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Abstract

While much of the research on transaction processing has focused on improving over-
all performance in terms of throughput and mean latency, surprisingly less attention has
been given to performance predictability: how often individual transactions exhibit ex-
ecution latency far from the mean. Performance predictability is increasingly important
when transactions lie on the critical path of latency-sensitive applications, enterprise
software, or interactive web services.

This dissertation proposes a systematic approach to solving performance predictabil-
ity issues in transactional database systems. We propose the first profiler (to the best of
our knowledge) to diagnose these issues and identify sources of unpredictability. Based
on our findings from applying this tool to MySQL, we introduce techniques to mitigate
the sources of unpredictability. Specifically, this dissertation makes three main contribu-
tions:

• Variance Profiler (VProfiler): In contrast to most software profiling tools that
quantify average performance, we propose a profiler called VProfiler that, given the
source code of a software system and programmer annotations indicating the start
and end of semantic intervals of interest, is able to identify the dominant sources
of latency variance in a semantic context.

• Studying Causes of Unpredictability in Existing Database Systems: We conduct
the first quantitative study of major sources of variance in MySQL, Postgres (two of
the largest and most popular open-source products on the market), and VoltDB (a
non-conventional database). Based on our findings, we investigate alternative algo-
rithms, implementations, and tuning strategies to reduce latency variance without
compromising mean latency or throughput. For instance, we realize that locking
in various components is the major source of variance in traditional database sys-
tems, and thus propose techniques, including our VATS scheduling algorithm and
parallel logging, to mitigate this.

• Contention-Aware Transaction Scheduling: Nearly all existing database systems
use a First-In-First-Out strategy for deciding which transaction should be granted

x



the lock on a row when it becomes free. Inspired by our VATS algorithm, we further
study the effect of lock scheduling in database systems, and propose contention-
aware scheduling algorithms (LDSF and bLDSF) that reduce average latency, and
thereby improve the overall predictability of database systems.

VProfiler enables us to identify the root causes of performance variance in existing
database systems. By introducing algorithms targeting those root causes, we not only im-
prove performance predictability by up to 5.6x, but also improve average performance by
up to 6x. Most notably, our VATS algorithm has been merged into MariaDB and our
LDSF algorithm has been made the default scheduling algorithm in Oracle MySQL
and Percona, starting from version 8.0.3.

xi



Chapter 1

Introduction

This dissertation studies the problem of unpredictable performance in modern trans-
actional database systems. In this chapter, we start by introducing the concept of per-
formance predictability in the context of modern database systems and discussing its
importance in mission-critical and user-interfacing applications. We then describe our
overall methodology for studying and improving performance predictability, and dis-
cuss the research challenges involved. We conclude the chapter with an outline of our
contributions in the rest of this dissertation.

1.1 Performance Predictability in Transactional Databases

Transactional databases are a mission-critical component of enterprise software for ef-
ficient storage and manipulation of data. A significant portion of database research
on transaction processing has focused on improving overall performance and scalability,
for example, by developing new techniques for concurrency control, query optimization,
indexing, and other sophisticated ideas. These strategies, however, have been vetted pri-
marily in terms of their effect on the average performance of the database, such as its
throughput and mean transaction latency. In other words, the focus has been on average
performance and running more and faster transactions overall.

While peak transaction processing throughput is clearly important, the predictability
of performance—the disparity between average and high-percentile tail latencies—has
emerged as an equally important metric in situations where individual transaction laten-
cies are mission-critical or affect end-user experience. Examples include database-backed
web services or database clouds with service-level agreements.1 However, performance

1In this dissertation, we do not target real-time applications, which require hard (rather than statistical)
guarantees, e.g., airplane control systems.
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Figure 1.1: Mean, standard deviation, and 99th percentile latencies in MySQL (left),
Postgres (center), and VoltDB (right).

predictability has often been overlooked by traditional efforts that focus on throughput
and mean latency. In fact, some optimization strategies (e.g., asynchronous logging and
group commit [105, 181]), have deliberately improved throughput at the expense of pe-
nalizing latency for some transactions. In other cases, developers have not even vetted
the impact of their design and implementation decisions on performance predictability.
For example, while the contribution of database components to mean latency has been
studied [102], an analogous study to identify the sources of latency variance is missing.
As such, today’s complex DBMSs might have overlooked alternative design decisions
that could deliver the same or comparable average performance, but with significantly
lower variance.

At the fine time-scale of individual transactions, the performance of existing databases
is incredibly unpredictable, with orders of magnitude gaps between mean and high per-
centile latencies2 (see figure 1.1).

