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ABSTRACT

Generative modeling is a frontier research topic in machine learning and AI. De-

spite the recent success in image synthesis, developing a general form of deep genera-

tive models on complex data (e.g., multi-modal and structured data) also directly ap-

plicable to real-world tasks remains a challenging open problem. The major challenges

include high-dimensional representation space, many entangled factors of variation,

and lack of existing deep modules for this data generation process.

In the thesis, I introduce the concept of controllable representations, a set of fac-

tors as intermediate representations, for deep generative modeling. In the context of

attribute-to-image synthesis, we consider controllable units as (1) semantic factors

described by the visual attributes and (2) other related factors not included in the

input attributes for image synthesis (e.g., such as pose and background color). To

facilitate efficient learning of such controllable units for attribute-to-image synthesis,

I explore novel deep structured modules that can be trained in auto-encoding style

that synthesizes images from controllable units. In addition, I demonstrate the rep-

resentation power of such design in conditional generation (e.g., control partial set of

units while keeping the rest unchanged) as well as other related applications including

image completion via analysis-by-synthesis optimization.

For the rest of the thesis, I investigate and propose several variations to learn

controllable and structured representations in several related problems including (1)

xiii



image manipulation with semantic structures (e.g., object bounding boxes), (2) hu-

man motion prediction with transformation-based representations, and (3) 3D shape

prediction from single-view with geometry-aware modules. The case studies in the

thesis demonstrate not only the representation power but also a common aspect that

the representations can be learned in an unsupervised or weakly-supervised manner.

In the end, I discuss several future directions in learning deep controllable and struc-

tured modules for other multi-modal and structured data as well as the application

to adversarial learning.
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CHAPTER I

Introduction

1.1 Motivation

Generative models, describing the data generation process, is one of the key re-

search topics in machine learning and AI. There has been a line of early research

on unsupervised representation learning using deep generative models on simple and

toy data. Efficient learning using deep generative models on real-world data with

domain-specific structures is still an open problem in the research community. One

possible solution is to learn the representation in a purely unsupervised way with

black-box deep modules. Several recent work has demonstrated the success of this

approach on large-scale image datasets (e.g., ImageNet, CelebA) using very powerful

computation resources. One weakness is that the learned representation may not gen-

eralize in novel but related settings without sufficient training data or when the data

is highly complicated. Approximating the real-world data distribution using deep

generative models is essentially difficult due to the high-dimensional representation

space and many entangled factors of variation involved in the data generation process.

For example, imagery observations of the environment are entangled representations

of intrinsic properties (e.g., texture, geometry and material), as well as its extrinsic

environmental properties such as illumination.

Alternatively, one can apply certain regularization to constrain the representation
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space so as to learn disentangled or controllable units in the representation. Specif-

ically, one advantage of learning controllable representation is that the units can be

directly applied for conditional generation and manipulation (e.g., control partial set

of units while keeping the rest unchanged). In addition, the controllable representa-

tion allows for relatively easier generalization and task transfer (to other related tasks)

compared to representations trained without certain regularization or conditioning.

Motivated by this, the thesis mainly addresses three aspects of the problem: (1)

how to effectively learn a controllable representation using deep neural networks;

(2) how to better incorporate domain knowledge into data generation process with

structured deep in-network modules; and (3) how to achieve robust performance for

other supervised or semi-supervised tasks with additional generative objectives. On

the application side, the thesis can be categorized into the following related topics:

controllable image generation (Chapter II and III) and structure prediction using

deep generative models (Chapter IV, V, and VI).

1.2 Organization of the Thesis

This thesis is organized in 7 chapters including the introduction (Chapter I), and

the conclusion and future work (Chapter VII). The main chapters (II – VI) are divided

into two parts according to the application domain. As one of the most common

digital data formats, images have been the key data modality that has advanced

fundamental research in machine learning and computer vision for decades. The

Chapter II presents the problem of attribute-conditional image synthesis and a layered

module with varitiaonal auto-encoders. The Chapter III further investigates the high-

resolution image manipulation conditioned on structured semantic representations.

As image synthesis is a special form of structure prediction problem, we discuss

possible extensions to learning controllable and structured representations for motion

data (in Chapter IV), 3D shape data (Chapter V), and human-object interaction
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(Chapter VI). For each chapter, we briefly state the problem, our approach, and

further discussions.

1.2.1 Learning Controllable Representations for Attribute-to-Image Gen-

eration (Chapter II)

This chapter investigates a novel problem of generating images from visual at-

tributes. We model the image as a composite of foreground and background and

develop a layered generative model with disentangled latent variables that can be

learned end-to-end using a variational auto-encoder. We experiment with natural

images of faces and birds and demonstrate that the proposed models are capable of

generating realistic and diverse samples with disentangled latent representations. We

use a general energy minimization algorithm for posterior inference of latent variables

given novel images. The learned generative models show excellent quantitative and

visual results in the tasks of attribute-conditioned image reconstruction and comple-

tion.

1.2.2 Learning Controllable and Structured Representations for Semantic

Image Manipulation (Chapter III)

Understanding, reasoning, and manipulating semantic concepts of images have

been a fundamental research problem for decades. Previous work mainly focused

on direct manipulation on natural image manifold through color strokes, key-points,

textures, and holes-to-fill. In this work, we present a novel hierarchical framework

for semantic image manipulation. Key to our hierarchical framework is that we

employ structured semantic layout as our intermediate representation for manipu-

lation. Initialized with coarse-level bounding boxes, our structure generator first

creates pixel-wise semantic layout capturing the object shape, object-object interac-

tions, and object-scene relations. Then our image generator fills in the pixel-level
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textures guided by the semantic layout. Such framework allows a user to manipulate

images at object-level by adding, removing, and moving one bounding box at a time.

Experimental evaluations demonstrate the advantages of the hierarchical manipula-

tion framework over existing image generation and context hole-filing models, both

qualitatively and quantitatively. Benefits of the hierarchical framework are further

demonstrated in applications such as semantic object manipulation, interactive image

editing, and data-driven image manipulation.

1.2.3 Learning Structured Representations for Human Motion Genera-

tion (Chapter IV)

Long-term human motion can be represented as a series of motion modes—

motion sequences that capture short-term temporal dynamics—with transitions be-

tween them. We leverage this structure and present a novel Motion Transformation

Variational Auto-Encoders (MT-VAE) for learning motion sequence generation. Our

model jointly learns a feature embedding for motion modes (that the motion sequence

can be reconstructed from) and a feature transformation that represents the transition

of one motion mode to the next motion mode. Our model is able to generate multiple

diverse and plausible motion sequences in the future from the same input. We apply

our approach to both facial and full body motion, and demonstrate applications like

analogy-based motion transfer and video synthesis.

1.2.4 Learning Geometry Representations for Single-View 3D Object Re-

construction (Chapter V)

Understanding the 3D world is a fundamental problem in computer vision. How-

ever, learning a good representation of 3D objects is still an open problem due to the

high dimensionality of the data and many factors of variation involved. In this chap-

ter, we investigate the task of single-view 3D object reconstruction from a learning
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agent’s perspective. We formulate the learning process as an interaction between 3D

and 2D representations and propose an encoder-decoder network with a novel projec-

tion loss defined by the perspective transformation. More importantly, the projection

loss enables the unsupervised learning using 2D observation without explicit 3D su-

pervision. We demonstrate the ability of the model in generating 3D volume from

a single 2D image with three sets of experiments: (1) learning from single-class ob-

jects; (2) learning from multi-class objects and (3) testing on novel object classes.

Results show superior performance and better generalization ability for 3D object

reconstruction when the projection loss is involved.

1.2.5 Learning Geometry-aware Deep Representation for 6-DOF Grasp-

ing (Chapter VI)

This chapter focuses on the problem of learning 6-DOF grasping with a parallel jaw

gripper in simulation. Our key idea is constraining and regularizing grasping interac-

tion learning through 3D geometry prediction. We introduce a deep geometry-aware

grasping network (DGGN) that decomposes the learning into two steps. First, we

learn to build mental geometry-aware representation by reconstructing the scene (i.e.,

3D occupancy grid) from RGBD input via generative 3D shape modeling. Second, we

learn to predict grasping outcome with its internal geometry-aware representation.

The learned outcome prediction model is used to sequentially propose grasping solu-

tions via analysis-by-synthesis optimization. Our contributions are fourfold: (1) To

best of our knowledge, we are presenting for the first time a method to learn a 6-DOF

grasping net from RGBD input; (2) We build a grasping dataset from demonstra-

tions in virtual reality with rich sensory and interaction annotations. This dataset

includes 101 everyday objects spread across 7 categories, additionally, we propose a

data augmentation strategy for effective learning; (3) We demonstrate that the learned

geometry-aware representation leads to about 10% relative performance improvement
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over the baseline CNN on grasping objects from our dataset. (4) We further demon-

strate that the model generalizes to novel viewpoints and object instances.

6



CHAPTER II

Learning Controllable Representations for

Attribute-to-Image Generation

2.1 Introduction

Generative image modeling is of fundamental interest in computer vision and

machine learning. Early works (Srivastava et al., 2003; Tu, 2007; Lee et al., 2009;

Ranzato et al., 2010; Le Roux et al., 2011) studied statistical and physical principles

of building generative models, but due to the lack of effective feature representations,

their results are limited to textures or particular patterns such as well-aligned faces.

Recent advances on representation learning using deep neural networks (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014) nourish a series of deep generative mod-

els that enjoy joint generative modeling and representation learning through Bayesian

inference (Tang and Salakhutdinov , 2013; Bengio et al., 2013; Rezende et al., 2014;

Kingma and Welling , 2014; Kingma et al., 2014; Gregor et al., 2015) or adversarial

training (Goodfellow et al., 2014; Denton et al., 2015). Those works show promising

results of generating natural images, but the generated samples are still in low reso-

lution and far from being perfect because of the fundamental challenges of learning

unconditioned generative models of images.

In this chapter, we are interested in generating object images from high-level de-

7



age: young

gender: female

hair color: brown

expression: smile

0.9

1.3

-0.4

0.8

?

?
?

?

viewpoint

background

lighting

…

a young girl with brown 

hair is smiling. 

Attribute-conditioned Image Generation

?

Figure 2.1: An example that demonstrates the problem of conditioned image gen-
eration from visual attributes. We assume a vector of visual attributes is extracted
from a natural language description, and then this attribute vector is combined with
learned latent factors to generate diverse image samples.

scription. For example, we would like to generate portrait images that all match the

description “a young girl with brown hair is smiling” (Figure 2.1). This conditioned

treatment reduces sampling uncertainties and helps generating more realistic images,

and thus has potential real-world applications such as forensic art and semantic photo

editing (Laput et al., 2013; Yang et al., 2011a; Kemelmacher-Shlizerman et al., 2014).

The high-level descriptions are usually natural languages, but what underlies its corre-

sponding images are essentially a group of facts or visual attributes that are extracted

from the sentence. In the example above, the attributes are (hair color: brown), (gen-

der: female), (age: young) and (expression: smile). Based on this assumption, we

propose to learn an attribute-conditioned generative model.

Indeed, image generation is a complex process that involves many factors. Other

than enlisted attributes, there are many unknown or latent factors. It has been shown

that those latent factors are supposed to be interpretable according to their seman-

tic or physical meanings (Kulkarni et al., 2015; Dosovitskiy et al., 2015; Reed et al.,

2014). Inspired by layered image models (Wang and Adelson, 1994; Nitzberg and

Mumford , 1990), we disentangle the latent factors into two groups: one related to

8



uncertain properties of foreground object and the other related to the background,

and model the generation process as layered composition. In particular, the fore-

ground is overlaid on the background so that the background visibility depends on

the foreground shape and position. Therefore, we propose a novel layered image gen-

erative model with disentangled foreground and background latent variables. The

entire background is first generated from background variables, then the foreground

variables are combined with given attributes to generate object layer and its shape

map determining the visibility of background and finally the image is composed by

the summation of object layer and the background layer gated by its visibility map.

We learn this layered generative model in an end-to-end deep neural network using a

variational auto-encoder (Kingma and Welling , 2014) (Section 2.3). Our variational

auto-encoder includes two encoders or recognition models for approximating the pos-

terior distributions of foreground and background latent variables respectively, and

two decoders for generating a foreground image and a full image by composition. As-

suming the latent variables are Gaussian, the whole network can be trained end-to-end

by back-propagation using the reparametrization trick.

Generating realistic samples is certainly an important goal of deep generative

models. Moreover, generative models can be also used to perform Bayesian inference

on novel images. Since the true posterior distribution of latent variables is unknown,

we propose a general optimization-based approach for posterior inference using image

generation models and latent priors (Section 2.4).

We evaluate the proposed model on two datasets, the Labeled Faces in the Wild

(LFW) dataset (Huang et al., 2007) and the Caltech-UCSD Birds-200-2011 (CUB)

dataset (Wah et al., 2011). In the LFW dataset, the attributes are 73-dimensional vec-

tors describing age, gender, expressions, hair and many others (Kumar et al., 2009).

In the CUB dataset, the 312-dimensional binary attribute vectors are converted from

descriptions about bird parts and colors. We organize our experiments in the fol-
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lowing two tasks. First, we demonstrate the quality of attribute-conditioned image

generation with comparisons to nearest-neighbor search, and analyze the disentan-

gling performance of latent space and corresponding foreground-background layers.

Second, we perform image reconstruction and completion on a set of novel test images

by posterior inference with quantitative evaluation. Results from those experiments

show the superior performance of the proposed model over previous art. The contri-

butions of this chapter are summarized as follows:

• We propose a novel problem of conditioned image generation from visual at-

tributes.

• We tackle this problem by learning conditional variational auto-encoders and

propose a novel layered foreground-background generative model that signifi-

cantly improves the generation quality of complex images.

• We propose a general optimization-based method for posterior inference on

novel images and use it to evaluate generative models in the context of image

reconstruction and completion.

2.2 Related Work

Image generation. In terms of generating realistic and novel images, there are sev-

eral recent work (Dosovitskiy et al., 2015; Gregor et al., 2015; Kulkarni et al., 2015;

Goodfellow et al., 2014; Denton et al., 2015; Radford et al., 2015) that are relevant

to ours. Dosovitskiy et al. (2015) proposed to generate 3D chairs given graphics code

using deep convolutional neural networks, and Kulkarni et al. (2015) used variational

auto-encoders (Kingma and Welling , 2014) to model the rendering process of 3D ob-

jects. Both of these models Kulkarni et al. (2015); Dosovitskiy et al. (2015) assume

the existence of a graphics engine during training, from which they have 1) virtually

infinite amount of training data and/or 2) pairs of rendered images that differ only in
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one factor of variation. Therefore, they are not directly applicable to natural image

generation. While both work (Kulkarni et al., 2015; Dosovitskiy et al., 2015) stud-

ied generation of rendered images from complete description (e.g., object identity,

view-point, color) trained from synthetic images (via graphics engine), generation

of images from an incomplete description (e.g., class labels, visual attributes) is still

under-explored. In fact, image generation from incomplete description is a more chal-

lenging task and the one-to-one mapping formulation of Dosovitskiy et al. (2015) is

inherently limited. Gregor et al. (2015) developed recurrent variational auto-encoders

with spatial attention mechanism that allows iterative image generation by patches.

This elegant algorithm mimics the process of human drawing but at the same time

faces challenges when scaling up to large complex images. Recently, generative adver-

sarial networks (GANs) (Goodfellow et al., 2014; Gauthier , 2015; Denton et al., 2015;

Radford et al., 2015) have been developed for image generation. In the GAN, two

models are trained to against each other: a generative model aims to capture the data

distribution, while a discriminative model attempts to distinguish between generated

samples and training data. The GAN training is based on a min-max objective, which

is known to be challenging to optimize.

Layered modeling of images. Layered models or 2.1D representations of images

have been studied in the context of moving or still object segmentation (Wang and

Adelson, 1994; Nitzberg and Mumford , 1990; Williams and Titsias , 2004; Yang et al.,

2012b; Isola and Liu, 2013). The layered structure is introduced into generative

image modeling (Le Roux et al., 2011; Tang et al., 2012). Tang et al. (2012) modeled

the occluded images with gated restricted Boltzmann machines and achieved good

in-painting and de-noising results on well cropped face images. Le Roux et al. (2011)

explicitly modeled the occlusion layer in a masked restricted Boltzmann machine

for separating foreground and background and demonstrated promising results on
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small patches. Though similar to our proposed gating in the form, these models face

challenges when applied to model large natural images due to its difficulty in learning

hierarchical representation based on restricted Boltzmann machine.

Multimodal Learning. Generative models of image and text have been studied in

multimodal learning to model joint distribution of multiple data modalities (Ngiam

et al., 2011; Srivastava and Salakhutdinov , 2012; Sohn et al., 2014). For example,

Srivastava and Salakhutdinov (2012) developed a multimodal deep Boltzmann ma-

chine that models joint distribution of image and text (e.g., image tag). Sohn et al.

(2014) proposed improved shared representation learning of multimodal data through

bi-directional conditional prediction by deriving a conditional prediction model of one

data modality given the other and vice versa. Both of these works focused more on

shared representation learning using hand-crafted low-level image features and there-

fore have limited applications such as conditional image or text retrieval than actual

generation of images.

2.3 Attribute-conditioned Generative Modeling of Images

In this section, we describe our proposed method for attribute-conditioned gen-

erative modeling of images. We first describe a conditional variational auto-encoder,

followed by the formulation of layered generative model and its variational learning.

2.3.1 Base Model: Conditional Variational Auto-Encoder (CVAE)

Given the attribute y ∈ RNy and latent variable z ∈ RNz , our goal is to build a

model pθ(x|y, z) that generates realistic image x ∈ RNx conditioned on y and z. Here,

we refer pθ a generator (or generation model), parametrized by θ. Conditioned image

generation is simply a two-step process in the following:

1. Randomly sample latent variable z from prior distribution p(z);
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2. Given y and z as conditioning variable, generate image x from pθ(x|y, z).

Here, the purpose of learning is to find the best parameter θ that maximizes

the log-likelihood log pθ(x|y). As proposed in (Rezende et al., 2014; Kingma and

Welling , 2014), variational auto-encoders try to maximize the variational lower bound

of the log-likelihood log pθ(x|y). Specifically, an auxiliary distribution qφ(z|x, y) is

introduced to approximate the true posterior pθ(z|x, y). We refer the base model a

conditional variational auto-encoder (CVAE) with the conditional log-likelihood

log pθ(x|y) = KL(qφ(z|x, y)||pθ(z|x, y)) + LCVAE(x, y; θ, φ),

where the variational lower bound

LCVAE(x, y; θ, φ) = −KL(qφ(z|x, y)||pθ(z)) + Eqφ(z|x,y)
[

log pθ(x|y, z)
]

(2.1)

is maximized for learning the model parameters.

Here, the prior pθ(z) is assumed to follow isotropic multivariate Gaussian distri-

bution, while two conditional distributions pθ(x|y, z) and qφ(z|x, y) are multivariate

Gaussian distributions: N (µθ(z, y), diag(σ2
θ(z, y))) and N

(
µφ(x, y), diag(σ2

φ(x, y))
)
,

respectively. We refer the auxiliary proposal distribution qφ(z|x, y) a recognition

model and the conditional data distribution pθ(x|y, z) a generation model.

The first term KL(qφ(z|x, y)||pθ(z)) is a regularization term that reduces the gap

between the prior p(z) and the proposal distribution qφ(z|x, y), while the second

term log pθ(x|y, z) is the log likelihood of samples. In practice, we usually take as a

deterministic generation function the mean x = µθ(z, y) of conditional distribution

pθ(x|z, y) given z and y, so it is convenient to assume the standard deviation function

σθ(z, y) is a constant shared by all the pixels as the latent factors capture all the data

variations. We will keep this assumption for the rest of the chapter if not particularly

mentioned. Thus, we can rewrite the second term in the variational lower bound as
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Figure 2.2: Graphical model representations of attribute-conditioned image genera-
tion models (a) without (CVAE) and (b) with (disCVAE) disentangled latent space.

reconstruction loss L(·, ·) (e.g., `2 loss):

LCVAE =−KL(qφ(z|x, y)||pθ(z))− Eqφ(z|x,y)L(µθ(y, z), x) (2.2)

Note that the discriminator of GANs (Goodfellow et al., 2014) can be used as the loss

function L(·, ·) as well, especially when `2 (or `1) reconstruction loss may not capture

the true image similarities. We leave it for future study.

2.3.2 Disentangling CVAE with a Layered Representation

An image x can be interpreted as a composite of a foreground layer (or a fore-

ground image xF ) and a background layer (or a background image xB) via a matting

equation (Porter and Duff , 1984):

x = xF � (1− g) + xB � g, (2.3)

where � denotes the element-wise product. g ∈ [0, 1]Nx is an occlusion layer or a

gating function that determines the visibility of background pixels while 1− g defines

the visibility of foreground pixels. However, the model based on Equation (2.3) may

suffer from the incorrectly estimated mask as it gates the foreground region with

imperfect mask estimation. Instead, we approximate the following formulation that
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is more robust to estimation error on mask:

x = xF + xB � g. (2.4)

When lighting condition is stable and background is at a distance, we can safely

assume foreground and background pixels are generated from independent latent

factors. To this end, we propose a disentangled representation z = [zF , zB] in the

latent space, where zF together with attribute y captures the foreground factors while

zB the background factors. As a result, the foreground layer xF is generated from

µθF (y, zF ) and the background layer xB from µθB(zB). The foreground shape and

position determine the background occlusion so the gating layer g is generated from

sθg(y, zF ) where the last layer of s(·) is sigmoid function. In summary, we approximate

the layered generation process as follows:

1. Sample foreground and background latent variables zF ∼ p(zF ), zB ∼ p(zB);

2. Given y and zF , generate foreground layer xF ∼ N (µθF (y, zF ), σ2
0INx) and

gating layer g ∼ Bernoulli
(
sθg(y, zF )

)
; here, σ0 is a constant. The background

layer (which correspond to xB) is implicitly computed as µθB(zB).

