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theirs. I should also thank Çagliyan Kurdak as well as his
students Yun Suk Eo and Alexa Rakoski for their collabora-
tion over the years, as well as Trevor Bailey for discussions
about thermal measurements in general. Since these mea-
surements would not be possible without materials to work
on, I should thank Ctirad Uher for providing the bismuth
crystals, as well as Sara Haravifard for providing the stron-
tium copper borate samples. Finally, I must thank my par-
ents Michele and Robert Tinsman for helping support me at
every stage of my academic journey.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 The Thermal Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thermal Hall Conductivity in General . . . . . . . . . . . . . . . . . . . 1
1.2 Origin of the Thermal Hall Conductivity in Metals . . . . . . . . . . . . . 8
1.3 The Thermal Hall Conductivity in Bismuth . . . . . . . . . . . . . . . . 13
1.4 Performing Thermal Hall Effect Measurements . . . . . . . . . . . . . . 19

2 Strontium Titanate Microthermometers . . . . . . . . . . . . . . . . . . . . . 27

2.1 Thermometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Quantum Criticality in Strontium Titanate . . . . . . . . . . . . . . . . . 32
2.3 Strontium Titanate Thermometers . . . . . . . . . . . . . . . . . . . . . 40
2.4 Measuring the Thermal Hall Effect in Bismuth . . . . . . . . . . . . . . . 45
2.5 Annealing Strontium Titanate in Oxygen-18 . . . . . . . . . . . . . . . . 50

3 Thermal Measurements of Strontium Copper Borate . . . . . . . . . . . . . . 59

3.1 The Shastry-Sutherland Model . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Strontium Copper Borate as a Bosonic Topological Insulator . . . . . . . 66
3.3 Low Temperature Thermal Conductivity in SCBO . . . . . . . . . . . . . 76

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

iv



LIST OF FIGURES

1.1 Thermal Hall Isotherms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Thermal Hall Temperature Profiles . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Electrical Transport Geometries . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Crystal Strucure of Bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Fermi Pockets in Bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Hall Conductivity in Bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Thermal Hall Conductivity in Bismuth up to 3 T . . . . . . . . . . . . . . . . 18
1.8 Temperature Dependence of RTH in Bismuth up to 3 T . . . . . . . . . . . . . 18
1.9 Schematic of a Thermal Hall Effect Measurement . . . . . . . . . . . . . . . . 20
1.10 Raw Temperature Gradient Data . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Example Cernox Field Calibration . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Quantum Critical Ferroelectric Phase Diagram . . . . . . . . . . . . . . . . . 34
2.3 Dielectric Constant of Strontium Titanate . . . . . . . . . . . . . . . . . . . . 36
2.4 Sensitivity of STO Test Device . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Dielectric Constant of Potassium Tantalate . . . . . . . . . . . . . . . . . . . 39
2.6 A Pair of STO thermometers . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 Example STO Thermometer Calibration . . . . . . . . . . . . . . . . . . . . . 42
2.8 Field Response of an STO Thermometer . . . . . . . . . . . . . . . . . . . . . 43
2.9 Transverse Temperature Gradient of a Bismuth Crystal . . . . . . . . . . . . . 46
2.10 Comparison Between Thermocouples and STO Thermometers . . . . . . . . . 47
2.11 Thermal Hall Conductivity of Bismuth . . . . . . . . . . . . . . . . . . . . . 48
2.12 Strontium Titanate Annealing System . . . . . . . . . . . . . . . . . . . . . . 51
2.13 Annealed STO Thermometer Reproducability Tests . . . . . . . . . . . . . . . 54
2.14 Annealed STO Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.15 Field Response of an Annealed STO Thermometer . . . . . . . . . . . . . . . 57

3.1 Frustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 The Shastry-Sutherland Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Crystal Structure of Strontium Copper Borate . . . . . . . . . . . . . . . . . . 64
3.4 Magnetic Moment of an SCBO Sample . . . . . . . . . . . . . . . . . . . . . 65
3.5 Triplon Bands in SCBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Low Temperature Heat Capacity of SCBO . . . . . . . . . . . . . . . . . . . . 69
3.7 Chiral Edge Modes in SCBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 SCBO Thermal Hall: Negative Result . . . . . . . . . . . . . . . . . . . . . . 74
3.9 Low Temperature Thermal Conductivity of SCBO . . . . . . . . . . . . . . . 78

v



3.10 Temperature Dependence of SCBO Thermal Conductivity . . . . . . . . . . . 79
3.11 Example Fits of SCBO Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.12 SCBO Fitting Parameters vs. Temperature . . . . . . . . . . . . . . . . . . . . 84
3.13 Small Thermal Hall Conductivity in SCBO . . . . . . . . . . . . . . . . . . . 85
3.14 Spin Superlattices in SCBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.1 Strontium Titanate Annealing System . . . . . . . . . . . . . . . . . . . . . . 102

vi



LIST OF TABLES

1.1 Example Thermal Hall Angles . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Annealed STO Thermometers . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



LIST OF APPENDICES

A Python Source Code for Finite Element Simulations of the Thermal Hall Effect 92

B Operation of the Denton Evaporator . . . . . . . . . . . . . . . . . . . . . . . 95

C Operation of the Oxygen-18 Annealing System . . . . . . . . . . . . . . . . . . 101

viii



ABSTRACT

Thermal measurements are an important tool for experimental condensed matter physics.

They are the most general methods available: any excitation in a solid will carry energy, and

thus heat. Such measurements require accurate and precise temperature readings at mul-

tiple points on a crystal, often only a few millimeters apart. This is especially important

when making thermal Hall effect measurements, which require precision in intense mag-

netic fields that can interfere with resistive thermometers. We have exploited the strongly

temperature dependent dielectric permittivity of strontium titanate to make capacitive ther-

mometers which are not subject to this interference. To test these thermometers, thermal

Hall effect measurements were carried out on crystalline bismuth. Bismuth is one of the

best known semimetals, a material which hosts both electrons and holes with high mobility.

With the strontium titante microthermometers, we were able to conduct measurements up

to 10 T and at temperatures down to 40 K. A large thermal Hall coefficient is measured,

indicative of high mobility carriers. Another application of these techniques is thermal

measurements of frustrated magnets. These systems often have itinerant excitations which

do not carry charge, making thermal measurements all the more important. We discuss

our measurements on strontium copper borate, in which pairs of spin-1/2 sites are paired

up in strongly coupled dimers. The magnetic excitations of this system are mobile triplet

states, called triplons. It has been predicted that these triplet bands could have non-trivial

topology, making strontium copper borate a bosonic topological insulator, and resulting

in a specific thermal Hall effect signal. Experimental measurements in this system fail to

find this signal, casting doubt on this theory. However, we observe magnetic field depen-

dent thermal conductivity at temperatures below 1 K, where the triplet excitations should be

ix



frozen out. This may be related to another phenomena found in this material: the formation

of spin superlattices.

x



CHAPTER 1

The Thermal Hall Effect

1.1 Thermal Hall Conductivity in General

The thermal Hall effect is the thermal analogue of the much more well known (electrical)

Hall effect. As the Hall effect can be understood as generalizing the electrical conductivity

σ to a tensor in Ohm’s law:

j = σE⇒

jx
jy

 =

 σxx σxy

−σxy σyy


Ex
Ey


the thermal Hall effect generalizes the thermal conductivity κ to a tensor in Fourier’s law:

q = −κ∇u⇒

qx
qy

 = −

 κxx κxy

−κxy κyy


∂xu
∂yu


where u is the temperature field and q is the heat current. Before discussing the origin of

of the thermal Hall conductivity κxy, we should establish how heat flows through such a

material. Let’s assume we have an isotropic material (i.e. κxx = κyy). The conductivity

tensor can be rewritten as κxx κxy

−κxy κxx

 = κxx

 1 κxy/κxx

−κxy/κxx 1

 = κxx

 1 tan θH

− tan θH 1


1



where θH = arctanκxy/κxx is the definition of the thermal Hall angle. Writing down the

heat equation, and splitting the conductivity into its symmetric and antisymmetric parts:

−∇ · q = cρ∂tu = ∇ · (κ∇u) = ∇ · (κxx(I + κantisym)∇u)

= κxx∇2u+ κxx∇ · (κantisym∇u)

where c is the heat capacity and ρ is the mass density. Writing out the κantisym term explic-

itly:

(
∂x ∂y

) 0 tan θH

− tan θH 0


∂xu
∂yu

 =

(
∂x ∂y

) tan θH∂xu

− tan θH∂yu


= tan θH∂xyu− tan θH∂xyu = 0

Thus the equation reduces to the isotropic heat equation, cρ∂tu = κxx∇2u! Thus, it might

seem like the thermal Hall conductivity would have no effect on the flow of heat through

the material. Indeed, when studying the heat equation, the conductivity tensor κ is usually

assumed to be symmetric. However, if we impose the Neumann boundary condition g =

−n̂ · q for some known function g, the effect of the thermal Hall conductivity can be seen:

−n̂ · q = n̂ · κ∇u

= κxx

(
nx ny

) 1 tan θH

− tan θH 1


∂xu
∂yu


= κxx

(
nx ny

) ∂xu+ tan θH∂yu

− tan θH∂xu+ ∂yu


= κxxnx(∂xu+ tan θH∂yu) + κxxny(− tan θH∂xu+ ∂yu)

2



Taking for example n̂ = (1, 0) and g = 0 (perfectly insulating boundary conditions):

0 = −n̂ · q = κxx(∂xu+ tan θH∂yu)⇒ ∂xu = − tan θH∂yu

In general, the derivative normal to the boundary is specified in terms of the transverse

derivative and the thermal Hall angle.

In order to see what this kind of boundary condition does in practice, we can simulate

a material with a thermal Hall coefficient using the finite element method. For simplicity,

we will look first at steady state solutions (i.e. those with ∂tu = 0). Thus we will need

to solve the elliptic partial differential equation −∇ · (κ∇u) = 0. We start by expressing

this equation in weak form by multiplying it by a test function v and integrating over the

function’s domain Ω:

−∇ · (κ∇u) = 0⇒ −
∫

Ω

∇ · (κ∇u)vdx = 0

The function u(x, y) is said to solve the weak problem if this equation holds for all functions

v(x, y), where v(x, y) = 0 anywhere we have specified u on the boundary (i.e. imposed

Dirichlet boundary conditions). By integrating by parts, this becomes:

−
∫

Ω

∇ · (κ∇u)vdx =

∫
Ω

κ∇u · ∇vdx−
∫
∂Ω

(n̂ · κ∇u)vds

where the second integral on the right hand side is over the boundary of Ω. The second

integral can be rewritten in terms of the Neumann boundary condition:

−
∫
∂Ω

(n̂ · κ∇u)vds =

∫
∂Ω

gvds

and so we have cast the problem in a form suitable for solving with the finite element

3



method, in terms of the bilinear form

a(u, v) =

∫
Ω

κ∇u · ∇vdx

and the linear form

L(v) = −
∫
∂Ω

gvds

as a(u, v) = L(v). By discretizing the problem using standard methods over a suitable

mesh, the problem reduces to solving a linear system. There are many references which

go into detail on finite element analysis, but I used [1] which covered the specific Python

library I used to run the following simulations. The python code to generate these figures

is reproduced in appendix A.

This dependence of the Hall signal on the particular boundary condition should not be

surprising to anyone who is experienced making electrical transport measurements. Indeed,

DC electrical transport can be modeled using an analogous partial differential equation

∇ · (σ∇V ) = 0

where V is the electric potential and σ is the conductivity tensor. The typical geometry

for a (non-thermal) Hall effect measurement involves measuring the voltage at four points

on the sample, with the edges of the sample electrically insulating. This gives us the same

Neumann boundary condition as before, via Ohm’s law rather than Fourier’s law:

n̂ · j = n̂ · σ∇V = 0

where i is the current density. If instead we wish to eliminate the effect of the Hall conduc-

tivity, a different geometry known as a Corbino disk is used [2]. This geometry consists

of two large electrodes in the shape of concentric rings, leaving an annular region where

current flows through the sample of interest. In effect, this clamps the voltage at each point

4
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Figure 1.1: Thermal Hall Isotherms. The left side of each simulation is held to T = 0, the
right has a heater with unit power, and the upper and lower edges are insulating.
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Figure 1.2: Thermal Hall Temperature Profiles. Top: Temperature difference across the
sample transverse to the applied heat (y axis in figure 1.1) at different points along the sam-
ple for different thermal Hall angles. Note that for each angle, the temperature difference
approaches a constant value far from the cold finger. Bottom: The same temperature differ-
ence at a fixed position as a function of the thermal Hall angle. Note that for experimentally
relevant values of the thermal Hall angle (θH ≈ 1◦), ∆T is proportional to θH .
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Figure 1.3: Electrical Transport Geometries. Left: Hall bar geometry. Current is fed in
through the gold contacts on the left and right, and the voltage measured at the black points.
The upper and lower boundaries are insulating. Right: Corbino disk. The voltage is mea-
sured between the inner and outer contacts (gold). Since there is no insulating boundary,
the Hall conductivity is suppressed.

on the two rings (to values which depend on the applied current and the conductivity of the

sample), effectively giving us a Dirichlet boundary condition (i.e. specifying the voltage)

at every point on the boundary. This suppresses the effect of the Hall conductivity, and thus

this type of of measurement is good for isolating the magnetoresistance of a sample.

This analogy between thermal and electrical transport begs the question: Could one

measure thermal conductivity with a “thermal Corbino disk”? Maybe, but in practice it

would never be necessary for a very simple reason: in real materials, the thermal Hall

angle is rarely more than a few degrees. Table 1.1 lists a few selected thermal Hall angles

reported in the literature. In all of these materials, the thermal Hall conductivity is the

result of some kind of (quasi-)particle excitation. In the next section, we will discuss the

thermal Hall conductivity of electrons in metals. However, the last two entries in the table

list thermal Hall conductivities which are the result of excitations which carry spin but

not charge. It is this kind of experiment where measurements of the thermal Hall effect

have particular scientific value, since such quasiparticles cannot be directly observed using

electrical transport methods. Such a measurement will be the subject of chapter 3.

7



Material tan θH Reference
Bi 0.2 [3]
InSb 0.02 [4]
HgSe 0.03 [5]
YBa2Cu3O6.63 0.12 [6]
Lu2V2O7 2× 10−3 [7]
Tb2Ti2O7 5× 10−3 [8]

Table 1.1: Thermal Hall angles, reported as tan θH , for various materials. Naturally, the
specific value is a function of applied field and overall temperature, only the largest reported
angle is reproduced here.

1.2 Origin of the Thermal Hall Conductivity in Metals

The thermal Hall effect in metals has been observed experimental fact for more than a

century. In historical literature, it is known as the Righi-Leduc effect, named after the

Italian and French (respectively) physicists who discovered it [9]. In elementary terms,

it can be understood as the corollary of two basic phenomena in solid state physics: the

Wiedemann-Franz law, and the (electronic) Hall effect. The Wiedemann-Franz law refers

to the experimental observation, reproducible in theoretical models such as the classical

Drude model, that the ratio between the thermal and electrical conductivities of a metal is

more or less proportional to the temperature:

κ

σ
= LT,L ≈ 2.22× 10−8 WΩ/K2

where L is sometimes called the Lorenz constant. Typically κ and σ are assumed to be

scalars, but within the semiclassical theory of conduction in metals, we can rigorously

derive a relation in terms of the conductivity tensors while also producing a reasonably

accurate value for L. I will summarize the derivation given in chapter 13 of Ashcroft and

Mermin here [10].