1.2 Challenges and Our Methodology

Generally speaking, two approaches can be taken to achieve performance predictability
in a transactional database system.

Bottom-up vs. Top-down Approach— In a bottom-up approach, one could aim to build
an entirely new DBMS from scratch that is specifically designed to be predictable. For
example, some prior work proposes to move consistency guarantees from database sys-
tems to the application layer itself [86]. Others have advocated for the use of table
scans for all queries [42,103,158,163,190], or to consider only query plans with bounded
worst-case [39, 40]. The latter is similar to how real-time databases try to meet dead-
lines [28, 119, 152]. Despite their merits, these proposals have not had widespread adop-

2While some of this variance is inherent and due to some transactions doing more work than others,
our study reveals that dominant sources of variance are often a performance pathology and avoidable (see
Section 3.1 for the distinction).
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tion for transaction processing. One reason is that users are often reluctant to com-
pletely abandon well-established and matured DBMSs in exchange for academic proto-
types. Another reason, however, is that these proposals promise higher throughput or
predictability by sacrificing mean latency (e.g., by always using scan-only plans [190]).
Despite their success in long-running analytics [158], such tradeoffs are less appealing
to transactional and latency-critical applications. Instead, an ideal solution is one that
delivers the same mean latency and throughput as existing solutions, but with much
lower variance. Adopting such solutions, especially if compatible with existing DBMSs,
would be a “no-brainer” for most users (see Section 3.7).

Thus, in this dissertation, we advocate a top-down approach, wherein we identify
and mitigate the performance pathologies that lead to variance in existing, widely used
transaction processing systems—an approach that can have more immediate impact on
real-world deployments. As such, we address some of today’s popular DBMSs in an
attempt to understand their major sources of variance, and seek design alternatives for
overcoming variance-inducing performance pathologies. For the same reason, we also
restrict ourselves to solutions that reduce variance without sacrificing mean latency or
throughput. In addition to the immediate benefits to massive user-bases of these prod-
ucts, the insight gained in this process can inform future bottom-up attempts at design-
ing new databases.

Challenges— A top-down approach, however, comes with its own challenges. Gaining
performance insight into any software system as complex as a DBMS requires effective
profiling tools. Unfortunately, existing profilers can only study a system in terms of
its average performance, e.g., by breaking down overall run time into the average latency
of individual functions, or counting the number of times a function is invoked. Such
information offers little help to our understanding of the root causes of overall latency
variance. What we need is a systematic way of quantifying the contribution of individ-
ual functions to overall variance, which is something that has not been realized in any
existing profiling tool. Moreover, latency variance of each function is only important
to the performance profile insomuch as it affects transaction latencies. For example, it
may not matter if a background I/O operation exhibits large variance in execution time,
as long as the user-perceived latency of a transaction is unaffected. This problem be-
comes more complicated when we move our focus from traditional database systems to
modern ones, such as VoltDB. Unlike traditional database systems where the execution
of a transaction happens in one thread, these modern systems employ an event-driven
model and process transactions asynchronously, which means that the execution of a
transaction can span multiple threads, and there can even be overlaps. It becomes very
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difficult to tell which portion of the execution time should be considered as part of the
transactions’ latencies in this case.

Why Now?— It is both critical and timely to systematically study and manage per-
formance variance of transactional databases for several reasons. First, advancements
in hardware parallelism and better transaction processing techniques have enabled mi-
crosecond latencies and millions of concurrent transactions [44, 126, 204]. As mean per-
formance improves, the impact of performance perturbations (e.g., due to a slow I/O
request) relative to the latency of a transaction grows. Second, an increasing number
of DBaaS providers guarantee service level agreements (SLAs), which, if violated (even
for a subset of transactions), result in financial penalties [5, 9, 150, 151]. Finally, mod-
ern DBMSs have become some of the most complex software systems. As such, subtle
interactions of complex code paths lead to vexing performance anomalies.

1.3 Contributions and Outline

In this dissertation, we address the problem of performance unpredictability in trans-
actional database systems and aim to find techniques to improve it without sacrificing
raw performance. Our first step is to understand the root causes of unpredictable perfor-
mance. Unfortunately, existing software profilers are mostly designed for analyzing “av-
erage” performance, and hence offer little or no insight into this problem. We therefore
propose VProfiler, the first profiler—to the best of our knowledge—designed specifically
for diagnosing the root causes of performance unpredictability in a large codebase (such
as that of a database system). We describe the detailed design and implementation of
VProfiler in Chapter 2.