3. Synthesize an image x ∼ N (µθ(y, zF , zB), σ2
0INx) where µθ(y, zF , zB) = µθF (y, zF )+

sθg(y, zF )� µθB(zB).

Learning. It is very challenging to learn our layered generative model in a fully-

unsupervised manner since we need to infer about xF , xB, and g from the image x

only. In this chapter, we further assume the foreground layer xF (as well as gating

variable g) is observable during the training and we train the model to maximize the

joint log-likelihood log pθ(x, xF , g|y) instead of log pθ(x|y). With disentangled latent

variables zF and zB, we refer our layered model a disentangling conditional variational

auto-encoder (disCVAE). We compare the graphical models of disCVAE with vanilla
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CVAE in Figure 2.2. Based on the layered generation process, we write the generation

model by

pθ(xF , g, x, zF , zB|y) = pθ(x|zF , zB, y)pθ(xF , g|zF , y)pθ(zF )pθ(zB), (2.5)

the recognition model by

qφ(zF , zB|xF , g, x, y) = qφ(zB|zF , xF , g, x, y)qφ(zF |xF , g, y) (2.6)

and the variational lower bound LdisCVAE(xF , g, x, y; θ, φ) is given by

LdisCVAE(xF , g, x, y; θ, φ) =

−KL(qφ(zF |xF , g, y)||pθ(zF ))− Eqφ(zF |xF ,g,y)
[
KL(qφ(zB|zF , xF , g, x, y)||pθ(zB))

]
− Eqφ(zF |xF ,g,y)

[
L(µθF (y, zF ), xF ) + λgL(sθg(y, zF ), g)

]
− Eqφ(zF ,zB |xF ,g,x,y)L(µθ(y, zF , zB), x) (2.7)

where µθ(y, zF , zB) = µθF (y, zF ) + sθg(y, zF ) � µθB(zB) as in Equation (2.4). We

further assume that log pθ(xF , g|zF , y) = log pθ(xF |zF , y) + λg log pθ(g|zF , y), where

we introduce λg as additional hyperparameter when decomposing the probablity

pθ(xF , g|zF , y). For the loss function L(·, ·), we used reconstruction error for pre-

dicting x or xF and cross entropy for predicting the binary mask g. See the Ap-

pendix A.1 for details of the derivation. All the generation and recognition models

are parameterized by convolutional neural networks and trained end-to-end in a single

architecture with back-propagation. We will introduce the exact network architecture

in the experiment section.
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2.4 Posterior Inference via Optimization

Once the attribute-conditioned generative model is trained, the inference or gener-

ation of image x given attribute y and latent variable z is straight-forward. However,

the inference of latent variable z given an image x and its corresponding attribute y is

unknown. In fact, the latent variable inference is quite useful as it enables model eval-

uation on novel images. For simplicity, we introduce our inference algorithm based on

the vanilla CVAE and the same algorithm can be directly applied to the proposed dis-

CVAE and the other generative models such as GANs (Gauthier , 2015; Denton et al.,

2015). Firstly we notice that the recognition model qφ(z|y, x) may not be directly

used to infer z. On one hand, as an approximate, we don’t know how far it is from

the true posterior pθ(z|x, y) because the KL divergence between them is thrown away

in the variational learning objective; on the other hand, this approximation does not

even exist in the models such as GANs. We propose a general approach for posterior

inference via optimization in the latent space. Using Bayes’ rule, we can formulate

the posterior inference by

max
z

log pθ(z|x, y) = max
z

[
log pθ(x|z, y) + log pθ(z|y)

]
= max

z

[
log pθ(x|z, y) + log pθ(z)

]
(2.8)

Note that the generation models or likelihood terms pθ(x|z, y) could be non-Gaussian

or even a deterministic function (e.g. in GANs) with no proper probabilistic definition.

Thus, to make our algorithm general enough, we reformulate the inference in (2.8) as

an energy minimization problem,

min
z
E(z, x, y) = min

z

[
L(µ(z, y), x) + λR(z)

]
(2.9)
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where L(·, ·) is the image reconstruction loss and R(·) is a prior regularization term.

Taking the simple Gaussian model as an example, the posterior inference can be

re-written as,

min
z
E(z, x, y) = min

z

[
‖µ(z, y)− x‖2 + λ‖z‖2)

]
(2.10)

Note that we abuse the mean function µ(z, y) as a general image generation function.

Since µ(z, y) is a complex neural network, optimizing (2.9) is essentially error back-

propagation from the energy function to the variable z, which we solve by the ADAM

method (Kingma and Ba, 2015). Our algorithm actually shares a similar spirit with

recently proposed neural network visualization (Yosinski et al., 2015) and texture

synthesis algorithms (Gatys et al., 2015). The difference is that we use generation

models for recognition while their algorithms use recognition models for generation.

Compared to the conventional way of inferring z from recognition model qφ(z|x, y),

the proposed optimization contributed to an empirically more accurate latent variable

z and hence was useful for reconstruction, completion, and editing.

2.5 Experiments

Datasets. We evaluated our model on two datasets: Labeled Faces in the Wild

(LFW) (Huang et al., 2007) and Caltech-UCSD Birds-200-2011 (CUB) (Wah et al.,

2011). For experiments on LFW, we aligned the face images using five landmarks (Zhu

et al., 2014) and rescaled the center region to 64 × 64. We used 73 dimensional

attribute score vector provided by (Kumar et al., 2009) that describes different aspects

of facial appearance such as age, gender, or facial expression. We trained our model

using 70% of the data (9,000 out of 13,000 face images) following the training-testing

split (View 1) (Huang et al., 2007), where the face identities are distinct between

train and test sets. For experiments on CUB, we cropped the bird region using the
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tight bounding box computed from the foreground mask and rescaled to 64× 64. We

used 312 dimensional binary attribute vector that describes bird parts and colors. We

trained our model using 50% of the data (6,000 out of 12,000 bird images) following

the training-testing split (Wah et al., 2011). For model training, we held-out 10% of

training data for validation.

Data preprocessing and augmentation. To make the learning easier, we prepro-

cessed the data by normalizing the pixel values to the range [−1, 1]. We augmented the

training data with the following image transformations (Krizhevsky et al., 2012; Eigen

et al., 2014): 1) flipping images horizontally with probability 0.5, 2) multiplying pixel

values of each color channel with a random value c ∈ [0.97, 1.03], and 3) augmenting

the image with its residual with a random tradeoff parameter s ∈ [0, 1.5]. Specifically,

for CUB experiments, we performed two extra transformations: 4) rotating images

around the centering point by a random angle θr ∈ [−0.08, 0.08], 5) rescaling images

to the scale of 72× 72 and performing random cropping of 64× 64 regions. Note that

these methods are designed to be invariant to the attribute description.

Architecture design. For disCVAE, we build four convolutional neural networks

(one for foreground and the other for background for both recognition and generation

networks) for auto-encoding style training. The foreground encoder network consists

of 5 convolution layers, followed by 2 fully-connected layers (convolution layers have

64, 128, 256, 256 and 1024 channels with filter size of 5 × 5, 5 × 5, 3 × 3, 3 × 3

and 4 × 4, respectively; the two fully-connected layers have 1024 and 192 neurons).

The attribute stream is merged with image stream at the end of the recognition net-

work. The foreground decoder network consists of 2 fully-connected layers, followed

by 5 convolution layers with 2-by-2 upsampling (fully-connected layers have 256 and

8×8×256 neurons; the convolution layers have 256, 256, 128, 64 and 3 channels with

filter size of 3×3, 5×5, 5×5, 5×5 and 5×5. The foreground prediction stream and
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gating prediction stream are separated at the last convolution layer. We adopt the

same encoder/decoder architecture for background networks but with fewer number

of channels. For all the models, we fixed the latent dimension to be 256 and found

this configuration is sufficient to generate 64 × 64 images in our setting. We adopt

slightly different architectures for different datasets: we use 192 dimensions to fore-

ground latent space and 64 dimensions to background latent space for experiments

on LFW dataset; we use 128 dimensions for both foreground and background latent

spaces on CUB dataset. Compared to vanilla CVAE, the proposed disCVAE has more

parameters because of the additional convolutions introduced by the two-stream ar-

chitecture. However, we found that adding more parameters to vanilla CVAE does

not lead to much improvement in terms of image quality. Although both Dosovit-

skiy et al. (2015) and the proposed method use segmentation masks as supervision,

naive mask prediction was not comparable to the proposed model in our setting

based on the preliminary results. In fact, the proposed disCVAE architecture assigns

foreground/background generation to individual networks and composite with gated

interaction, which we found very effective in practice.

Implementation details. We used ADAM (Kingma and Ba, 2015) for stochastic

optimization in all experiments. For training, we used mini-batch of size 32 and the

learning rate 0.0003. We also added dropout layer of ratio 0.5 for the image stream of

the encoder network before merging with attribute stream. For posterior inference,

we used the learning rate 0.3 with 1000 iterations. The models are implemented using

deep learning toolbox Torch7 (Collobert et al., 2011).

Baselines. For the vanilla CVAE model, we used the same convolution architecture

from foreground encoder network and foreground decoder network. To demonstrate

the significance of attribute-conditioned modeling, we trained an unconditional vari-

ational auto-encoders with almost the same convolutional architecture as our CVAE.
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Male, No eyewear, Frowning, 
Receding hairline, Bushy eyebrow, 
Eyes open, Pointy nose, Teeth not 
visible, Rosy cheeks, Flushed face

Female, Asian, Youth, No eyewear, Smiling, 
Straight hair, Fully visible forehead, Arched 
eyebrows, eyes open, mouth slightly open, 
round jaw, oval face, heavy makeup, Shiny 

skin, High cheekbones

Wing_color:brown, Breast_color:yellow, 
Primary_color:black, Primary_color:red, 

Wing_pattern:striped

Wing_color:black, Primary_color:yellow, 
Breast_color:yellow, Primary_color:black, 

Wing_pattern:solid
Attributes

Nearest 
Neighbor 

Vanilla 
CVAE

disCVAE
(foreground)

disCVAE
(full)

Reference

Figure 2.3: Attribute-conditioned image generation.

2.5.1 Attribute-conditioned Image Generation

To examine whether the model has the capacity to generate diverse and real-

istic images from given attribute description, we performed the task of attribute-

conditioned image generation. For each attribute description from testing set, we

generated 5 samples by the proposed generation process: x ∼ pθ(x|y, z), where z

is sampled from isotropic Gaussian distribution. For vanilla CVAE, x is the only

output of the generation. In comparison, for disCVAE, the foreground image xF

can be considered a by-product of the layered generation process. For evaluation,

we visualized the samples generated from the model in Figure 2.3 and compared

them with the corresponding image in the testing set, which we name as “reference”

image. To demonstrate that model did not exploit the trivial solution of attribute-

conditioned generation by memorizing the training data, we added a simple baseline

as experimental comparison. Basically, for each given attribute description in the

testing set, we conducted the nearest neighbor search in the training set. We used
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the mean squared error as the distance metric for the nearest neighbor search (in the

attribute space). For more visual results and code, please see the project website:

https://sites.google.com/site/attribute2image/.

Attribute-conditioned face image generation. As we can see in Figure 2.3,

face images generated by the proposed models look realistic and non-trivially differ-

ent from each other, especially for view-point and background color. Moreover, it

is clear that images generated by disCVAE have clear boundaries against the back-

ground. In comparison, the boundary regions between the hair area and background

are quite blurry for samples generated by vanilla CVAE. This observation suggests

the limitation of vanilla CVAE in modeling hair pattern for face images. This also

justifies the significance of layered modeling and latent space disentangling in our

attribute-conditioned generation process. Compared to the nearest neighbors in the

training set, the generated samples can better reflect the input attribute description.

Attribute-conditioned bird image generation. Compared to the experiments

on LFW database, the bird image modeling is more challenging because the bird

images have more diverse shapes and color patterns and the binary-valued attributes

are more sparse and higher dimensional. As we can see in Figure 2.3, there is a big

difference between two versions of the proposed CVAE model. Basically, the samples

generated by vanilla CVAE are blurry and sometimes blended with the background

area. However, samples generated by disCVAE have clear bird shapes and reflect the

input attribute description well. This confirms the strengths of the proposed layered

modeling of images.

Attribute-conditioned Image Progression. To better analyze the proposed

model, we generate images with interpolated attributes by gradually increasing or

decreasing the values along each attribute dimension. We regard this process as
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Male Female Smiling Frowning

Young Senior Blue YellowNo eyewear Eyewear

Black hair Blonde hair

(a) progression on gender

(b) progression on age

(c) progression on expression (e) progression on hair color

(f) progression on primary color(d) progression on eyewear

Figure 2.4: Attribute-conditioned image progression. The visualization is organized
into six attribute groups (e.g., “gender”, “age”, “facial expression”, “eyewear”, “hair
color” and “primary color (blue vs. yellow)”). Within each group, the images are
generated from pθ(x|y, z) with z ∼ N (0, I) and y = [yα, yrest], where yα = (1 − α) ·
ymin + α · ymax. Here, ymin and ymax stands for the minimum and maximum attribute
value respectively in the dataset along the corresponding dimension.

attribute-conditioned image progression. Specifically, for each attribute vector, we

modify the value of one attribute dimension by interpolating between the minimum

and maximum attribute value. Then, we generate images by interpolating the value

of y between the two attribute vectors while keeping latent variable z fixed. For

visualization, we use the attribute vector from testing set.

As we can see in Figure 2.4, samples generated by progression are visually consis-

tent with attribute description. For face images, by changing attributes like “gender”

and “age”, the identity-related visual appearance is changed accordingly but the

viewpoint, background color, and facial expression are well preserved; on the other

hand, by changing attributes like “facial expression”,“eyewear” and “hair color”, the

global appearance is well preserved but the difference appears in the local region. For

bird images, by changing the primary color from one to the other, the global shape

and background color are well preserved. These observations demonstrated that the

generation process of our model is well controlled by the input attributes.
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Figure 2.5: Analysis: Latent Space Disentangling.

Analysis: Latent Space Disentangling. To better analyze the disCVAE, we

performed the following experiments on the latent space. In this model, the image

generation process is driven by three factors: attribute y, foreground latent vari-

able zF and background latent variable zB. By changing one variable while fixing

the other two, we can analyze how each variable contributes to the final generation

results. We visualize the samples x, the generated background xB and the gating
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variables g in Figure 2.5. We summarized the observations as follows: 1) The back-

ground of the generated samples look different but with identical foreground region

when we change background latent variable zB only; 2) the foreground region of the

generated samples look diverse in terms of viewpoints but still look similar in terms

of appearance and the samples have uniform background pattern when we change

foreground latent variable zF only. Interestingly, for face images, one can identify a

“hole” in the background generation. This can be considered as the location prior

of the face images, since the images are relatively aligned. Meanwhile, the generated

background for birds are relatively uniform, which demonstrates our model learned

to recover missing background in the training set and also suggests that foreground

and background have been disentangled in the latent space.

2.5.2 Attribute-conditioned Image Reconstruction and Completion

Image reconstruction. Given a test image x and its attribute vector y, we find z

that maximizes the posterior pθ(z|x, y) following Equation (2.9).

Image completion. Given a test image with synthetic occlusion, we evaluate

whether the model has the capacity to fill in the occluded region by recognizing

the observed region. We denote the occluded (unobserved) region and observed re-

gion as xu and xo, respectively. For completion, we first find z that maximizes the

posterior pθ(z|xo, y) by optimization (2.9). Then, we fill in the unobserved region

xu by generation using pθ(xu|z, y). For each face image, we consider four types of

occlusions: occlusion on the eye region, occlusion on the mouth region, occlusion on

the face region and occlusion on right half of the image. For occluded regions, we set

the pixel value to 0. For each bird image, we consider blocks of occlusion of size 8× 8

and 16× 16 at random locations.

In Figure 2.6, we visualize the results of image reconstruction (a,b) and image
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completion (c-h). As we can see, for face images, our proposed CVAE models are in

general good at reconstructing and predicting the occluded region in unseen images

(from testing set). However, for bird images, vanilla CVAE model had significant

failures in general. This agreed with the previous results in attribute-conditioned

image generation.

In addition, to demonstrate the significance of attribute-conditioned modeling, we

compared our vanilla CVAE and disCVAE with unconditional VAE (attribute is not

given) for image reconstruction and completion. It can be seen in Fig. 2.6(c)(d), the

generated images using attributes actually perform better in terms of expression and

eyewear (“smiling” and “sunglasses”).

For quantitative comparisons, we measured the pixel-level mean squared error on

the entire image and occluded region for reconstruction and completion, respectively.

We summarized the results in Table 2.1 (mean squared error and standard error).

The quantitative analysis highlighted the benefits of attribute-conditioned modeling

and the importance of layered modeling.

(b) Bird Reconstruction (d) Face Completion (mouth) (f) Face Completion (half) (h) Bird Completion (16x16 patch)

(c) Face Completion (eyes) (e) Face Completion (face) (g) Bird Completion (8x8 patch)(a) Face Reconstruction

VAE disCVAE GTCVAEInput Input disCVAE GTCVAEVAEVAE disCVAE GTCVAE Input disCVAE GTCVAEVAE

Figure 2.6: Attribute-conditioned image reconstruction and completion.
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Table 2.1: Quantitative comparisons on face reconstruction and completion tasks.

Face Recon: full Recon: fg Comp: eye Comp: mouth Comp: face Comp: half
VAE 11.8 ± 0.1 9.4 ± 0.1 13.0 ± 0.1 12.1 ± 0.1 13.1 ± 0.1 21.3 ± 0.2

CVAE 11.8 ± 0.1 9.3 ± 0.1 12.0 ± 0.1 12.0 ± 0.1 12.3 ± 0.1 20.3 ± 0.2
disCVAE 10.0 ± 0.1 7.9 ± 0.1 10.3 ± 0.1 10.3 ± 0.1 10.9 ± 0.1 18.8 ± 0.2

Bird Recon: full Recon: fg Comp: 8× 8 Comp: 16× 16
VAE 14.5 ± 0.1 11.7 ± 0.1 1.8 ± 0.1 4.6 ± 0.1

CVAE 14.3 ± 0.1 11.5 ± 0.1 1.8 ± 0.1 4.4 ± 0.1
disCVAE 12.9 ± 0.1 10.2 ± 0.1 1.8 ± 0.1 4.4 ± 0.1

2.6 Discussions

To conclude, this chapter studied a novel problem of attribute-conditioned im-

age generation and proposed a solution with CVAEs. Considering the compositional

structure of images, we proposed a novel disentangling CVAE (disCVAE) with a lay-

ered representation. Results on faces and birds demonstrate that our models can

generate realistic samples with diverse appearance and especially disCVAE signif-

icantly improved the generation quality on bird images. To evaluate the learned

generation models on the novel images, we also developed an optimization-based ap-

proach to posterior inference and applied it to the tasks of image reconstruction and

completion with quantitative evaluation.
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CHAPTER III

Learning Controllable and Structured

Representations for Semantic Image Manipulation

3.1 Introduction

Learning to perceive, reason and manipulate images has been one of the core re-

search problems in computer vision, machine learning and graphics for decades Hoiem

et al. (2005, 2008); Gupta et al. (2010); Barnes et al. (2009). Recently the problem

has been actively studied in interactive image editing using deep neural networks,

where the goal is to manipulate an image according to the various types of user-

controls, such as color strokes Sangkloy et al. (2017); Zhu et al. (2016a), key-points Zhu

et al. (2016a); Reed et al. (2016), textures Xian et al. (2018), and holes-to-fill (in-

painting) Pathak et al. (2016). While these interactive image editing approaches

have made good advances in synthesizing high-quality manipulation results, they are

limited to direct manipulation on natural image manifold.

The main focus of this chapter is to achieve semantic-level manipulation of images.

Instead of manipulating images on natural image manifold, we consider semantic la-

bel map as an interface for manipulation. By editing the label map, users are able to

specify the desired images at semantic-level, such as the location, object class, and

object shape. Recently, approaches based on image-to-image translation Isola et al.
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(2017); Chen and Koltun (2017); Wang et al. (2017) have demonstrated promising

results on semantic image manipulation. However, the existing works mostly focused

on learning a style transformation function from label maps to pixels, while manipu-

lation of structure of the labels remains fully responsible to users. The requirement

on direct control over pixel-wise labels makes the manipulation task still challeng-

ing since it requires a precise and considerable amount of user inputs to specify the

structure of the objects and scene. Although the problem can be partly addressed by

template-based manipulation interface (e.g., adding the objects from the pre-defined

sets of template masks Wang et al. (2017), blind pasting of the object mask is prob-

lematic since the structure of the object should be determined adaptively depending

on the surrounding context.