Take for example a region of a solid small enough that we can assume it has uniform

temperature. Assuming that the only thing carrying heat and entropy in to or out of this

region is the electrons, we can use the basic thermodynamic identity in the grand canonical

8



ensemble (TdS = dU − µdN , where U is the total energy, N is the number of electrons,

and µ is the chemical potential) to express the heat current jq in terms of the energy and

number currents (jE and jn, respectively):

jq = T js = jE − µjn

The currents on the right hand side can be expressed in terms of an integral over the Bril-

louin zone: (
jE

jn

)
=
∑
n

∫
dk

4π3

(
En(k)

1

)
vn(k)gn(k)

Where n indexes the bands, En is the band structure, vn is the electron velocity, and gn is

the electron distribution function. The heat current can be derived in a straightforward way

from these two expressions:

jq =
∑
n

∫
dk

4π3
[En(k)− µ]vn(k)gn(k)

Now we consider the modification of g in the case where a uniform electric field E, uniform

magnetic field H , and temperature gradient −∇T :

g(k) = g0(k)− τ(E(k))

(
−∂f
∂E

)
v(k)

[
−eE +

E(k)− µ
T

(−∇T )

]

where f is the Fermi-Dirac distribution, τ is the relaxation time,

E = E +
∇µ
e

and

vn(k) =

∫ 0

−∞

dt

τn(k)
et/τn(kvn(k(t))

is the velocity of the electron averaged over its entire history weighted exponentially by

the relaxation time. This is necessary due to the presence of a magnetic field, required in

9



order to observe the thermal Hall effect. We will now use this new distribution function to

construct the heat and electrical currents. The electrical conductivity is given by

σ(n)(E) = e2

∫
dk

4π3
τn(En(k))vn(k)vn(k)

(
−∂f
∂E

)
E=En(k)

Define the quantities

L(α) =

∫
dE(E − µ)ασ(E)

L11 = L(0)

L21 = TL12 = −1

e
L(1)

L22 =
1

e2T
L(2)

the current densities can be written straightforwardly as

j = L11E + L12(−∇T )

jq = L21E + L22(−∇T )

Now, we will use some assumptions valid for metals to make these integrals more tractable.

The derivative of the Fermi distribution ∂f/∂E is only has significant weight in a region

centered on the Fermi energy EF with width kBT . Thus, we can use the Sommerfeld

expansion to see that

L11 = σ(EF ) = σ

L21 = TL12 = −π
2

3e
(kBT )2 ∂σ

∂E

∣∣∣∣
E=EF

L22 =
π2

3

k2
BT

e2
σ

We can now use these relations to get the thermal conductivity in terms of the electrical

10



conductivity. First, we impose the condition that the no electric current is flowing, which

implies that

E = −(L11)−1L12(−∇T )

Plugging this into the equation for the heat current, we get that

jq = κ(−∇T ) where κ = L22 − L21(L11)−1L12

Using the fact that ∂σ/∂E taken at E = EF is of order σ/EF , we can see that the second

term in the above expression is dominated by the first by a factor of (EF/kBT )2, and so to

leading order only the first term matters. Thus, from the expression for L22, we can see that

κ =
π2

3

(
kB
e

)2

Tσ

which is the Wiedemann-Franz law, now cast as a relation between the tensors κ and σ, in

the presence of a magnetic field.

This should make some intuitive sense. After all, if the electrons can transmit heat,

they should still do so when their orbits have been modified by the presence of a magnetic

field. It is worth reiterating some of the assumptions present in this analysis. First of

all, we have assumed that we are working with a metal, where thermal conductivity will

be dominated by the electrons. We should not necessarily expect this behavior to hold

for a semiconductor, for example. One might still expect that even if the Wiedemann-

Franz law does not hold in general for a non-metal, the thermal Hall conductivity should

not be affected by the phonon contribution to the thermal conductivity, as phonons don’t

carry spin and so should not couple to a magnetic field. However, there have been a few

observations lately of the thermal Hall effect of phonons, which has been explained in terms

of different materials as an effect of the Berry curvature of the phonon bands [11] or skew

scattering of phonons off of magnetic impurities [12]. Even if we restrict to non-magnetic

11



metals there are examples of deviations from the Wiedemann-Franz behavior. Potassium,

an alkali metal which should in principle have simple metallic behavior has been observed

to have a thermal Hall conductivity which deviates from the Wiedemann-Franz law by

up to 50% in magnetic fields up to 9T [13] [14] [15]. While the Wiedemann-Franz law

captures relationship between the Hall effect and the thermal Hall effect to lowest order, it

is important to view it more as a general empirical guide rather than an iron-clad law. Other

effects can become important in specific materials, even metals.

Measurements of the thermal Hall effect in metals are often not reported as the thermal

Hall angle θH , but instead as the thermal Hall coefficient RTH, defined as

RTH =
1

Bz

dTy/dy

dTx/dx
=

1

Bz

κxy
κxx

=
tan θH
Bz

This quantity has units of inverse Teslas, which suggests that it should be related somehow

to mobility. Using the Wiedemann-Franz law derived above, we can show that it is exactly

the Hall mobility:

RTH =
1

Bz

κxy
κxx

=
1

Bz

σxy
σxx

= σxxRH = µH

where RH is the standard Hall coefficient. (Parenthetically, it is this relation which gener-

alizes to the thermal Hall effect in semiconductors:

RTH ≈
κel

κtot

µH

where κel and κtot are the electron/hole and total thermal conductivities, respectively [16].)

While the caveats involving the applicability of the Wiedemann-Franz law above still apply,

we should expect that materials which with high mobilities should also have large thermal

Hall coefficients.
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1.3 The Thermal Hall Conductivity in Bismuth

This brings us finally to the specific case of Bismuth. Figure 1.4 shows its crystal structure.

Bismuth is a semi-metal, by which we mean a material which has both negatively charged

(electrons) and positively charged (holes) carriers. Figure 1.5 show how these Fermi pock-

ets are arranged in k-space, with one large hole pockets and three smaller electron pockets.

It should be noted that the above analysis of the Wiedemann-Franz law did not make any

assumptions about the charge of the carriers involved, and so it can be applied to the case

of bismuth. Bismuth is characteristic of semi-metals in that it has a low carrier density

(4.1 × 1017/cm3 for electrons, 3.4 × 1017/cm3 for holes [17]) and a high mobility (4300

cm2/Vs for electrons, 1500 cm2/Vs for holes, measured in a thin film [18], and as high as

85,600,000 cm2/Vs for electrons and 37,000,000 cm2/Vs for holes in pure crystals [19]).

We should thus expect that bismuth should display a large thermal Hall coefficient.

It is worth thinking about how the presence of two carriers will affect the Hall coef-

ficient, as it will have direct consequences for the thermal Hall coefficient. In a simple

model, we can imagine that the two carriers act as two separate conductive channels in

parallel with each other. The channels each have resistivity tensors of the form

ρe =

 ρe −ReH

ReH ρe

 ρh =

 ρh −RhH

RhH ρh


where ρ is the longitudinal resistivity of the channel, R is its Hall coefficient, and H is the

applied magnetic field. Note that since the electrons and holes have differing sign, so do

Re and Rh. Since these channels are in parallel with each other, the total resistivity is given

by

ρ =
(
ρe
−1 + ρh

−1
)−1

13



Figure 1.4: Crystal structure of bismuth. One unit cell is displayed along the c axis, and
two along the a and b axes. The c axis is denoted the trigonal axis, and the a axis is denoted
as the bisectrix. The direction perpendicular to both of these is called the binary axis (this is
not the b axis, which forms a 120◦ angle with the a axis). Image generated with Jmol [20].

14



Figure 1.5: Fermi pockets in bismuth. The hole pocket is an ellipsoid with the long axis
aligned with the trigonal axis. The three electron pockets are three ellipsoids, one with
its long axis aligned with the bisectrix axis, and the other two distributed 120◦ either way
around the trigonal axis. The electron pockets are canted by 6◦ degrees out of the bisectrix-
binary plane. Image taken from [21].

This results in a total resistivity tensor given by

ρ =

 ρ −RH

RH ρ


where

ρ =
ρeρh(ρe + ρh) + (ρeR

2
h + ρhR

2
e)H

2

(ρe + ρh)2 + (Re +Rh)2H2

R =
Reρ

2
h +Rhρ

2
e +ReRh(Re +Rh)H

2

(ρe + ρh)2 + (Re +Rh)2H2

Both the longitudinal resistivity and Hall coefficient depend explicitly on the applied field

H , unless Re = −Rh. Since the Hall coefficient is inversely proportional to the carrier

density, and bismuth has different densities for electrons and holes (see above), we can

see that this is not the case for bismuth. In practice, this means the resistivity and Hall

15



Figure 1.6: Hall conductivity in bismuth, measured at 10K in our Janis cryostat. Notice the
two linear regimes, one at low field and one at high field, consistent with the two carrier
model.
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coefficient basically have two regimes, a low field regime where

ρ =
ρeρh

(ρe + ρh)
R =

Reρ
2
h +Rhρ

2
e

(ρe + ρh)2

and a high field regime where

ρ =
ρeR

2
h + ρhR

2
e

(Re +Rh)2
R =

ReRh

Re +Rh

Figure 1.6 is a plot of experimental data which shows this behavior: two linear regimes,

one at high field, and one at low field.

What does this imply for the thermal Hall conductivity? Well, from the Wiedemann-
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Franz law, we can see that the thermal Hall coefficient is given by

RTH = σRH =
R

ρ

as shown above. Rearranging terms and applying the Wiedemann-Franz law again, we get:

RTH =
1

H

κxy
κxx

=
1

H

κxy
LTσ

⇒ κxy =
R

ρ2
HLT

where L is the Wiedemann-Franz constant and T is the temperature. Thus κxy will be a

function of the applied magnetic field H just as R and ρ are. If we take the low and high

field regimes, however, κxy should be more or less linear with field. Taking the low field

expression for R and ρ gives us

κxy,LOW =
Reρ

2
h +Rhρ

2
e

ρ2
eρ

2
h

HLT

So for small fields, κxy should be linear in the applied field. In the high-field limit, the

expression becomes

κxy,HIGH =
ReRh(Re +Rh)

3

(ρeR2
h + ρhR2

e)
2
HLT

At first glance, this looks qualitatively similar to the low field expression, linearly propor-

tional to the applied field. However, remember that Re and Rh have different signs, but

are of the same order of magnitude. This implies that their sum should be small. In this

expression, we take that small sum and cube it, making it even smaller. In the denominator,

we take a linear combination of the squares of Re and Rh (which are both positive now)

and square them again. This indicates, at least qualitatively, that the high field coefficient

should be much smaller than the low field coefficient.

How well do these predictions bear out in practice? Surprisingly, measurements of the
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Figure 1.7: Thermal Hall conductivity in
Bismuth, measured up to 3 T measured
by [3]. Note that in all the traces down to
75K, the low field dependence is linear,
and in the lower temperature curves we
can see the high field thermal Hall con-
ductivity go to zero.

Figure 1.8: Temperature dependence of
the thermal Hall coefficient in bismuth
up to 3 T and 300K, taken from [3].
The dependence is not strictly linear with
temperature, and follows more or less the
temperature dependence of the Hall mo-
bility µH .
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thermal Hall effect in bismuth have only been carried out in high magnetic fields relatively

recently, by Kobayashi et al. in 2012 [3]. In that work, measurements of the thermal Hall

coefficient were performed in fields up to 3T and temperatures from room temperature

down to 75K. Figure 1.7 reproduces their results in measuring the transverse temperature

gradient. We can see that for all the traces, the low field dependence is linear, with the

slope decreasing at higher field. In some of the lower temperature traces, we can also see

the thermal Hall conductivity tend towards zero at higher field. This would seem to repro-

duce the qualitative features discussed above. Additionally, figure 1.8 from the same paper

shows the temperature dependence of the thermal Hall coefficient RTH. Although I did

not remark on it above, the basic analysis would indicate that the thermal Hall coefficient

should increase linearly with temperature. The experimental data shows this is clearly not

the case. Instead, the data shows that the thermal Hall coefficient generally follows the

temperature dependence of the Hall mobility µH . This is not surprising, as they should be

directly related.
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One possible objection to the prediction that the thermal Hall coefficient should be ef-

fectively zero at high field might be that since it is not exactly zero, with a sufficiently

large field one should be able to see a non-zero thermal Hall conductivity once again. This

presupposes that the simple two-carrier model described above is applicable for arbitrarily

large applied fields. The validity of this assumption is contradicted by the physics of Lan-

dau quantization in metals, i.e. the quantization of the circular path of a charged particle

in a magnetic field. This effect is responsible for the oscillations seen in many observables

(such as resistivity and magnetic susceptibility) in strong magnetic fields [22]. As the field

gets stronger, the Landau levels get farther apart in energy and more degenerate, until all

the carriers are collected in the lowest level. This is known as the quantum limit. This has

the effect of gapping out the carriers, and so we would expect that they would no longer

participate in the thermal Hall effect. The field at which this happens is proportional to

the cross-sectional area of the Fermi surface perpendicular to the applied field [22], and

since bismuth has small Fermi pockets we should expect this to happen at relatively low

fields. The field at which this happens depends strongly on the angle due to the elongated

Fermi pockets, but is less than 8T for all angles [23]. This will ultimately suppress the

thermal Hall coefficient at these fields. Making measurements of the thermal Hall effect at

these fields presents some experimental challenges, however. Before we can discuss those

difficulties, we must discuss the experimental setup for making any thermal Hall effect

measurement.

1.4 Performing Thermal Hall Effect Measurements

Now that we have discussed the origin of the thermal Hall effect in metals, we must now

discuss how one makes the measurement. Figure 1.9 shows a schematic of the measure-

ment. The sample is attached to a cold finger, typically by way of a thermally conductive

sample holder (made of oxygen-free copper, in our case). This controls the overall tem-
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Figure 1.9: Schematic of a thermal Hall effect measurement. The magnetic field is applied
out of the plane of the page. Both the longitudinal (∆Tx) and transverse (∆Ty) temperature
gradients are measured. If necessary, the measurement can be carried out with two ther-
mometers, and the gradients disentangled by (anti-)symmetrizing the measured gradient
with respect to the applied field.

SAMPLE

HEATER

COLD
FINGER

ΔTy

ΔTx

perature of the sample. On the other end of the sample, a small resistive heater is attached

using thermally conductive paste. This setup mirrors the boundary conditions of the finite

element calculations presented above: one side (the cold finger) is held at a fixed temper-

ature, the opposite (the heater) has a prescribed amount of heat energy applied, and the

two perpendicular boundaries are (ideally) assumed to be insulating. Experimentally, this

means performing the measurement in vacuum.

In order to measure the thermal Hall conductivity, we should ideally place three ther-

mometers on the edge of the sample. This allows us to measure two temperature gradients:

the longitudinal (along the direction pointing from the heater to the cold finger, denoted
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∆Tx) and the transverse (perpendicular to the longitudinal gradient, denoted ∆Ty). If the

thermometers are small enough relative to the sample, they can be mounted directly to the

sample with a thermally conductive paste, similar to the heater. Alternatively, the ther-

mometers can be mounted separately and thermally linked to the sample with gold wire.

We can use this information along with the applied power P to determine the terms of the

thermal conductivity tensor by writing Fourier’s law as

jx
jy

 =

−P/(t · w)

0

 =

 κxx κxy

−κxy κyy


−∆Tx/l

−∆Ty/w


where l is the length between the two longitudinal thermometers, t is the thickness of the

sample, and w is the width of the sample (i.e. t ·w is the cross sectional area of the sample

perpendicular to its length). The assumption that κyx = −κxy is taken from a relation due

to Onsager (note that these are not the Onsager reciprocal relations of statistical mechanics,

for details on where this relation comes from see problem 6f of chapter 13 of Ashcroft and

Mermin [10]). If we further assume that the heat conduction is isotropic, that is κxx = κyy,

we are left with two equations in two unknowns, κxx and κxy:

P/(t · w) = κxx∆Tx/l + κxy∆Ty/w

0 = κxy∆Tx/l − κxx∆Ty/w

The second line gives the relation

κxy∆Txw = κxy∆Tyl⇒ κxy = κxx
∆Tyl

∆Txw

substituting this result into the first equation gives

P · l = κxx

(
∆Txwt−

∆T 2
y l

2t

∆Txw

)
≈ κxx∆Txwt
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For the last step, we are making use of the fact that the thermal Hall angle is generally

small, so ∆Tx is much larger than ∆Ty. Now we can use these relations to get the terms of

the conductivity tensor in terms of known variables:

κxx =
Pl

∆Txwt
κxy =

P∆Tyl
2

∆T 2
xw

2t

These are the relations use to determine the thermal Hall conductivities in the experiments

described in the coming chapters.

As stated above, ideally one would use at least three thermometers to measure the

transverse and longitudinal thermal gradients. However, each thermometer allows a small

amount of heat to escape the sample, which contradicts the ideal case where the boundary

is perfectly insulating. We can minimize the amount of heat lost this way by only using two

thermometers, with an offset in both the x and y directions. This poses the problem of how

the ∆Tx and ∆Ty can be disambiguated. In the case of a thermal Hall effect measurement

taken at a constant temperature in a sweeping magnetic field, the Onsager transport relation

mentioned above implies that the κxx and κxy have different symmetry with respect to the

field:

κxx(H) = κxx(−H) κxy(H) = −κxy(−H)

By inspection we can see that this implies that ∆Tx(H) is even in H , and ∆Ty(H) is odd.