In Chapter 3, we use VProfiler to conduct the first quantitative study of major sources
of variance in MySQL and Postgres (two of the largest and most popular open-source
products on the market), as well as VoltDB (as an example of a non-traditional database).
Based on our findings, we investigate alternative algorithms, implementations, and
tuning strategies that can reduce latency variance without compromising throughput
or mean latency. In particular, we propose a new lock scheduling algorithm, called
Variance-Aware Transaction Scheduling (VATS), and a lazy buffer pool replacement pol-
icy.

Our findings indicate that scheduling can be an effective means of reducing con-
tention, and thereby performance variability. Thus, in Chapter 4, we further study a new
problem that has been overlooked by researchers: When there are multiple lock requests
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on the same object, which one(s) should be granted first? Nearly all existing systems rely
on a FIFO (first in, first out) strategy to decide which transaction(s) should be granted
the lock. In this dissertation, however, we show that lock scheduling choices have signif-
icant ramifications on the overall performance of a transactional system. While there is
a large body of research on job scheduling outside the database context, lock scheduling
presents subtle but challenging requirements that render existing methods for schedul-
ing inapt for a transactional database. By carefully studying this problem in Chapter 4,
we propose the concept of contention-aware scheduling, formally study the hardness of
the problem, and propose novel lock scheduling algorithms (LDSF and bLDSF) which
guarantee a constant factor approximation of the best scheduling.

Finally, we conclude in Chapter 5 by summarizing the major contributions of this
dissertation, and briefly discuss future research directions.
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Chapter 2

Profiling for Performance Variance

2.1 Introduction

Profiling tools are a key means of gaining performance insight into complex software
systems. Existing profilers provide performance statistics about an application’s function
call hierarchy. For example, they can answer questions such as which functions are called
most often from a particular context, or how much time is spent inside each function.
The answers, however, are almost always expressed in terms of average performance [49,
93, 98, 178, 182]. Even when multiple runs are used to infer a latency histogram [187],
users can still only find out which functions contribute the most to the overall latency
in each execution time range. However, an increasing number of modern applications
come with performance requirements that are hard to analyze with existing profilers.
In particular, delivering predictable performance is becoming an increasingly important
criterion for real-time or interactive applications [4, 14–18, 23, 190], where the latency of
individual requests is either mission-critical or affecting user experience.1

Existing profilers can only study such systems in terms of their average performance
breakdown, for example, by attributing average latency to contributions of individual
functions. Such profilers offer little help in quantifying the contribution of individual
functions to the overall latency variance—a problem that is much more challenging.

The second problem is that performance predictability might only matter in terms
of a semantic interval that encapsulates the end-user’s experience or interaction with the
system. For example, a background I/O operation exhibiting large variance in execu-
tion time may not matter as long as the graphical user interface does not freeze and
users can continue interacting with the system. Similarly, in a database system, perfor-

1In this dissertation, we do not target those real-time applications that require hard (rather than statis-
tical) guarantees, e.g., airplane control systems.
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mance predictability may only matter insofar as it concerns transaction latencies, and
thus latency variance of other functionalities (e.g., periodic log flushing to a separate
disk) is irrelevant to the performance profile as long as they do not affect transaction
latencies. Unfortunately, semantic intervals (e.g., the end-to-end latency of a database
transaction or a web-server request) may not always correspond to a single thread or
a single top-level function. A transaction might start on one thread and be handed off
to and completed on a different thread. In event-based software architectures, a user
session or transaction might create multiple events on a shared work queue, whereby
multiple worker threads process events in a round robin fashion. The notion of a user
transaction or session is inherently a semantic one, and it cannot be automatically de-
tected by a generic profiler. For example, the processing of the last event associated with
a session may not necessarily correspond to the user’s perception of a session end, e.g.,
post-commit cleanups do not affect a user’s latency perception.

Although faster storage and increased hardware parallelism have helped to improve
mean performance in general, mitigating performance variance has largely remained an
open problem. With increasing complexity of modern applications, subtle interactions
of difficult-to-analyze code paths often lead to vexing performance anomalies [4, 14–18,
23,190]. The rising popularity of cloud-services and service-level agreements in mission-
critical applications has increased the need for performance predictability. In light of
these trends, we believe it is critical and timely to undertake a systematic approach to
diagnosing performance variance in a semantic context.

In this work, we propose a profiling framework, called VProfiler, that can solve both
problems. Given the source code of an application and a minimal effort in demarcation
of semantic intervals and synchronization primitives, VProfiler identifies the dominant
sources of latency variance of semantic intervals. VProfiler iteratively instruments the ap-
plication source code, each time collecting fine-grain performance measurements for a
different subset of functions invoked during the semantic interval of interest. By analyz-
ing these measurements across thread interleavings, VProfiler aggregates latency variance
along a backwards path of dependence relationships among threads from the end of an
interval to its start. Then, using a novel abstraction, called a variance tree, VProfiler care-
fully reasons about the relationship between overall latency variance and the variances
and covariances of the execution time of culprit functions, providing insight into the root
causes of performance variance.