In this work, we tackle the task of semantic image manipulation as a hierarchi-

cal generative process. We start our image manipulation task from a coarse-level

abstraction of the scene: a set of semantic bounding boxes which provide both se-

mantic (what) and spatial (where) information of the scene in an object-level. Such

representation is natural and flexible that enables users to manipulate the scene lay-

out by adding, removing, and moving each bounding box. To facilitate the image

manipulation from coarse-level semantic bounding boxes, we introduce a hierarchical

generation model that predicts the image in multiple abstraction levels. Our model

consists of two parts: layout and image generators. Specifically, our structure gener-

ator first infers the fine-grained semantic label maps from the coarse object bounding

boxes, which produces structure (shape) of the manipulated object aligned with the

context. Given the predicted layout, our image generator infers the style (color and

textures) of the object considering the perceptual consistency to the surroundings.

This way, when adding, removing, and moving semantic bounding boxes, our model

can generate an appropriate image seamlessly integrated into the surrounding image.

We present two applications of the proposed method on interactive and data-
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Figure 3.1: Overall pipeline of the proposed semantic manipulation framework.

driven image editing. In the experiment on interactive image editing, we show that our

method allows users to easily manipulate images using object bounding boxes, while

the structure and style of the generated objects are adaptively determined depending

on the context and naturally blended into the scene. Also, we show that our simple

object-level manipulation interface can be naturally extended to data-driven image

manipulation, by automatically sampling the object boxes and generating the novel

images.

The benefits of the hierarchical image manipulation are three-fold. First, it sup-

ports richer manipulation tasks such as adding, moving or removing objects through

object-level control while the fine-grained object structures are inferred by the model.

Second, when conditioned on coarse and fine-grained semantic representations, the

proposed model produces better image manipulation results compared to models

learned without structural control. Finally, we demonstrate the effectiveness of the

proposed idea on interactive and automatic image manipulation.

3.2 Related Work

Deep visual manipulation. Visual manipulation is a task of synthesizing the

new image by manipulating parts of a reference image. Thanks to the emergence of

generative adversarial networks (GANs) Goodfellow et al. (2014) and perceptual fea-
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tures discovered from deep convolutional neural networks Krizhevsky et al. (2012); Si-

monyan and Zisserman (2014); Szegedy et al. (2015), neural image manipulation Zhu

et al. (2016a); Sangkloy et al. (2017); Li et al. (2017); Yeh et al. (2017); Pathak

et al. (2016); Denton et al. (2016) has gained increasing popularity in recent years.

Zhu et al. (2016a) presented an novel image editing framework with a direct con-

straint capturing real image statistics using deep convolutional generative adversarial

networks Radford et al. (2015). Li et al. (2017) and Yeh et al. (2017) investigated

semantic face image editing and completion using convolution encoder-decoder ar-

chitecture, jointly trained with a pixel-wise reconstruction constraint, a perceptual

(adversarial) constraint, and a semantic structure constraint. In addition, Pathak

et al. (2016) and Denton et al. (2016) studied context-conditioned image generation

that performs pixel-level hole-filling given the surrounding regions using deep neural

networks, trained with adversarial and reconstruction loss. Contrary to the previous

works that manipulate images based on low-level visual controls such as visual con-

text Denton et al. (2016); Pathak et al. (2016); Yeh et al. (2017); Li et al. (2017) or

color strokes Zhu et al. (2016a); Sangkloy et al. (2017), our model allows semantic

control over manipulation process through labeled bounding box and the inferred

semantic layout.

Structure-conditional image generation. Starting from the pixel-wise semantic

structure, recent breakthroughs approached the structure-conditional image genera-

tion through direct image-to-image translation Liu et al. (2017); Isola et al. (2017);

Zhu et al. (2017a); Chen and Koltun (2017). Isola et al. (2017) employed a con-

volutional encoder-decoder network with conditional adversarial objective to learn

label-to-pixel mapping. Later approaches improved the generation quality by in-

coorporating perceptual loss from a pre-trained classifier Chen and Koltun (2017) or

feature-matching loss from multi-scale discriminators Wang et al. (2017). In particu-
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lar, Wang et al. (2017) demonstrated a high-resolution image synthesis results and its

application to semantic manipulation by controlling the pixel-wise labels. Contrary

to the previous works focusing on learning a direct mapping from label to image, our

model learns hierarchical mapping from coarse bounding box to image by inferring

intermediate label maps. Our work is closely related to Hong et al. (2018), which

generates an image from a text description through multiple levels of abstraction

consisting of bounding boxes, semantic layouts, and finally pixels. Contrary to Hong

et al. (2018), however, our work focuses on manipulation of parts of an image, which

requires incorporation of both semantic and visual context of surrounding regions

in the hierarchical generation process in such a way that structure and style of the

generated object are aligned with the other parts of an image.

3.3 Hierarchical Image Manipulation

Given an input image I in ∈ RH×W×3, our goal is to synthesize the new image Iout

by manipulating its underlying semantic structure. Let M in ∈ RH×W×C denotes a

semantic label map of the image defined over C categories, which is either given as

ground-truth (in training time) or inferred by the pre-trained visual recognition model

(in testing time). Then our goal is to synthesize the new image by manipulating M in,

which allows the semantically-guided manipulation of an image.

The key idea of this chapter is to introduce an object bounding box B as an

abstracted interface to manipulate the semantic label map. Specifically, we define

a controllable bounding box B = {b, c} as a combination of box corners b ∈ R4

and a class label c = {0, , C}, which represents the location, size and category of an

object. By adding the new box or modifying the parameters of existing boxes, a user

can manipulate the image through adding, moving or deleting the objects1. Given an

object-level specification by B, the image manipulation is then posed as a hierarchical

1We used c = 0 to indicate a deletion operation, where the model fills the labels with surroundings.
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generation task from a coarse bounding box to pixel-level predictions of structure and

style.

Figure 3.1 illustrates the overall pipeline of the proposed algorithm. When the

new bounding box B is given, our algorithm first extracts the local observations of

label map M ∈ RS×S×C and image I ∈ RS×S×3 by cropping squared windows of size

S × S centered around B. Then conditioned on M , I and B, our model generates

the manipulated image by the following procedures:

• Given a bounding box B and the semantic label map M , the structure generator

predicts the manipulated semantic label map by M̂ = GM(M,B) (Section 3.3.1)

• Given the manipulated label map M̂ and image I, the image generator predicts

the manipulated image Î by Î = GI(M̂, I) (Section 3.3.2)

After generating the manipulated image patch Î, we place it back to the original image

to finish the manipulation task. The manipulation of multiple objects is performed

iteratively by applying the above procedures for each box. In the following, we explain

the manipulation pipeline on a single box B.

3.3.1 Structure generator

The goal of the structure generator is to infer the latent structure of the region

specified by B = {b, c} in the form of pixel-wise class labels M̂ ∈ RS×S×C . The

outputs of the structure generator should reflect the class-specific structure of the

object defined by B as well as interactions of the generated object with the surround-

ing context (e.g., a person riding a motorcycle). To consider both conditions in the

generation process, the structure generator incorporates the label map M and the

bounding box B as inputs and performs a conditional generation by M̂ = GM(M,B).

Figure 3.2 illustrates the overall architecture of the structure generator. The

structure generator takes in the masked layout M̄ ∈ RS×S×C and the binary mask
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Foreground branch
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Figure 3.2: Architecture of the structure generator. Given a masked layout M̄ and a
binary mask B̄ encoding the class and location of the object, respectively, the model
produces the manipulated layout M̂ by the outputs from the two-stream decoder
corresponding to the binary mask of object and semantic label map of entire region
inside the box.

B̄ ∈ RS×S×1, where M̄ijc = 1 and B̄ij = 1 for all pixels (i, j) inside the box for class c.

Given these inputs, the model predicts the manipulated outcome using two decoding

pathways.

Our design principle is motivated by generative layered image modeling Yang et al.

(2012b); Yan et al. (2016a); Vondrick et al. (2016); Reed et al. (2016); Yang et al.

(2017), which generates foreground (i.e., object) and background (i.e., context) using

separate output streams. In our model, the foreground output stream produces the

predictions on binary object mask M̂obj ∈ RS×S×1, which defines the object shape

tightly bounded by object box B. The background output stream produces per-pixel

label maps M̂ctx ∈ RS×S×C inside B.

The objective for our structure generator is then given by

Llayout = Ladv(M̂obj,M
∗
obj) + λobjLrecon(M̂obj,M

∗
obj) + λctxLrecon(M̂ctx, M̄), (3.1)

where M∗
obj is the ground-truth binary object mask on B and Lrecon(·, ·) is the recon-

struction loss using cross-entropy. Ladv(M̂obj,M
∗
obj) is the conditional adversarial loss

defined on object mask ensuring the perceptual quality of predicted object shape,
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which is given by

Ladv(M̂obj,M
∗
obj) = EM∗obj

[
log(DM(M∗

obj, M̄))
]

+ EM̂obj

[
1− log(DM(M̂obj, M̄))

]
,

(3.2)

where DM(·, ·) is a conditional discriminator.

During inference, we construct the manipulated layout M̂ using M̂obj and M̂ctx.

Contrary to the prior works on layered image model, we selectively choose outputs

from either foreground or background streams depending on the manipulation oper-

ation defined by B. The output M̂ is given by

M̂ =

 M̂ctx if c = 0 (deletion)

(M̂obj1c) + (1− (M̂obj1c))�M otherwise (addition)
, (3.3)

where c is the class label of the bounding box B and 1c ∈ {0, 1}1×C is the one-hot

encoded vector of the class c.

3.3.2 Image generator

Given an image I and the manipulated layout M̂ obtained by the structure gen-

erator, the image generator outputs a pixel-level prediction of the contents inside

the regions defined by B. To make the prediction being semantically meaningful and

perceptually plausible, the output from the image generator should reflect the seman-

tic structure defined by the layout while being coherent in its style (e.g., color and

texture) with the surrounding image. We design the conditional image generator GI

such that Î = GI(I, M̂), where I, Î ∈ RS×S×3 represent the local image before and

after manipulation with respect to bounding box B.

Figure 3.3 illustrates the overall architecture of the image generator. The model

takes the masked image Ī whose pixels inside the box are filled with 0 and the manipu-

lated layout M̂ as inputs, and produces the manipulated image Î as output. We design
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the image generator GI to have a two-stream convolutional encoder and a single-

stream convolutional decoder connected by an intermediate feature map F . As we

see in the figure, the convolutional encoder has two separate downsampling streams,

which we referred to as image encoder fimage(Ī) and layout encoder flayout(M̂), respec-

tively. The intermediate feature F is obtained by an element-wise feature interaction

layer gated by the binary mask BF on object location.

F = flayout(M̂)�BF + fimage(Ī)� (1−BF ). (3.4)

Finally, the convolutional decoder gimage(·) takes the fused feature F as input and

produces the manipulated image through Î = gimage(F ). Note that we use the ground-

truth layout M during model training but the predicted layout M̂ is used at the

inference time during testing.

We define the following loss for the image generation task.

Limage = Ladv(Î , I) + λfeatureLfeature(Î , I). (3.5)

The first term Ladv(Î , I) is the conditional adversarial loss defined by

Ladv(Î , I) = EI
[
log(DI(I, M̂))

]
+ EÎ

[
1− log(DI(Î , M̂))

]
. (3.6)

The second term Lfeature(Î , I) is the feature matching loss Wang et al. (2017). Specif-

ically, we compute the distance between the real and manipulated images using the

intermediate features from the discriminator by

Lfeature(Î , I) = EI,Î
∑
i=1

‖D(i)(I, M̂)−D(i)(Î , M̂)‖2F , (3.7)

where D(i) is the outputs of ith layer in discriminator, ‖ · ‖F is the Frobenius norm.
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Image Encoder

Layout Encoder

Predicted 
Image

Figure 3.3: Architecture of the image generator. Given a masked image Ī and the
semantic layout M̂ , the model encodes visual style and semantic structure of the
object using separate encoding pathways and produces the manipulated image.

Discussions. The proposed model encodes both image and layout using two-stream

encoding pathways. With only image encoder, it simply performs image in-painting Pathak

et al. (2016), which attempts to fill the hole with patterns coherent with the surround-

ing region. On the other hand, our model with only layout encoder becomes similar

to image-to-image translation models Isola et al. (2017); Chen and Koltun (2017);

Wang et al. (2017), which translates the pixel-wise semantic label maps to the RGB

pixel values. Intuitively, by combining information from both encoders, the model

learns to manipulate images that reflect the underlying image structure defined by the

label map with appearance patterns naturally blending into the surrounding context,

which is semantically meaningful and perceptually plausible.

3.4 Experiments

3.4.1 Implementation Details

Datasets. We conduct both quantitative and qualitative evaluations on the Cityscape

dataset Cordts et al. (2016), a semantic understanding benchmark of European urban
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street scenes containing 5,000 high-resolution images with fine-grained annotations in-

cluding instance-wise map and semantic map from 30 categories. Among 30 semantic

categories, we treat 10 of them including person, rider, car, truck, bus, caravan,

trailer, train, motorcycle, bicycle as our foreground object classes while leaving

the rest as background classes for image editing purpose. For evaluation, we measure

the generation performance on each of the foreground object bounding box in 500

validation images. To further demonstrate the image manipulation results on more

complex scene, we also conduct qualitative experiments on bedroom images from

ADE20K dataset Zhou et al. (2017a). Among 49 object categories frequently appear-

ing in a bedroom, we select 31 movable ones as foreground objects for manipulation.

Training. As one challenge, collecting ground-truth examples before and after im-

age manipulation is expensive and time-consuming. Instead, we simulate the addition

(c ∈ {1, ..., C}) and deletion (c = 0) operations by sampling boxes from the object

and random image regions, respectively. For training, we employ an Adam opti-

mizer Kingma and Ba (2015) with learning rate 0.0002, β1 = 0.5, β2 = 0.999 and

linearly decrease the learning rate after the first 100-epochs for training. The hyper-

parameters λobj, λctx, λfeature are set to 10. Our PyTorch implementation will be

open-sourced.

Evaluation metrics. We employ three metrics to measure the perceptual and con-

ditional generation quality. We use Structural Similarity Index (SSIM) Wang et al.

(2004) to evaluate the similarity of the ground-truth and predicted images based

on low-level visual statistics. To measure the quality of layout-conditional image

generation, we apply a pre-trained semantic segmentation model DeepLab v3 Chen

et al. (2018) to the generated images, and measure the consistency between the in-

put layout and the predicted segmentation labels in terms of pixel-wise accuracy

(layout → image → layout). Finally, we conduct user study using Mechanical Turk
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Layout SSIM Segmentation (%) Human eval. (%)

SingleStream-Image - 0.285 59.6 12.3
SingleStream-Layout GT 0.291 71.5 9.2
SingleStream-Concat GT 0.331 76.7 23.2

TwoStream GT 0.336 78.5 33.6

TwoStream-Pred Predicted 0.299 77.9 20.7

Figure 3.4: Comparisons between variants of the proposed method. The last two rows
(TwoStream and TwoStream-Pred) correspond to our full model using ground-truth
and predicted layout, respectively.

Context Layout
SingleStream

Image
SingleStream

Layout
SingleStream

Concat
TwoStream TwoStream

Pred

Figure 3.5: Qualitative comparisons to the baselines in Table 3.4. The first two
columns show the masked image and ground-truth layout used as input to the models
(except TwoStream-Pred). The manipulated objects are indicated by blue arrows.
Best viewed in color.

(AMT) to evaluate the perceptual generation quality. We present the manipulation

results of different methods together with the input image and the class label of the

bounding box and ask users to choose the best method based on how natural the

manipulated images are. We collect the results for 1,000 examples, each of which is

evaluated by 5 different Turkers. We report the performance of each method based

on the ratio that method ranked as the best in AMT.
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3.4.2 Quantitative Evaluation

Ablation study. To analyze the effectiveness of the proposed method, we conduct

an ablation study on several variants of our method. We first consider three baselines

of our image generator: conditioned only on image context (SingleStream-Image),

conditioned only on semantic layout (SingleStream-Layout), or conditioned on

both by concatenation but using a single encoding pathway (SingleStream-Concat).

We also compare our full model using a ground-truth and the predicted layouts

(TwoStream and TwoStream-Pred). Table 3.4 summarize the results.

As shown in Table 3.4, conditioning the generation with only image or layout

leads to either poor class-conditional generation (SingleStream-Image) or less per-

ceptually plausible results (SingleStream-Layout). It is because the former misses

the semantic layout encoding critical information on which object to generate, while

the later misses color and textures of the image that makes the generation results

visually consistent with its surroundings. Combining both (SingleStream-Concat),

the generation quality improves in all metrics, which shows complementary bene-

fits of both conditions in image manipulation. In addition, a comparison between

SingleStream-Concat and TwoStream shows that modeling the image and layout

conditions using separate encoding pathways further improves the generation qual-

ity. Finally, replacing the layout condition from the ground-truth (TwoStream) to the

predicted one (TwoStream-Pred) leads to a small degree of degradation in perceptual

quality partly due to the prediction errors in layout generation. However, clear im-

provement of TwoStream-Pred over SingleStream-Image shows the effectiveness of

layout prediction in image generation.

Figure 3.5 shows the qualitative comparisons of the baselines. Among all variants,

our TwoStream model tends to exhibit most recognizable and coherent appearance

with the surrounding environment. Interestingly, our model with predicted layout

TwoStream-Pred generates objects different from the ground-truth layout but still
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Layout SSIM Segmentation (%) Human eval. (%)

Context Encoder - 0.265 26.4 1.1
Context Encoder++ GT 0.269 35.7 1.4

Pix2PixHD GT 0.288 79.6 18.0

TwoStream GT 0.336 78.5 79.5

Table 3.1: Quantitative comparison to other methods. Context Encoder and
Pix2PixHD refer to the previous work (Pathak et al., 2016) and (Wang et al., 2017),
respectively.

A
B C D E

A B C D E

Figure 3.6: Generation results on various locations in an image.
occlusiongeometric context

Figure 3.7: Generation results in diverse contexts.

match the bounding box condition. such as a person walking in the different direction

(the first row) and objects placed in different order (the second row).

Comparison to other methods. We also compare against a few existing work

on context hole-filing and structure-conditioned image generation. First, we consider

the recent work on high-resolution pixel-to-pixel translation Wang et al. (2017) (re-

ferred as Pix2PixHD in Table 3.1). Compared to our SingleStream-Layout model,

Pix2PixHD model generates full-sized image from semantic layout in one shot. Second,

we consider the work for context-driven image in-painting Pathak et al. (2016) (re-
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ferred as ContextEncoder) as another baseline. Similar to our SingleStream-Image,

ContextEncoder does not have access to the semantic layout during training and

testing. For fair comparisons, we extended ContextEncoder so that it takes seg-

mentation layout as additional input. We refer this model as ContextEncoder++

in Table 3.1. As we see in the Table 3.1, our two-stream model still achieves the

best SSIM and competitive segmentation pixel-wise accuracy. The segmentation ac-

curacy of Pix2PixHD is higher than ours since it generates higher resolution images

and object textures non-relevant to the input image, but our method still achieves

perceptually plausible results consistent with the surrounding image. Note that the

motivations of Pix2PixHD and our model are different, as Pix2PixHD performs image

generation from scratch while our focus is local image manipulation.

3.4.3 Qualitative Analysis

Semantic object manipulation. To demonstrate how our hierarchical model ma-

nipulates structure and style of an object depending on the context, we conduct qual-

itative analysis in various settings. In Figure 3.6, we present the manipulation results

by moving the same bounding box of a car to different locations in an image. As we

see in the figure, our model generates a car with diverse but reasonably-looking shape

and appearance when we move its bounding box from one side of the road to another.

Interestingly, the shape, orientation, and appearance of the car also change according

to the scene layout and shadow in the surrounding regions. Figure 3.7 illustrates

generation results in more diverse contexts. It shows that our model generates appro-

priate structure and appearance of the object considering the context (e.g., occlusion

with other objects, interaction with the scene, etc). In addition to generating object

matching the surroundings, we can also easily extend our framework to allow users

to directly control object style, which we demonstrate below.
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Extension to style manipulation Although we focused on addition and deletion

of objects as manipulation tasks, we can easily extend our framework to add control

over object styles by conditioning the image generator with additional style vector

s by GI(M̂, I, s). To demonstrate this capability, we define the style vector as a

mean color of the object, and synthesized objects while changing the input color

(Figure 3.8). The results show that our model successfully synthesizes various objects

with the specified color while retaining other parts of the images unchanged. Modeling

more complicated styles (e.g., texture) can be achieved by learning a style-encoder

s = E(X) where X is an object template that user can select, but we leave it as a

future work.

Figure 3.8: Controlling object color with style vector. Colors used for manipulation
are presented at left-upper corners.

Interactive and data-driven image editing. As one of the key applications,

we perform interactive image manipulation by adding, removing, and moving ob-

ject bounding boxes. Figure 3.9 illustrates the results. It shows that our method

generates reasonable semantic layouts and images that smoothly augment content of

the original image. In addition to interactive manipulation, we can also automate

the manipulation process by sampling bounding boxes in an image in a data-driven

manner. To demonstrate this idea, we present an application of data-driven image

manipulation in Figure 3.10. In this demo, we implement box sampling using a simple

non-parametric approach; Given a query image, we first compute its nearest neighbor

from the training set based on low-level similarity. Then we compute the geometric
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transformation between a query and a training image using SIFT Flow Liu et al.

(2016), and move object bounding boxes from one scene to another based on the

scene-level transformation. As shown in the figure, the proposed methods reasonably

sample boxes from appropriate locations. However, directly placing the object (or its

mask) may lead to unnatural manipulation due to mismatches in scene configuration

(e.g., occlusion and orientation). Our hierarchical model generates objects adaptive

to the new context.