Thus, the two temperature gradients can be disambiguated by taking the measurement by

performing the measurement in both positive and negative field, and extracting the proper

gradients by (anti-)symmetrizing the gradient measured between the two thermometers.

Based on the previous discussion, one might think that the best way to conduct a ther-

mal conductivity measurement would be to simply run the heater with a constant power

and measure the thermal gradients as a function of the relevant experimental variable (e.g.

magnetic field for a thermal Hall effect measurement). However, if the overall temperature

of the sample were to drift, or if there is any temperature gradient in the sample when there
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Figure 1.10: Raw temperature gradient data, in this case a longitudinal temperature gradient
measured using a pair of thermocouples on a bismuth sample. The raw data is in blue, and
the extracted envelopes are in red and green.
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is no heat applied, this will appear as a spurious signal in the thermal conductivities. This

can be corrected by pulsing the heater on and off over the course of the measurement rather

than keeping it constant. In many cases, a square wave is used: the heater is turned on

for some time, and then turned off for some time. The period must be long enough that

the sample reaches equilibrium during each on-cycle and off-cycle. This allows the overall

background drift to be subtracted away from the measurement. This method is certainly

viable, but my preference is to use a sine wave excitation on the heater instead. This has

the advantage of never bringing the sample out of equilibrium as long as a low enough

frequency is chosen. If we denote the current through the heater as i(t) = i0 sinωt, the

power coming out of the heater will be

P (t) = I2R = i20R sin2 ωt = i20R
1− cos(2ωt)

2

i.e. it will have twice the frequency of the excitation current. The temperature of each ther-

mometer, or alternatively the difference in temperature between any pair of thermometers,

will have the general form

Tn(t) = A(t) sin2 ωt+D(t)

whereA(t) is the difference between the temperature with the heater on and with the heater

off, and D(t) is the overall drift. There are two conditions to ensure that ω is sufficiently

small: A should not change with ω, and P (t) should have the same phase as Tn(t). The

problem of finding the temperature gradients thus rests on extracting A(t). This amounts

to the problem of demodulating an AM signal.

One simple method for accomplishing this is by simply using a peak detection function.

Figure 1.10 shows some raw temperature gradient data from the experiments on bismuth

which will be described later in this work. The blue curve shows the raw data, still mixed

with the “carrier”. One attractive feature of the sine wave excitation is it produces well
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defined peaks suited for automatic peak detection. Taking the maxima and minima, we can

interpolate between them to get the upper and lower envelopes Eupper(t) and Elower. The

amplitude and drift can be expressed straightforwardly as

A(t) = Eupper(t)− Elower(t) D(t) =
Eupper(t)− Elower(t)

2

This method is simple to implement, and has the advantage that we do not need any phase

information from the heater excitation to determine the gradients. It does however require

that we are able to unambiguously detect the peaks.

There is another method which exploits the similarity of this problem to that of demod-

ulating an AM radio signal, known as a “product detector”. First, we expand the raw signal

using the double angle identity:

Tn(t) = A(t) sin2 ωt+D(t) = A(t)
1− cos 2ωt

2
+D(t)

As long as A(t) and D(t) are varying slowly compared to the “carrier frequency” 2ω, we

can use a high pass filter to isolate the cos 2ωt term, leaving us with

Tn(t) =
A(t)

2
cos 2ωt

Next, we multiply this by cos 2ωt. This requires us to have proper phase information about

the excitation current. Doing this gives

A(t)

2
cos 2ωt cos 2ωt =

A(t)

2

(
1

2
+

1

2
cos 4ωt

)

Now, once we low pass filter this signal, we end up with A(t)/4. There are variations

of this method which involve multiplying by a higher order power of the “carrier” which

result in a higher frequency signal which needs to be filtered away. This method does need
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us to preserve phase information about the excitation current, but does not require any peak

detection.

There is one significant experimental detail which has been elided over in this analysis:

what kind of thermometers can be used, and what advantages and disadvantages these

have. This is not a trivial detail: to make thermal Hall effect measurements, we require

thermometers which are both sensitive to millikelvin temperature gradients while not being

affected by a magnetic field. We have found that commercially available thermometers have

not been able to keep up with our requirements in this respect. In the next chapter, I will

describe the research project I undertook to develop thermometers which better satisfied

these requirements, as well as the thermal Hall effect measurements on bismuth I made to

benchmark these new thermometers.
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CHAPTER 2

Strontium Titanate Microthermometers

2.1 Thermometry

Temperature, in its most general form, is a consequence of the “zeroth” law of thermody-

namics: If two bodies A and B are in thermodynamic equilibrium, and B is in thermody-

namic equilibrium with a third body C, then A and C are in thermodynamic equilibrium

with each other as well. Thus, the quality of being in thermodynamic equilibrium is an

equivalence relation, and we can define a temperature scale by assigning a numerical value

to each of its equivalence classes. If we take care to assign this quantity such that one

with a higher temperature will transfer heat to one with a lower temperature when they are

brought in contact (a corollary of the second law of thermodynamics) as well as presup-

posing the existence of an absolute lowest temperature (the third law), we will arrive at an

experimentally useful temperature scale. Within the formalism of statistical mechanics, we

can construct such a temperature scale within the microcanonical ensemble as function of

the total energy E and information about the states of the system:

1

T
=
dS

dE
=

d

dE
k logW

where W (E)dE is the number of states with energy between E and E + dE and k is

Boltzmann’s constant. This function, however, can only be computed explicitly for the

simplest physical systems. In practice, if we want to study the flow of heat through a
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system by measuring temperature, we must find some other observable we can measure as

a proxy.

In principle, we might want to find some system whose thermodynamic equation of

state depends on temperature and other quantities which are all independent of temperature.

Such a system is referred to as a primary thermometer. For a simple example of such a

thermometer, consider the equation of state of an ideal gas:

PV = NkT

If we take a sample of an ideal gas with a known number of molecules N in a known vol-

ume V , we can determine the temperature T by measuring its pressure P . Other examples

of primary thermometers include measurements of the speed of sound in a gas, measure-

ments of the Johnson-Nyquist noise in an electrical circuit, or measurements of blackbody

radiation [24]. These methods of measuring temperature are very useful for accurately set-

ting a temperature scale, but they have some serious drawbacks as thermometers for use

in other experiments. Most of them require sensitive measurements of multiple physical

observables, as well as bulky and complicated experimental apparatus. If one wanted to

determine the thermal conductivity of a small crystal by measuring a temperature gradient

across its length, it would not be feasible to connect the crystal to two independent samples

of an ideal gas and measure their pressures. Thus, the temperature standard set by these

methods must be transferred to a more convenient thermometer.

Such a device is known as a secondary thermometer. In this case, we measure some

observable as a function of temperature, which we determine from some known standard.

This can be a primary thermometer or another secondary thermometer which has already

been calibrated to sufficient accuracy. In experimental condensed matter physics, by far

the most common types of secondary thermometers used are resistance thermometers and

thermocouples. Resistance thermometers simply measure the resistance of some mate-
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rial as a proxy for temperature, either a metal such as platinum (resistance increasing

with higher temperature, or “positive temperature coefficient”) or a semiconductor, such

as zirconium–oxynitride (known by its trademarked name Cernox) or ruthenium oxide (re-

sistance decreasing with higher temperature, or “negative temperature coefficient”). Such

thermometers are convenient since they can be made compact, they are commercially avail-

able, and there are well–established protocols and instrumentation for measuring resistance.

There are a wide variety of resistance thermometers that suit different temperature ranges

and experimental conditions. Thermocouples, which measure the temperature dependant

thermopower between two metals with differing carrier concentrations, can be even more

compact and are especially useful for making differential measurements. However, they re-

quire measurements of DC voltages in the microvolt range, and their sensitivity is reduced

at low temperature. In any case, both of these methods allow us to measure temperature

without considering the microscopic details of the system, only how accurately it has been

calibrated.

There are some experimental details which must be considered when using a resis-

tance thermometer. Many important experimental techniques in condensed matter physics

involve applying an intense magnetic field (up to 45T for the current state-of-the-art DC

magnets) to a sample of interest. Resistance thermometers generally exhibit magnetore-

sistance, the changing of their resistivity in a magnetic field. The most commonly used

resistance thermometers are selected to have as small a magnetoresistance as possible, but

even Cernox thermometers display a change of resistance of a few percent in magnetic

fields up to 14T. If one is not measuring any direct thermal property of a sample and can

safely assume that the sample is well thermalized with the cold finger, one can simply

mount a thermometer outside the region of intense magnetic field. However, if you are

measuring some thermal property of a material (such as heat capacity or thermal conduc-

tivity), there is no getting around calibrating the thermometer as a function of temperature

and magnetic field (see figure 2.1). For resistive thermometers such as Cernox or ruthe-
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nium oxide, the magnetoresistance can vary quite a bit from thermometer to thermometer,

as they can have slightly different doping levels. Additionally, Cernox thermometers can

have orientation dependent resistance changes on the order of 0.05% to 0.7% depending

on the field at 4.2K [25]. For many experiments this is more than sufficient, but the ther-

mal Hall measurements discussed in this thesis require precision to the level of millikelvin.

Thus, when using such thermometers for thermal Hall measurements, the best practice is

to calibrate them in situ. Even still, it has been reported that spurious temperature gradients

antisymmetric with the magnetic field (and thus easily conflated with a thermal Hall signal)

can occur even with pairs of Cernox thermometers cut from the same wafer at temperatures

below 1K, for reasons which are not completely understood [26]. Thus, it is imperative

to be extremely careful when making sensitive thermal measurements with resistive ther-

mometers in this regime.

Regardless, there is a great deal of scientific value in thermal measurements performed

in strong magnetic fields. Heat capacity provides a generic method for identifying phase

transitions, and thermal transport is sensitive to excitations in a solid which do not carry

charge and thus can’t be studied with electrical transport methods. Thus, it is our goal to

develop new methods for accurately and precisely measuring temperature in the presence

of intense magnetic fields. The scientific potential of these methods and the experimental

techniques they make possible will be underscored in the next section. For more infor-

mation about thermometry and its application in experimental condensed matter physics,

chapter 5 of [24] is an invaluable reference.
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Figure 2.1: Example Cernox Field Calibration. Top: Magnetoresistance of a Cernox
thermometer. Bottom: Field calibration curves for the same thermometer. (Tapparent −
Tactual)/Tactual is plotted versus the actual temperature.
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2.2 Quantum Criticality in Strontium Titanate

With the goal of identifying a system with some observable quantity which is sensitive

to temperature but not magnetic field in mind, we turn to the theory of quantum critical

ferroelectricity in strontium titanate (SrTiO3). Strontium titanate is well known as a para-

electric, a material where an applied electric field E generates a polarization density, or

electric dipole moment per unit volume P:

P = ε0χeE

where ε0 is the permittivity of free space and χe is the electric susceptibility. Note that the

electric susceptibility is a unitless quantity, the fundamental constant ε0 converts the units

between E and P. Strontium titanate (abbreviated STO) has been known to have a large

electric susceptibility of 330 at room temperature that rapidly increases as the temperature

is lowered [27]. This indicates that it might be useful for making a capacitive thermometer,

as for a parallel plate capacitor, the capacitance is given by

C =
εA

d
=
ε0(1 + χe)A

d

where A is the area of the plates, d is the distance between them, and ε = ε0(1 + χe) is the

permittivity of the medium between the plates. However, it is worth discussing what the

origin of this large electric susceptibility in STO. The electric susceptibility is intimately

connected with the optical phonons of a crystal, since it is these phonons which describe

displacements of the ions in the unit cell relative to each other and can thus produce a net

electric dipole in an ionic crystal [10]. It is not immediately obvious why these should

depend so strongly on temperature, however.

One significant hint comes from the fact that some crystals with the same perovskite

structure as strontium titanate, such as barium titanate and lead titanate, are ferroelectrics,
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i.e. materials which maintain a spontaneous polarization density without the application of

an electric field [28]. This is analogous to the spontaneous magnetic dipole moment present

in ferromagnets such as iron. These materials are so called displacive ferroelectrics, where

the net dipole moment is the result of a displacement in the lattice. This corresponds to hav-

ing an optical phonon with zero frequency. Above the Curie temperature Tc, these materials

are paraelectrics similar to strontium titanate, with dielectric susceptibilities that are pro-

portional to (T −Tc)−1. In qualitative terms, this results from a temperature dependent gap

opening up in the optical phonon spectrum, from an optical phonon with zero frequency

below Tc to a “soft” optical phonon above Tc [29]. This would result in a material which

has a strongly varying dielectric susceptibility with temperature, but in any event strontium

titanate does not have a spontaneous electric dipole moment. Additionally, as will be seen

in measurements described below, the temperature dependence of strontium titanate does

not go as χe ∼ 1/T , but χe ∼ 1/T 2! This kind of rapid increase of a susceptibility is

generally indicative of a phase transition, but none is observed in strontium titanate.

Instead of a normal phase transition, the rapidly increasing electric susceptibility is due

to a quantum phase transition. Sometimes referred to as a “phase transition at zero temper-

ature”, a quantum phase transition occurs when the ground state of a system’s Hamiltonian

has a sharp kink or discontinuity at a function of some parameter [31], for example g. This

can occur, for example, if there are two states of a given Hamiltonian, |ψ1〉 and |ψ2〉, one

of which is ground state when g is larger than some critical value gc, the other of which

is the ground state is smaller than gc. Although the energy of each of these states should

be a smooth function of g, the ground state energy will have a kink where their energies

cross at gc. Although this discontinuity occurs at zero temperature, and so can’t be reached

directly, it can have a large effect on the physics of the system at finite temperature. This

is due to the fact that in addition to the diverging correlation length ξx observed close to

classical phase transitions, quantum phase transitions result in a diverging correlation time

ξt as well. Quantum critical scaling will be observed when the temperature is sufficiently
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Figure 2.2: Phase diagram of quantum critical ferroelectricity, reproduced from [30]. On
the x axis, the tuning parameter is derived from the Debye wavevector Λ and parameters
from the electric polarization equation of state a and c. On the y axis, the temperature is
normalized by the Debye temperature θ. Note the position of Strontium Titanate outside
the ferroelectric regime.
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low, i.e. that kbT < ~ξ−1
t . In the case of strontium titanate, the quantum phase transition

is between a ground state of the lattice with an optical phonon with zero frequency (and

thus ferroelectricity) and one without. The critical fluctuations in time are responsible for

the different scaling behavior of the susceptibility between the quantum and classical phase

transition. Figure 2.2 shows the quantum critical phase diagram of the perovskite lattice,

with strontium titanate labeled. The tuning parameter is listed as a/cΛ2, where Λ is the

Debye wavevector, and a and c are parameters for the electric polarization density equation

of state [30]

ε0E = aP + bP 3 − c∇2P

Assuming that b is positive and E is zero, this equation will only have one solution P = 0

when a is positive (i.e. no spontaneous polarization), and two more solutions P = ±P0

when a is negative (i.e. spontaneous polarization). Thus, when the tuning parameter is pos-

itive, we will have a paraelectric, and when it is negative, a ferroelectric state. The region

where quantum critical effects are important is shaded green. We can see that strontium ti-

tanate is just above but very close to the quantum critical point. This explains its diverging

electric susceptibility.

To explore the possibility of using this property of strontium titanate for making ther-

mometers, some STO wafer was acquired and cut into a small piece, 3.86 mm long by

3.25 mm wide by 0.1 mm thick. Each side of this wafer was metallized with gold in our

Denton evaporator. This sample was then placed in the variable temperature insert probe of

our Janis wet cryostat. The capacitance was measured using our Andeen-Hagerling 2700A

capacitance bridge while sweeping temperature at a constant rate from 50 K to 2 K. An

excitation of 5 V was used to measure the capacitance. The dielectric susceptibility can be

computed from the capacitance and the geometric information about the device using the

standard parallel plate capacitor formula from above. The results of this experiment are

shown in figure 2.3, plotted as 1/ε ≈ 1/ε0χe versus T 2. This makes the divergence of the

susceptibility in the quantum critical regime clear as a linear trend. At the lowest tempera-
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Figure 2.3: Top: Dielectric constant of Strontium Titanate as a function of temperature,
plotted as 1/ε vs T 2 to show the linear trend. Bottom: Low temperature plot of 1/ε, showing
that ε reaches a maximum at T = 3.29K. This data was taken using the VTI probe in our
Janis cryostat, but reproduces the results of [30].
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tures, however, this increase stops, reaching a maximum at 3.29 K. Here, strontium titanate

is in the “quantum paraelectric” regime, where the gap in the optical phonon dispersion

is relatively large but the temperature is small compared to the Debye temperature θ [29].

