 0.0035 0.408 (medium) 0.001 0.481 (large)
NA 0.0006 -0.452 (medium) 0.001 -0.42 (medium)
NSGA-III GD 1.229e-06 -0.993 (large) 1.821e-06 -0.959 (large)
IGD 1.227e-06 -1 (large) 1.226e-06 -0.993 (large)
vs
MOEA /D MG 2.249e-05 0.758 (large) 2.595e-06 0.802 (large)
NA 0.0001 -0.612 (large) 1.762e-05 -0.637 (large)
NSGAIII GD 1.224e-06 -1 (large) 1.231e-06 -1 (large)
IGD 1.23e-06 -1 (large) 1.23e-06 -1 (large)
vs
RS MG 1.229e-06 0.967 (large) 1.233e-06 0.967 (large)
NA 1.232e-06 -1 (large) 1.231e-06 -1 (large)

the large search space to explore to find suitable combinations of refactoring
operations. This requires a heuristic-based search rather than random search.

In more detail, Figurd] and Table [f]report our results for RQ4. We observe
that over 31 runs, NSGA-III outperforms IBEA in 3 out of 8 experiments
with ‘large’ effect size. In the cases of Amazon, the effect size was ‘medium’
in terms of GD, MG, and NA. For the Yahoo services, NSGA-III achieved
a ‘small’ effect size with IBEA in terms of IGD, and ‘medium’ effect size in
terms of NA. Interestingly, NSGA-III significantly outperforms MOEA /D with
a ‘large’ effect size in all the 8 experiments. We also noticed that NSGA-IIT
tends to achieve relatively better MG and NA results for Amazon Web services

which are larger on average than the Yahoo services, compared to IBEA and
MOEA/D.

Furthermore, we can also get a more informative sense of the distributions
of results for the three competitive algorithms from the boxplots shown in
Figure [ From these boxplots, we can see that the variance in the results
from NSGA-III is lower for both GD and IGD than the IBEA, MOEA /D and
RS. The obtained results suggest that this is because there are simply fewer
solutions that converge toward the last generation of NSGA-IIIL. In addition,
because GD and IGD metrics combine the information of convergence and
diversity, the results indicate that NSGA-III has the best overall performance.

To conclude, the obtained results provide evidence that NSGA-III is the
best search technique for the Web service remodularization problem. Conse-
quently, we can conclude that there is empirical evidence that our formulation
passes the sanity check (RQ4).
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Fig. 6: Boxplots for the quality measures GD, IGD, MG, and NA results over
31 independent simulation runs of NSGA-III, IBEA, MOEA /D, and RS.

6 Threats to validity

In this section, we identify factors that may affect the validity of our study.
A possible threat to construct validity can be related to the set of ground
truth to calculate precision and recall with refactorings performed manually
by developers.

An external threat can be related to the studied services. Although we
used 22 real-world Web services provided by Amazon and Yahoo, from dif-
ferent application domains and ranging from 10 to 87 operations, we can not
generalize our results to other services and other technologies, e.g., REST
services. As part of our future work, we plan to test our approach with an
extended benchmark of Web services.

An internal threats to validity can be related to the knowledge and ex-
pertise of the human evaluators. Inadequate knowledge could lead to limited
ability to assess the quality of an interface. We mitigate this threat by se-
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lecting participants having from 4 to 9 years experience with service-oriented
development and familiar with SOAP Web services. Moreover, to avoid bias in
the experiment none of the authors have been involved in this evaluation. In
addition, we randomized the ordering in which the MOWSIR, Athanasopoulos
et al. and random refactorings were shown to participants, to mitigate any sort
of learning or fatigue effect.

7 Related Work

This section reviews the related literature in three different areas (7) Web ser-
vice antipatterns, (i) software refactoring, and (4) software modularization.

Web service antipatterns. Detecting antipatterns, i.e., bad design and
implementation practices, in Web services and SOA is a relatively new field.
The first book in the literature was written by Dudney et al. [24] and pro-
vides informal definitions of a set of Web service antipatterns. More recently,
Rotem-Gal-Oz described the symptoms of a range of SOA antipatterns [27].
Furthermore, Kral et al. [I7] listed seven “popular” SOA antipatterns that vio-
late accepted SOA principles. Recently, Ouni et al. [T4}[I8] proposed a search-
based approach to automatically detect Web service antipatterns including
the god object Web service, fine-grained Web service, ambiguous Web service
and semantically unrelated operations in port types. The proposed approach
uses genetic programing identify Web service interfaces that present symp-
toms of poor design practices. Moha et al. [50] have proposed a rule-based
approach called SODA for SCA systems (Service Component Architecture).
Later, Palma et al. [I5] extended this work for Web service antipatterns in
SODA-W. The proposed approach relies on declarative rule specification us-
ing a domain-specific language (DSL) to specify/identify the key symptoms
that characterize an antipattern using a set of WSDL metrics. In other work
[51], the authors presented a repository of 45 general antipatterns in SOA, to
support developers to work with clear understanding of patterns in phases of
software development and so avoid many potential problems.