Results on indoor scene dataset. In addition to Cityscape dataset, we con-

duct qualitative experiments on bedroom images using ADE20K datasets Zhou et al.

(2017a). Figure 3.11 illustrates the interactive image manipulation results. Since

objects in the indoor images involve much more diverse categories and appearances,

generating appropriate object shapes and textures aligned with other components in

a scene is much more challenging than the street images. We observe that the gener-

ated objects by the proposed method usually are looking consistent the surrounding

context.

Original Manipulated

Figure 3.9: Examples of manipulation of multiple objects in images. The line style
indicates manipulation operation (solid: addition, doted: deletion) and the color
indicates the object class.
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Source Image Target Image Manipulated Image

Figure 3.10: Example of data-driven image manipulation. We manipulate the target
image by transferring bounding boxes from source image (blue boxes).

Original Manipulated Original Manipulated

Picture Pillow Curtain Cushion Chair Cabinet Dresser Mirror Sconce TV Blinds Bed Table

WindowDoor Carpet Vase Armchair Plant Flower Book Shelf Flowerpot Sofa

Picture Pillow Curtain Cushion Chair Cabinet Dresser Mirror Sconce TV Blinds Lamp Armchair Vase Flower

Figure 3.11: Examples of image manipulation results on indoor images.

3.5 Discussions

In this chapter, we presented a hierarchical framework for semantic image ma-

nipulation. We first learn to generate the pixel-wise semantic label maps given the
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initial object bounding boxes. Then we learn to generate the manipulated image from

the predicted label maps. Such framework allows the user to manipulate images at

object-level by adding, removing, and moving an object bounding box at a time. Ex-

perimental evaluations demonstrate the advantages of the hierarchical manipulation

framework over existing image generation and context hole-filing models, both quali-

tatively and quantitatively. We further demonstrate its practical benefits in semantic

object manipulation, interactive image editing and data-driven image editing. Future

research directions include preserving the object identity and providing affordance as

additional user input during image manipulation.
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CHAPTER IV

Learning Structured Representations for Human

Motion Generation

4.1 Introduction

Modeling the dynamics of human motion — both facial and full body motion — is

a fundamental problem in computer vision, graphics, and machine intelligence, with

applications ranging from virtual characters (de Aguiar et al., 2008; Beeler et al.,

2011), video-based animation and editing (Yang et al., 2011a; Suwajanakorn et al.,

2015, 2017), and human-robot interfaces (Sermanet et al., 2017). Human motion is

known to be highly structured and can be modeled as a sequence of atomic units

that we refer to as motion modes. A motion mode captures the short-term temporal

dynamics of a human action (e.g., smiling or walking), including its related stylistic

attributes (e.g., how wide is the smile, how fast is the walk). Over the long-term, a hu-

man action sequence can be segmented into a series of motion modes with transitions

between them (e.g., a transition from a neutral expression to smiling to laughing).

This structure is well known (referred to as basis motions (Rose et al., 1996) or walk

cycles) and widely used in computer animation.

This chapter leverages this structure to learn to generate human motion sequences,

i.e., given a short human action sequence (present motion mode), we want to synthe-
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Feature A Feature B
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Motion 

Decoding
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Motion Sequence A

Feature A

Sample from latent space
z~N(0,I)
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Feature B*

Encoding

Decoding
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(“reconstruction”)
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Figure 4.1: Top: Learning motion sequence generation using Motion Transformation
VAE. Bottom: Generating multiple future motion sequences from the transformation
space.

size the action going forward (future motion mode). We hypothesize that (1) each

motion mode can be represented as a low-dimensional feature vector, and (2) tran-

sitions between motion modes can be modeled as transformations of these features.

As shown in Figure 4.1, we present a novel model termed Motion Transformation

Variational Auto-Encoders (MT-VAE) for learning motion sequence generation. Our

MT-VAE is implemented using an LSTM encoder-decoder that embeds each short

sub-sequence into a feature vector that can be decoded to reconstruct the motion.

We further assume that the transition between current and future modes can be cap-

tured by a certain transformation. In the chapter, we demonstrate that the proposed

MT-VAE learns a motion feature representation in an unsupervised way.

A challenge with human motion is that it is inherently multimodal, i.e., the same
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initial motion mode could transition into different motion modes (e.g., a smile could

transition to a frown, or a smile while looking left, or a wider smile, etc.). A de-

terministic model would not be able to learn these variations and may collapse to a

single-mode distribution. Our MT-VAE supports a stochastic sampling of the feature

transformations to generate multiple plausible output motion modes from a single

input. This allows us to model transitions that may be rare (or potentially absent)

in the the training set.

We demonstrate our approach on both facial and full human body motions. In

both domains, we conduct extensive ablation studies and comparisons with previous

work showing that our generation results are more plausible (i.e., better preserve the

structure of human dynamics) and diverse (i.e., explore multiple motion modes). We

further demonstrate applications like 1) analogy-based motion transfer (e.g., transfer-

ring the act of smiling from one pose to another pose) and 2) future video synthesis

(i.e., generating multiple possible future videos given input frames with human mo-

tions). Our key contributions are summarized as follows:

• We propose a generative motion model that consists of a sequence-level motion

feature embedding and feature transformations, and show that it can be trained

in an unsupervised manner.

• We show that stochastically sampling the transformation space is able to gen-

erate future motion dynamics that are diverse and plausible.

• We demonstrate applications of the learned model to challenging tasks like

motion transfer and future video synthesis for both facial and human body

motions.
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4.2 Related Work

Understanding and modeling human motion dynamics has been a long-standing

problem for decades (Bregler , 1997; Efros et al., 2003; Gorelick et al., 2007). Due to

the high dimensionality of video data, early work mainly focused on learning hierar-

chical spatio-temporal representations for video event and action recognition (Laptev ,

2005; Wang et al., 2011, 2012). In recent years, predicting and synthesizing motion

dynamics using deep neural networks has become a popular research topic. Walker

et al. (2015) and Fischer et al. (2015) learn to synthesize dense flow in the future from

a single image. Walker et al. (2016) extended the deterministic prediction framework

by modeling the flow uncertainty using variational auto-encoders. Chao et al. (2017)

proposed a recurrent neural network to generate movement of 3D human joints from

a single observation with a 3D in-network projection layer. Taking one step further,

Villegas et al. (2017b), Walker et al. (2017) explored hierarchical structure (e.g., 2D

human joints) for motion prediction in the future using recurrent neural networks. Li

et al. (2018) proposed an auto-conditional recurrent framework to generate long-term

human motion dynamics through time. Besides human motion, face synthesis and

editing is another interesting topic in vision and graphics. Methods for reenacting

and interpolating face sequences in video have been developed (Yang et al., 2011b,

2012a; Thies et al., 2016; Averbuch-Elor et al., 2017) based on a 3D morphable face

representation Blanz and Vetter (1999). Very recently, Suwajanakorn et al. (2017)

introduced a speech-driven face synthesis system that learns to generate lip motions

with a recurrent neural network.

Besides the flow representation, motion synthesis has been explored in a broader

context, namely, video generation. For example, synthesizing video sequence in

the future from a single or multiple video frames as initialization. Early works

employed patch-based method for short-term video generation using mean squared

mean squared loss (Srivastava et al., 2015) or perceptual loss (Mathieu et al., 2016).
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Given an atomic action as additional condition, previous works extended with action-

conditioned (i.e., rotation, location, etc) architectures that enable better semantic

control in video generation (Hinton et al., 2011; Oh et al., 2015; Finn et al., 2016b;

Yang et al., 2015). Due to the difficulty in holistic video frame prediction, the

idea of disentangling video factors into motion and content is explored in Villegas

et al. (2017a); Denton and Birodkar (2017); Xue et al. (2016); Vondrick et al. (2016);

Tulyakov et al. (2017); Wichers et al.. Video generation has also been approached

with architectures that output multinomial distribution vectors over the possible pixel

values for each pixel in the generated frame (Kalchbrenner et al., 2016).

The notion of feature transformations has also been exploited for other tasks.

Mikolov et al. (2013) showcased the composition additive property of word vectors

learned in an unsupervised way from language data; Kulkarni et al. (2015), Reed

et al. (2015) suggested that additive transformation can be achieved via reconstruc-

tion or prediction task by learning from parallel paired image data. In the video

domain,Wang et al. (2016) studied a transformation-aware representation for seman-

tic human action classification; Zhou and Berg (2016) investigated time-lapse video

generation given additional class labels.

Multimodal conditional generation has recently been explored for images (Sohn

et al., 2015; Zhu et al., 2017b), sketch drawings (Ha and Eck , 2018), natural language

(Bowman et al., 2015; Hu et al., 2017), and video prediction (Babaeizadeh et al., 2018;

Denton and Fergus , 2018). As noted in previous work, learning to generate diverse

and plausible visual data is very challenging for the following reasons: first, mode

collapse may occur without one-to-many pairs. Collecting sequence data where one-

to-many pairs exist is non-trivial. Second, posterior collapse could happen when the

generation model is based on a recurrent neural network.

51



4.3 Problem Formulation and Methods

We start by giving an overview of our problem. We are given a sequence of

T observations SA = [x1, x2, · · · , xT ], where xt ∈ RD is a D dimensional vector

representing the observation at time t. These observations encode the structure of

the moving object and can be represented in different ways, for e.g., as keypoint

locations or shape and pose parameters. Changes in these observations encode the

motion that we are interested in modeling. We refer to the entire sequence as a motion

mode. Given a motion mode, SA ∈ RT×D, we aim to build a model that is capable

of predicting a future motion mode, SB = [y1, y2, · · · , yT ], where yt ∈ RD represents

the predicted t-th step in the future, i.e., y1 = xT+1. We first start with a discussion

of two potential baseline models that could be used for this task (Section 4.3.1), and

then present our method (Section 4.3.2).

4.3.1 Preliminaries

Prediction LSTM for Sequence Generation. Figure 4.2(a) shows a simple

encoder-decoder LSTM (Hochreiter and Schmidhuber , 1997; Srivastava et al., 2015)

as a baseline for the motion prediction task. At time t, the encoder LSTM takes the

motion xt as input and updates its internal representation. After going through the

entire motion mode SA, it outputs a fixed-length feature eA ∈ RNe as an intermediate

representation. We initialize the internal representation of decoder LSTM using the

feature eA computed. At time t of the decoding stage, the decoder LSTM predicts the

motion yt. This way, the decoder LSTM gradually predicts the entire motion mode

S∗B = [y1, y2, · · · , yT ] in the future within T steps. We denote the encoder LSTM as

function f : RT×D → RNe and the decoder LSTM as function g : RNe → RT×D. As a

design choice, we initialize the decoder LSTM with additional input xT for smoother

prediction.
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Vanilla VAE for Sequence Generation. As the deterministic LSTM model fails

to reflect the multimodal nature of human motion, we consider a statistical model,

pθ(SB|SA), parameterized by θ. Given the observed sequence SA, the model estimates

a probability for the possible future sequence SB instead of a single outcome. To

model the multimodality (i.e., SA can transition to different SB’s), a latent variable z

(sampled from prior distribution) is introduced to capture the inherent uncertainty.

The future sequence SB is generated as follows:

1. Sample latent variable z ∼ N (0, I);

2. Given SA and z, generate a sequence of length T : SB ∼ pθ(SB|z, SA);

Following previous work on VAEs (Kingma and Welling , 2014; Sohn et al., 2015;

Gregor et al., 2015; Yan et al., 2016a; Walker et al., 2016; Xue et al., 2016; Walker

et al., 2017), the objective is to maximize the variational lower-bound of the condi-

tional log-probability log pθ(SB|SA):

LVAE = −KL(qφ(z|SB, SA)||pθ(z)) + Eqφ(z|SB ,SA)
[

log pθ(SB|SA, z)
]

(4.1)

In Eq. 4.1, qφ(z|SB, SA) is referred as an auxiliary posterior that approximates the

true posterior pθ(z|SB, SA). Specifically, the prior pθ(z) is assumed to be N (0, I).

The posterior qφ(z|SB, SA) is a multivariate Gaussian distribution with mean and

variance µφ and σ2
φ, respectively. Intuitively, the first term in Eq. 4.1 regularizes the

auxiliary posterior qφ(z|SB, SA) with prior pθ(z). The second term log pθ(SB|SA, z)

can be considered as an auto-encoding loss, where we refer to qφ(z|SB, SA) as an

encoder or recognition model, and pθ(SB|z, SA) as a decoder or generation model.

As shown in Figure 4.2(b), the vanilla VAE model adopts similar LSTM encoder

and decoder for sequence processing. In contrast to Prediction LSTM model, the

vanilla VAE decoder takes both motion feature eA and latent variable z into account.

Ideally, this allows to generate diverse motion sequences by drawing different samples
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Figure 4.2: Illustrations of different models for motion sequence generation. s(x1:T )
indicates the hidden state of the Encoder LSTM at time T .

from the latent space. However, the semantic role of the latent variable z in this

vanilla VAE model is not straight-forward and may not effectively represent long-

term trends (e.g., dynamics in a specific motion mode or during change of modes).

4.3.2 Motion-to-Motion Transformations in Latent Space

To further improve motion sequence generation beyond vanilla VAE, we propose

to explicitly enforce the structure of motion modes in the latent space. We assume

that (1) each motion mode can be represented as low-dimensional feature vector,

and (2) transitions between motion modes can be modeled as transformations of

these features. Our design is also supported by early studies on hierarchical motion

modeling and prediction (Bregler , 1997; Smith and Vul , 2013; Lan et al., 2014).

We present a Motion Transformation VAE (or MT-VAE) (Fig. 4.2(c)) with four

components:

1. An LSTM encoder f : RT×D → RNe maps the input sequences into motion

features through eA = f(SA) and eB = f(SB), respectively.

2. A latent encoder he→z : R2×Ne → RNz computes the transformation in the latent
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space z = he→z([eA, eB]) by concatenating motion features eA and eB. Here, Nz

indicates the latent space dimension.

3. A latent decoder hz→e : RNz+Ne → RNe synthesizes the motion feature in the

future from latent transformation z and current motion feature eA via e∗B =

hz→e([z, eA]).

4. An LSTM decoder g : RNe → RT×D synthesizes the future sequence given

motion feature: S∗B = g(e∗B).

Similar to the Prediction LSTM, we use an LSTM encoder/decoder to map motion

modes into feature space. The MT-VAE further maps these features into latent trans-

formations and stochastically samples these transformations. As we demonstrate, this

change makes the model more expressive and leads to more plausible results. Finally,

in the sequence decoding stage of MT-VAE, we feed the synthesized motion feature e∗B

as input to the decoder LSTM, with internal state initialized using the same motion

feature e∗B with an additional input xt.

4.3.3 Additive Transformations in Latent Space

Although MT-VAE explicitly models motion transformations in latent space, this

space might be unconstrained because the transformations are computed from vector

concatenation of motion features eA and eB in our latent encoder he→z. To better

regularize the transformation space, we present an additive variant of MT-VAE, that

is depicted in Figure 4.2(d). To distinguish between the two variants, we call the

previous model MT-VAE (concat) and this model MT-VAE (add), respectively. Our

model is inspired by recent success of deep analogy-making methods (Reed et al., 2015;

Villegas et al., 2017a) where a relation (or transformation) between two examples

can be represented as a difference in the embedding space. In this model, we strictly

constrain the latent encoding and decoding steps as follows:
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1. Our latent encoder hT →z : RNe → RNz computes the difference between two

motion features eA and eB via T = eB−eA ; then it maps the difference feature

T into a transformation in the latent space via z = hT →z(T ).

2. Our latent decoder hz→T : RNz+Ne → RNe reconstructs the difference feature

T ∗ from latent variable z and current motion feature eA via T ∗ = hz→T (z, eA).

3. Finally, we apply a simple additive interaction to reconstruct the motion feature

via e∗B = eA + T ∗;

In step one, we infer the latent variable using hT →z from the difference of eA

and eB (instead of a applying a linear layer on concatenated vectors). Intuitively, the

latent code is expected to capture the mode transition from the current motion to the

future motion rather than a concatenation of two modes. In step two, we reconstruct

the transformation from the latent variable via hz→T (z, eA) where z is obtained from

recognition model. In this design, the feature difference is dependent on both latent

transformation z and current motion feature eA. Alternatively, we can make our

latent decoder hz→T context-free by removing input from motion feature eA. This

way, the latent decoder is supposed to hallucinate the motion difference solely from

the latent space. We provide this ablation study in Section 4.4.1.

Besides the architecture-wise regularization, we introduce two additional objec-

tives while training our model.

Cycle Consistency. As mentioned previously, our training objective LVAE in Eq. 4.1

is composed of a KL term and a reconstruction term at each frame. The KL term

regularizes the latent space, while the reconstruction term ensures that the data can

be explained by our generative model. However, we do not have direct regularization

in the feature space. We therefore introduce a cycle-consistency loss in Eq. 4.2 (for
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Figure 4.3: Illustrations of cycle consistency in MT-VAE variations.

MT-VAE (concat)) and Eq. 4.3 (for MT-VAE (add)). Figure 4.3 illustrates the cycle

consistency in details.

Lconcat
cycle = ||z∗ − z||, where z∗ = he→z([eA, hz→e(z, eA)]) and z ∼ N (0, I) (4.2)

Ladd
cycle = ||z∗ − z||, where z∗ = hT →z(hz→T (z, eA)) and z ∼ N (0, I) (4.3)

In our preliminary experiments, we also investigated a consistency loss with a big-

ger cycle (involving the actual motion sequences) during training but we found it

ineffective as a regularization term in our setting. We hypothesize that vanishing

or exploding gradients make the cycle-consistency objective less effective, which is a

known issue when training recurrent neural networks.

Motion Coherence. Specific to our motion generation task, we introduce a motion

coherence loss in Eq. 4.4 that encourages a smooth transition in velocity in the first

K steps of prediction. We define the velocity v1 = y1 − xT and vk = yk − yk−1 when

k ≥ 2. Intuitively, such loss prevents the generated sequence from deviating too far

from the future sequence sampled from the prior.

Lmotion =
1

K

K∑
t=1

||v∗t − vt||, where g(ezB) = [y∗1, · · · , y∗T ] and z ∼ N (0, I) (4.4)

Finally, we summarize our overall loss in Eq. 4.5, where λcycle and λmotion are two
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balancing hyper-parameters for cycle consistency and motion coherence, respectively.

LMT-VAE = LVAE + λcycleLcycle + λmotionLmotion (4.5)

4.4 Experiments

Datasets. The evaluation is conducted on the datasets involving two representa-

tive human motion modeling tasks: Affect-in-the-wild (Aff-Wild) (Zafeiriou et al.)

for facial motions and Human3.6M (Ionescu et al., 2014) for full body motions. To

better focus on face motion modeling (e.g., expressions and head movements), we

leveraged the 3D morphable face model (Paysan et al., 2009; Blanz and Vetter , 1999)

(e.g., face identity, face expression, and pose) in our experiments. We fitted 198-

dim identity coefficients, 29-dim expression coefficients, and 6-dim pose parameters

to each frame with a pre-trained 3DMM-CNN model (Tran et al., 2017), followed by

a face fitting algorithm (Zhu et al., 2016b) based on optimization. Human3.6M is

a large-scale database containing more than 800 human motion sequences captured

by 11 professional actors (3.6 million frames in total) in an indoor environment. For

experiments on Human3.6M, we used the raw 2D trajectories of 32 keypoints and

further normalized the data into coordinates within the range [−1, 1].

Architecture Design. Our MT-VAE model consists of four components: sequence

encoder network, sequence decoder network, latent encoder network, and latent de-

coder network. We build our sequence encoder and decoder using Long Short-term

Memory units (LSTMs) (Hochreiter and Schmidhuber , 1997). We used 1-layer LSTM

with 1,024 hidden units for both networks. Given past and future motion features

extracted from our sequence encoder network, we build three fully-connected layers

with skip connections within our latent encoding network. We adopted a similar ar-

chitecture (three fully-connected layers with skip connections) for our latent decoder
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network.

Please see the website for more visualizations: https://goo.gl/2Q69Ym.

4.4.1 Multimodal Motion Generation

Table 4.1: Quantitative evaluations for multimodal motion generation. We compare
against two simple data-driven baselines for quantitative comparison: Last-step Mo-
tion that recursively applies the motion (velocity only) from the last step observed;
Sequence Motion that recursively adds the average sequence velocity from the ob-
served frames. Top: Results on Aff-Wild with facial expression coefficients. Bottom:
Results on Human3.6M with 2D joints.