In this regime the electric susceptibility stops increasing, as the quantum critical point is

no longer having a strong effect. Since the susceptibility is no longer changing much with

temperature, a thermometer made with strontium titanate would not be sensitive in this

regime. To illustrate this point, the effective sensitivity of the device is plotted in figure

2.4 as the quantity 1
C
dC
dT

, where C is the capacitance of the device. This gives a measure

of the sensitivity relative to the overall magnitude of the capacitance. The magnitude of

the dimensionless sensitivity peaks at a value of 0.057 K−1 around 24 K, becoming zero at

3.29 K as discussed above. As a point of comparison, commercial Cernox thermometers

have a dimensionless sensitivity ( 1
R
dR
dT

in this case) around 1 K−1, while ruthenium oxide

thermometers have values around 0.3 K−1 [32], meaning that the capacitive thermometers

are less sensitive by up to an order of magnitude and a half. However, the temperature

controllers used to read these thermometers can measure resistance to one part in 100,000,

whereas the capacitance bridge can measure capacitance to one part in 10,000,000. Thus,

in real terms, they have comparable sensitivities.

As a point of comparison, figure 2.5 shows a similar experiment with a capacitor made

with a different material, Potassium Tantalate (KTaO3). Looking at the phase diagram in

figure 2.2, we can see it is farther away from the quantum critical point, into the quantum

paraelectric regime. For this experiment, a 2.26 mm wide by 3.48 mm long by 0.1 mm

thick piece of material was metallized into a capacitor. The data is plotted with the same

1/ε vs T 2 axes as the STO data. By comparing the scale to that in figure 2.3, we can see

that the divergence of the dielectric susceptibility is not nearly as strong, and the depen-

dence not nearly as linear. The quantum paraelectric regime is entered at a much higher

temperature, and the susceptibility reaches its maximum at a temperature of 4.31 K. Thus,

we can see that we must have a material in the quantum critical regime in order to make a
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Figure 2.4: Sensitivity of the Strontium Titanate device under test, plotted as the “dimen-
sionless” quantity 1

C
dC
dT
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Figure 2.5: Top: Dielectric constant of Potassium Tantalate (KTaO3), another paraelectric
material considered as a candidate for making capacitive thermometers. The linear trend
when plotted as 1/ε vs T 2 is not as apparent as for SrTiO3, and the overall change is not
nearly as large. Bottom: Low temperature plot of 1/ε, as in figure 2.3. The dielectric
susceptibility reaches a maximum at T = 4.31K, higher than that in SrTiO3. As before,
this data was taken using the VTI probe in our Janis cryostat, but reproduces the results of
[30].
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good thermometer. In the next chapter, the process of making thermometers out of these

devices will be discussed.

2.3 Strontium Titanate Thermometers

In order to make a thermometer out of SrTiO3, we take a small, thin (0.1 mm) sample of

the material (purchased from the MTI corporation)[33] and evaporate gold contacts on to

either face. These contacts form a parallel-plate capacitor, and by measuring the change

in the capacitance we measure the dielectric constant and by proxy the temperature. Fig-

ure 2.6 shows a pair of assembled thermometers. The thermometers are approximately

0.5 mm long, 0.5 mm wide, and 0.3mm thick, and the electrical leads are a pair of 25

µm diameter phosphor bronze wires. Figure 2.7 shows an example calibration curve for a

SrTiO3 thermometer. Both the capacitance and sensitivity of the thermometer are shown

from 4 K up to room temperature. The magnitude of the sensitivity increases (note the

sign, increasing dielectric constant corresponds to decreasing temperature) up to about 25

K before decreasing and reaching a maximum value below 4 K. The particulars depend

somewhat on the individual thermometer, notably, some do not reach a maximum value at

all above 1.5 K, the lowest temperature at which we calibrated the thermometers used in

this experiment. We believe this to be due to variance in our process for making the ther-

mometers, in particular the amount of heat they are exposed to when the leads are attached

and the resin surrounding the wafer is cured. Because of this, they must be calibrated

in situ for each experiment. However, the general trend is the same, with the sensitivity

being greatest around 20 to 40 K. Using our capacitance bridges (an Andeen-Hagerling

2700A digital bridge and a General Radio 1615-A analog bridge), we can reliably measure

a change in capacitance of about 1×10−5 pF. This corresponds to change in temperature

of 0.1 mK. Other measurements [8] using resistive thermometers quote a resolution of 0.2

- 0.4 mK. This is after extensive field calibration of the thermometers, a time-consuming
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Figure 2.6: A pair of STO thermometers, used to make thermal measurements. The back-
ground is a piece of graph paper with 1mm divisions, the thermometers themselves are
approximately 0.5 mm long, 0.5 mm wide, and 0.3 mm thick.
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Figure 2.7: An example calibration curve for an STO thermometer, showing both the ca-
pacitance (solid) and sensitivity (dashed) as a function of temperature. The capacitance
begins to saturate at low temperature, with the sensitivity peaking around 25K.
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Figure 2.8: A test of the response of an STO thermometer with a capacitance of 65 pf
to an applied magnetic field, taken at 4.2K. The field starts at zero, scans to 10T (blue),
then to -10T (green), and then back to zero (red). The relative change in the capacitance
(C−C0)/C0 remains less than 3×10−4, corresponding to change of about 20 femtofarads.
This change in capacitance is possibly due to the shifting of the leads to the capacitor plates
due to the field, rather than anything intrinsic to STO.

process which these thermometers eliminate.

Of course, in order to perform well for making thermal Hall effect measurements, these

thermometers must not be sensitive to an applied magnetic field. Figure 2.8 shows the

relative change in capacitance (C − C0)/C0 of a sample thermometer measured under a

magnetic field from -10 T to 10 T. The magnitude of the change in capacitance remains

less than 3×10−4, a few parts in ten thousand, below 10 T at 2 K. Compare this to resis-

tive thermometers, which may have magnetoresistance of a few percent or greater in this

temperature range[34, 35]. We are not sure what the nature of this small field dependence

is, as the dielectric constant should be independent of applied magnetic field. However, at
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least some of the change may be related to the slight shifting of the thermometer leads as

the field is swept.

Another issue concerning the suitability of these thermometers for measuring the ther-

mal Hall effect, particularly relevant at low temperature, is the heating caused by the ther-

mometers themselves. As the temperature decreases and the dielectric constant increases,

the dissipative losses from the capacitor increase as well. These increase to about 60 nW at

low temperature. For our current experiment, which applies 1 mW of power across the sam-

ple, this is not a concern. In general, however, this is not insignificant. 60 nW corresponds

to an excitation of 1 V. Decreasing the excitation will quadratically decrease the heating

power, however this comes at the cost of the sensitivity of the device. This at least gives

us some room to adjust the parameters to fit the particular experiment. As our process for

assembling the thermometers improves, we should be able to mitigate this source of heat

by reducing resistive loss across the capacitor. Despite the difficulty with the thermometer

heating, the fact that the thermometers are insensitive to magnetic field at low temperature

makes them good candidates for making a variety of thermal measurements.

Furthermore, the heat loss through the thermometer leads are negligible compared with

the sample’s thermal conductance. Each thermometer has a pair of 25 µm diameter phos-

phor bronze leads, with a thermal conductivity of 69.9 W/m ·K at room temperature given

by the manufacturer (California Fine Wire Co) [36]. On the other hand, bismuth (on which

we have performed thermal Hall effect measurements described in the next section) has a

thermal conductivity of 7.87 W/m ·K at room temperature [24]. Given the dimensions of

our sample and the fact that there are two thermometers with four leads total, this results

in a thermal conductance of 1.6 mW/K through the sample compared to 0.027 mW/K

through the leads, almost 60 times smaller. Since the thermal conductivity of bismuth goes

up below room temperature [37], while that of phosphor bronze goes down [24], the quality

will only improve at the measurement temperatures.
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2.4 Measuring the Thermal Hall Effect in Bismuth

As mentioned previously, measurements of the thermal Hall effect on crystalline bismuth

have been carried out by W. Kobayashi et al.[3] down to 75 K and magnetic fields up to

±3 T (see figure 1.7). Using our thermometers, we sought to extend this measurement to

lower temperatures and higher fields. A resistive heater was mounted on a single crystal of

bismuth metal, in order to generate a temperature gradient. A pair of SrTiO3 thermometers

were mounted in order to measure the transverse temperature gradient. The thermometers

were glued to the surface of the sample and then coated in Type 120 silicone thermal joint

compound to ensure good thermal contact with the sample. Similar to the measurement

performed by Kobayashi et.al., the heat current was applied along the bisectrix, the trans-

verse gradient was measured across the binary axis, and the magnetic field applied parallel

to the trigonal axis. An example set of temperature gradient data is shown in Figure 2.9. As

shown in the figure, there is a significant amount of pickup from the thermal conductivity

in the measured transverse thermal gradient. This can be eliminated by antisymmetrizing

the thermal gradient with respect to the applied magnetic field. Two pairs of thermocou-

ples were mounted as well, one longitudinal and one transverse, in order to independently

measure the temperature gradients in situ. A comparison between the gradient measured

with the thermocouples and the capacitive thermometers is shown in figure 2.10. At high

temperature, the transverse thermal gradient can be measured with both the thermocouples

and the STO thermometers, although the thermocouples are more sensitive. This manifests

as more noise in the measured STO gradient. However, at low temperatures, the STO ther-

mometers can detect a small thermal gradient when the thermocouples detect no signal. An

additional resistive thermometer was mounted nearby to calibrate the SrTiO3 thermome-

ters in zero field. The heater was repeatedly turned on and off, and the gradients in each

direction measured. Simultaneously, the applied magnetic field was swept between -10 T

and 10 T. This allowed us to measure the field dependence of the thermal Hall coefficient.

Similar to what was measured before[3], the thermal Hall conductivity is strongly non-
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Figure 2.9: (Panel a): Transverse temperature difference as a function of applied magnetic
field from -10 T to 10 T, taken at 130 K and measured using a pair of STO thermometers.
The signal is composed of an symmetric part and an antisymmetric part. (Panel b): Anti-
symmetric (solid) and symmetric (dashed) parts of the transverse temperature difference.
The antisymmetric part is the thermal Hall signal. Notice the difference in scales for the
two curves.
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Figure 2.10: Transverse temperature differences across a bismuth crystal measured with
both STO thermometers (orange) and thermocouples (blue), up to 10T and antisymmetrized
to isolate the thermal Hall signal. Top: Temperature difference at 110K. At this temper-
ature, the signal is large enough that the thermocouples have no trouble detecting it. The
STO thermometers are not so sensitive in this range, and so they have more noise. Bottom:
Temperature difference at 30 K. While the thermocouples are not able to detect anything,
the STO thermometers are still able to detect a temperature difference of about 0.5 mK.

110K

30K
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Figure 2.11: Thermal Hall conductivity, computed from the transverse temperature differ-
ence measured using the STO thermometers from -10 T to 10 T. Curves for a few temper-
atures between 90K and 175K (Panel a) and between 40K and 80K (Panel 6). The signal
appears to get smaller at lower temperature, disappearing at 60K.
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linear, reaching a maximum below 2 Tesla and decaying down to zero at high field, as

shown in Figure 2.11. One might suspect that the dropoff at high field is a result of the

quantum limit, where all the carriers are contained in the lowest Landau level and gapped

out, effectively making the material an insulator and suppressing the thermal Hall conduc-

tivity. Since the quantum limit for bismuth is around 8T for this orientation [23], and the

thermal Hall conductivity starts to decay around 2T, this explanation does not make sense.

Instead, this is a result of the physics described in section 1.3. At high fields, the thermal

Hall coefficient is proportional to the cube of the sum of the two (electrical) Hall coeffi-

cients, which have similar magnitude but opposite sign. Thus, the magnitude of the thermal

Hall conductivity drops off significantly at high field. It is also largest at high temperature,

becoming imperceptible below 50 K, where our thermometers are most sensitive. This is

also consistent with the two-band picture presented in section 1.3. As a result, we are con-

fident that this is not an artifact of the capacitive thermometers. The qualitative features of

the thermal Hall conductivity are consistent with what is expected from the two-band pic-

ture. Thus we can see that the STO thermometers are able to make sensitive measurements,

detecting changes in temperature below 1 mK in magnetic fields up to 10 T. Additionally,

the fact that they are relatively simple to produce makes them applicable to a wide vari-

ety of measurements and samples. One remaining challenge is our ability to push these

measurements to lower temperature, suitable for use at helium-3 or dilution refrigerator

temperatures, where traditional methods of thermometry are even more fraught[34, 35].

One promising line of study involved isotopically substituting 18O into the strontium ti-

tanate wafers, which has been shown[30] to drive them closer to the ferroelectric quantum

phase transition and thus continue the divergence of their dielectric constant to lower and

lower temperature. In the next chapter, we will discuss our attempts to develop thermome-

ters based on this principle. In any event, as this measurement has shown, this method of

thermometry holds great promise for enabling the thermal properties of materials in intense

magnetic fields.
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In conclusion, miniature capacitive thermometers based on the paraelectric material

SrTiO3 have been applied to measure the thermal Hall effect in crystalline bismuth. A

strong nonlinear thermal Hall effect is observed in the intermediate temperature range. The

miniature SrTiO3 thermometers show very little magnetic field dependence – less than a

factor of 3×10−4 up to magnetic field 10 T. They are also quite sensitive, resolving the

temperature difference as little as 0.1 mK.

2.5 Annealing Strontium Titanate in Oxygen-18

Having established the viability of using strontium titanate microthermometers to measure

temperature, we now seek to improve their low temperature sensitivity. In the next chap-

ter, we will discuss thermal measurements on a frustrated quantum magnet system. These

systems are of great theoretical and experimental interest, but they often require measure-

ments at very low temperatures, even below that of liquid helium. Since strontium titanate

is deep in the quantum paraelectric phase at these temperatures, we can’t use unmodified

STO microthermometers in this range. However, experiments have shown [30] that stron-

tium titanate can be pushed past the quantum critical point by substituting the oxygen in its

lattice by isotopically pure oxygen-18. As noted in the phase diagram in figure 2.2, com-

pletely 18O enriched STO is a ferroelectric, and partially enriched STO falls somewhere in

the middle. Our goal, then, is to push our STO thermometer chips as close as possible to

the quantum critical point without going over it. This will result in the quantum critical

regime persisting to lower and lower temperature, allowing for the 1/T 2 dependence of the

dielectric susceptibility to continue to lower temperature.

In order to accomplish this, we have constructed a system for annealing chips of stron-

tium titanate in an oxygen-18 environment. Figure 2.12 shows a schematic of its construc-

tion. It is composed of a tube furnace connected to an oxygen 18 supply tank obtained from

the Sigma-Aldrich corporation [38]. Since oxygen-18 is a stable isotope, it can be saved
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Figure 2.12: Schematic of the annealing system used to produce oxygen-18 enriched stron-
tium titanate wafers. The circles labeled “P” are pressure gauges, and the circles with
crosses are valves. Oxygen-18 is supplied from a gas cylinder, and can be stored in the
cold trap for reuse.
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Sample # Initial Mass Final Mass 18O Enrichment Annealing Conditions
1 13.62 mg 13.77 mg 33 % 3 days at 980 ◦C, 0.87 atm
2 14.78 mg 14.50 mg -57 % as above
3 15.71 mg 15.97 mg 50 % 7 days at 1000 ◦C, 0.95

atm, then 5 days at 800 ◦C
in vacuum

4 16.77 mg 16.67 mg 18 % 7 days at 1050 ◦C, 0.80 atm
5 16.51 mg 16.85 mg 62 % as above
6 16.40 mg 16.83 mg 78 % as above

Table 2.1: Annealing conditions for the various STO thermometers chips, along with the
18O enrichment measured from the mass change.

and reused long term. Thus, a cold trap is also connected to reuse the expensive isotopically

pure gas. The system also has a pumping port for annealing the chips in vacuum, if desired.