We evaluate VProfiler’s efficiency by analyzing three popular open-source projects,
MySQL, Postgres, and Apache Web Server, identifying major sources of latency variance
of transactions in the former two and of web requests in the latter. We present the results
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we found in these case studies, and leave the detailed analysis to the next chapter. In
addition to their popularity, we have chosen these three systems for several reasons.
First, due to their massive, legacy, and poorly-documented codebases, manual inspection
of these source codes is a challenging task (e.g., MySQL has 1.5M lines of code and 30K
functions). Second, transactional databases and web servers are a key component of
many interactive applications.

Contributions— We make the following contributions:

1. We introduce a novel abstraction, called a variance tree, to reason about the rela-
tionship between overall latency variance and the variances and covariances of the
execution time of culprit functions. Using this abstraction, we present VProfiler as
the first profiling tool that can efficiently and rigorously decompose the variance
of the execution time of a semantic interval by analyzing application source code
and identifying the major contributors to its variance (Section 2.3).

2. We use VProfiler to analyze MySQL, Postgres, and Apache Web Server, and suc-
cessfully identify a handful of functions in these massive codebases that contribute
the most to their latency variance (Section 2.4).

We discuss the scope of our work in Section 3.1, and introduce VProfiler in Section 2.3.
We evaluate VProfiler’s efficiency in Section 2.4.1. We discuss related work and conclude
in Sections 4.8 and 3.8.

2.2 Scope

In this section, we briefly discuss the scope of our work.

Defining Predictability— There are many mathematical notions for capturing perfor-
mance predictability in a software system. One could aim at minimizing the latency vari-
ance or tail latencies (e.g., 99th percentile). Alternatively, one could focus on bounding
these quantities, e.g., ensuring that the 99th percentile remains under a fixed threshold.
To obtain a standardized measure of dispersion (or spread) for a distribution, statisti-
cians sometimes calculate the ratio of standard deviation to mean (a.k.a. coefficient of
variation).

While there are many choices, in this dissertation we focus on identifying the sources
of latency variance (and thereby standard deviation), but we only consider solutions that
reduce the variance but do not increase mean latency (or reduce throughput). For ex-
ample, simply padding all latencies with a large wait time will trivially reduce variance
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but will increase mean latency. While certain applications might tolerate an increase in
mean latency in exchange for lower variance [42,86,103,158,163,190], such tradeoffs may
not be acceptable to most latency-sensitive applications. Thus, in this dissertation, we
restrict ourselves to ideal solutions, i.e., those that reduce variance without negatively
impacting mean latency or throughput. In fact, as shown in Section 2.4, not only do
our findings reduce variance, but they also reduce mean latency and coefficient of vari-
ation. As reported in Section 3.7, one of the variance solutions we discovered with the
aid of VProfiler has been quickly adopted (and made a default policy) by MySQL’s major
distributions.

Finally, while we do not directly minimize tail latencies, reducing variance serves as
a surrogate for reducing high-percentiles too [195]. For example, our techniques reduce
overall variance by 82%, and 99th percentile latency by 50% for the TPC-C benchmark.

Diagnosis, Not Automated Fixing— There are two steps involved in performance de-
bugging. One is identifying the root cause of a performance problem (variance, in our
case), and the other is resolving the issue. Like all profilers, VProfiler focuses on the
former. While automating the second step is challenging (e.g., it requires knowing the
programmer’s original intention), the first step is equally important. In fact, to the best
of our knowledge, no existing profiler can identify the true sources of performance vari-
ance in a systematic fashion, and VProfiler is the first in this regard (see Section 4.8).

Though resolving the issue ultimately requires manual inspection, the manual effort
needed is often proportional to the extent to which the profiler localizes the sources of
the problem. As reported in Section 2.4, VProfiler’s findings allow us to examine only a
handful of functions (out of tens of thousands) and dramatically reduce latency variance
with modest programming efforts across MySQL, Postgres, and Apache Web Server.