Method / Metric
R-MSE ↓ (×10−1) S-MSE ↓ (×10−1)

Test CLL ↑ (×103)
train test train test

Last-step Motion — — 63.8 ± 1.31 74.7 ± 5.59 0.719 ± 0.077
Sequence Motion — — 18.4 ± 0.25 19.1 ± 1.02 1.335 ± 0.057
Prediction LSTM — — 1.53 ± 0.01 3.03 ± 0.06 2.232 ± 0.003
Vanilla VAE 0.32 ± 0.00 1.28 ± 0.02 0.79 ± 0.00 1.79 ± 0.03 2.749 ± 0.012
MT-VAE (concat) 0.22 ± 0.00 0.73 ± 0.01 1.04 ± 0.00 1.76 ± 0.03 2.817 ± 0.023
MT-VAE (add) 0.20 ± 0.00 0.47 ± 0.01 1.02 ± 0.00 1.54 ± 0.04 3.147 ± 0.018

Method / Metric
R-MSE ↓ S-MSE ↓

Test CLL ↑ (×104)
train test train test

Last-step Motion — — 35.2 ± 0.49 32.1 ± 0.80 0.390 ± 0.004
Sequence Motion — — 37.8 ± 0.49 35.2 ± 0.73 0.406 ± 0.003
Prediction LSTM — — 1.69 ± 0.02 11.2 ± 0.17 0.602 ± 0.002
Vanilla VAE 0.36 ± 0.00 1.05 ± 0.02 3.18 ± 0.02 3.88 ± 0.05 0.993 ± 0.011
MT-VAE (concat) 0.36 ± 0.00 0.97 ± 0.02 2.26 ± 0.03 2.84 ± 0.05 1.033 ± 0.010
MT-VAE (add) 0.25 ± 0.00 0.75 ± 0.01 2.37 ± 0.02 2.87 ± 0.05 1.141 ± 0.009

We evaluate our model’s capacity to generate diverse and plausible future motion

patterns for a given sequence on the Aff-Wild and Human3.6M test sets. Given

sequence SA as initialization, we generated multiple motion trajectories in the future

using our proposed sampling and generation process. For the Prediction LSTM model,

we only sample one motion trajectory in the future since the predicted future is

deterministic.

Quantitative Evaluations. We evaluate our model and baselines quantitatively

using the minimum squared error metric and conditional log-likelihood metric, which

have been used in evaluating conditional generative models (Sohn et al., 2015; Walker
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et al., 2016; Yan et al., 2016a; Babaeizadeh et al., 2018). As defined in Eq. 4.6,

Reconstruction minimum squared error (or R-MSE) measures the squared error of

the closest reconstruction to ground-truth when sampling latent variables from the

recognition model. This is a measure of the quality of reconstruction given both

current and future sequences. As defined in Eq. 4.7, Sampling minimum squared

error (or S-MSE) measures the squared error of the closest sample to ground-truth

when sampling latent variables from prior. This is a measure of how close our samples

are to the reference future sequences.

R-MSE = min
1≤k≤K

‖SB − S∗B(z(k))‖2, where z(k) ∼ qφ(z|SA, SB). (4.6)

S-MSE = min
1≤k≤K

‖SB − S∗B(z(k))‖2, where z(k) ∼ pθ(z). (4.7)

In terms of generation diversity and quality, a good generative model is expected to

achieve low R-MSE and S-MSE values, given sufficient number of samples. Note that

posterior collapse issue is usually featured by low S-MSE but high R-MSE, as latent

z sampled from the recognition model is being ignored to some extent. In addition,

we measure the test conditional log-likelihood of the ground-truth sequences under

our model via Parzen window estimation (with a bandwidth determined based on the

validation set). We believe that Parzen window estimation is a reasonable approach

for our setting as the dimensionality of data (sequence of keypoints) is not too high

(unlike in the case of high-resolution videos). For each example, we used 50 samples

to compute R-MSE metric, and 500 samples to compute S-MSE and conditional

log-likelihood metrics. On Aff-Wild, we evaluate the models on 32-step expression

coefficients prediction (29 × 32 = 928 dimensions in total). On Human3.6M, we

evaluate the models on 64-step 2D joints prediction (64 × 64 = 4096 dimensions in

total). Please note that such measurements are approximate, as we do not evaluate

the model performance for every sub-sequence (e.g., essentially, every frame can serve
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as a starting point). Instead, we repeat the evaluations every 16 frames on Aff-Wild

dataset and every 100 frames on Human3.6M dataset.

As we see in Table 4.1, data-driven approaches that simply repeat the motion com-

puted from last-step velocity or averaged over the observed sequence performed poorly

on both datasets. In contrast, the Prediction LSTM (Villegas et al., 2017b) baseline

greatly reduces the S-MSE metric compared to simple data-driven approaches, due

to the deep sequence encoder and decoder architecture in modeling more complex

motion dynamics through time. Among all three models using latent variables, our

MT-VAE (add) model achieve the best quantitative performance. Compared to MT-

VAE (concat) that adopts vector concatenation, our additive version achieves lower

reconstruction error with similar sampling eror. This suggests that the MT-VAE

(add) model is able to regularize the learning of motion transformation further.

Qualitative Results. We provide qualitative side-by-side comparisons across dif-

ferent models in Figure 4.4. For Aff-Wild, we render 3D face models using the gen-

erated expression-pose parameters along with the original identity parameters. For

Human3.6M, we directly visualize the generated 2D keypoints. As shown in the

generated sequences, our MT-VAE model is able to generate multiple diverse and

plausible sequences in the future. In comparison, the sequences generated by Vanilla

VAE are less realistic. For example, given a sitting down motion (lower-left part in

Fig. 4.4) as initialization, the vanilla model fails to predict the motion trend (sitting

down), while creating some artifacts (e.g., scale change) in the future prediction. Also

note that MT-VAE produces more natural transitions from the last observed frame to

the first generated one (see mouth shapes in the face motion examples and distances

between two legs in full-body examples). This demonstrates that MT-VAE learns a

more robust and structure-preserving representation of motion sequences compared

to other baselines.
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Figure 4.4: Multimodal Sequence Generation. Given an input sequence (green bound-
ary), we generate future sequences (red boundary). We predict 32 frames given 8
frames for face motion, and 64 frames given 16 frames for human body motion.
Given the initial frames as condition, we demonstrate (top to bottom) the ground
truth sequence, Prediction LSTM, Vanilla VAE, and our MT-VAE model. Overall,
our model produces (1) diverse and structured motion patterns and (2) more natural
transitions from the last frame observed to the first frame generated (See the subtle
mouth shape and scale change from the last observed frame to the first generated
one).
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Table 4.2: Crowd-sourced Human Evaluations on Human3.6M. *We did not include
Prediction LSTM for the diversity evaluation, as it makes deterministic prediction.

Metric Vanilla VAE SVG Our MT-VAE (add) Pred LSTM

Realism (%) 19.2 23.8 26.4 30.6

Diversity (%) 51.6 22.3 26.1 0.0∗

Table 4.3: Ablation Study on Different variants of MT-VAE (add) model: We eval-
uate models trained without motion coherence objective, without cycle consistency
objective, and the model with context-free latent decoder.

Method / Metric R-MSE (test) ↓ S-MSE (test) ↓ Test CLL ↑ (×104)
ADD 0.75 ± 0.01 2.87 ± 0.05 1.141 ± 0.009
ADD w/o Motion Coherence 1.01 ± 0.02 2.93 ± 0.04 1.012 ± 0.014
ADD w/o Cycle Consistency 1.18 ± 0.03 2.71 ± 0.05 0.927 ± 0.019
ADD Context-free Decoder 0.31 ± 0.05 4.05 ± 0.05 1.299 ± 0.007

Crowd-sourced Human Evaluations. We conducted crowd-sourced human eval-

uations via Amazon Mechanical Turk (AMT) on 50 videos (10 Turkers per video) from

Human3.6M dataset. This evaluation presents the past action, and 5 generated future

actions for each method to a human evaluator and asks the person to select the most

(1) realistic and (2) diverse results. In this evaluation, we also added comparisons to

a recently published work (Denton and Fergus , 2018) on stochastic video prediction,

which we refer to as SVG. Table 4.2 presents the percentage of users who selected

each method for each task. The Prediction LSTM produces the most realistic but

the least diverse result; Babaeizadeh et al. (2018) produces the most diverse but the

least realistic result; Our MT-VAE model (we use the additive variant here) achieves

a good balance between realism and diversity.

Ablation Study. We analyze variations of our MT-VAE (add) models on Hu-

man3.6M. As we see in Table 4.3, removing the cycle consistency or motion coherence

results in a drop in reconstruction performance. This shows that cycle consistency

and motion coherence encourage the motion feature to preserve motion structure and

hence be more discriminative in nature. We also evaluate a context-free version of the

MT-VAE (add) model, where the the transformation vector T ∗ is not conditioned on
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input feature eA. This version produces poor S-MSE value since it is challenging for

the additive latent decoder to hallucinate transformation vector T ∗ solely from latent

variable z.

4.4.2 Analogy-based Motion Transfer

We evaluate our model on an additional task of transfer by analogy. In this

analogy-making experiment, we are given three motion sequences A, B (which is

the subsequent motion of A), and C (which is a different motion sequence). The

objective is to recognize the transition from A to B and transfer it to C. This exper-

iment can demonstrate whether our learned latent space models the mode transition

across motion sequences. Moreover, this task has numerous graphics applications

like transferring expressions and their styles, video dubbing, gait style transfer, and

video-driven animation (Thies et al., 2016).

In this experiment, we compare Prediction LSTM, Vanilla VAE, and our MT-VAE

variants. For the stochastic models, we compute the latent variable z from motion

sequence A and B via the latent encoder, i.e., z = hT →z(eB − eA), and then decode

using motion sequence C as e∗D = hz→T (z, eC). For Prediction LSTM model, we

directly performed the analogy-making in the feature space e∗D = eB − eA + eC since

there is no notion of a latent space in that model. As shown in Figure 4.5, our MT-

VAE model is able to combine the transformation learned from A to B transitions

with the structure in sequence C. The other baselines failed at either adapting the

mode transition from A to B or preserving the structure in C. The analogy-based

motion transfer task is significantly more challenging than motion generation, since

the combination of three reference motion sequences A, B, and C may never appear

in the training data. Yet, our model is able to synthesize realistic motions. Please

note that motion modes may not explicitly correspond to semantic motions, as we

learn the motion transformation in an unsupervised manner.
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Figure 4.5: Analogy-based motion transfer. Given three motion sequences A, B, and
C from test set, the objective is to extract the motion mode transition from A to B
and then apply it to animate the future starting from sequence C. For fair comparison,
we set the encoder Gaussian distribution parameter σ to zero during evaluation.

4.4.3 Towards Multimodal Hierarchical Video Generation

As an application, we showcase that our multimodal motion generation framework

can be directly used for generating diverse and realistic pixel-level video frames in the

future. We trained the keypoint-conditioned image generation model Villegas et al.

(2017b) that takes both previous image frame A and predicted motion structure B

(e.g., rendered face or human joints) as input and hallucinates image C by combining

the image content adapted from A but with motion adapted from B. In Figure 4.6,

we show a comparison of video generated in a deterministic way by Prediction LSTM
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(i.e., single future), and in a stochastic way driven by the predicted motion sequence

(i.e., multiple futures) from our MT-VAE (add) model. We use our generated motion

sequences for performing video generation experiments on the Aff-Wild (with 8 input

frames observed) and Human3.6M (with 16 input frames observed).
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Figure 4.6: Multimodal Hierarchical video generation. Top rows: Face video genera-
tion results from 8 observed frames. Bottom rows: Human video generation results
from 16 observed frames.

4.5 Discussions

Our goal in this work is to learn a conditional generative model for human mo-

tions. This is an extremely challenging problem in the general case and can require

significant amount of training data to generate realistic results. Our work demon-

strates that this can be accomplished with minimal supervision by enforcing a strong

structure on the problem. In particular, we model long-term human dynamics as a set

of motion modes with transitions between them, and construct a novel network ar-
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chitecture that strongly regularizes this space and allows for stochastic sampling. We

have demonstrated that this same idea can be used to model both facial and full body

motion, independent of the representation used (i.e., shape parameters, keypoints).
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CHAPTER V

Learning Geometry Representations for

Single-View 3D Object Reconstruction

5.1 Introduction

Understanding the 3D world is at the heart of successful computer vision applica-

tions in robotics, rendering and modeling (Szeliski , 2010). It is especially important

to solve this problem using the most convenient visual sensory data: 2D images. In

this chapter, we propose an end-to-end solution to the challenging problem of predict-

ing the underlying true shape of an object given an arbitrary single image observation

of it. This problem definition embodies a fundamental challenge: Imagery observa-

tions of 3D shapes are interleaved representations of intrinsic properties of the shape

itself (e.g., geometry, material), as well as its extrinsic properties that depend on its

interaction with the observer and the environment (e.g., orientation, position, and

illumination). Physically principled shape understanding should be able to efficiently

disentangle such interleaved factors.

This observation leads to insight that an end-to-end solution to this problem from

the perspective of learning agents (neural networks) should involve the following prop-

erties: 1) the agent should understand the physical meaning of how a 2D observation

is generated from the 3D shape, and 2) the agent should be conscious about the out-
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come of its interaction with the object; more specifically, by moving around the object,

the agent should be able to correspond the observations to the viewpoint change. If

such properties are embodied in a learning agent, it will be able to disentangle the

shape from the extrinsic factors because these factors are trivial to understand in the

3D world. To enable the agent with these capabilities, we introduce a built-in camera

system that can transform the 3D object into 2D images in-network. Additionally,

we architect the network such that the latent representation disentangles the shape

from view changes. More specifically, our network takes as input an object image and

predicts its volumetric 3D shape so that the perspective transformations of predicted

shape match well with corresponding 2D observations.

We implement this neural network based on a combination of image encoder,

volume decoder and perspective transformer (similar to spatial transformer as in-

troduced by Jaderberg et al. (2015)). During training, the volumetric 3D shape is

gradually learned from single-view input and the feedback of other views through

back-propagation. Thus at test time, the 3D shape can be directly generated from a

single image. We conduct experimental evaluations using a subset of 3D models from

ShapeNetCore (Chang et al., 2015). Results from single-class and multi-class training

demonstrate excellent performance of our network for volumetric 3D reconstruction.

Our main contributions are summarized below.

• We show that neural networks are able to predict 3D shape from single-view

without using the ground truth 3D volumetric data for training. This is made

possibly by the geometry-aware 2D silhouette loss.

• We train a single network for multi-class 3D object volumetric reconstruction

and show its generalization potential to unseen categories.

• Compared to training with full azimuth angles, we demonstrate comparatively

similar results when training with partial views.
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5.2 Related Work

Representation learning for 3D objects. Recently, advances have been made

in learning deep neural networks for 3D objects using large-scale CAD databases (Wu

et al., 2015; Chang et al., 2015). Wu et al. (2015) proposed a deep generative model

that extends the convolutional deep belief network (Lee et al., 2009) to model vol-

umetric 3D shapes. Different from Wu et al. (2015) that uses volumetric 3D repre-

sentation, Su et al. (2015) proposed a multi-view convolutional network for 3D shape

categorization with a view-pooling mechanism. These methods focus more on 3D

shape recognition instead of 3D shape reconstruction. Recent work (Tatarchenko

et al., 2016; Qi et al., 2016; Girdhar et al., 2016; Choy et al., 2016) attempt to learn

a joint representation for both 2D images and 3D shapes. Tatarchenko et al. (2016)

developed a convolutional network to synthesize unseen 3D views from a single im-

age and demonstrated the synthesized images can be used them to reconstruct 3D

shape. Qi et al. (2016) introduced a joint embedding by combining volumetric rep-

resentation and multi-view representation together to improve 3D shape recognition

performance. Girdhar et al. (2016) proposed a generative model for 3D volumetric

data and combined it with a 2D image embedding network for single-view 3D shape

generation. Choy et al. (2016) introduce a 3D recurrent neural network (3D-R2N2)

based on long-short term memory (LSTM) to predict the 3D shape of an object from

a single view or multiple views. Compared to these single-view methods, our 3D

reconstruction network is learned end-to-end and the network can be even trained

without ground truth volumes.

Concurrent to our work, Rezende et al. (2016) introduced a general framework

to learn 3D structures from 2D observations with 3D-2D projection mechanism.

Their 3D-2D projection mechanism either has learnable parameters or adopts non-

differentiable component using MCMC, while our perspective projection network is

both differentiable and parameter-free.
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Representation learning by transformations. Learning from transformed sen-

sory data has gained attention (Memisevic and Hinton, 2007; Hinton et al., 2011;

Reed et al., 2014; Michalski et al., 2014; Yang et al., 2015; Jaderberg et al., 2015;

Yumer and Mitra, 2016) in recent years. Memisevic and Hinton (2007) introduced a

gated Boltzmann machine that models the transformations between image pairs us-

ing multiplicative interaction. Reed et al. (2014) showed that a disentangled hidden

unit representations of Boltzmann Machines (disBM) could be learned based on the

transformations on data manifold. Yang et al. (2015) learned out-of-plane rotation of

rendered images to obtain disentangled identity and viewpoint units by curriculum

learning. Kulkarni et al. (2015) proposed to learn a semantically interpretable latent

representation from 3D rendered images using variational auto-encoders (Kingma and

Welling , 2014) by including specific transformations in mini-batches. Complimentary

to convolutional networks, Jaderberg et al. (2015) introduced a differentiable sampling

layer that directly incorporates geometric transformations into representation learn-

ing. Concurrent to our work, Wu et al. (2016a) proposed a 3D-2D projection layer

that enables the learning of 3D object structures using 2D keypoints as annotation.

5.3 Problem Formulation

In this section, we develop neural networks for reconstructing 3D objects. From

the perspective of a learning agent (e.g., neural network), a natural way to understand

one 3D object X is from its 2D views by transformations. By moving around the 3D

object, the agent should be able to recognize its unique features and eventually build a

3D mental model of it as illustrated in Figure 5.1(a). Assume that I(k) is the 2D image

from the k-th viewpoint α(k) by projection I(k) = P (X;α(k)), or rendering in graphics.

An object X in a certain scene is the entanglement of shape, color and texture (its

intrinsic properties) and the image I(k) is the further entanglement with viewpoint

and illumination (extrinsic parameters). The general goal of understanding 3D objects
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Figure 5.1: (a) Understanding 3D object from learning agent’s perspective; (b) Single-
view 3D volume reconstruction with perspective transformation. (c) Illustration of
perspective projection. The minimum and maximum disparity in the screen coordi-
nates are denoted as dmin and dmax.

can be viewed as disentangling intrinsic properties and extrinsic parameters from a

single image.

In this chapter, we focus on the 3D shape learning by ignoring the color and texture

factors, and we further simplify the problem by making the following assumptions: 1)

the scene is clean white background; 2) the illumination is constant natural lighting.

We use the volumetric representation of 3d shape V where each voxel Vi is a binary

unit. In other words, the voxel equals to one, i.e., Vi = 1, if the i-th voxel sapce is

occupied by the shape; otherwise Vi = 0. Assuming the 2D silhouette S(k) is obtained

from the k-th image I(k), we can specify the 3D-2D projection S(k) = P (V;α(k)). Note

that 2D silhouette estimation is typically solved by object segmentation in real-world

but it becomes trivial in our case due to the white background.

In the following sub-sections, we propose a formulation for learning to predict

the volumetric 3D shape V from an image I(k) with and without the 3D volume

supervision.

5.3.1 Learning to Reconstruct Volumetric 3D Shape from Single-View

We consider single-view volumetric 3D reconstruction as a dense prediction prob-

lem and develop a convolutional encoder-decoder network for this learning task de-

72



noted by V̂ = f(I(k)). The encoder network h(·) learns a viewpoint-invariant latent

representation h(I(k)) which is then used by the decoder g(·) to generate the volume

V̂ = g(h(I(k))). In case the ground truth volumetric shapes V are available, the

problem can be easily considered as learning volumetric 3D shapes with a regular

reconstruction objective in 3D space: Lvol(I(k)) = ||f(I(k))−V||22.

In practice, however, the ground truth volumetric 3D shapes may not be avail-

able for training. For example, the agent observes the 2D silhouette via its built-in

camera without accessing the volumetric 3D shape. Inspired by the space carving

theory (Kutulakos and Seitz , 2000), we propose a silhouette-based volumetric loss

function. In particular, we build on the premise that a 2D silhouette Ŝ(j) projected

from the generated volume V̂ under certain camera viewpoint α(j) should match the

ground truth 2D silhouette S(j) from image observations. In other words, if all the

generated silhouettes Ŝ(j) match well with their corresponding ground truth silhou-

ettes S(j) for all j’s, then we hypothesize that the generated volume V̂ should be

as good as one instance of visual hull equivalent class of the ground truth volume

V (Kutulakos and Seitz , 2000). Therefore, we formulate the learning objective for

the k-th image as

Lproj(I(k)) =
n∑
j=1

L(j)
proj(I

(k);S(j), α(j)) =
1

n

n∑
j=1

||P (f(I(k));α(j))− S(j)||22, (5.1)

where j is the index of output 2D silhouettes, n is the number of silhouettes used

for each input image and P (·) is the 3D-2D projection function. Note that the above

training objective Eq. (5.1) enables training without using ground-truth volumes. The

network diagram is illustrated in Figure 5.1(b). A more general learning objective is

given by a combination of both objectives:

Lcomb(I(k)) = λprojLproj(I(k)) + λvolLvol(I(k)), (5.2)
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where λproj and λvol are constants that control the tradeoff between the two losses.

5.3.2 Perspective Transformer Networks

As defined previously, 2D silhouette S(k) is obtained via perspective projection

given input 3D volume V and specific camera viewpoint α(k). In this work, we

implement the perspective projection (see Figure 5.1(c)) with a 4-by-4 transformation

matrix Θ4×4, where K is camera calibration matrix and (R, t) is extrinsic parameters.

Θ4×4 =

K 0

0T 1


R t

0T 1

 (5.3)

For each point psi = (xsi , y
s
i , z

s
i , 1) in 3D world coordinates, we compute the corre-

sponding point pti = (xti, y
t
i , 1, d

t
i) in screen coordinates (plus disparity dti) using the

perspective transformation: psi ∼ Θ4×4p
t
i.