Thus, we can control the gas environment in order to experiment with the annealing condi-

tions. Table 2.1 shows the annealing conditions for six samples of strontium titanate chips,

cut from 0.5 mm thick wafers. The percentage of oxygen-18 incorporated into the samples

is calculated by measuring the change in their mass. Using the standard atomic weights for

strontium, titanium, and oxygen, the atomic mass of standard strontium titanate is 183.484

amu. If all the oxygen has been totally replaced with oxygen-18, the atomic mass should

be 189.484 amu, an increase of 3.27%. By normalizing the observed increase in mass to

this percentage, we can determine the approximate oxygen-18 enrichment.

Looking at table 2.1, however, it appears that the enrichment percentage is not very con-

sistent. Samples annealed under the same conditions appear to have differing enrichment

percentages. One sample, number 2, appears to have even lost mass. This is especially con-

cerning, as oxygen-deficient strontium titanate has been observed to become metallic [39].

There are several reasons the samples may have different observed masses. One is that we

are simply not measuring the mass accurately. For a 15 mg sample, a 3.27% mass increase

corresponds to a change in the mass of 450 µg. This is on the edge of what is possible to

measure with an analytical balance, and such measurements can be affected by difference

in electrostatic conditions. Since the measurements must be taken several days apart by ne-
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cessity, it is difficult to control these conditions precisely. Secondly, even for the samples

which are observed to gain mass, it is difficult to determine if the oxygen-18 has been uni-

formly distributed within the bulk of the sample. All of the samples are relatively thin, each

being approximately 5 mm by 5 mm by 0.5 mm. This should facilitate an even distribution

of oxygen-18. It is difficult to determine for sure if this is the case, however. One potential

method to get a more even distribution is to anneal the samples in vacuum after they have

been annealed in the oxygen-18. This runs the risk of creating oxygen-deficient samples,

which as metals would make poor capacitive thermometers. Determining the optimal an-

nealing conditions is an ongoing project. Each annealing run can last a week or more, so

getting it correct will take more time. However, we can discuss the results on the devices

we have tried.

Thermometers we made out of the STO chips in the same manner as the unannealed

devices described above. The capacitance of these were measured using the AH2700A

digital capacitance bridge on the dipstick probe in a helium dewar. This probe allows us

to make quick measurements down to liquid helium temperatures, which is important for

testing many devices quickly. The results for this experiment are shown in figure 2.13.

Chips from sample 3 through 6 were used for these experiments. Curves for the cool

down from room temperature to 4 K as well as the warm up back to room temperature

are plotted on top of one another. As shown in the figure, these curves to not line up

with one another for any of the four devices tested. There appears to be some hysteresis,

where the cool down curve is slightly larger than the warm up curve between 10 K and

120 K. This plot also shows the sensitivity of the devices, plotted in the same 1
C
dC
dT

units

as for the unannealed thermometers. In general, it appears that rather than having one

minimum as for the unannealed devices, there are two, at approximately 80 K and 120 K.

This may be an indication that part of the sample is more enriched that others. The only one

which does does not display this behavior is sample 3, which was annealed for a time in

vacuum (see table 2.1). This one has a flatter minimum, possibly indicating a more uniform
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Figure 2.13: Top: Reproducibility tests for several annealed STO capacitor devices, mea-
sured in a liquid helium dewar using a dipstick probe. The Oxygen-18 enrichment percent-
age is listed in table 2.1. Note the offset between the cool down and warm up traces for each
device. Bottom: Sensitivities for the same four devices. Although the capacitance varies
between devices and cool down/warm up, the sensitivity is roughly the same for each.
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distribution of oxygen-18 in the lattice. Otherwise, at low temperature, the curves appear to

collapse onto one another below 50 K. It does not appear that they are getting significantly

more sensitive at low temperature, which could also indicate that most of the bulk is not

significantly enriched.

Figure 2.14 shows some additional data on the dissipation of the thermometer devices.

This is a plot of tan δ, where δ is the deviation of the impedance phase angle from from

−π/2, as would be expected for a pure capacitor. If we model the device as a capacitor

with capacitance Cp in parallel with a resistor with large resistance Rp, the dissipation is

given by [40]

tan δ =
1

ωCpRp

where ω is the excitation frequency. Thus, this gives a measurement of how well the device

can be modeled as a pure capacitor that is independent of the magnitude of the capacitance.

As we can see, the dissipation does not increase for any of the devices tested. This serves

as a good indication that we are not depleting a significant amount of oxygen and turning

the chips metallic.

There are two additional tests we have run on some of these thermometers. First of all,

we wish to preclude the possibility that the devices have been pushed into the classical fer-

roelectric regime. Although the dielectric susceptibility will still diverge below the Curie

temperature Tc, this would still present a hard limit on the temperature range in which the

devices are useable. Furthermore, once the strontium titanate has been pushed past the

quantum critical point, Tc is predicted to increase as the square root of the quantum tuning

parameter a/cΛ2, very rapidly increasing the Curie temperature [29] (see figure 2.2). The

bottom panel of figure 2.14 shows a measurement of the heat capacity of sample 6, with

the highest apparent enrichment. These were carried out using the Dynacool PPMS heat

capacity option. If there is indeed a phase transition to a ferroelectric state, this should be

visible as an anomaly. However, the behavior is consistent with a simple insulating behav-

ior predicted by the Debye model. This casts further doubt that the enrichment is as high
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Figure 2.14: Top: Dissipation of the STO thermometer devices, plotted as the tangent of
the impedance angle tan δ. Low dissipation indicated capacitive impedance. None of the
samples appear to be metallic. Bottom: Heat capacity measurement of a strontium titanate
wafer (blue dots), measured using the Quantum Design PPMS. The measurement does not
show any power law behavior indicative of a phase transition, and so it has not been doped
into the ferroelectric regime. The cubic fit (orange line) is indicative of simple insulating
behavior.
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Figure 2.15: Relative change in capacitance of an annealed STO thermometer in an applied
magnetic field, measured up to 14 Tesla in the Quantum Design PPMS at 1.5 K. The initial
capacitance is about 35 pF. The improved sample mounting in the PPMS eliminates the
background from the flexing of the wires, and the trace is mostly independent of the applied
field.
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as we have determined from the mass. Finally, figure 2.15 shows the field dependence of

the measured capacitance for sample 3. This was also measured using the Dynacool PPMS

He-3 probe, which has been modified to add a pair of coaxial cables suitable for making

capacitance measurements. This probe eliminates much of the issue we had with wire flex-

ing when making a similar measurement in the VTI with the Janis cryostat, and we can see

that there is very little field dependence. This at least indicates that there are no multifer-

roic effects introduced by the oxygen-18 annealing, which would make the thermometers

unsuitable for their intended purpose replacing resistive thermometers at low temperature.

There is much we are still trying to understand about the process for making these ther-

mometer devices. As mentioned above, the pace of iteration on what we have learned is

slowed significantly by the long annealing time required. Much more precision in how

we are able to control the oxygen-18 enrichment of strontium titanate is clearly required.

However, the tools are in place for this research to continue. The most interesting states of

matter can be found at the lowest temperatures. In the next chapter, we will motivate this re-

search into low-temperature thermometry by describing thermal measurements conducted

at on a frustrated magnet system.
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CHAPTER 3

Thermal Measurements of Strontium Copper

Borate

3.1 The Shastry-Sutherland Model

For the above portion of this work, we have mostly talked about thermal measurements

of metals. This is a subject which has been studied for many decades at the point. In re-

cent years, there has developed an interest in making thermal measurements on a class of

magnetic materials whose properties derive from the geometry of their lattice structures:

frustrated magnets. Consider a square lattice of spin-1/2 sites, with antiferromagnetic cou-

pling, i.e. with a Hamiltonian given by

H = J
∑
n.n.

si · sj

where the sum is over pairs of nearest-neighbor sites, and J is positive. Each si can take

the value 1 or −1, or alternatively spin up or spin down. We will say that a particular bond

between two sites is “satisfied” if the sites take values which minimize the energy, which in

this case implies they have opposite spins. In the case of a square lattice, we can minimize

the total energy by simply fixing one of the sites (e.g. si = 1), fixing its neighbors with the

opposite spin, and repeating this process until every spin is determined. This process will

determine the spin at each site unambiguously (up to our initial choice for the first site).
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Figure 3.1: A simple example of frustration in a spin system. If the spins (gray circles) are
antiferromagnetically coupled, all of the bonds cannot be satisfied simultaneously. Thus,
this arrangement of spins has no unique ground state.

?

This process does not always work for a general lattice, however. For a simple example,

apply the above spin Hamiltonian to the triangle of sites depicted in figure 3.1. Say we fix

the top spin to be up. We can satisfy the bond with the site on the lower left by making it

down. But what about the site on the lower right? If we make it spin down, the bond with

the spin on the lower left won’t be satisfied. If we make it spin up, then the bond with the

top spin won’t be satisfied. Indeed, for the 23 = 8 possible arrangements of spins on this

triangle, six of them have energy −J (the other two, which have all the spins in the same

direction, have energy 3J). This is the essence of frustration: the geometry of the lattice

interferes with the formation of long range order.

There has been a great deal of theoretical and experimental research conducted on ma-

terials with this sort of frustration. There are many examples of materials with lattice

structures involving triangular or tetrahedral elements, and frustration in such materials has

the potential to create quite exotic magnetic phases. Since these materials are generally
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insulators, but may have magnetic excitations that don’t carry charge such as magnons,

thermal measurements such as the thermal Hall effect are an important tool for studying

these phases experimentally. One example are so called spin ices in pyrochlore systems

such as Lu2V2O7 [7] and Tb2Ti2O7 [8]. The pyrochlore lattice is made up of a series of

interconnected tetrahedra. The term spin ice derives from the nonzero entropy in these

systems due to the frustration which is analogous to a well known structural frustration

in water ice [41]. Both of these materials have relatively large thermal Hall effects con-

sidering they are insulators. Another class of materials of great interest are quantum spin

liquids [42]. In these materials, frustration prevents the formation of any magnetic ordering

at low temperature, resulting in a state with many exotic properties, such as fractional exci-

tations and long range quantum entanglement. Due to the potential for such an exotic phase

of matter, there has been intense experimental investigation of spin liquid candidates. Many

of these are kagome antiferromagnets, for example herbertsmithite (ZnCu3(OH)6Cl2) [43].

“Kagome” refers to the crystal structure of these materials which resembles a particular

type of Japanese basket. There has been theoretical [44] and experimental [45] investiga-

tion of the thermal Hall effect of these materials. Thermal Hall measurements of spin liquid

candidates with hexagonal lattice structures have been performed as well [46]. The field of

quantum spin liquids is quite active and bears much more discussion than I have presented

here, but suffice it to say there is much the thermal Hall effect techniques presented in this

work have to offer in experimental studies of these fascinating materials.

The above discussion might lead one to believe that frustration can only occur in ma-

terials with lattices based on triangles or tetrahedra. Certainly most of the compounds of

experimental interest are, but one can introduce frustration to a square lattice by adding

interactions across the diagonals. There are potentially many different ways of doing this,

but the one we will be interested in is depicted in figure 3.2. This model is known as the

Shastry-Sutherland model [47]. In it, each spin is paired across a diagonal with exactly one
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Figure 3.2: Schematic of the Shastry-Sutherland lattice. Each red circle has spin 1/2. The
nearest-neighbor coupling J is represented by the solid lines, and the intra-dimer coupling
JD is represented by the dashed line. Each spin is in exactly one dimer.
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other spin. The spin Hamiltonian is given by

H = J
∑
n.n.

si · sj + JD
∑
diag

si · sj

where the coupling J is between nearest neighbors on the square lattice (solid in the figure)

and JD is between the diagonals (dashed in the figure). The ground state of this Hamilto-

nian of course depends on the relative values of J and JD, but there are two cases we can

consider intuitively. If J is much stronger than JD, we effectively have the square lattice

antiferromagnet again. The more interesting case is when JD dominates over J : each pair

of spins connected by a diagonal hybridizes to form a singlet state give by

|s〉 =
1√
2

(| ↑↓〉 − | ↓↑〉)

with the full ground state being a direct product of these singlets. The odd parity of the

singlet state with respect to exchange of the spins in each dimer actually ensures that the J

term does not contribute to the energy at all [48].

Each individual dimer also has excited states given by the three triplets:

|t1〉 = | ↑↑〉

|t0〉 =
1√
2

(| ↑↓〉+ | ↓↑〉)

|t−1〉 = | ↓↓〉

These triplets all have even parity with respect to exchange of the spins within the dimers,

so one might expect that they would have strong dispersion. Actually, the triplets are highly

localized, and this is a result of the frustration in the lattice [47]. Specifically, each spin

in a dimer is connected to each of its neighboring spins in a triangle formed with two J

couplings and one JD coupling. Thus despite the strong interactions between the dimers,

the triplet states are completely dispersionless in this model.
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Figure 3.3: (a): Crystal structure of Strontium Copper Borate, with the c axis out of the
page. The copper atoms (copper colored) make up the Shastry-Sutherland lattice. The
strontium atoms (green) are set back into the page by half a unit cell. Image generated using
Jmol [20]. (b) through (d): Diagram demonstrating the equivalence of the crystal structure
of SCBO to the Shastry-Sutherland lattice. To go from the SCBO lattice to the Shastry
Sutherland lattice, we elongate the distance between the dimer pairs until the diamond
shape containing them has been turned into a square. Reproduced from [47].
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(b) (c) (d)
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Figure 3.4: Magnetic moment of a Strontium Copper Borate sample, taken at 1 T. The
behavior is indicative of the triplon spin gap.
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Fascinating as this model is, it is not of much experimental interest unless it can be

realized as an actual material. There are some clear difficulties with this in principle, par-

ticularly if we are interesting in the dimer ground state. Monte Carlo simulations have

shown that in order to get this phase, we must have J/JD < 0.7, i.e. the intradimer cou-

pling must be stronger than the interdimer coupling by a few tens of percent [48]. If the

lattice looked like that depicted in figure 3.2, each atom would need to be more strongly

coupled to an atom diagonal from it than from it’s nearest neighbor! There is, it turns out,

one material which can be modeled by the Shastry-Sutherland Hamiltonian, and that is

SrCu2(BO3)2 (Strontium Copper Borate, commonly abbreviated SCBO). Figure 3.3 shows

its crystal structure, which at first glance bares little resemblance to the Shastry-Sutherland

lattice. It is, however topologically equivalent: the squares in the Shastry-Sutherland lattice

have been turned into diamond shapes, with the short axis corresponding to the dimer pair.

Thus, the intradimer coupling JD can plausibly be stronger than the interdimer coupling J .
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What experimental evidence exists that the ground state of SCBO looks like the direct

product of singlets described above? One simple way of checking is by measuring the

magnetic susceptibility. Figure 3.4 shows the magnetic moment of a sample of SCBO as a

function of temperature with an applied field of 1 T, measured using the Vibrating Sample

Magnetometer in our Dynacool PPMS system. At high temperatures, the dependence looks

qualitatively like Curie-Weiss 1/T behavior. However, the magnetic moment drops precip-

itously at low temperature, indicating the opening of a spin gap. This is consistent with

what was described above: The singlet states contribute no net magnetic moment, but the

|t1〉 and |t−1〉 triplet excited states do. At low temperatures, these excitations are frozen out.

Work by others has used this data to fit for the coupling constants, finding J/JD = 0.635

and J = 85K [49]. This puts SCBO barely into the dimer phase, and corresponds to a

spin gap of 35 K. Additionally, by measuring the sample in both field-cooled and zero-

field-cooled configuration, we can see there is no hysteresis indicating the formation of

some other magnetic ordering. Thus we are confident the samples of SCBO actually have

a ground state similar to that described above.

In the discussion of the Shastry-Sutherland model above, it was noted that the frus-

tration of the lattice resulted in the triplet states being totally dispersionless. Perhaps this

makes sense for a toy model, but in an actual material one would expect some second order

effect to introduce some dispersion. This is indeed the case in SCBO, and these mobile

triplet states are termed “triplons”. The next section will discuss these lower order effects,

and the significant implications they have for thermal measurements in SCBO.

3.2 Strontium Copper Borate as a Bosonic Topological In-

sulator

In order to induce dispersion in the triplon modes in SCBO, we must have an interaction

which is not suppressed by the lattice frustration. The simplest way of doing this is by
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introducing a so-called Dzyaloshinsky-Moriya (abbreviated DM) interaction:

HDM =
∑
n.n.

D · (si × sj)

The strength of this interaction is characterized by the vector D. This interaction can act

both between pairs of spins in a dimer and between the dimers themselves. This results in

a full Hamiltonian (including an applied magnetic field hz):

H = JD
∑
n.n.

si · sj + J
∑
n.n.n

si · sj +
∑
n.n.