Inherent vs. Avoidable Variance— It is important to note that performance variance is
sometimes inherent and cannot be avoided. For example, processing a query that per-
forms more work will inherently take longer than one that performs less work.2 Avoid-
able sources of variance are those that are not caused by varying amounts of work, but
rather due to internal artifacts in the source code, such as scheduling choices, contention,
I/O, or other performance pathologies. For example, two transactions requesting similar
amounts of work but experiencing different latencies indicate a performance anomaly
that might be avoidable. Determining whether an identified source of latency variance is
avoidable or not requires the programmer’s understanding of what constitutes inherent

2In prior work, we have studied the variance of performance caused by external factors (such as changes
in the workload environment) and strategies for mitigating them [144, 145].
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work in a given application. VProfiler simply reports dominant sources of performance
variance so that programmers can focus their attention on only a handful of culprit
functions.

Software vs. I/O Delays— In distributed and cloud-based applications, variance in
network delays can cause variance in user-perceived latencies. In VProfiler, variance in
I/Os such as network traffic or disk (synchronous or asynchronous) operations manifests
as variance in the functions that receive the result of the I/O operations, providing
programmers an indication that I/O variance is the root cause.

2.3 VProfiler

With the complexity of modern software, there are many possible causes of latency
variance, such as I/O operations, locks, thread scheduling, queuing delays, and vary-
ing work per request. Although there are a variety of tracing tools that provide some
visibility into application internals (e.g., strace to gain visibility into I/O operations,
and DTrace [94] to profile performance), these tools do not directly report performance
variation or identify outlying behavior. Moreover, most tracing tools aggregate and
report results according to the application call hierarchy, which often does not corre-
spond well to user-visible performance metrics, such as request or transaction process-
ing time. Finally, general-purpose tracing tools introduce substantial (sometimes order-
of-magnitude) slowdowns, when collecting fine-grain measurements. For example, we
report the overhead of DTrace in Section 2.3.3.4. The overhead of these tools skews
application behavior and obscures root causes of latency variance. In this section, we
introduce VProfiler, a novel tool for automatically instrumenting a subset of functions in
an application’s source code to profile execution time variance at fine time scales with
minimal overhead (to preserve the behavior of the system under study).

2.3.1 Semantic Profiling

A key objective of VProfiler is to quantify performance means and variances over semantic
intervals rather than report results that are tightly coupled to the application’s call graph.
A semantic interval is a programmer-defined execution interval that corresponds to a
repeated application behavior, which the programmer wishes to profile. Our intent
is that a semantic interval should correspond to a single request, session, connection,
transaction, and so on, thus allowing the programmer to analyze per-request latency and
variance. Note that a semantic interval may encompass concurrent execution spanning
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multiple threads, or include the time a particular request/context was waiting in a queue
or was blocked awaiting some resource.

VProfiler comprises an online trace collection phase and an offline analysis phase. The
trace collection phase gathers start and end timestamps of semantic intervals, runtime
profiles of a specific set of instrumented functions, and dependency relationships among
threads and tasks needed to reconstruct a latency breakdown for each semantic interval.
Then, VProfiler performs an offline analysis of these traces to characterize each semantic
interval and output a variance profile. If the developer determines that this profile
provides insufficient detail, VProfiler selects a new set of functions to instrument to refine
the variance profile, and the trace collection phase is repeated. We detail this iterative
refinement procedure in Section 2.3.3.4.

VProfiler conceptually divides execution on all threads into segments. Each segment
is conceptually labeled as either executing on behalf of a single semantic interval, or it
is unlabeled to indicate background activity unassociated with any particular request
or execution that services multiple requests. As the notion of a semantic interval is
application-specific, it must be provided to VProfiler by the programmer via manual
annotation. The programmer, via a simple API, enters three kinds of annotations, indi-
cating: (1) when a new semantic interval is created (e.g., transaction start), (2) when a
semantic interval is complete (e.g., transaction commit), and (3) when a thread begins
executing on behalf of a specific semantic interval (e.g., worker thread dequeues and
executes an event associated with the semantic interval).