Similar to the spatial transformer network introduced in Jaderberg et al. (2015),

we propose a 2-step procedure: (1) performing dense sampling from input volume (in

3D world coordinates) to output volume (in screen coordinates), and (2) flattening

the 3D spatial output across disparity dimension. In the experiment, we assume that

transformation matrix is always given as input, parametrized by the viewpoint α.

Again, the 3D point (xsi , y
s
i , z

s
i ) in input volume V ∈ RH×W×D and corresponding

point (xti, y
t
i , d

t
i) in output volume U ∈ RH′×W ′×D′ is linked by perspective transfor-

mation matrix Θ4×4. Here, (W,H,D) and (W ′, H ′, D′) are the width, height and

depth of input and output volume, respectively.

We summarize the dense sampling step and channel-wise flattening step as follows.

Ui =
H∑
n

W∑
m

D∑
l

Vnml max(0, 1− |xsi −m|) max(0, 1− |ysi − n|) max(0, 1− |zsi − l|)

Sn′m′ = max
l′

Un′m′l′

(5.4)
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Here, Ui is the i-th voxel value corresponding to the point (xti, y
t
i , d

t
i) (where i ∈

{1, ...,W ′ × H ′ × D′}). Note that we use the max operator for projection instead

of summation along one dimension since the volume is represented as a binary cube

where the solid voxels have value 1 and empty voxels have value 0. Intuitively, we

have the following two observations: (1) each empty voxel will not contribute to the

foreground pixel of S from any viewpoint; (2) each solid voxel can contribute to the

foreground pixel of S only if it is visible from a specific viewpoint.

5.3.3 Training

As the same volumetric 3D shape is expected to be generated from different images

of the object, the encoder network is required to learn a 3D view-invariant latent

representation

h(I(1)) = h(I(2)) = · · · = h(I(k)) (5.5)

This sub-problem itself is a challenging task in computer vision (Yang et al., 2015;

Kulkarni et al., 2015). Thus, we adopt a two-stage training procedure: first, we

learn the encoder network for a 3D view-invariant latent representation h(I) and

then train the volumetric decoder with perspective transformer networks. As shown

in Yang et al. (2015), a disentangled representation of 2D synthetic images can be

learned from consecutive rotations with a recurrent network, we pre-train the encoder

of our network using a similar curriculum strategy so that the latent representation

only contains 3D view-invariant identity information of the object. Once we obtain an

encoder network that recognizes the identity of single-view images, we next learn the

volume generator regularized by the perspective transformer networks. To encourage

the volume decoder to learn a consistent 3D volume from different viewpoints, we

include the projections from neighboring viewpoints in each mini-batch so that the

network has relatively sufficient information to reconstruct the 3D shape.
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5.4 Experiments

ShapeNetCore. This dataset contains about 51,300 unique 3D models from 55

common object categories (Chang et al., 2015). Each 3D model is rendered from 24

azimuth angles (with steps of 15◦) with fixed elevation angles (30◦) under the same

camera and lighting setup. We then crop and rescale the centering region of each

image to 64× 64× 3 pixels. For each ground truth 3D shape, we create a volume of

32× 32× 32 voxels from its canonical orientation (0◦).

5x5 conv
5x5 conv

5x5 conv

64x64x3
32x32x64

16x16x128
8x8x256

Volume Generator Perspective Transformer

   1x1x 512      

 latent unit 1x1x1024

1x32x32x32

6x6x6 conv

        4x4  
transformation 

1x32x32

Encoder Decoder

1x1x1024
512x3x3x3

256x6x6x6 96x15x15x15

4x4x4 conv
5x5x5 conv

Τθ(G)

     Grid generator

Sampler

1x32x32x32

Input image

Target projection

Figure 5.2: Illustration of network architecture.

Network Architecture. As shown in Figure 5.2, our encoder-decoder network

has three components: a 2D convolutional encoder, a 3D up-convolutional decoder

and a perspective transformer networks. The 2D convolutional encoder consists of 3

convolution layers, followed by 3 fully-connected layers (convolution layers have 64,

128 and 256 channels with fixed filter size of 5×5; the three fully-connected layers have

1024, 1024 and 512 neurons, respectively). The 3D convolutional decoder consists of

one fully-connected layer, followed by 3 convolution layers (the fully-connected layer

have 3 × 3 × 3 × 512 neurons; convolution layers have 256, 96 and 1 channels with

filter size of 4× 4× 4, 5× 5× 5 and 6× 6× 6). For perspective transformer networks,

we used perspective transformation to project 3D volume to 2D silhouette where the

transformation matrix is parametrized by 16 variables and sampling grid is set to

32× 32× 32. We use the same network architecture for all the experiments.
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Implementation Details. We used the ADAM (Kingma and Ba, 2015) solver for

stochastic optimization in all the experiments. During the pre-training stage (for

encoder), we used mini-batch of size 32, 32, 8, 4, 3 and 2 for training the RNN-1,

RNN-2, RNN-4, RNN-8, RNN-12 and RNN-16 as used in Yang et al. (2015). We used

the learning rate 10−4 for RNN-1, and 10−5 for the rest of recurrent neural networks.

During the fine-tuning stage (for volume decoder), we used mini-batch of size 6 and

learning rate 10−4. For each object in a mini-batch, we include projections from all

24 views as supervision. The models including the perspective transformer nets are

implemented using Torch (Collobert et al., 2011). To download the code, please refer

to the project webpage: http://goo.gl/YEJ2H6.

Experimental Design. As mentioned in the formulation, there are several variants

of the model depending on the hyper-parameters of learning objectives λproj and λvol.

In the experimental section, we denote the model trained with projection loss only,

volume loss only, and combined loss as PTN-Proj (PR), CNN-Vol (VO), and

PTN-Comb (CO), respectively.

In the experiments, we address the following questions: (1) Will the model trained

with combined loss achieve better single-view 3D reconstruction performance over

model trained on volume loss only (PTN-Comb vs. CNN-Vol)? (2) What is the perfor-

mance gap between the models with and without ground-truth volumes (PTN-Comb

vs. PTN-Proj)? (3) How do the three models generalize to instances from unseen

categories which are not present in the training set? To answer the questions, we

trained the three models under two experimental settings: single category and mul-

tiple categories.
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Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (130) VO (310) VO (130)

Figure 5.3: Single-class results. GT: ground truth, PR: PTN-Proj, CO: PTN-Comb,
VO: CNN-Vol (Best viewed in digital version. Zoom in for the 3D shape details).
The angles are shown in the parenthesis. Please also see more examples and video
animations on the project webpage.
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Table 5.1: Prediction IU using the models trained on chair category. Below, chair
corresponds to the setting where each object is observable with full azimuth angles,
while chair-N corresponds to the setting where each object is only observable with a
narrow range (subset) of azimuth angles.

Method / Evaluation Set
chair chair-N

training test training test

PTN-Proj:single (no vol. supervision) 0.5712 0.5027 0.4882 0.4583
PTN-Comb:single (vol. supervision) 0.6435 0.5067 0.5564 0.4429
CNN-Vol:single (vol. supervision) 0.6390 0.4983 0.5518 0.4380
NN search (vol. supervision) — 0.3557 — 0.3073

5.4.1 Training on a single category

We select chair category as the training set for single category experiment. For

model comparisons, we first conduct quantitative evaluations on the generated 3D

volumes from the test set single-view images. For each instance in the test set, we

generate one volume per view image (24 volumes generated in total). Given a pair

of ground-truth volume and our generated volume (threshold is 0.5), we computed

its intersection-over-union (IU) score and the average IU score is calculated over 24

volumes of all the instances in the test set. In addition, we provide a baseline method

based on nearest neighbor (NN) search. Specifically, for each of the test image,

we extract VGG feature from fc6 layer (4096-dim vector) (Simonyan and Zisserman,

2014) and retrieve the nearest training example using Euclidean distance in the feature

space. The ground-truth 3D volume corresponds to the nearest training example is

naturally regarded as the retrieval result.

As shown in Table 5.1, the model trained without volume supervision (projection

loss) performs as good as model trained with volume supervision (volume loss) on

the chair category (testing set). In addition to the comparisons of overall IU, we

measured the view-dependent IU for each model. As shown in Figure 5.4, the average

prediction error (mean IU) changes as we gradually move from the first view to the

last view (15◦ to 360◦). For visual comparisons, we provide a side-by-side analysis

for each of the three models we trained. As shown in Figure 5.3, each row shows
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Figure 5.4: View-dependent IU. For illustration, images of a sample chair with corre-
sponding azimuth angles are shown below the curves. For example, 3D reconstruction
from 0◦ is more difficult than from 30◦ due to self-occlusion.

an independent comparison. The first column is the 2D image we used as input of

the model. The second and third column show the ground-truth 3D volume (same

volume rendered from two views for better visualization purpose). Similarly, we list

the model trained with projection loss only (PTN-Proj), combined loss (PTN-Comb)

and volume loss only (CNN-Vol) from the fourth column up to the ninth column.

The volumes predicted by PTN-Proj and PTN-Comb faithfully represent the shape.

However, the volumes predicted by CNN-Vol do not form a solid chair shape in some

cases.

Training with partial views. We also conduct control experiments where each

object is only observable from a narrow range of azimuth angles (e.g., 8 out of 24 views

such as 0◦, 15◦, · · · , 105◦). As shown in Table 5.1 (last two columns), performances of

all three models drop a little bit but the conclusion is similar: the proposed network

(1) learns better 3D shape with projection regularization and (2) is capable of learning

the 3D shape by providing 2D observations only.
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Table 5.2: Prediction IU using the models trained on large-scale datasets.

Test Category airplane bench dresser car chair display lamp
PTN-Proj:multi 0.5556 0.4924 0.6823 0.7123 0.4494 0.5395 0.4223
PTN-Comb:multi 0.5836 0.5079 0.7109 0.7381 0.4702 0.5473 0.4158
CNN-Vol:multi 0.5747 0.5142 0.6975 0.7348 0.4451 0.5390 0.3865
NN search 0.5564 0.4875 0.5713 0.6519 0.3512 0.3958 0.2905

Test Category loudspeaker rifle sofa table telephone vessel
PTN-Proj:multi 0.5868 0.5987 0.6221 0.4938 0.7504 0.5507
PTN-Comb:multi 0.5675 0.6097 0.6534 0.5146 0.7728 0.5399
CNN-Vol:multi 0.5478 0.6031 0.6467 0.5136 0.7692 0.5445
NN search 0.4600 0.5133 0.5314 0.3097 0.6696 0.4078

Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (130) VO (310) VO (130)

Figure 5.5: Multiclass results. GT: ground truth, PR: PTN-Proj, CO: PTN-Comb,
VO: CNN-Vol (Best viewed in digital version. Zoom in for the 3D shape details).
The angles are shown in the parenthesis. Please also see more examples and video
animations on the project webpage.
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Table 5.3: Prediction IU in out-of-category tests.

Method / Test Category bed bookshelf cabinet motorbike train

PTN-Proj:single 0.1801 0.1707 0.3937 0.1189 0.1550
PTN-Comb:single 0.1507 0.1186 0.2626 0.0643 0.1044
CNN-Vol:single 0.1558 0.1183 0.2588 0.0580 0.0956

PTN-Proj:multi 0.1944 0.3448 0.6484 0.3216 0.3670
PTN-Comb:multi 0.1647 0.3195 0.5257 0.1914 0.3744
CNN-Vol:multi 0.1586 0.3037 0.4977 0.2253 0.3740

5.4.2 Training on multiple categories

We conducted multiclass experiment using the same setup in the single-class ex-

periment. For multi-category experiment, the training set includes 13 major cate-

gories: airplane, bench, dresser, car, chair, display, lamp, loudspeaker, rifle, sofa, table,

telephone and vessel. We preserved 20% of instances from each category as testing

data. As shown in Table 5.2, the quantitative results demonstrate (1) model trained

with combined loss is superior to volume loss in most cases and (2) model trained

with projection loss perform as good as volume/combined loss. From the visualization

results shown in Figure 5.5, all three models predict volumes reasonably well. There

is only subtle performance difference in object part such as the wing of airplane.

5.4.3 Out-of-Category Tests

Ideally, an intelligent agent should have the ability to generalize the knowledge

learned from previously seen categories to unseen categories. To this end, we de-

sign out-of-category tests for both models trained on a single category and multiple

categories, as described in Section 5.4.1 and Section 5.4.2, respectively. We select 5

unseen categories from ShapeNetCore: bed, bookshelf, cabinet, motorbike and train for

out-of-category tests. Here, the two categories cabinet and train are relatively easier

than other categories since there might be instances in the training set with similar

shapes (e.g., dresser, vessel, and airplane). But the bed,bookshelf and motorbike can

be considered as completely novel categories in terms of shape.
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Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (130) VO (310) VO (130)

Figure 5.6: Out-of-category results. GT: ground truth, PR: PTN-Proj, CO: PTN-
Comb, VO: CNN-Vol (Best viewed in digital version. Zoom in for the 3D shape
details). The angles are shown in the parenthesis. Please also see more examples and
video animations on the project webpage.

We summarized the quantitative results in Table 5.3. Surprisingly, the model

trained on multiple categories still achieves reasonably good overall IU. As shown in

Figure 5.6, the proposed projection loss generalizes better than model trained using

combined loss or volume loss on train, motorbike and cabinet. The observations from

the out-of-category tests suggest that (1) generalization from a single category is very

challenging, but training from multiple categories can significantly improve general-

ization, and (2) the projection regularization can help learning a robust representation

for better generalization on unseen categories.
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5.5 Discussions

In this chapter, we investigate the problem of single-view 3D shape reconstruction

from a learning agent’s perspective. By formulating the learning procedure as the

interaction between 3D shape and 2D observation, we propose to learn an encoder-

decoder network which takes advantage of the projection transformation as regular-

ization. Experimental results demonstrate (1) excellent performance of the proposed

model in reconstructing the object even without ground-truth 3D volume as supervi-

sion and (2) the generalization potential of the proposed model to unseen categories.
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CHAPTER VI

Learning Geometry-aware Deep Representation

for 6-DOF Grasping

6.1 Introduction

Learning to interact with and grasp objects is a fundamental and challenging

problem in robot learning that combines perception, motion planning, and control.

The problem is challenging because it not only requires understanding geometry (the

global shape of an object, the local surface around the interaction space) but it

also requires estimating physical properties, such as weight, density, and friction.

Furthermore, it requires invariance to illumination, object location, and viewpoint.

To handle this, current data-driven approaches (Lenz et al., 2015; Pinto and Gupta,

2016; Levine et al.; Mahler et al., 2016, 2017) use hundreds of thousands of examples

to learn a solution.

While further scaling may help improve performance of these methods, we postu-

late shape is core to interaction and that additional shape signals to focus learning

will boost performance. The notion of using shape and geometry has been pioneered

in grasping research (Goldfeder et al., 2009; León et al.; Bohg and Kragic, 2010; Li

et al., 2016; Vahrenkamp et al., 2016).

Inspired by these approaches, we propose the concept of a deep geometry-aware
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Figure 6.1: Learning grasping interactions from demonstrations with deep geometry-
aware representations. First, we learn to build mental geometry-aware representation
by reconstructing the 3D scene with 2.5D training data. Second, we learn to predict
grasping outcome with its internal geometry-aware representation.

representation (e.g., (Wu et al., 2015; Girdhar et al., 2016; Choy et al., 2016; Wu et al.,

2016b; Maturana and Scherer , 2015; Rezende et al., 2016; Yan et al., 2016b; Tulsiani

et al., 2017; Godard et al., 2016; Gadelha et al., 2016)) for grasping. Key to our ap-

proach is that we first build a mental representation by recognizing and reconstructing

the 3D geometry of the scene from RGBD input, as demonstrated in Figure 6.1. With

the built-in 3D geometry-aware representation, we can hallucinate a local view of the

object’s geometric surface from the gripper perspective that will be directly useful

for grasping interaction. In contrast with black-box models that do not have explicit

notion of 3D geometry and prior shape-based grasping approaches, our approach has

the following features: (1) it performs 3D shape reconstruction as an auxiliary task;

(2) it hallucinates the local view using a learning-free physical projection operator;

and (3) it explicitly reuses the learned geometry-aware representation for grasping

outcome prediction.

In this work, we design an end-to-end deep geometry-aware grasping network for

learning this representation. Our geometry-aware network has two components: a

shape generation network and a grasping outcome prediction network. The shape

generation network learns to recognize and reconstruct the 3D geometry of the scene

with an image encoder and voxel decoder. The image encoder transforms the RGBD
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input into a high-level geometry representation that involves shape, location, and

orientation of the object. The voxel decoder network takes in the geometry repre-

sentation and outputs the occupancy grid of the object. To further hallucinate the

local view from gripper perspective, we propose a novel learning-free image projection

layer similar to Yan et al. (2016b); Rezende et al. (2016). Building upon the shape

generation network, our grasping outcome prediction network learns to produce a

grasping outcome (e.g., success or failure) based on the action (i.e. gripper pose), the

current visual state (e.g., object and gripper), and the learned geometry-aware 3D

representation. Unlike our end-to-end multi-objective learning framework, existing

data-driven grasping pipelines (Pinto and Gupta, 2016; Mahler et al., 2016, 2017)

can be viewed as models without a shape generation component. They require either

an additional camera to capture the global object shape or extra processing steps,

such as object detection and patch alignment. Furthermore, these methods learn over

a constrained grasp space, typically either 3-DOF or 4-DOF. We relax this constraint

to learn fully generalized 6-DOF grasp poses.

We have built a large database consisting of 101 everyday objects with around

150K grasping demonstrations in Virtual Reality with both human and augmented

synthetic interactions. For each object, we collect 10-20 grasping attempts with a

parallel jaw gripper from right-handed users. For each attempt, we record a pre-

grasping status which includes the location and orientation of the object and gripper,

as well as the grasping outcome (e.g., success or failure given if the object is between

the gripper fingers after closing and lifting). To acquire sufficient data for learning, we

generate additional synthetic data by perturbing the gripper location and orientation

from human demonstrations using PyBullet (Coumans et al.). More information

about our geometry-aware grasping project can be found at https://goo.gl/gPzPhm.

Our main contributions are summarized below:

• To best of our knowledge, we are presenting for the first time a method to learn
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a 6-DOF deep grasping neural network from RGBD input.

• We build a database with rich visual sensory data and grasping annotations

with a virtual reality system and propose a data augmentation strategy for

effective learning with only modest amount of human demonstrations.

• We demonstrate that the proposed geometry-aware grasping network is able to

learn the shape as well as grasping outcome significantly better than models

without notion of geometry.

• We demonstrate that the proposed model has advantages in guiding grasping

exploration and achieves better generalization to novel viewpoints and novel

object instances.

6.2 Related Work

A common approach for robotic grasping is to detect the optimal grasping location

from 2D or 2.5D visual inputs (RGB or RGBD images, respectively) (Saxena et al.,

2008; Montesano and Lopes , 2012; Lenz et al., 2015; Pinto and Gupta, 2016; Gualtieri

et al., 2016; Kopicki et al., 2016; Osa et al., 2016). Earlier work (Saxena et al.,

2008; Montesano and Lopes , 2012) studied the planar grasping problem using visual

features extracted from 2D sensory input and adopted logistic regression for fitting

optimal grasping location with visual features. Lenz et al. (2015) proposed a two-step

detection pipeline (object detection and grasping part detection) with deep neural

networks. Pinto and Gupta (2016) built a robotic system for learning grasping from

large-scale real-world trial-and-error experiments. In this work, a deep convolutional

neural network was trained on 700 hours of robotic grasping data collected from the

system.

Fine-grained grasping planning and control often involves 3D modeling of object

shape, modeling dynamics of robot hands, and local surface modeling (Goldfeder
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et al., 2009; León et al.; Johns et al., 2016; Varley et al., 2016; Li et al., 2016;

Vahrenkamp et al., 2016; Mahler et al., 2016, 2017). Some work focused on analytic

modeling of robotic grasps with known object shape information (Goldfeder et al.,

2009; León et al.). Varley et al. (2016) proposed a shape completion model that

reconstructs the 3D occupancy grid for robotic grasping from partial observations,

where ground-truth 3D occupancy grid is used during model training. In comparison,

our approach does not require full 3D volume supervision for training (e.g., occupancy

grid). Similar to our work, Bohg and Kragic (2010) use a learned shape-context to

help predict grasps. Unlike their work, we use the shape to build a virtual global

geometric representation along with a local gripper centric model to sequentially

propose and evaluate grasp proposals. Li et al. (2016) investigated the hand pose

estimation in robotic grasping by decoupling contact points and hand configuration

with parametrized object shape. Building upon the compositional aspect of everyday

objects, Vahrenkamp et al. (2016) proposed a part-based model for robotic grasping

that has better generalization to novel object. Very recently, effort was also made in

building DexNet (Mahler et al., 2016, 2017), a large-scale point cloud database for

planar grasping (from top-down). In addition to general robotic grasping, several re-

cent work investigated the semantic or task-specific grasping (Dang and Allen, 2014;

Katz et al., 2014; Nikandrova and Kyrki , 2015).