DD · (si × sj) +
∑
n.n.n.

D · (si × sj)− gzhz
∑
i

szi

In this Hamiltonian, “nearest neighbor” refers to the coupling between two spins in the

same dimer, and “next nearest neighbor” refers to the coupling between dimers. This is

correct when referring to the lattice structure of SCBO, but is the opposite for the Shastry-

Sutherland model (see figure 3.3 and the Shastry-Sutherland Hamiltonian from above,

where the “nearest neighbors” are along the square lattice, and not within the dimers, as

they are in SCBO). The symmetry of the lattice under exchange within the dimers DD

means that only one component can be nonzero, whereas the interdimer coupling D can

have all three components [50]. Figure 3.5 shows these bands imaged using neutron scat-

tering. The top row shows the experimental data, and the bottom row shows theoretical

computations of the bands with the coupling strengths determined using the data. Con-

trary to the prediction from the Shastry-Sutherland model without the DM interaction, the

triplons do not have a totally flat dispersion, and show some splitting without any applied

field. The antisymmetry of the DM terms in the Hamiltonian make it compatible with the

frustration in the lattice, and so allow the triplons to disperse. This is despite the fact that

the DM interaction is small compared to the higher-order effects, the above work found the

largest component of D was about 3% as large as JD [50].

The signature of the DM interaction in SCBO can be observed without doing neutron

scattering by performing heat capacity measurements. Figure 3.6 shows measurements
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Figure 3.5: Triplon band structure, imaged by neutron scattering by [50], showing disper-
sion induced by the DM interaction. Experimental data in top row, theoretical calculations
in the bottom row.

performed on our SCBO samples in our Dynacool PPMS, as well as a comparison to the

work done by Jorge et al. [51] At zero field, there is an anomaly in the heat capacity

at around 7.5K. This anomaly has been attributed to resonant scattering of phonons by

triplet excitations with sz = 0 [52]. Once a magnetic field is applied perpendicular to the

Shastry-Sutherland plane, this anomaly shifts lower in temperature as the phonons scatter

off triplon states with sz 6= 0. However, once the field is increased to about 10 T to 14 T,

a new anomaly begins to grow around 3 K. This second anomaly is due to mixing between

the states with sz = 0 and those with sz 6= 0. This mixing is achieved through the DM

terms in the Hamiltonian, which do not conserve sz. Plots from the paper reproduced in

figure 3.6 show calculations of the heat capacity for data taken in fields above 22 T where

the difference is more apparent. This mixing becomes most apparent when the difference

in energy between the states with sz = ±1 is comparable to |D|, which is why such strong

fields are required to generate it. Thus, the effect of the DM interaction can be observed

directly in our samples via heat capacity measurements.

There has been some theoretical work which indicates that the DM interaction has the

potential to introduce a new type of physics to this system: triplon bands with nontrivial
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Figure 3.6: Top: Field-dependent low temperature heat capacity measurement of Stron-
tium Copper Borate, measured in our Dynacool PPMS system, plotted as C/T to make
the presence of two anomalies more clear. Bottom: Heat Capacity plotted as C/T versus
temperature, taken from [51]. The symbols are actual data, and the lines are data computed
using a fit for the DM interaction. The dashed line in the lower panel is a calculation where
the DM term is ignored.
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topology. The importance of band topology has recently opened up an entirely new line

of research in condensed matter physics, ever since materials with topologically non-trivial

bands were predicted [53] and experimentally observed [54] at the end of the first decade

of the 2000s. In mathematics, “topology” refers to the study of continuous deformation

of geometric objects. “Continuous deformations” can intuitively be thought of as transfor-

mations which stretch or compress an object without tearing or puncturing it. Topology is

primarily concerned with the properties of such objects which are invariant under continu-

ous deformations [55]. A commonly cited example is the number of holes in an object: a

donut can be continuously molded into a coffee mug, while a sphere cannot be continuously

deformed into a donut without puncturing it. Such a quantity is known as a “topological

index”. This particular invariant is sometimes called the “genus” of a surface by math-

ematicians. When the object in question is a (Reimannian) manifold (loosely, an object

which looks locally enough like Euclidean space in which one can do calculus, e.g. the

surface of a sphere or a torus), it is possible to compute the genus g by integrating local

information on the surface, i.e. its mean Gaussian curvature K:

∫
M

KdA = 2π ∗ (2− 2g)

This is a specific case of the more general Gauss-Bonnet theorem, which in general con-

nects topological invariants to integrals over local information about curvature [56]. Thus,

with this local information, we can classify these objects by whether or not they can be

continuously deformed to each other.

The significance of this mathematical formalism to condensed matter physics comes

through the definition of Berry curvature, which assigns a curvature to a quantum state

based on how its quantum phase changes as it is adiabatically transformed into other

states [57]. In much the same way that the mean Gaussian curvature can be integrated

to find an invariant which classifies which manifolds can be continuously deformed into
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others, the Berry curvature can be integrated to produce a topological index known as a

Chern number. The Chern number thus indexes which states can be adiabatically trans-

formed into each other in the same was as the genus. In the context of a band structure,

states in the same band can be adiabatically transformed into each other, and so all states

in a band have the same Chern number. Thus, we conventionally assign Chern numbers

to bands. Much of the experimental research on topological bands in condensed matter

physics has focused on the topology of electron bands (as opposed to magnon bands such

as triplons, for example) in compounds such as bismuth selenide [54]. Here, one of the

most important experimental features of electron topology can be observed: the existence

of topologically protected surface states. Bismuth selenide has an insulating bulk, its band

structure has a gap between two bands with different Chern numbers. However, states of

electrons in vacuum outside the crystal have “trivial” topology. Thus, at the interface be-

tween the crystal and the outside, the gap must close so that the topology of the bands can

be unwound. This has the result of creating conducting surface states which span the gap,

even though the bulk material is an insulator. These states are “topologically protected” in

the sense that they are a necessary feature of the interface between bismuth selenide and

the vacuum (or some other insulator with trivial topology). If one cuts a crystal of bismuth

selenide in half, the surface states will appear on the surface without having to modify it in

any way. These surface states have many unique properties, such as Dirac-like dispersion

and spin-momentum locking (i.e. the direction of their momentum necessarily determines

their spin)[53]. Because of these properties, finding materials which host these states has

been an area of intense focus for the field in general and our lab in particular [58].

With this background in mind, we can now consider what it would mean for the triplon

bands in SCBO to have “nontrivial topology”. Figure 3.7 reproduces several figures from a

paper by Romhányi et al. which computes Chern numbers for the bands generated from the

Shastry-Sutherland Hamiltonian, with the DM interaction terms and the applied magnetic

field term. What they have shown is that when a magnetic field is applied, a gap opens
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Figure 3.7: Figures concerning chiral edge modes in SCBO, reproduced from [59]. Panels
a through e: Schematic of the triplon bands as a function of applied magnetic field perpen-
dicular to the Shastry-Sutherland plane. At fields above zero but below the critical field
hc, the upper and lower bands have nonzero Chern number. Panels f and g: Band diagram
showing the chiral edge modes in the gap between triplon bands. Panels h through j: Theo-
retical prediction of thermal Hall conductivity. The component from the chiral edge modes
should in principle give rise to a strong thermal Hall conductivity, since it is not washed
out by the phonon thermal conductivity.
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up between the upper and lower triplon bands, which have Chern numbers of 2 and −2

respectively, and the middle band which has trivial topology (Chern number 0). Then, at a

critical field hc, the gaps between the bands close again, opening up above this field to form

three bands with trivial topology. As a consequence of the nontrivial topology of the triplon

bands, there are 1-D edge states around the edge of the (2-D) Shastry-Sutherland planes.

One important feature of these states is that they are chiral: they can only propagate around

the edge of the lattice in one direction. Panel f in figure 3.7 shows these states spanning

the gap between the bulk triplon bands. The energy of the bands is expressed in terms of

the interdimer coupling J and the out of plane component of the interdimer DM interaction

D⊥. Each individual band has a group velocity which is either strictly negative or strictly

positive. The observation of such an edge state would be compelling evidence for existence

of topological triplon bands in SCBO.

The most experimentally relevant prediction made by these calculations, which ties it

into the rest of this work, is the presence of a large thermal Hall conductivity. This is

ultimately the result of the fact that wave packets in the Chern bands have net rotational

motion [60], with bands of opposite Chern number rotating in opposite directions. For

wave packets at the edge of the crystal, this results in unbalanced rotation and a net motion.

The triplons with differing Chern numbers have energies which differ by approximately

2D⊥, and so those with Chern number −2 will be populated preferentially over those with

Chern number 2. It should also be noted that since the triplons are bosons, and so do not

form a Fermi pocket, and so will need to be thermally activated. Since the triplon bands do

not carry any charge, the signature of this motion can only be found using the thermal Hall

effect. Panel h of figure 3.7 shows the prediction for the thermal Hall conductivity. As the

field is increased, the thermal Hall conductivity is expected to increase to a maximum at half

of the critical field hc ≈ 1.4 T, then being reduced and heavily suppressed above hc. Panel i

of figure 3.7 shows the predicted temperature dependence of the thermal Hall conductivity

at hz = hc/2, increasing dramatically above 5K. The role of the edge states is subtle: they
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Figure 3.8: SCBO thermal Hall conductivity at 6K, measured in the Dynacool PPMS.
There is no well defined thermal Hall effect observed. Other temperatures measured in the
PPMS, as well as our Oxford dilution refrigerator, have borne the same result.
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do not contribute directly to the thermal Hall conductivity since edge states of different

chirality have the same energy and thus the same occupation, but they do preferentially

conduct heat around the edge of the sample, thus populating bulk triplons in the bulk bands

near the edge. Regardless, the predicted magnitude of the thermal Hall conductivity is

quite large, comparable to that measured in the Bismuth samples discussed in the previous

chapter at much higher temperature.

With this in mind, we set out to perform thermal Hall effect measurements on SCBO.

Measurements were performed both using the STO capacitive thermometers described in

the previous chapter and Cernox resistive thermometers. Both our Oxford dilution refrig-

erator and the Dynacool PPMS were used as well. After many months of attempts, no

signature of the thermal Hall conductivity was found, from temperatures ranging from 0.1

K to 30K and in fields up to 8T. Figure 3.8 shows a representative thermal Hall conductiv-

ity trace consisting only of noise, two orders of magnitude below what was predicted by

Romhányi et al. Measurements conducted by a group at the University of Edinburgh have

corroborated this lack of apparent thermal Hall conductivity [61]. This would seem to cast

doubt on the existence of topological triplon bands in SCBO. It is difficult to speculate on

why this might be the case, but one potential issue stems from interlayer effects. The cal-

culations in Romhányi et al. assume that the Shastry-Sutherland layers do not interact, but

that their individual thermal Hall conductivities add together. However, there is experimen-

tal evidence that there is a coupling Jinterlayer between the layers with a magnitude between

9% and 21% of the interdimer coupling [49] [62]. These interactions may be frustrated in a

similar way to the interdimer coupling, but there could potentially be DM interactions be-

tween the planes as well. It is not obvious how these interactions could affect the creation

of the Chern bands.

One might get the impression that the months spent trying to resolve the thermal Hall

conductivity were a waste. This is far from the truth. As discussed in previous chapters,

measurements of the thermal Hall conductivity necessarily require measuring the longitu-
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dinal thermal conductivity as well. As it turns out, the thermal conductivity of SCBO has a

rich structure below 1K. We will discuss these measurements in the next chapter.

3.3 Low Temperature Thermal Conductivity in SCBO

Although our original intention in making thermal measurements was to find the signature

of the Chern bands using the thermal Hall effect, the more interesting results come from

the thermal conductivity data taken at low temperatures. The data was originally taken at

constant temperature as a function of applied magnetic field. Two datasets were collected:

One from 6 K down to 2 K every 1 K taken using the Dynacool PPMS, and one from 1 K

to 100 mK at least every 100 mK with denser curves at some particular temperature ranges,

taken in our Oxford Dilution refrigerator. The sample used in the PPMS was approximately

rectangular with total dimensions of 2.5 mm long by 0.85 mm wide by 0.2 mm thick. The

longitudinal distance between the thermometers in the PPMS measurements was 0.75 mm.

For the dilution refrigerator experiments, the sample was 3.1 mm long by 1.3 mm wide

by 0.2 mm thick, with a longitudinal distance between the thermometers of 0.78 mm. The

relatively small longitudinal distances were chosen since we were still trying to detect a

thermal Hall signal as well as measure the thermal conductivity. The samples were oriented

so that the magnetic field was applied along the c axis, i.e. perpendicular to the Shastry-

Sutherland planes.

Earlier thermal conductivity measurements attempted to use STO capacitive thermome-

ters, but since the interesting signal occurs primarily below 4 K, the unannealed thermome-

ters were not suitable. Thus, a matched pair of bare chip Cernox thermometers was used

instead. The detailed magnetoresistance of these thermometers was mapped in situ and all

temperatures derived from this field calibration. For the PPMS data, a sine wave excitation

of 0.1 mA and a period of 200 s was applied to the resistive heater. The relatively large

excitation was once again used to give the best chance of finding a thermal Hall signal.
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For the dilution fridge data, the same period was used, but the excitation used ranged from

58.57 µA at 1 K to 10 µA at 100 mK. The large range in excitations was necessary since the

temperatures involved spanned an order of magnitude. Excitations were selected to ensure

that the temperature difference between the thermometers was less than either 1% of the

total temperature, or 10 mK if that did not provide enough sensitivity.

The thermal conductivity data found in these experiments is summarized in figure 3.9.

The top panel shows the data taken in the PPMS. In this data, the application of the mag-

netic field appears to enhance the thermal conductivity, with the effect weakening as we

cool down to 2 K. The bottom panel shows the data taken in the dilution fridge. Here, it

appears that the magnetic field suppresses the thermal conductivity at 1K, but when the

temperature is lowered to around 450 mK, the dependence begins to flip around. At lower

temperatures, the thermal conductivity is instead enhanced by magnetic field. The same

dataset is plotted in figure 3.10, this time with cuts taken at constant magnetic field as a

function of temperature. Separate data runs where the temperature was ramped at a con-

stant magnetic field were taken which reproduce the general trends of this data, however

they suffer from a great deal of noise due to the massively different excitations required at

each temperature. Figure 3.10 makes the “crossover” between magnetic field suppression

and enhancement of the thermal conductivity at around 450 mK more clear. This crossover

is not sharp in the sense that the conductivity traces do not converge to a point. This would

correspond to the thermal conductivity being independent of magnetic field at some tem-

perature, instead we see that some traces show enhancement and suppression at different

values of the applied field. Not included in this plot is the data taken in the PPMS. In that

dataset, we can see that the value of the thermal conductivity taken at 2K is lower than

that taken at 1K in the dilution fridge. It is unclear if this is a true effect or if it is an error

introduced by uncertainty in the sample geometry. Previous measurements of the thermal

conductivity at higher temperatures have shown that the temperature dependence at higher

temperatures is indeed not monotonic [52], but it is difficult to do an experiment in our sys-
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Figure 3.9: Low Temperature thermal conductivity of Strontium Copper Borate. Each
curve is taken at a constant temperature. Top: Data taken in the Dynacool PPMS, from
6 K to 2 K. The applied field enhances the thermal conductivity. Bottom: Data taken in
the Oxford dilution refrigerator, from 1 K down to 100 mK. Field suppresses the thermal
conductivity down to about 450 mK, at which point the dependence flips around again.
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Figure 3.10: The same data set as 3.9, now plotted with temperature on the x axis instead
of magnetic field. Each trace is a particular cut through the data at a constant field. The
crossover between suppression and enhancement of the thermal conductivity is evident at
around 450 mK.

0.0 0.2 0.4 0.6 0.8 1.0
Temperature, K

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Th
er

m
al

 C
on

du
ct

iv
ity

, W
/(m

K)

0.0T
1.0T
2.0T
3.0T
4.0T
5.0T
6.0T
7.0T
8.0T

tems which would show this conclusively. The PPMS cannot stabilize temperature lower

than 2 K due to the custom puck required to do the measurement, and the dilution fridge

cannot control temperature in the range between 1 K and 2 K due to competition between

the dilution unit and the pulse tube stage. Thus, for the remainder of this section we will

focus on the dilution fridge data, which shows a clear inversion of the field dependence.