The first two of these annotations are straight-forward: they provide bounds for the
semantic interval. The average performance and overall variance reported by VProfiler
is the mean and variance of the time difference between these start and end annota-
tions. However, VProfiler does not seek to merely report these overall aggregate met-
rics. Rather, it sub-divides the latency between these annotations and attributes it to
the execution of particular functions or wait times on specific resources/queues. Fur-
thermore, VProfiler does not require that the start and end of an interval lie on the same
thread. Rather, VProfiler considers relationships across threads where one thread un-
blocks execution of another. It follows such dependence edges backwards from the end
of the semantic interval to discover the critical path from the end annotation back to the
start timestamp. VProfiler relies on instrumentation added to an application’s synchro-
nization primitives that potentially block execution (e.g., locks, condition variables, and
message/task queues) to log these dependence edges. We expand on this idea more in
Section 2.3.3.2.
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The third annotation is designed specifically for task-based concurrent programming
models (e.g., Intel’s Threaded Building Blocks), where a semantic interval is decoupled
from any particular worker thread. Rather, execution on behalf of a transaction or re-
quest proceeds as a sequence of (possibly concurrent) tasks that are dequeued from work
queues. In such a framework, a program annotation indicates when a worker thread be-
gins processing a task on behalf of a specific semantic interval. The thread is assumed to
continue working on behalf of the semantic interval until another explicit annotation in-
dicates execution on behalf of a new interval. In addition, VProfiler instruments functions
that enqueue a task, recording a “created-by” relationship, thereby building a directed
graph among the tasks. VProfiler uses this graph to provide a breakdown of latency and
variance of execution within the semantic interval and distinguish periods where no task
is executed and the semantic interval is delayed due to queuing.

Before discussing VProfiler’s algorithm for profiling semantic intervals, we first dis-
cuss its model for analyzing performance variance of a function invocation, which is the
fundamental building block of VProfiler’s approach.

2.3.2 Characterizing Execution Variance

A segment is a contiguous time interval on a single execution thread that may be labeled
as part of, at most, a single semantic interval. In this section, we discuss the concepts
VProfiler employs to quantify variance with respect to a single executing segment. We
describe how VProfiler analyzes entire semantic intervals in subsequent sections.

VProfiler analyzes performance variance by comparing the duration of particular
function invocations in an executing segment across other invocations of the same func-
tion in different semantic intervals (i.e., it analyzes variances of invocations of the same
function across different requests). VProfiler uses a novel abstraction, the variance tree, to
reason about the relationship between latency variance and the call hierarchy rooted at
a particular function invocation.

2.3.2.1 Variance Tree

We can gain insight into why latency variance arises in an application by subdividing
and attributing execution time within a segment across the call graph, similar to a con-
ventional execution time profile generated by tools such as gprof [93]. However, rather
than identifying functions that represent a large fraction of execution time, we instead
calculate the variance and covariance of each component of the call graph across many
invocations to identify those functions that contribute the most to performance variabil-
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Figure 2.1: A call graph and its corresponding variance tree (here, bodyA represents the
time spent in the body of A).

ity. Two key challenges arise in this approach: (1) managing the hierarchical nature of
the call graph and the corresponding hierarchy that arises in the variance of execution
times, and (2) ensuring that profiling overhead remains low. We first discuss the former
challenge and address the latter in Section 2.3.3.4.

Each variance tree is rooted in a specific function invoked over the course of an
application. We measure latency and its variance across invocations. For example, in an
event processing system, a dispatcher function that dequeues events from a task queue
and invokes the specific code associated with the task might comprise the root of the
variance tree. VProfiler will build a variance tree beginning at the topmost function
whose execution is included within the segment.

Figure 2.1 (left) depicts a sample call graph comprising a function A invoking two
children B and C, and it includes the execution time in the body of A. We can label each
node in a particular invocation of this call graph with its execution time, yielding the
relationship that the execution time of the parent node is the sum of its children, for
example:

E(A) = E(B) + E(C) + E(bodyA) (2.1)

where E represents the execution time of a function. Figure 2.1 (right) shows a corre-
sponding visualization of the variances and covariances in a variance tree representation.

Var(
n

∑
i=1

Xi) =
n

∑
i=1

Var(Xi) + 2 ∑
1≤i

∑
≤j≤n

Cov(Xi, Xj) (2.2)

The variance tree allows VProfiler to quickly identify sub-trees that do not contribute
to latency variability, as their variance is (relative to other nodes) small. Identifying the
root causes of large variance, however, is not so trivial. The variance of a parent node
is always larger than any of its children, so simply identifying the nodes with the high-
est variance is not useful for understanding the cause of that variance. Furthermore,
some variance arises because invocations may perform more work and manipulate more
data (e.g., a transaction accessing more records). Such variance is not an indication of
a mitigable pathology as the variance is inherent; our objective is to identify sources of
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variance that reveal performance anomalies that lead to actionable optimization oppor-
tunities. Similarly, high covariance across pairs of functions can be an indicator of a
correlation between the amount of work performed by such functions.

At a high level, our goal is to use the variance tree to identify functions (or co-varying
function pairs) that (1) account for a substantial fraction of overall latency variance and
(2) are informative; that is, functions where analyzing the code will reveal insight as to
why variance occurs. To unify terminology, we refer to the variance of a function or
co-variance of a function pair as a factor.