In contrast to existing learning frameworks applied to robotic grasping (either

top-down grasping or side-grasping), our approach features (1) providing a method

to learn a 6D grasping network from RGBD input (2) an end-to-end deep learn-

ing framework for generative 3D shape modeling and leveraging it for predictive 6D

grasping interaction, and (3) learning-free projection layer that links the 2D observa-

tions with 3D object shape which allows for learning the shape representation without

explicit 3D volume supervision.
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6.3 Multi-objective framework with geometry-aware repre-

sentation

Shape Decoder Perspective Transformer

Identity unit

Shape Encoder

Global 
Shape 

Sampler

Input shape

Target depth

Target outcome

Input viewpoint

Input action

Input viewpoint 
& Camera projection

Input action

Local
Shape 

Sampler

Local shape
(unsupervised)

Input state

State unit

State Encoder Outcome predictor

Figure 6.2: Illustration of DGGN (deep geometry-aware grasping network). Our
DGGN has a shape generation network and an outcome prediction network. The
shape generation network has a 2D CNN encoder, 3D CNN decoder, and a global
sampling layer (detailed in Sec. 6.3.2). Our outcome prediction network has a 2D
CNN encoder, a local sampling layer (detailed in Sec. 6.3.4), and a fully-connected
prediction network.

In this section, we develop a multi-objective learning framework that performs 3D

shape generation and grasping outcome prediction.

6.3.1 Learning generative geometry-aware representation from RGBD in-

put

Being able to recognize and reconstruct the 3D geometry given RGBD input is

a very important step during grasping planning. In our formulation, we propose a

reconstruction of a 3D occupancy grid (Wu et al., 2015; Girdhar et al., 2016; Choy

et al., 2016; Wu et al., 2016b; Rezende et al., 2016; Yan et al., 2016b; Tulsiani et al.,

2017; Godard et al., 2016; Gadelha et al., 2016) that encodes the shape, location,

and orientation of the object as our geometry-aware representation. Previous work

generate normalized 3D occupancy grids centered at the origin. Our formulated

geometry-aware representation differs in that (1) it takes location and orientation
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into consideration (the orientation of a novel object is usually undefined); (2) it is

invariant to camera viewpoint and distance (we obtain the same representation from

arbitrary camera setting).

Given an RGBD input I and a corresponding 3D occupancy grid V, the task is to

learn a functional mapping fV : I → V. Simply following this formulation, previous

work (Wu et al., 2015; Girdhar et al., 2016; Choy et al., 2016; Wu et al., 2016b;

Maturana and Scherer , 2015) that use 3D supervision obtained reasonable quality in

generating normalized 3D volumes by using thousands of shape instances. However,

in our problem setting, these methods would require even more data considering the

entangled factors from shape, location, and orientation.

6.3.2 Depth supervision with in-network projection layer

Recent breakthroughs in reconstructing 3D geometry with 2D supervision (Rezende

et al., 2016; Yan et al., 2016b; Tulsiani et al., 2017; Zhou et al., 2017b; Godard et al.,

2016; Gadelha et al., 2016; Fan et al., 2017; Tung et al., 2017) suggest that (1) the

quality of reconstructed 3D geometry is as good as previous work with 3D supervision;

(2) the learned representation generalizes better to novel settings than previous work

with 3D supervision; and (3) learning becomes more efficient with 2D supervision.

Inspired by these findings, we tackle the 3D reconstruction in a weakly supervised

manner without explicit 3D shape supervision. In Yan et al. (2016b), an in-network

projection layer is introduced for 3D shape learning from 2D masks (e.g. 2D silhou-

ette of object). Unfortunately, 2D silhouette is usually insufficient supervision signal

to reconstruct objects with concave 3D parts (e.g., containers). For these reasons, we

chose to use a depth signal in our shape reconstruction. Additionally, RGBD sensors

are commonly available in most robot platforms.

To enable depth supervision in our shape generation component, we propose a

novel in-network OpenGL projection operator that utilizes a 2D depth map D as
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supervision signal for learning to reconstruct the 3D geometry. We formulate the

projection operation by fD : V×P→ D that transforms a 3D shape into a 2D depth

map with the camera transformation matrix P. Here, the camera transformation

matrix decomposes as P = K[R; t], where K is the camera intrinsic matrix, R is the

camera rotation matrix, and t is the camera translation vector. In our implementa-

tion, we also use a 2D silhouette as an object maskM for learning. Empirically, this

additional objective makes the learning stable and efficient.

Following the OpenGL camera transformation standard, for each point ps =

(xs, ys, zs, 1) in 3D world frame, we compute the corresponding point pn = (xn, yn, zn, 1)

in the normalized device coordinate system (−1 ≤ xn, yn, zn ≤ 1) using the trans-

formation: pn ∼ Pps. Here, the conversion from depth buffer zn to real depth ze is

given by ze = f e(zn) = −1/(α ∗ zn + β) where α =
Znear−Zfar
2ZnearZfar

and β =
Znear+Zfar
2ZnearZfar

.

Here, Zfar and Znear represents the far and near clipping planes of the camera.

Similar to the “transformer networks” proposed in Yan et al. (2016b); Jaderberg

et al. (2015), our depth projection can be seen as: (1) performing dense sampling

from input volume (in the 3D world frame) to output volume (in normalized device

coordinates); and (2) flattening the 3D spatial output across one dimension. Again,

j-th point (xnj , y
n
j , z

n
j ) in output volume U ∈ RH′×W ′×D′ (j-th point is indexed by

[n′,m′, l′] in the volume space) and corresponding point (xsj , y
s
j , z

s
j ) in input volume

V ∈ RH×W×D are related by the transformation matrix P. Here, (W,H,D) and

(W ′, H ′, D′) are the width, height, and depth of the input and output volume, re-

spectively. We define the dense sampling step and channel-wise flattening step as
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follows:

U [n′,m′, l′] =
H∑
n=1

W∑
m=1

D∑
l=1

V [n,m, l] max(0, 1− |xsj −m|)

max(0, 1− |ysj − n|) max(0, 1− |zsj − l|)

M̂[n′,m′] = max
l′

U [n′,m′, l′]

D̂[n′,m′] =



Zfar, if M̂[n′,m′] = 0

f e( 2l′

D′
− 1),

where l′ = arg minl′(U [n′,m′, l′] > 0.5)

Znear, otherwise

(6.1)

In our implementation, we pre-computed the actual depth f e( 2l′

D′
− 1) given the diffi-

culty that arg min is not back-propagatable. As we will see in the following section,

the network will be trained to match these predictions M̂ and D̂ to the ground-truth

M and D. Please note that our in-network projection layer is learning-free as it

implements the exact ray-tracing algorithm without extra free parameters involved.

We note that the concept of depth projection is also explored in some very recent

work (Wu et al., 2017; Tewari et al., 2017; Zhou et al., 2017b), but their implemen-

tations are not exactly the same as our OpenGL projection layer in Eq. 6.1.

6.3.3 Viewpoint-invariant geometry-aware representation with multi-view

supervision

Learning to reconstruct 3D geometry from single-view RGBD sensory input is a

challenging task in computer vision due to shape ambiguity. We adopt the shape

consistency learning that enforces viewpoint-invariance across multi-view observa-

tions (Choy et al., 2016; Yan et al., 2016b; Tulsiani et al., 2017). More specifically,
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we (1) use the averaged identity units from multiple viewpoints as input to shape

decoder network and (2) provide multiple projections for supervising the 3D shape

reconstruction during training. Such shape consistency learning encourages an im-

age taken from one viewpoint sharing the same representation with the image taken

from another viewpoint. At testing time, we only provide RGBD input from single

viewpoint. Given a series of n observations I1, I2, · · · , In of the scene, the 3D recon-

struction can be formulated as fV : {Ii}ni=1 → V. Similarly, the projection operator

from i-th viewpoint is fD : V×Pi → Di, where Di and Pi are the depth and camera

transformation matrix from corresponding viewpoint, respectively. Finally, we define

the shape reconstruction loss Lshape in Eq. 6.2.

Lshapeθ = λD

n∑
i=1

Ldepthθ (D̂i,Di) + λM

n∑
i=1

Lmaskθ (M̂i,Mi) (6.2)

Here, λD and λM are the constant coefficients for the depth and mask prediction

terms, respectively.

6.3.4 Learning predictive grasping interaction with geometry-aware rep-

resentation.

As demonstrated in previous work (Oh et al., 2015; Finn et al., 2016a; Dosovitskiy

and Koltun, 2016; Yang et al., 2015; Pinto et al., 2016) that learn interactions from

demonstrations, prediction of the future state can be a metric for understanding the

physical interaction. In our grasping setting, we define the RGBD input I as current

state , the 6D pre-grasping parameters a (position and orientation of the parallel

jaw gripper) as action, and the grasping outcome l (e.g., binary label representing

a successful grasp or not) as future state. The future prediction task can be solved

by learning a functional mapping f lbaseline : I × a → l. We refer to this method as

a baseline grasping interaction prediction model, which has been a basis of several
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recent state-of-the-art grasping methods using deep learning (e.g., (Lenz et al., 2015;

Levine et al.; Mahler et al., 2017)). These work managed to learn such mapping with

either (a) millions of randomly generated grasps, (b) additional view from eye/hand

perspective, or (c) additional processing steps such as object detection and image

alignment.

In comparison, our geometry-aware model is an end-to-end architecture which

constrains its prediction with geometry information. As we learn to reconstruct the

3D geometry, we argue that the local surface view (typically from a wrist camera

perspective) can be directly inferred from our viewpoint-invariant geometry-aware

representation Î local = fD(V̂,P(a)), where V̂ = fV (I). Here, we treat the gripper

as a virtual camera with the transformation matrix P(a) with its world-space coor-

dinates given by the 6D pre-grasping parameters a. In addition to the local view,

our geometry-aware representation provides a global view of the scene V that takes

a shape prior, location, and orientation of object into consideration. Finally, given a

current observation I, proposed action a, and inferred 3D shape representation V,

we fit a functional mapping f lgeometry−aware : I × a × V → l, where l is the binary

outcome.

6.3.5 DGGN: Deep geometry-aware grasping network.

To implement the two components proposed in the previous sections, we introduce

DGGN (deep geometry-aware grasping network) (see Figure 6.2), composed

of a shape generation network and an outcome prediction network. The shape gener-

ation network has a 2D convolutional shape encoder and a 3D deconvolutional shape

decoder followed by a global projection layer. Our shape encoder network takes

RGBD images of resolution 128 × 128 and corresponding 4-by-4 camera view matri-

ces as input; the network outputs identity units as an intermediate representation.

Our shape decoder is a 3D deconvolutional neural network that outputs voxels at
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a resolution of 32 × 32 × 32. We implemented the projection layer (given camera

view and projection matrices) that transforms the voxels back into foreground object

silhouettes and depth maps at an input resolution (128 × 128). Here, the purpose

of generative pre-training is to learn viewpoint invariant units (e.g., object identity

units) through object segmentation and depth prediction. The outcome prediction

network has a 2D convolutional state encoder and a fully connected outcome predictor

with an additional local shape projection layer. Our state encoder takes RGBD input

(the pre-grasp scene) of resolution 128 × 128 and corresponding actions (position

and orientation of the gripper end-effector) and outputs state units as intermediate

representation. Our outcome predictor takes both current state (e.g., the pre-grasp

scene and gripper action) and geometry features (e.g., viewpoint-invariant global and

local geometry from the local projection layer) into consideration. Note that the

local dense-sampling transforms the surface area around the gripper fingers into a

foreground silhouette and a depth map at resolution 48 × 48.

6.4 Experiments

This section describes our data collection and augmentation process, as well as

experimental evaluation on grasping outcome prediction and grasping trials.

6.4.1 Dataset collection

Human demonstrations in VR We collected grasping demonstrations on seven

categories of objects, which include a total of 101 everyday objects. To collect grasping

demonstrations, we set up the HTC Vive system in Virtual Reality (VR) and assign

target objects randomly to five right-handed users (three males and two females). In

total, 1597 human grasps are demonstrated, with an average of 15 grasps per object

(with lowest and highest number of grasps at 7 and 39 for a plate and a wine glass,

respectively). We randomly split 101 objects into three sets (e.g., training, validation
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(a) Objects in the dataset.

(b) Successful grasp.

(c) Failure grasp.

(d) Synthetic grasps with annotations: red (failure), green (success).

Figure 6.3: Illustrations of our VR-Grasping-101 dataset.

and testing) and make sure each set covers the seven categories (70% for training,

10% for validation and 20% for testing).

Data augmentation In order to collect sufficient grasping demonstrations for

model training and evaluation, we generate synthetic grasps by perturbing the hu-

man demonstrations using PyBullet (Coumans et al.). This significantly helps in

increasing the number of grasps by adding perturbations to the demonstrations. In

total, we collected 150K grasping demonstrations covering 101 objects. Figure 6.3

illustrates examples of objects in the dataset, successful and unsuccessful grasping

trials from human demonstrations, and synthetic grasps (visualized by gripper posi-

tions) for successful and unsuccessful trials that were generated by this augmentation

process. More details are described in the Appendix.
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(a) 3D shape generation from single-view RGBD input (seen objects)

(b) 3D shape generation from single-view RGBD input (novel objects)

Failure cases

Input RGBD 

Generated occupancy grid 

Generated 
occupancy gridPre-grasping scene

Inferred local geometry

(c) 3D local geometry inference

Figure 6.4: Visualization: 3D shape generation from single-view RGBD. (a) The per-
formance on training (seen) objects. (b) The performance on testing (novel) objects.
(c) Local geometry inference from generated occupancy grid.

For each demonstration, we take a snapshot of the pre-grasping scene (e.g., before

closing the two gripper fingers). by randomly setting the camera at a distance (ranging

between 35 centimetres and 45 centimetres). We draw a camera target position from

a normal distribution with its mean as the object center and a desired variance (in

our experiment, we use 3 centimetres as standard deviation). Furthermore, we set

up the camera around the target position from 8 different azimuth angles (with steps

of 45 degrees) and adjust the elevation from 4 different angles (e.g., 15, 30, 45, and

60 degrees). Finally, we save a state of the scene without a gripper, which is used

for shape pre-training; this will be referred to as the static scene in this chapter. We

include only two elevation angles (e.g., 15 and 45 degrees) in the training set while

leaving the rest for evaluation.

6.4.2 Implementation details

Deep CNN baseline. We adopt the current data-driven framework as our grasping

baseline by removing the shape encoder and shape decoder from our deep geometry-

aware grasping model. This baseline can be interpreted as the grasping quality
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CNN (Mahler et al., 2017) without an additional view from a top-down camera. We

trained the model using the ADAM optimizer with a learning rate of 10−5 for 200K

iterations and a mini-batch of size of 4. As an ablation study, we added view and

static scene as an additional input channel on top of the baseline model but didn’t

observe significant improvements.

Training DGGN. We adopted a two-stage training procedure: First, we pre-

trained the shape generation model (shape encoder and shape decoder) using the

ADAM optimizer with a learning rate of 10−5 for 400K iterations and a mini-batch of

size of 4. In each batch, we sample 4 random viewpoints for the purpose of multi-view

supervision in the training time. We observed that this setting led to a more stable

shape generation performance compared to single-view training. In addition, we used

L1 loss for foreground depth prediction and L2 loss for silhouette prediction with coef-

ficients λD = 0.5 and λM = 10.0. In the second stage, we fine-tuned the state encoder

and outcome predictor using the ADAM optimizer with a learning rate of 3∗10−6 for

200K iterations and a mini-batch of size of 4. We used cross-entropy as our objective

function since the grasping prediction is formulated as a binary classification task.

In our experiments, all the models are trained using 20 GPU workers and 32

parameter servers with asynchronized updates. Both baseline and our geometry-aware

model adopt convolutional encoder-decoder architecture with residual connections.

The bottleneck layer (e.g., the identity unit in the geometry-aware model) is a 768

dimensional vector.

6.4.3 Visualization: 3D shape generation

We evaluate the quality of the shape generation model by visualizing the geometry

representations through the shape encoder and decoder network. In our evaluations,

we used single-view RGBD input and corresponding camera view matrix as input
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Method / Category bottle bowl cup plate mug sugarbowl teapot all

baseline CNN (15) 72.81 73.36 73.26 66.92 72.23 70.45 66.13 71.42
our DGGN (15) 78.83 79.32 77.60 68.88 78.25 76.09 73.69 76.55

baseline CNN (45) 71.02 74.16 73.50 63.31 74.23 72.70 64.19 71.32
our DGGN (45) 78.77 80.63 78.06 70.13 79.29 77.52 72.88 77.25

Table 6.1: Grasping Outcome prediction accuracy from seen elevation angles.
Method / Category bottle bowl cup plate mug sugarbowl teapot all

baseline CNN (30) 71.15 72.98 71.65 61.90 71.01 70.06 61.88 69.50
DGGN (30) 79.17 77.71 77.23 67.00 75.95 75.06 70.66 75.27

baseline CNN (60) 68.45 73.05 72.50 61.27 74.40 71.30 63.25 70.18
DGGN (60) 77.40 78.52 76.24 68.13 79.39 76.15 70.34 75.76

Table 6.2: Grasping Outcome prediction accuracy from novel elevation angles.

to the network. As shown in Figure 6.4(a), our shape generation model is able to

generate a detailed 3D occupancy grid from single-view input without 3D supervi-

sion during training. As shown in Figure 6.4(b), our model demonstrates reasonable

generalization quality even on novel object instances.

Analysis: local geometry inference via projection. One advantage of our

shape generation component is that we can obtain additional local geometry infor-

mation (see the red-dashed box in Figure 6.2(c)) from our geometry-aware represen-

tation. This is the key difference between our work and the related work that require

additional camera from the gripper. With 3D geometry as part of the intermediate

representation, we hallucinate the local geometry by running a projection from the

gripper’s perspective (i.e., simply treat the gripper as another virtual camera). To

further understand the advantages of our shape generation component, we visual-

ized the intermediate local geometry projected from generated 3D occupancy grid.

As shown in Figure 6.4(c), our shape generation component provides accurate local

geometry estimation that is useful for grasping outcome prediction.
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Method / Category bottle bowl cup plate mug sugarbowl teapot all

baseline CNN + CEM 48.60 64.28 55.44 45.99 61.00 53.97 63.08 55.85
our DGGN + CEM 56.73 68.84 60.31 50.09 67.21 59.87 69.22 61.46

rel. improvement (%) 16.72 7.09 8.77 8.92 10.18 10.92 9.73 10.03

Table 6.3: Grasping planning on novel objects: success rate by optimizing for up to
20 steps.

6.4.4 Model evaluation: Grasping outcome prediction

To evaluate the actual advantages in grasping outcome prediction from our mod-

eling, we computed the average classification accuracy over 30K demonstrations from

novel object instances (from testing set) with diverse observation viewpoints. For

each human demonstration, we generated 100 synthetic grasps through perturbation

(among which 50% of them are success grasps) and computed the average accuracy

on 100 grasps (i.e., random guess achieves 50% accuracy). To investigate the model

performance due to viewpoint changes, we repeat the evaluation experiment for four

different elevation angles (e.g, 15, 30, 45, and 60 degrees). We use parallel comput-

ing resources (500 machines) during evaluation and the entire evaluation took about

1 day. The results are summarized in Table 6.1 and Table 6.2. Overall, the deep

geometry-aware model consistently outperforms the deep CNN baseline in grasping

outcome classification. As we can see, “teapot” and “plate” are comparatively more

challenging categories for outcome prediction, since “teapot” has irregular shape parts

(e.g., tip and handle) and “plate” has a fairly flat shape. When it comes to novel

elevation angles (e.g., compare Table 6.1 and Table 6.2), our deep geometry-aware

model is less affected, especially in categories such as “teapot” and “plate” where

viewpoint-invariant shape understanding is crucial.

6.4.5 Application: Analysis-by-synthesis grasping planning.

As we improve the classification accuracy over the grasping outcome, a natural

question is whether this improvement can be used to guide better grasping planning.
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Initial seed Baseline proposals Geometry-aware proposals

Figure 6.5: Visualization: grasping optimization with CEM based on the grasping
prediction output. In each row, we selected three representative steps in grasping
optimization (in sequential order from left to right). Red box represents a failure
grasp while green box represents a successful grasp.

Given a grasping proposal (defined as target gripper pose) seed, we conducted grasp-

ing planning by sequentially adjusting the grasping pose guided by our deep grasping

network until a grasp success. In each optimization step, we performed cross-entropy

method (CEM) (Rubinstein and Kroese, 2004; Levine et al.) as follows. (1) We

initialized with a failure grasp in order to force the model to find better grasping
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pose. (2) To obtain the gradient direction in the 6D space, we sample 10 random

directions and selected the top one based on the score returned by the neural net-

work (output of outcome predictor). We repeat the iterations until success (we set

an upper bound of 20 steps). We conducted the same grasping explore evaluation

for both the baseline CNN and our deep geometry-aware model. To account for the

variations in observation viewpoints and initial seeds, we repeat the evaluation for

eight times per testing demonstration in our dataset and reported the average success

rate after 20 iterations (marked as failure only if there is no success in 20 steps). As

shown in Table 6.3, CEM guided our geometry-aware model performance consistently

better than the baseline CNN model. We believe the improved performance comes

from the explicit modeling of the 3D geometry as intermediate representation in our

deep geometry-aware model. Our model achieved the most significant improvement

in the “bottle” category, since a bottle shape is relatively easy to reconstruct. Our

improvement in the “bowl” category is less significant, partly due to the difficulty

of predicting its concave shape in novel object instances. Figure 6.5 demonstrates

example grasping planning trajectories on different objects. The baseline CNN is less

robust compared to our deep geometry-aware model, which is more likely to transit

from one side of the object to the other side with a clear notion of 3D geometry.