The presence of a field dependant thermal conductivity in this temperature range is

very puzzling. Certainly we can imagine that the triplons should couple to a magnetic

field, but since the gap between the triplons and the singlet ground state has been observed

to be about 3 meV (see figure 3.5), corresponding to about 35K, we should expect that the

occupation of triplons should be extremely small. In any event, since the triplons have very

flat dispersion, they should not contribute much to the thermal conductivity even when

they are occupied. The phonons themselves should also not couple to a magnetic field
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directly. However, it has been noted in previous measurements of the thermal conductivity

at higher temperature [52] as well as the heat capacity [51] were significantly influenced

by resonant scattering of the phonons by the triplon states. This resonant scattering is

observed to significantly suppress the thermal conductivity by damping the phonons. As

discussed above, this resonant scattering is also responsible for an anomaly in the thermal

conductivity around 7.5 K. This mechanism could certainly couple the thermal conductivity

to the magnetic field, but it appears to do so in the wrong temperature range. The effect of

this anomaly is already small at 2.5 K, but the thermal conductivity is still being affected

by the field down to 200 mK. In that section we also noted that the DM interaction could

mix the singlet and triplet states since it violated conservation of sz. The signature of

resonant scattering by these states was present in the heat capacity measurement at lower

temperatures, but only in fields above 10 T. In the thermal conductivity measurement, it

appears the bulk of the change in κxx occurs below 5 T. Heat capacity measurements at

lower temperatures would certainly help to disambiguate this phenomena, but from the

data presented it seems like the field scale is wrong for this to be a factor.

Although we no not have a good theoretical explanation for the changing thermal con-

ductivity in this temperature range, we still wish to find some way to quantify the changes.

Qualitatively, most of the curves appear to start at some value and then asymptotically move

towards some other value at high fields, lower in some cases and higher in others. In order

to structure our thinking, we have fit these curves to a function which has this qualitative

form:

κxx(h) = a+
c

1 + (h/b)2

where h is the applied field, and a, b, and c are the fit parameters. These parameters

have straightforward interpretations: a is the infinite field thermal conductivity, c is the

difference between the zero field and infinite field conductivities (so that κxx(0) = a + c),

and b is a “field scale” which characterizes the width of the transition between the zero

and infinite field values. Thus, when the field is multiple times higher than this field scale,
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Figure 3.11: Example fits of the Strontium Copper Borate thermal conductivity data. Above
and below the crossover region, the ansatz fits quite well. In the crossover region, however,
the thermal conductivity appears to have more structure than what is captured by the ansatz.
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we expect the thermal conductivity to be more or less constant. Figure 3.11 shows a few

example fits. For traces taken above and below the crossover region, the fit appears to work

quite well, independent of the sign of c. For the traces in the transition region, however,

the fits do not capture all of the structure of the thermal conductivity. The derivative of

κxx with respect to the field appears to oscillate a few times, and it is unclear if it has an

infinite field asymptote. A summary of the fitted parameters is shown in figure 3.12. Both

plots have error bars extracted from the fits plotted in red. For the traces in the crossover

region, where the fit is not adequate, the error bars are quite large. However, above and

below it, they are relatively small. The top panel shows the extracted field scale. For all the

plots outside the crossover, the field scale is more or less independent of temperature, with

an average of 5.19 T. Since we are able to apply fields of up to 8 T in the Oxford dilution

fridge, we can be confident we have enough field to capture this feature. The bottom panels

shows the zero field (a+ c) as well as the infinite field (a) thermal conductivity.

Very recently, a similar crossover effect has been observed in a layered magnet CrCl3,

studied for its similarity to the spin liquid candidate α-RuCl3 [63]. In that material, the

crossover from enhancement to suppression of the thermal conductivity in field is explained

by a transition from coherent conduction by magnons to scattering of phonons by magnons

being the dominant factor affecting the thermal conductivity. There is good reason to sus-

pect resonant scattering by triplons is playing an important role at higher temperatures in

SCBO, as discussed above. However, the fact that the magnetoconductivity persists down

to 200 mK presents a problem for applying this explanation to SCBO. As far as scattering

by the triplons are concerned, they provide a schematic model for thermal conductivity in

a system with phonons scattered by magnons:

κ−1(H,T ) = κ−1
ph (T )[1 + λ(H,T )nmag(H,T )]

where κ is the total thermal conductivity, κph is the field independent phonon component,
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nmag is the population of magnons, and λ characterizes the strength of the coupling. The

quantity λnmag is effectively ratio between the scattering rates of phonons between the

lattice and the magnons. However, at 500 mK, based on Bose-Einstein statistics, the oc-

cupation of triplons should be less than one in ten thousand per mole of dimers! In order

for resonant scattering to explain the thermal magnetoconductivity in this range, we would

need λ to be so large as to be completely unphysical.

One other curious feature is the appearance of a very small thermal Hall conductivity

at around 500 mK, shown in figure 3.13. This only occurs at this specific temperature, and

it is barely visible with the sensitivity of the Cernox thermometers. At the field with the

strongest κxy, the thermal Hall angle is about tan θH = 0.013, which is relatively large

compared to the other spin systems listed in table 1.1. This is just above the temperature

where the field dependence of the thermal conductivity flips over. Clearly, it is not like

the thermal Hall signal predicted to arise as a result of the Chern bands, as it does not get

stronger with higher temperature. It is hard to imagine this thermal Hall conductivity com-

ing from the triplons directly, since they should be frozen out at this temperature. Instead,

it appears to be specific to the crossover.

One potentially interesting question to consider is how this thermal conductivity signal

might be connected to another phenomena observed in SCBO at temperatures below 1 K:

the formation of spin superlattices. When large magnetic fields are applied to SCBO, the

energy of the triplet states with sz aligned with the applied field can be lowered to the point

that they become populated, and arrange themselves into a lattice structure which is some

multiple of the base lattice, hence the name “superlattice”. The superlattices are labeled by

what fraction of the total possible magnetization they have. Figure 3.14 shows the struc-

ture of the 1/8 superlattice, as well as its experimental signature in magnetic susceptibility

measurements at 22T [64]. In higher fields, experiments measuring magnetostriction [65]

and magnetization [66] has found evidence for 2/15, 1/4, 1/3, 2/5, and 1/2 superlattices. All

of these occur at magnetic fields much higher than what we have measured, but all require
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Figure 3.12: Top: Extracted field scale vs. temperature. The red lines are the error bars
from the fit. Note that the field scale is more or less constant where the fit is valid. Where
it is not valid, the error bars extend beyond the scale of the plot. I have kept them here to
demarcate the crossover region. Bottom: Zero field (blue) and infinite field (green) thermal
conductivities extracted from the fits. Once again the error bars are red.
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Figure 3.13: A very small thermal Hall conductivity, barely above the noise level, observed
at a temperature of about 500 mK. This is just above the crossover temperature.

8 6 4 2 0 2 4 6 8
Field, T

0.0010

0.0005

0.0000

0.0005

0.0010

Th
er

m
al

 H
al

l C
on

du
ct

iv
ity

, W
/(m

  
K) T = 0.511K

Max xy at 2.74 T

85



temperature below 1 K. However, when a pressure of 2.2 GPa is applied to the crystal,

a new superlattice attributed to a 1/20 superlattice occurs just above 5 T. This is within

the range of the thermal conductivity experiments described above, and corresponds to the

field scale we observed using the ansatz fits. Clearly the 1/20 superlattice is not forming

in our experiments, which were conducted in vacuum. However, we can speculate that

the field dependent thermal conductivity is related somehow to this ordering, or perhaps to

whatever is suppressing it at ambient pressure. The fact that the specific field dependence

of κxx changes with temperature may be a sign that there are competing phases involved,

perhaps other, larger superlattices. Unfortunately, it appears more measurements will need

to be conducted in order to say for sure if this is the case.
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Figure 3.14: Spin Superlattices in SCBO. Top: Schematic of the 1/8 superlattice observed
in SCBO at ambient pressure, reproduced from [67]. The lattice has one eighth of the total
possible magnetization, with an arrangement which enlarges the unit cell of the layer, hence
the term “superlattice”. Bottom: experimental signature of the formation of superlattices in
SCBO from magnetic susceptibility measurements, reproduced from [64]. A background
has been subtracted to highlight the superlattice feature. Panel a shows measurements
taken at ambient pressure. The 1/8 superlattice is formed at around 22 T. Panel b shows
measurements taken at 2.2 GPa. In this case, a new superlattice forms above 5 T. In both
cases, the superlattices only become clearly defined below 1 K.
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CHAPTER 4

Conclusion

Thermal measurements are an important tool for studying new materials and identifying

novel physics in condensed matter systems. In a sense, they are the most general experi-

mental methods available to a condensed matter experimentalist: any excitation in a solid

will carry energy, and thus heat. This makes them particularly applicable to studying sys-

tems with novel excitations that do not carry charge. Such measurements can be quite chal-

lenging to make, however. They require accurate and precise readings of the temperature

at multiple points on a crystal, which are often quite small, only a few millimeters in any

direction. These thermometers must be compatible with the cryogenic environment where

the measurement takes place, and may also need to be compatible with intense magnetic

fields.

This is especially important when making thermal Hall effect measurements, the ther-

mal analogue of the Hall effect. This effect is often minute, rarely more than 1% of the total

thermal conductivity. It also often requires making measurements in magnetic fields of a

few Tesla or more. These fields can interfere with standard methods of thermometry rely-

ing on resistive thermometers by way of their magnetoresistance. In order to eliminate the

systematic issues with these devices, we have exploited the strongly temperature dependent

dielectric permittivity of strontium titanate. This material is not itself a ferroelectric, but

sits close to a quantum phase transition to a ferroelectric state. This causes its permittivity

to increase rapidly until reaching a maximum a few Kelvin above absolute zero. By making
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small capacitors using this material as a dielectric, we can use this fact to measure temper-

ature with great precision in a way that is not systematically affected by a magnetic field.

This observation on its own opens up new possibilities for making thermal Hall effect mea-

surements in strong magnetic fields, but since the permittivity saturates below a few Kelvin,

the sensitivity of these devices rapidly degrades in this range. However, it has been noted

that annealing strontium titanate in an oxygen-18 atmosphere can tune the properties of

this material close to this quantum critical point, even making it ferroelectric if enough is

incorporated. By moving strontium titanate close to this quantum phase transition without

going over, the permittivity can be made to keep increasing down to temperatures below 1

Kelvin, where the magnetoresistance issues of conventional thermometers are most severe.

In order to test these capacitive thermometers, thermal Hall effect measurements were

carried out on single crystalline bismuth. Bismuth is one of the best known semimetals, a

material which hosts both electrons and holes, with a relatively low carrier density but high

mobility. It is also well known for having “Dirac-like” bands, with carriers that have linear

dispersion similar to a relativistic particle. These properties make it an important system for

benchmarking new experimental techniques in condensed matter physics. Despite being an

“old material”, one which has been studied experimentally for over a century, thermal Hall

effect measurements had only recently been performed on it up to 3 T. With the strontium

titanate microthermometers, we were able to conduct measurements up to 10 T and at

temperatures down to 40 K. A large thermal Hall coefficient is measured in this system,

indicative of high mobility carriers. Additionally, the overall field dependence displays a

1/H drop off far below the quantum limit, which can be traced to the presence of both

electrons and holes. The strontium titanate microthermometers allow us to continue to

observe these properties in the intense magnetic field.

Another important application of these thermometry techniques is towards making mea-

surements of frustrated magnets. These are systems where the geometry of the lattice in-

terferes with magnetic ordering, resulting in a variety of new magnetic phases such as spin
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ices and quantum spin liquids. These systems have generated quite a bit of theoretical

interest in the past decade, but they are difficult to study experimentally since they often

have itinerant excitations which do not carry charge. This makes thermal transport mea-

surements such as the thermal Hall effect all the more important for studying them. In this

work we discuss our measurements on strontium copper borate, in which pairs of spin-1/2

sites are paired up in dimers with a ground state made up of a lattice of singlets. The mag-

netic excitations of this system are the mobile triplet states, called triplons. It has been

predicted that these triplet bands could have non-trivial topology, making strontium copper

borate a bosonic topological insulator, and resulting in a specific thermal Hall effect signal.

Experimental measurements in this system fail to find this signal, casting doubt on this the-

ory. However, we observe magnetic field dependent longitudinal thermal conductivity at

temperatures below 1 K, where the triplet excitations should be frozen out. There may be

some relation to another phenomena found in this material in this temperature range: the

formation of spin superlattices, states where spins form ordered arrangements larger than

the base unit cell of the material.

Of course, the work presented here opens up some new lines of research. With the fea-

sibility of the capacitive thermometers established for temperatures above 10 K, we now

seek to extend their usefulness to lower temperature by way of oxygen-18 substitution.

This is regime where standard resistive thermometers have the most issue with magnetore-

sistance. More iteration is required to get the annealing conditions correct to make the most

effective thermometers, and it constitutes its own research project. Secondly, there is the

origin of the thermal magnetoconductivity in strontium copper borate. It is very puzzling

how the thermal conductivity could change so strongly at such a low temperature, when

the population of triplons should be exceptionally low. How, if at all, it is related to the for-

mation of spin superlattices in the same temperature range remains an open question. This

may require thermal measurements at higher fields to see if the thermal conductivity does

indeed remain stable as we have assumed in our descriptive model. In the past few months,
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we have taken delivery of a 14 T magnet for the Oxford dilution fridge system where the

measurements on SCBO were performed. Thus, we can try to make these measurements at

higher fields. However, the magnetoresistance of the thermometers will only become more

of an issue in these fields. Thus, these two lines of research are intimately connected. More

generally speaking, as we seek to discover new magnetic phases in frustrated magnet sys-

tems, more and more accurate thermal measurements will be required at lower and lower

temperatures. This will require new advances in thermometry, to which I hope I have made

a meaningful contribution through this research.
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APPENDIX A

Python Source Code for Finite Element

Simulations of the Thermal Hall Effect

The following Python source code uses Fenics to do the finite element computations de-

scribed in chapter 1. It will output the plots in the text as pdf files.

from fenics import *
from mshr import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

# Mesh
asp_ratio = 1.6
domain = Rectangle(Point(0.0, 0.0), Point(asp_ratio, 1.0))
mesh = generate_mesh(domain, 128)
V = FunctionSpace(mesh, 'P', 1)

# Dirichlet BC (Cold Finger)
u_D = Constant(0.0)

def boundary_D(x, on_boundary):
return on_boundary and ((x[0] <= asp_ratio*x[1])

and (x[0] <= asp_ratio*(1-x[1])))

bc = DirichletBC(V, u_D, boundary_D)

# Neumann BC (Heater, Insulated Edges)
g = Expression(

'x[0] >= x[1]*{0} && x[0] >= (1-x[1])*{0} ? -1 : 0'
.format(asp_ratio), degree=1)
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thetas = np.pi*np.array([-1/6, -1/12, 0, 1/12,
1/6, 1/4, 1/3, 5/12])

xs = np.linspace(0,1.6,161)
ys = np.linspace(0,1.0,101)

us = np.zeros((thetas.size, xs.size, ys.size))

for ii, theta_hall in enumerate(thetas):

# Thermal Hall Conductivity
# C = as_matrix(((1, np.tan(theta_hall)),
# (-np.tan(theta_hall), 1)))
C = as_matrix(

((np.cos(theta_hall), np.sin(theta_hall)),
(-np.sin(theta_hall), np.cos(theta_hall))))

# Weak Problem
u = TrialFunction(V)
v = TestFunction(V)

a = dot(C*grad(u), grad(v))*dx
L = -g*v*ds

# Compute solution
u = Function(V)
solve(a == L, u, bc)

us[ii] = np.array([[u(x, y) for x in xs] for y in ys]).T

font = {'size' : 16}
matplotlib.rc('font', **font)

f, axarr = plt.subplots(4,2, sharex='col',
sharey='row',
figsize=(9,12),
subplot_kw={'aspect':1})

theta_names = ['-$\\pi$/6', '-$\\pi$/12', '0',
'$\\pi$/12', '$\\pi$/6', '$\\pi$/4',

'$\\pi$/3', '5$\\pi$/12']
levels = np.linspace(0, np.max(us), 24)
for theta, u, ax in zip(theta_names, us, axarr.flatten()):

ax.contour(xs, ys, u.T, cmap='plasma', levels=levels)
ax.set_title('$\\theta_H$ = {}'.format(theta))

f.savefig('thall_isotherm.pdf')
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font = {'size' : 14}
matplotlib.rc('font', **font)

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(9,12))

for theta, u in zip(theta_names, us):
diff = u[:,-1] - u[:,0]
ax1.plot(xs, diff, label=theta)

ax1.set_title('Temperature Difference Profile')
ax1.set_xlabel('$x$, arb. units')
ax1.set_ylabel('$\Delta T$, arb. units')
ax1.grid()
ax1.legend()

ax2.plot(thetas_full, us_full[:,-1,-1] - us_full[:,-1,0])

ax2.set_title('Transverse Temperature Difference')
ax2.set_xlabel('Thermal Hall Angle $\\theta_H$, radians')
ax2.set_ylabel('$\Delta T$, arb. units')
ax2.grid()

f.savefig('thall_profile.pdf')
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APPENDIX B

Operation of the Denton Evaporator

B.1 Preparing the Chamber

1. The bell jar should have a rough vacuum when it is not in use. Make sure all the

valves are closed, and then pull the lever labeled “Chamber Vent” to open the bell jar

to air.