Identifying factors that account for a large fraction of their parents’ variance is straight-
forward. What is more complicated is identifying functions that are informative. We
address this question in the next section.

2.3.2.2 Ranking Factors

Algorithm 1: Factor Selection
Inputs : t: variance break-down tree,

k: maximum number of functions to select,
d: threshold for minimum contribution

Output: s∗: top k most responsible factors

1 h← empty list;
2 foreach node φ ∈ t do
3 φ∗ ← factor_of(φ);
4 if φ∗ 6∈ h then
5 φ∗.contri← t.contri;
6 h← h ∪ φ∗;
7 else
8 φ′.contri← φ′.contri + φ.contri;
9 end

10 foreach φ ∈ h do
11 φ.score = specificity(φ) · φ.contri;
12 end
13 Sort h in descending order of φ.score;
14 s∗ ← empty list;
15 for i← 1 to k do
16 φ← h[i];
17 if φ.contri ≥ d then
18 s∗ ← s∗ ∪ φ;
19 end
20 return s∗;
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Our intuition is that functions deeper in the call graph implement narrower and
more specific functionality, hence, they are more likely to reveal the root cause of latency
variance. For example, consider a hypothetical function WriteLog that writes several log
records to a global log buffer, but must first acquire the lock on the log buffer (Lock), copy
the log data to the log buffer (CopyData), and finally release the lock (Unlock). Suppose
WriteLog’s variance accounts for 30% of its transaction’s latency variance, but Copy-

Data’s accounts for 28%. Analyzing CopyData is likely more informative even though it
accounts for slightly less variance than WriteLog, because its functionality is more spe-
cific. Further investigation may reveal that the variance arises due to the size of log data
being copied, suggesting mitigation techniques that reduce log size variance.

Based on this intuition, VProfiler ranks factors using a score function that considers
both the magnitude of variance attributed to the factor and its relative position in the
call graph. A particular factor may appear in a call graph more than once if a func-
tion is invoked from multiple call sites. When ranking factors, VProfiler aggregates the
variance/covariance across all call sites.

To quantify a factor’s position within the call graph, VProfiler assigns each function a
height based on the maximum depth of the call tree beneath it. For factors representing
the covariance of two functions, VProfiler uses the maximum height of the two functions.
It uses a specificity metric that is a decreasing function of the factor’s height φ:

speci f icity(φ) = (height(call_graph)− height(φ))2 (2.3)

where height(call_graph) is the height of the root of the call graph, and height(φ) is the
factor’s height. Here we use square to give specificity a higher weight.

VProfiler uses a score function that jointly considers specificity and variance:

score(φ) = speci f icity(φ)∑
i

V(φi) (2.4)

where V(φi) represents variance or covariance of a specific instance (call site) of a factor
within the call graph.

Given the variance tree, we now describe an algorithm to select the top-k factors based
on their score. The pseudocode is shown in Algorithm 1. For each node in the tree,
we determine if the corresponding factor is already in list h. If not, we insert the factor
and its (co-)variance into h. Otherwise, we accumulate the (co-)variance represented by
the node into the existing element in h (lines 1 to 10). Once we have calculated total
(co-)variance of each factor, we calculate their score values using Equation 2.4 (lines 11
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Figure 2.2: A critical path (marked red) constructed for a semantic interval not involving
the start segment (Sst).

to 13). Then, we sort factors in descending score order, selecting the top k whose total
(co-)variance is greater than a threshold d (lines 14 to 23).

2.3.3 Profiling a Semantic Interval

We next describe how VProfiler aggregates latency variance of an entire semantic interval
from individual execution segments. Furthermore, we describe the iterative refinement
method used to recursively add details to the variance tree over a sequence of exper-
imental trials to provide the developer a sufficiently informative latency and variance
breakdown of semantic segments.

VProfiler’s offline analysis phase characterizes variance in each semantic interval,
starting at its final segment (containing the interval completion annotation). VProfiler
then aggregates latency and variance of preceding functions on the same thread until it
encounters an incoming wake-up edge indicating execution on this segment was trig-
gered by an event elsewhere (e.g., a lock being freed). It then follows this edge, contin-
uing aggregation along the target thread, and so on, following all incoming dependence
edges. This backwards traversal terminates when it reaches the creation timestamp of
the semantic interval. Note that, in complex executions, the backwards trace may not
actually include the segment that created the event, as this segment may not lie on the
critical path that determined the end time of the interval (i.e., the end timestamp of the
interval may not be improved if its start timestamp were earlier). Figure 2.2 shows an ex-
ample of this. Intuitively, we conceive of VProfiler as assigning “blame” for accumulated
delay leading to the completion of a semantic interval; blame propagates backwards
along segments and their dependencies.