Software refactoring. Software refactoring have been practiced for more
many years [28]. It is widely recognized that, if applied well, refactoring brings
a lot of advantages to improve software readability, maintainability and ex-
tendibility. One of the first attempts to address service interface refactoring
was by Athanasopoulos et al. [I3]. Although their approach was able to im-
prove cohesion, it is not perfectly adjusted to the developers’ needs [I3]. Ouni
et al. [52] proposed a graph partioning-base approach namely SIM for spliting
service APIs based on their cohesion and semantic inofrmation. The proposed
approach aims at identified chains of operations that are strongly connected.
Another work by Romano et al. [53l[54] addressed the problem of fat inter-
faces clustering based on the Interface Segregation Principle in order to split
interfaces based on methods invoked by groups of clients. However, the most
notable limitation of these existing works is that coupling between interfaces
and antipatterns are not considered which resulted in many cohesive but highly
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coupled interfaces. Our approach addresses explicitly this issue limitation to
improve the modularization quality. In another study, Rodriguez et al. [55]
50] and Mateos et al. [57] provided a set of guidelines for service providers
to avoid bad practices while writing WSDLs. Based on some heuristics, the
authors detected eight bad practices in the writing of WSDL for Web services.

A lot of efforts has been devoted to refactoring of object-oriented (OO)
applications. Our approach is more closely similar to Fxztract Class refactoring
in OO systems, which employs metrics to split a large class into smaller, more
cohesive classes [28]. Bavota et al. [58[59] have proposed an extract class ap-
proach to split a large class into smaller cohesive classes using structural and
semantic similarity measures. Fokaefs et al. [60] proposed an automated ex-
tract class refactoring approach based on a hierarchical clustering algorithm to
identify cohesive subsets of class methods and attributes. However, the Extract
Class refactoring is not applicable in the context of Web services as typically
the Web service source code is not publicly available, and the development
paradigm, used technologies and metrics are different.

Software modularization. Several studies addressed the problem of clus-
tering and remodularization of OO applications in terms of packages organi-
zation. Anquetil et al. [6I] used cohesion and coupling of modules within a
decomposition of OO systems to evaluate its quality. Magbool et al. [62] used
hierarchical clustering in the context of software architecture recovery and
modularization. On the other hand, Mancoridis et al. [63] proposed the first
search-based approach to address the problem of software modularization us-
ing a single objective approach. Harman et al. [64] used a genetic algorithm
to improve subsystems decomposition by combining several quality metrics
including coupling, cohesion, and complexity. Recently, Mkaouer et al. [20]
have proposed a multi-objective approach to finding optimal remodulariza-
tion solutions that improve the structure of packages, minimize the number
of changes, preserve semantics coherence, and reuse the history of changes.
Despite these advances in OO systems modularization, still this problem is
not widely explored in the context of service interfaces.

8 Conclusion and Future Work

In this paper, we have proposed a many-objective search-based approach,
namely MOWSIR to refactor Web service interfaces and validated it on 22
real-world Web services. Our approach used NSGA-III to improve the struc-
ture of Web service interfaces while fixing detected antipatterns. Our results
provide evidence that MOWSIR, performs significantly better than state-of-the
art techniques in terms of design quality improvement. Moreover, we evaluated
our approach with 14 developers since we strongly believe that an automated
approach must suggest refactoring solutions that fit with developers expecta-
tions. The obtained results show that our generated refactoring solutions are
similar to manually performed refactorings by developers at 81% of precision
and 80% of recall, on average.



Refactoring Web Services Interface Using Many-Objective Search 29

As future work, we plan to extend our work to consider additional Web-

services in our validation to generalize our findings, and by giving weights to
the different antipattern types. In addition, we are planning to extend our
refactoring types and balance between refactorings in the code and interface
levels. Furthermore, we will consider the programmer in-the-loop when iden-
tifying the refactoring solutions.
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