6.5 Discussions

In this work, we studied the problem of learning the grasping interaction with deep

geometry-aware representation. We proposed a deep geometry-aware network that

performs shape generation as well as grasping outcome prediction with a learning-

free physical projection layer. Compared to the CNN baseline, experimental re-

sults demonstrated improved performance in outcome prediction thanks to generative

shape modeling. Guided by the geometry-aware representation, we obtained better

planning via analysis-by-synthesis grasping optimization.
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We believe the proposed deep geometry-aware grasping framework has many po-

tentials in advancing robot learning in general. One interesting future direction is to

apply the learned geometry-aware representation to perform tasks using other types

of hands (e.g., hands with very different kinematics). In addition, we would like to

explore some alternative model designs (e.g., learn to grasp without the auxiliary

state encoder) such that the learned geometry-aware representation might be easily

adapted to other domains (e.g., real robot setup).
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CHAPTER VII

Future work

For future directions, I am going to continue the research on controllable image

generation and generative structure prediction. As most of the thesis has been fo-

cused on learning object-centric representations with specific data domain, I plan to

investigate the possible extensions and applications to multi-modal data and gener-

ative relational modeling on object-to-objedct, object-to-scene . For example, one

limitation of semantic image manipulation work (mentioned in Chapter VI) is that

the semantic bounding boxes are generated by data-driven heuristics or provided by

human users. To fully automate the process, I plan to investigate the problem of

semantic scene generation using deep neural networks with an emphasis on object-to-

object relational modeling. To facilitate generative relational modeling with semantic

structures, we consider (1) learning an intermediate 3D representations, as images are

2D projections from 3D world and (2) discovering object relational structures from

both image and text. In another example, the human motion prediction work (men-

tioned in Chapter IV) assumes a single-actor setting without taking environmental

factors into consideration. For future work, I plan to investigate the problem of gen-

erating human actors in the movie with multi-modal constraints (e.g., objects in the

scene, interactions with other actors, or transcripts). Similarly, the motion generation

framework is applicable to predicting movements of cars and pedestrian in a modern
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city. This can be very useful for improving the motion prediction performance with

diverse motion trajectories. I believe learning controllable and structured representa-

tions in an online environment (e.g., simulators or interactive platforms), as opposed

to learning using offline-generated data can potentially become an interesting research

topic in machine learning and AI in the near future.

Finally, adversarial learning becomes a very popular topic in machine learning

and privacy. Currently, most adversarial examples are generated by adding pixel-wise

perturbations or semantically transforming the image patches. I plan to investigate

possible research directions that combine adversarial learning and deep generative

models. For example, I plan to aim to explore the impact of semantic manipulation

on DNNs by manipulating semantic attributes of images and generate unrestricted

adversarial examples. Such semantic based perturbation is more practical and struc-

tured compared with pixel-wise manipulation. Such structured adversarial examples

with controlled semantic manipulation can shed light on further understanding about

vulnerabilities of Deep Neural Networks (DNNs) as well as potential defensive ap-

proaches.
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APPENDIX A

A.1 Derivation of disCVAE Objective

We provide a detailed derivation of the objective function for disentangling CVAE

(disCVAE). Similarly to the vanilla CVAE, we have x and xF as input image (full,

foreground), g as foreground mask, y as attribute labels, and z = [zF , zB] as latent

variables (zF for foreground and zB for background).

The joint conditional log-likelihood of x, xF and g given y can be written as

follows:

log pθ(xF , g, x|y) (A.1)

= Eqφ(zF ,zB |xF ,g,x,y)
[

log pθ(xF , g, x|y)
]

= Eqφ(zF ,zB |xF ,g,x,y)
[

log pθ(xF , g, x, zF , zB|y)− log pθ(zF , zB|xF , g, x, y)
]

= KL(qφ(zF , zB|xF , g, x, y)||pθ(zF , zB|xF , g, x, y))

+ Eqφ(zF ,zB |xF ,g,x,y)
[

log pθ(xF , g, x, zF , zB|y)− log qφ(zF , zB|xF , g, x, y)
]︸ ︷︷ ︸

,LdisCVAE(xF ,g,x,y;θ,φ)

,
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Based on the disentangling assumptions, we write the generation model by

pθ(xF , g, x, zF , zB|y) = pθ(x|zF , zB, y)pθ(xF , g|zF , y)pθ(zF )pθ(zB), (A.2)

the recognition model by

qφ(zF , zB|xF , g, x, y) = qφ(zB|zF , xF , g, x, y)qφ(zF |xF , g, y) (A.3)

and thus the variational lower bound LdisCVAE(xF , g, x, y; θ, φ) is given by

LdisCVAE(xF , g, x, y; θ, φ)

= −KL(qφ(zF |xF , g, y)||pθ(zF ))− Eqφ(zF |xF ,g,y)
[
KL(qφ(zB|zF , xF , g, x, y)||pθ(zB))

]
+ Eqφ(zF |xF ,g,y)

[
log pθ(xF , g|zF , y)

]
+ Eqφ(zF ,zB |xF ,g,x,y)

[
log pθ(x|zF , zB, y)

]
= −KL(qφ(zF |xF , g, y)||pθ(zF ))− Eqφ(zF |xF ,g,y)

[
KL(qφ(zB|zF , xF , g, x, y)||pθ(zB))

]
− Eqφ(zF |xF ,g,y)

[
L(µθF (y, zF ), xF ) + λgL(sθg(y, zf ), g)

]
− Eqφ(zF ,zB |xF ,g,x,y)L(µθ(y, zF , zB), x)

(A.4)

In the last step, we assumed that log pθ(xF , g|zF , y) = log pθ(xF |zF , y)+λg log pθ(g|zF , y),

where λg is a hyperparameter when decomposing the probablity pθ(xF , g|zF , y). Here,

the third and fourth terms are rewritten as expectations involving reconstruction loss

(e.g., `2 loss) or cross entropy.

A.2 disCVAE Network Architecture

As we visualize in Figure A.1, disCVAE consists of four convolutional neural

networks (one for foreground and the other for background for both recognition and

generation networks).
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Figure A.1: Network Architecture for disentangling CVAE

The foreground encoder network consists of 5 convolution layers, followed by 2

fully-connected layers (convolution layers have 64, 128, 256, 256 and 1024 channels

with filter size of 5×5, 5×5, 3×3, 3×3 and 4×4, respectively; the two fully-connected

layers have 1024 and 192 neurons). The attribute stream is merged with image stream

at the end of the recognition network. The foreground decoder network consists of 2

fully-connected layers, followed by 5 convolution layers with 2-by-2 upsampling (fully-

connected layers have 256 and 8× 8× 256 neurons; the convolution layers have 256,

256, 128, 64 and 3 channels with filter size of 3× 3, 5× 5, 5× 5, 5× 5 and 5× 5. The

foreground prediction stream and gating prediction stream are separated at the last

convolution layer.

We adopt the same encoder/decoder architecture for background networks but

with fewer number of channels. For better modeling on the background latent vari-

able zB, we introduce attribute y and foreground latent variable zF into the back-

ground encoder network, which also agrees with the assumption made in the deriva-

tion (qφ(zB|zF , xF , g, x, y)). Here, the connection from foreground latent variable zF

to background latent variable zB only exists in the recognition model.

Note that encoder networks are only used during the training stage. Once trained,

we can generate images using decoder networks only.
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A.3 Attribute-conditioned Image Progression

The attribute vector enables interpolation along each attribute dimension. For

example, a face image with “smiling” attribute of value 1 is assumed to look more

like a smiling face than that of value 0.5. To better analyze the proposed model, we

generate images with interpolated attributes by gradually increasing or decreasing the

values along each attribute dimension. We regard this process as attribute-conditioned

image progression. Specifically, for each attribute vector, we modify the value of one

attribute dimension by interpolating between the minimum and maximum attribute

value. Then, we generate images with pθ(x|y, z) by interpolating the value of y be-

tween the two attribute vectors while keeping latent variable z fixed. For visualization,

we use the attribute vector from testing set.

Male Female Smiling Frowning

Young Senior Blue YellowNo eyewear Eyewear

Black hair Blonde hair

(a) progression on gender

(b) progression on age

(c) progression on expression (e) progression on hair color

(f) progression on primary color(d) progression on eyewear

Figure A.2: Attribute-conditioned Image Progression. The visualization is organized
into eight attribute groups (e.g., “gender”, “age”, “race”, “eyewear”, “facial expres-
sion”, “hair color”, “primary color (blue vs. yellow)”, and “primary color (black
vs. white)”). Within each group, the images are generated from pθ(x|y, z) with
z ∼ N (0, I) and y = [yα, yrest], where yα = (1 − α) · ymin + α · ymax. Here, ymin
and ymax stands for the minimum and maximum attribute value respectively in the
dataset along the corresponding dimension.

As we can see in Figure A.2, samples generated by progression are visually consis-

tent with attribute description. For face images, by changing attributes like “gender”,

“age” and “race”, the identity-related visual appearance is changed accordingly but
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the viewpoint, background color, and facial expression are well preserved; on the other

hand, by changing attributes like “eyewear”, “facial expression” and “hair color”, the

global appearance is well preserved but the difference appears in the local region. For

bird images, by changing the primary color from one to the other, the global shape

and background color are well preserved. These observations demonstrated that the

generation process of our model is well controlled by the input attributes.

A.4 Datasets for Motion Generation.

The evaluation is conducted on the datasets involving two representative human

motion modeling tasks: Affect-in-the-wild (Aff-Wild) (Zafeiriou et al.) for facial

motions and Human3.6M Ionescu et al. (2014) for full body motions. The Aff-Wild

dataset contains more than 400 video clips (2,000 minutes in total) collected from

Youtube with natural facial expression and head motion patterns. To better focus

on face motion modeling (e.g., expressions and head movements), we leveraged the

3D morphable face model (Paysan et al., 2009; Blanz and Vetter , 1999) (e.g., face

identity, face expression, and pose) in our experiments. We fitted 198-dim identity

coefficients, 29-dim expression coefficients, and 6-dim pose parameters to each frame

with a pre-trained 3DMM-CNN (Tran et al., 2017) model, followed by a face fitting

algorithm (Zhu et al., 2016b) based on optimization. This disentangled representation

allows us to study face motion modeling without being distracted by unrelated factors

such as facial identity, background scene, and illumination of the environment. We

trained our model with 80% of the data on the expression and pose parameters since

these are the main factors that change over time.

Human3.6M is a large-scale database containing more than 800 human motion

sequences captured by 11 professional actors (3.6 million frames in total) in an indoor

environment. For experiments on Human3.6M, we used the raw 2D trajectories of 32

keypoints and further normalized the data into coordinates within the range [−1, 1].
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We used subjects number 1, 5, 6, 7, and 8, for training and tested on subjects 9 and

11.

A.5 MT-VAE Network Architecture.

Our MT-VAE model consists of four components: sequence encoder network,

sequence decoder network, latent encoder network, and latent decoder network. We

build our sequence encoder and decoder using Long Short-term Memory units (LSTMs)

(Hochreiter and Schmidhuber , 1997). We used 1-layer LSTM with 1,024 hidden units

for both networks. For experiments on Aff-Wild dataset, the input to our sequence

encoder is the 35-dimensional expression-pose representation (29 expression and 6

pose parameters) per timestep and we recursively predict the future parameters us-

ing our sequence decoder. For experiments on Human3.6M dataset, we used the

64-dimensional xy-coordinate representation (32 joints with 2 coordinates each joint)

instead. Given past and future motion features extracted from our sequence en-

coder network, we build three fully-connected layers with skip connections within our

latent encoding network. We adopted a similar architecture (three fully-connected

layers with skip connections) for our latent decoder network. For all the models (in-

cluding baselines), we fixed the bottleneck latent dimension to be 512 and found this

configuration is sufficient to generate both face and full-body motions.

A.6 MT-VAE Implementation Details

We used ADAM (Kingma and Ba, 2015) for optimization in all experiments. For

training, we used a mini-batch size of 256 and learning rate of 0.0001 with default

ADAM settings (e.g., β1 = 0.9, β2 = 0.999). For experiments on Aff-Wild, we trained

models to predict 32 steps in the future given a varying number of observed frames

between 8 and 16. For experiments on Human3.6M, we trained models to predict 64
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steps in the future given a varying number of observed frames between 10 and 20.

To stabilize the training, we applied layer normalization (Ba et al., 2016) in both

LSTMs and fully-connected layers. To encourage our latent variable to capture mo-

tion patterns, we applied the KL annealing technique (Bowman et al., 2015) during

training, in which we gradually increased the weight of KL term from 0 to 1. For ex-

periments on Aff-Wild only, we applied dropout of ratio 0.8 to both sequence encoder

and decoder networks to learn more robust features.

We used Prediction LSTM (Villegas et al., 2017b) as a deterministic baseline.

Similar model has been used in previous work for learning dynamics of human mo-

tion (Fragkiadaki et al., 2015; Chao et al., 2017). We implemented the vanilla VAE

model (Babaeizadeh et al., 2018) as our stochastic baseline. Similar model has been

utilized in Xue et al. (2016); Walker et al. (2016, 2017) for stochastic flow predic-

tion from a single image. During training, we used L1 distance as the reconstruction

term. We conducted extensive hyper-parameter search for vanilla VAE and our MT-

VAE variants by enumerating smoothing window K ∈ [0, 4, 8, 12, 16], motion ratio

λmotion ∈ [0, 1, 5, 10, 20], cycle loss ratio λcycle ∈ [0, 1, 5, 10, 20]. All models achieve

the best performance with K = 8 and λcycle = 5. Specifically, the best-performing

MT-VAE (add) takes the hyper-parameter λmotion = 5, while all other models take

the hyper-parameter λmotion = 20.

A.7 Details regarding Perspective Transformer Network

As defined in Chapter V, 2D silhouette S(k) is obtained via perspective transfor-

mation given input 3D volume V and specific camera viewpoint α(k).

Perspective Projection. In this work, we implement the perspective projection

(see Figure A.3) with a 4-by-4 transformation matrix Θ4×4, where K is camera cali-
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bration matrix and (R, t) is extrinsic parameters.

Θ4×4 =

K 0

0T 1


R t

0T 1

 (A.5)

For each point psi = (xsi , y
s
i , z

s
i , 1) in 3D world coordinates, we compute the corre-

sponding point pti = (xti, y
t
i , 1, d

t
i) in screen coordinates (plus disparity dti) using the

perspective transformation: psi ∼ Θ4×4p
t
i.

dmaxdmin

image

volume U

volume Vcamera

Figure A.3: Illustration of perspective projection. The minimum and maximum
disparity in the screen coordinates are denoted as dmin and dmax

Similar to the spatial transformer network introduced in Jaderberg et al. (2015),

we propose a 2-step procedure: (1) performing dense sampling from input volume (in

3D world coordinates) to output volume (in screen coordinates), and (2) flattening

the 3D spatial output across disparity dimension. In the experiment, we assume that

transformation matrix is always given as input, parametrized by the viewpoint α.

Again, the 3D point (xsi , y
s
i , z

s
i ) in input volume V ∈ RH×W×D and corresponding

point (xti, y
t
i , d

t
i) in output volume U ∈ RH′×W ′×D′ is linked by perspective transfor-

mation matrix Θ4×4. Here, (W,H,D) and (W ′, H ′, D′) are the width, height and

depth of input and output volume, respectively.
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

xsi

ysi

zsi

1


=



θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44





x̃i
t

ỹi
t

z̃i
t

1


(A.6)

In addition, we compute the normalized coordinates by xti = x̃i
t

z̃i
t , yti = ỹi

t

z̃i
t and

dti = 1
z̃i
t , where di is the disparity.

Differentiable Volume Sampling. To perform transformation from input volume

to output volume, we adopt the similar sampling strategy as proposed in Jaderberg

et al. (2015). That is, each point (xsi , y
s
i , z

s
i ) defines a spatial location where a sampling

kernel k(·) is applied to get the value at a particular voxel in the output volume U .

Ui =
H∑
n

W∑
m

D∑
l

Vnmlk(xsi −m; Φx)k(ysi − n; Φy)k(zsi − l; Φz) ∀i ∈ {1, ..., H ′W ′D′}

(A.7)

Here, Φx, Φy and Φz are parameters of a generic sampling kernel k(·) which defines the

interpolation method. We implement bilinear sampling kernel k(x) = max(0, 1− |x|)

in this work.

Finally, we summarize the dense sampling step and channel-wise flattening step

as follows.

Ui =
H∑
n

W∑
m

D∑
l

Vnml max(0, 1− |xsi −m|) max(0, 1− |ysi − n|) max(0, 1− |zsi − l|)

Sn′m′ = max
l′

Un′m′l′

(A.8)

Note that we use the max operator for projection instead of summation along one

dimension since the volume is represented as a binary cube where the solid voxels

have value 1 and empty voxels have value 0. Intuitively, we have the following two
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observations: (1) each empty voxel will not contribute to the foreground pixel of S

from any viewpoint; (2) each solid voxel can contribute to the foreground pixel of S

only if it is visible from specific viewpoint.
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Wang, H., A. Kläser, C. Schmid, and C.-L. Liu (2011), Action recognition by dense
trajectories, in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pp. 3169–3176, IEEE.

Wang, J., Z. Liu, Y. Wu, and J. Yuan (2012), Mining actionlet ensemble for ac-
tion recognition with depth cameras, in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pp. 1290–1297, IEEE.

Wang, J. Y., and E. H. Adelson (1994), Representing moving images with layers,
Image Processing, IEEE Transactions on, 3 (5), 625–638.

Wang, T.-C., M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro (2017),
High-resolution image synthesis and semantic manipulation with conditional gans,
in ICCV.

128



Wang, X., A. Farhadi, and A. Gupta (2016), Actions˜ transformations, in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2658–
2667.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004), Image quality
assessment: from error visibility to structural similarity, IEEE transactions on
Image Processing, 13 (4), 600–612.

Wichers, N., R. Villegas, D. Erhan, and H. Lee (), Hierarchical long-term video
prediction without supervision, in ICML.

Williams, C. K., and M. K. Titsias (2004), Greedy learning of multiple objects in
images using robust statistics and factorial learning, Neural Computation, 16 (5),
1039–1062.

Wu, J., T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T. Freeman
(2016a), Single image 3d interpreter network, in ECCV.

Wu, J., C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum (2016b), Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling,
in Advances in Neural Information Processing Systems, pp. 82–90.

Wu, J., Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum (2017), Marrnet:
3d shape reconstruction via 2.5 d sketches, in Advances In Neural Information
Processing Systems, pp. 540–550.

Wu, Z., S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao (2015), 3d
shapenets: A deep representation for volumetric shapes, in CVPR.

Xian, W., P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays (2018), Texturegan:
Controlling deep image synthesis with texture patches, in CVPR.

Xue, T., J. Wu, K. Bouman, and B. Freeman (2016), Visual dynamics: Probabilistic
future frame synthesis via cross convolutional networks, in NIPS, pp. 91–99.

Yan, X., J. Yang, K. Sohn, and H. Lee (2016a), Attribute2image: Conditional image
generation from visual attributes, in ECCV.

Yan, X., J. Yang, E. Yumer, Y. Guo, and H. Lee (2016b), Perspective transformer
nets: Learning single-view 3d object reconstruction without 3d supervision, in
Advances in Neural Information Processing Systems, pp. 1696–1704.

Yang, F., J. Wang, E. Shechtman, L. Bourdev, and D. Metaxas (2011a), Expression
flow for 3D-aware face component transfer, in SIGGRAPH.

Yang, F., J. Wang, E. Shechtman, L. Bourdev, and D. Metaxas (2011b), Expres-
sion flow for 3d-aware face component transfer, in ACM Transactions on Graphics
(TOG), vol. 30, p. 60, ACM.

129



Yang, F., L. Bourdev, E. Shechtman, J. Wang, and D. Metaxas (2012a), Facial expres-
sion editing in video using a temporally-smooth factorization, in Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 861–868, IEEE.

Yang, J., S. E. Reed, M.-H. Yang, and H. Lee (2015), Weakly-supervised disentangling
with recurrent transformations for 3d view synthesis, in NIPS.

Yang, J., A. Kannan, D. Batra, and D. Parikh (2017), Lr-gan: Layered recursive
generative adversarial networks for image generation, in ICLR.

Yang, Y., S. Hallman, D. Ramanan, and C. C. Fowlkes (2012b), Layered object
models for image segmentation, PAMI, 34 (9), 1731–1743.

Yeh, R. A., C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N.
Do (2017), Semantic image inpainting with deep generative models, in CVPR, pp.
5485–5493.

Yosinski, J., J. Clune, A. Nguyen, T. Fuchs, and H. Lipson (2015), Understanding
neural networks through deep visualization, arXiv preprint arXiv:1506.06579.

Yumer, E., and N. J. Mitra (2016), Learning semantic deformation flows with 3d
convolutional networks, in ECCV.

Zafeiriou, S., D. Kollias, M. A. Nicolaou, A. Papaioannou, G. Zhao, and I. Kotsia (),
Aff-wild: Valence and arousal in-the-wild challenge.

Zhou, B., H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba (2017a), Scene
parsing through ade20k dataset, in CVPR.

Zhou, T., M. Brown, N. Snavely, and D. G. Lowe (2017b), Unsupervised learning of
depth and ego-motion from video, in CVPR.

Zhou, Y., and T. L. Berg (2016), Learning temporal transformations from time-lapse
videos, in European Conference on Computer Vision, pp. 262–277, Springer.
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