2. Once the chamber has vented, carefully lift the bell jar off the platform and place it

on the nearby lab bench.

3. Check the underside of the plate to see if the aluminum foil has gold peeling off of

it. If so, it will not be possible to mount the samples firmly to the plate. Unscrew the

plate from the three brackets with a flathead screwdriver and replace the aluminium

foil.

4. Mount your sample on the plate above the filament electrodes. Typically when mak-

ing gold films for capacitive cantilevers, we stick them to a strip from a post-it note

which has been fixed to a glass slide with PTFE tape. This slide can be attached to

the plate with double-sided tape. Mount it directly over the gold filament (in the front

of the chamber).

5. Get a tungsten filament out of the top drawer of the file cabinet next to the evaporator.

Using a pair of needle-nose pliers, grip one end of the filament and twist it to separate
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the three wires. With a side cutter, cut two of the wires completely off from the base

of the corkscrew portion. Be careful, the cut ends of the wires will be extremely

sharp. Do the same for the other end of the filament. Then, trim the remaining wire

to length so that it will fit in the electrode.

6. Cut a piece of the gold wire which is ∼ 5 mm longer than the corkscrew section of

the filament. Insert the wire into the corkscrew, and then use a pair of needle-nose

pliers to bend each end of the gold wire such that it will not fall out.

7. Insert the loaded tungsten filament into the electrodes. Use a hex wrench to adjust

the gap between the jaws of the electrode to get good mechanical contact.

8. Take a multimeter and check that the two electrodes are shorted together. Move the

filament selector to the “Chromium” setting so that they are not connected through

the power supply. Move the selector back once you have finished checking the elec-

trode.

9. Check that the electrodes are not shorted to the filament shield. If they are, it is

likely the short is near the ceramic spacer which connects the shield to the electrode.

Kapton take can be used to interrupt any shorts in this area. If the spacer is cracked,

replace it with a new one stored in the top drawer of the filing cabinet.

10. Check that the electrodes are not shorted to the top plate. The position of top plate

can be adjusted by loosening the screws around on the brackets holding it up and

repositioning it.

11. Clean the rim of the bell jar as well as its mating surface with isopropyl alcohol.

Replace the bell jar.
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B.2 Pumping the Chamber to Low Vacuum

1. Flip the “Main Power” switch.

2. Flip the “Mech. Pump” switch to turn on the rough pump.

3. Turn the knob under the thermocouple gauge to the “Back” setting, and flip the switch

next to it to turn on the gauge. The reading will be very noisy at first but will get

cleaner once the foreline pumps out. It should reach 50 millitorr in about 30 seconds.

4. Open the backing valve underneath the control console. This will rough out the

diffusion pump.

5. Open the cooling water valves to the left of the evaporator. There are four valves

to open in total: One each above and below the split between the evaporator and

the resistive magnet on both the input and return lines. Open all four. Then, twist

the knob labeled “Diff. Water” less than half a turn, so that the arrow is pointing

upwards. You will not see any appreciable flow on the flow gauge.

6. Once the foreline pressure reads below 100 millitorr, turn on the diffusion pump by

flipping the “Diff. Pump” switch. Wait about 30 minutes for the diffusion pump to

come up to temperature. The manual recommends you adjust the flow of the cooling

water so that the exit temperature is about 100◦ F, in practice it seems difficult to get

above 80◦.

7. Add liquid nitrogen to the cold trap. This is optional, but it greatly enhances the

vacuum one can achieve with this system. The input funnel is on the left side of the

evaporator. Once the cold trap is full, liquid nitrogen will start to bubble out of the

opening visible when looking through the slit for the main valve lever. Once nitrogen

has been added, be sure to add more every two to three hours if you continue running

that long.
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8. Make sure the bell jar is on the base plate.

9. Close the backing valve underneath the control console, and open the roughing valve.

Only one of these valves should be open at any time!

10. Move the thermocouple gauge selector to the “B. Jar” position. Once the reading is

below 100 to 150 millitorr, close the roughing valve and open backing valve.

11. Open the main valve by lifting the lever on the left side of the control console.

12. Move the thermocouple gauge selector back to the “Back” position. It should be at

the bottom end of its range.

13. Move the discharge gauge range selector from the “Off” position to the “Zero” posi-

tion. Let it warm up for a few minutes, and then adjust the zero knob until the needle

reads zero.

14. Turn the nob to the “10−4” range and push the “Vacuum Read” button. If the needle

reads below one, switch to the next lowest range.

B.3 Evaporating

1. Turn on the thickness monitor, if you are using it.

2. Move the filament selector to the “Gold” position.

3. Make sure the pressure is in the “10−6” range or lower on the discharge gauge read-

out.

4. Make sure the “Filament/Glow Selector” switch is in the “Filament” position.

5. Move the “Filament Adjust” knob in the center of the control console is at zero (all

the way to the counter-clockwise).
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6. Flip the “Filament Power” switch.

7. Slowly increase the power using the “Filament Adjust” knob. Usually for gold I start

with 20 amps on the “Filament Current” meter until the filament starts to glow red,

after which I slowly increase to 35 amps. For thick gold coatings I simply wait until

there is visible gold on the inside of the bell jar. If you want a particular thickness,

adjust the current to get your desired deposition rate. Monitor the pressure on the

discharge gauge, making sure it stays below 1×10−5 torr. The pressure may increase

initially as the filament outgasses, but should decrease after about 30 seconds. For

gold, the process should take only a few minutes in total.

8. Once the desired thickness has been reached, turn the “Filament Adjust” knob all the

way counter-clockwise and turn the “Filament Power” switch off.

B.4 Venting and Resetting the Chamber

1. Turn off the discharge gauge by moving the knob to the “Off” position.

2. Close the main valve by moving the lever down.

3. Open the chamber vent valve. Monitor the foreline pressure (“Back” setting below

the thermocouple gauge reading) to make sure it is not increasing.

4. Remove the bell jar.

5. At this point, the chamber can be reset as described in part B.1, if you are going to

do additional evaporation.

6. Once the chamber is prepared and the bell jar replaced, check that the vent levers are

closed.

7. Close the backing valve and open the roughing valve.
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8. Wait for the pressure on the “B. Jar” thermocouple to reach less than 100 to 150

millitorr.

9. Close the roughing valve, and open the backing valve.

10. If you will evaporate again, open the main valve again and turn on the discharge

gauge again as described in part B.2.

B.5 Shutting the System Down

1. The bell jar should be roughed out at this point. If not, rough pump it as described in

part B.4.

2. Close the main valve, if it is open.

3. Turn off the diffusion pump. Allow 20 minutes for it to cool down.

4. Close the backing valve.

5. Turn off the mechanical pump. Open the “M. P. Vent” lever to vent the foreline.

6. Turn off the main power.

7. Close all the valves for the diffusion pump cooling water (four on the wall, one on

the center of the control console).

8. Ensure all the vacuum valves (main, backing, and roughing) are closed.
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APPENDIX C

Operation of the Oxygen-18 Annealing System

C.1 Opening and Loading the Tube

1. If the tube is in vacuum, open V1 and then slowly open V3 while monitoring the

pressure on P1. If air is let in too fast, the alumina spacers will be blown to the end

of the tube. Afterwards, close V1 and V3.

2. If the tube still has oxygen-18 gas inside, collect the gas in the cold trap using the

instructions in section C.5. The open the tube as described above.

3. Using a hex wrench, remove the flange on the right side of the tube. This side has a

flexible tube to allow the flange to be moved away.

4. Use the metal hook to extract the alumina spacers and sample boats.

5. Place the new samples to be annealed in the sample boats.

6. Replace the alumina spacers and sample boats, using the metal hook. Place two

spacers flush with the left edge of the furnace, then the samples, then two spacers

flush with the right edge of the furnace.

7. Replace the flange on the right side of the tube. Tighten each bolt a little bit before

moving to the next one in sequence, rather than tightening each one all the way down

at once, to ensure a uniform seal.
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Figure C.1: Strontium Titanate Annealing System
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8. Connect the pump station to the pumping port with a KF-25 clamp. Turn on the

rough pump only. Open V1.

9. Very slowly open V3. Monitor P1 to see when the pressure starts to drop. If the valve

is opened too fast, the alumina spacers will be pulled across the tube, and the tube

will need to be opened again to be reset.

10. Once V3 is completely open and P1 is at its lowest reading, turn on the turbo pump

to finish evacuating the tube.

11. Once you are satisfied with the pressure reading on the pump station, close V1 and

V3, shut down the pump station, and disconnect it from the pumping port.
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C.2 Introducing the Oxygen-18 Gas from the Cylinder

1. Using the Gay-Lussac Law
P1

T1

=
P2

T2

estimate the pressure needed in the tube at room temperature to get the desired pres-

sure at the annealing temperature. This will underestimate the pressure at the anneal-

ing temperature since the ends of the tube will not be heated.

2. Open the valve on the oxygen-18 cylinder. The pressure in a new cylinder is relatively

low, slightly above atmospheric pressure.

3. Open V2 to introduce oxygen-18 into the gas lines, then close V2.

4. Slowly open V3 to introduce oxygen-18 into the tube. As discussed above, the valve

needs to be opened very carefully in order to avoid blowing away the alumina spacers.

Monitor the pressure on P1.

5. If more pressure is needed, close V3, then repeat from step 3 until the desired pres-

sure is reached.

6. Close V2, V3, and the valve on the oxygen-18 cylinder.

C.3 Introducing the Oxygen-18 Gas from the Cold Trap

1. Make sure the cold trap is warm. If it has recently had liquid nitrogen in it, wait for

it to warm up.

2. As in section C.2, calculate how much gas you require in the tube.

3. Introduce oxygen-18 gas into the lines by opening V5, then closing it.
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4. Slowly open V3 to introduce oxygen-18 into the tube. As discussed above, the valve

needs to be opened very carefully in order to avoid blowing away the alumina spacer.

Monitor the pressure on P1.

5. If more pressure is needed, close V3, the repeat from step 3 until the desired pressure

is reached.

6. Close V3 and V5.

C.4 Programming the Tube Furnace

1. Turn on the furnace using the power switch, if it is not already powered on.

2. The programs consist of series of temperature setpoints C01 to CN in ◦C and time

periods t01 to tN in minutes. The program starts at C01, and immediately starts

ramping to C02 over the period of time t01. Then, it will start ramping to C03 over

the period t02, and so on. Map out your desired temperature profile over time.

3. Push the “←” key to display C01. Set it to room temperature (about 20◦C) using the

arrow keys. Then push the “Set” key.

4. Set the desired value for t01 using the arrow keys. Then push “Set” again.

5. Set the value for C02, and continue for the remaining setpoints and periods.

6. After the final setpoint, set the next time period to -121. This will end the program,

and allow the furnace to cool down to room temperature. Push “Set” one last time.

“End” should display in the SV window.

7. Push “←”, then cycle through your program with “Set” to check that it has been

entered correctly. Continue until “End” is shown again.

8. Start the program by holding “↓” until “run” is displayed after about 2 seconds.
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For example, to ramp up to 1000◦C over the course of 4 hours, hold that temperature

for 3 days, and then cool down to room temperature without temperature control,

1. Set C01 to 20

2. Set t01 to 240

3. Set C02 to 1000

4. Set t02 to 4320

5. Set C03 to 1000

6. Set t03 to -121

The maximum any time period can be is 9999 minutes, or slightly less than 7 days. To

anneal for a longer time period, split the time up into multiple periods. For example, to

anneal at 1000◦C for 10 days,

1. Set C01 to 20

2. Set t01 to 240

3. Set C02 to 1000

4. Set t02 to 7200

5. Set C03 to 1000

6. Set t03 to 7200

7. Set C04 to 1000

8. set t04 to -121
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C.5 Collecting the Oxygen-18 Gas

1. Optionally, set the tube furnace to 200◦C in order to collect the gas more efficiently.

2. Using a funnel, load liquid nitrogen into the cold trap through the port in the top.

Pour the nitrogen slowly, leaving time for the funnel to cool down. Be very careful

not to splash any on the quartz tube, especially if it is hot.

3. Open V6. Check that the pressure on P2 is lower than P1.

4. Very slowly open V7, once again being careful not to disturb the alumina spacers.

Wait until the pressure at P1 and P2 has equalized.

5. Close V6 and V7.
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Dispersion and symmetry of bound states in the shastry-sutherland model. Phys. Rev.
Lett., 85:3958–3961, Oct 2000.

[63] Christopher A. Pocs, Ian A. Leahy, Hao Zheng, Gang Cao, Eun-Sang Choi, S. H. Do,
Kwang-Yong Choi, B. Normand, and Minhyea Lee. Giant thermal magnetoconduc-
tivity in CrCl3 and a general model for spin-phonon scattering. arXiv e-prints, page
arXiv:1908.07004, Aug 2019.

[64] S. Haravifard, D. Graf, A. E. Feiguin, C. D. Batista, J. C. Lang, D. M. Silevitch,
G. Srajer, B. D. Gaulin, H. A. Dabkowska, and T. F. Rosenbaum. Crystallization of
spin superlattices with pressure and field in the layered magnet srcu2(bo3)2. Nature
Communications, 7:11956 EP –, Jun 2016. Article.

[65] Marcelo Jaime, Ramzy Daou, Scott A. Crooker, Franziska Weickert, Atsuko Uchida,
Adrian E. Feiguin, Cristian D. Batista, Hanna A. Dabkowska, and Bruce D. Gaulin.
Magnetostriction and magnetic texture to 100.75 tesla in frustrated srcu2(bo3)2. Pro-
ceedings of the National Academy of Sciences, 109(31):12404–12407, 2012.

[66] Y. H. Matsuda, N. Abe, S. Takeyama, H. Kageyama, P. Corboz, A. Honecker, S. R.
Manmana, G. R. Foltin, K. P. Schmidt, and F. Mila. Magnetization of srcu2(bo3)2 in
ultrahigh magnetic fields up to 118 t. Phys. Rev. Lett., 111:137204, Sep 2013.

[67] T. M. Rice. To condense or not to condense. Science, 298(5594):760–761, 2002.

111


	DEDICATION
	ACKNOWLEDGMENTS
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	The Thermal Hall Effect
	Thermal Hall Conductivity in General
	Origin of the Thermal Hall Conductivity in Metals
	The Thermal Hall Conductivity in Bismuth
	Performing Thermal Hall Effect Measurements

	Strontium Titanate Microthermometers
	Thermometry
	Quantum Criticality in Strontium Titanate
	Strontium Titanate Thermometers
	Measuring the Thermal Hall Effect in Bismuth
	Annealing Strontium Titanate in Oxygen-18

	Thermal Measurements of Strontium Copper Borate
	The Shastry-Sutherland Model
	Strontium Copper Borate as a Bosonic Topological Insulator
	Low Temperature Thermal Conductivity in SCBO

	Conclusion
	APPENDICES
	Python Source Code for Finite Element Simulations of the Thermal Hall Effect
	Operation of the Denton Evaporator
	Preparing the Chamber
	Pumping the Chamber to Low Vacuum
	Evaporating
	Venting and Resetting the Chamber
	Shutting the System Down

	Operation of the Oxygen-18 Annealing System
	Opening and Loading the Tube
	Introducing the Oxygen-18 Gas from the Cylinder
	Introducing the Oxygen-18 Gas from the Cold Trap
	Programming the Tube Furnace
	Collecting the Oxygen-18 Gas

	BIBLIOGRAPHY