2.3.3.1 VProfiler Workflow

Given a complete variance tree, factor selection (Algorithm 1) identifies the top factors
that a developer should investigate further to identify the root causes of semantic in-
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terval variance. However, collecting a complete variance tree is infeasible due to the
enormous size and complexity of call graphs in modern software systems. Instrument-
ing every function adds significant overhead to execution time, and the variance tree will
no longer be representative of unprofiled execution. Hence, VProfiler iteratively refines
the instrumentation to build variance trees, starting from their roots until the profile is
sufficient for a developer to identify key sources of variance.

In addition to constructing one or more variance trees (rooted at specific functions in
each run), to aggregate results over the course of a semantic interval, VProfiler must trace
the following data in each run:

1. 〈tid, sid, ts, te, state〉. Each such 5-tuple describes a segment. tid is the id of the
thread on which a segment is executed. sid is a unique identifier of the semantic
interval assigned when the interval is created (e.g., a transaction id). ts and te
are the starting and ending segment timestamps and state indicates whether the
segment was executing, waiting on a task or message queue, or blocked on a lock
or I/O.

2. 〈tid, sid, f , f s, f e〉. Each such 5-tuple describes a function invocation that was se-
lected for instrumentation during this run. f is a function name. f s and f e are the
start and end timestamps of an invocation of f .

3. 〈tid, tid′, t〉. Each such 3-tuple indicates that thread tid was woken up by thread
tid′ at time t.

4. 〈tid, ts, tid′, ts′〉. Each such 4-tuple represents the event creation relationship. Thread
tid created an event at time ts, and that event was picked up by thread tid′ at time
ts′.

2.3.3.2 Tracking Segment Dependencies

VProfiler must track segment dependencies at run-time to construct the 3- and 4-tuples
indicating when a thread wakes or creates another thread. For this tracking, VProfiler re-
quires instrumentation of synchronization operations and operations that enqueue tasks
in task-based runtimes.

We abstract generic blocking synchronization primitives as having an acquire(object)

and release(object) function.3 This pattern covers a number of primitives, including

3Note that the developer must supply a comprehensive list of acquire and release function names to
VProfiler to instrument.
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locks, mutexes, condition variables, and semaphores. VProfiler instruments the acquires
and releases and tracks lock ownership at run-time using a large hash map of [oid →
tid], where oid is an identifier of the synchronization object (e.g., the lock address) and
tid is the ID of the last thread that holds the object.

To track task relationships in task-based applications, VProfiler instruments the en-
queue and dequeue operation on the task queues. We assume a model where the con-
sumer threads pop objects off the queue, and block when the queue is empty. The pro-
ducer threads push objects, potentially waking a worker thread to accept the task. We
assume an abstract API comprising enqueue(queue, task) and dequeue(queue) func-
tions. Here, VProfiler also maintains a hash table [task → tid] at run-time, where task

is a unique task identifier and tid is the ID of its producer thread.
VProfiler does not instrument the OS scheduler. Hence, if a runnable thread is pre-

empted due to CPU over-subscription, VProfiler will include the time the thread is
runnable but waiting as part of the execution time of the segment. This limitation of
VProfiler can be overcome by instrumenting the OS to log thread switches due to time
slice expiration or pre-emption. In the workloads we study, pre-emption is rare as the
number of concurrent application threads is tuned not to exceed the number of available
cores, so there is no need to instrument the scheduler.

2.3.3.3 Aggregating Segments

Algorithm 2 shows VProfiler’s pseudocode for post-processing the variance trees and
segment relationship output for an individual semantic interval. This is a recursive
function, and the initial call should pass in the id of semantic interval of interest, its
end segment, nil as its start timestamp, and the end timestamp of the end segment as
arguments. In Algorithm 2, a segment S is described by its 5-tuple: 〈T, C, ts, te, s〉, where
T is the thread on which S was executed, C is a unique identifier of interval S, ts and te
are the start and end timestamps and s is the state of the segment.

The high-level idea of Algorithm 2 is to construct the critical path for the given se-
mantic interval and to analyze the execution time of the target function in each segment
on the critical path. Figure 2.2 shows an example of how a critical path is constructed.
The algorithm starts from the ending segment and follows any wake-up/created-by re-
lationship backwards. Note that when the algorithm follows a wake-up relationship
backwards, it only processes the waker segment up to the point where the blocked seg-
ment starts, and then returns to the thread of the blocked segment.

Algorithm 2 maintains a table of execution times comprising 〈cid, f , et〉 tuples where
cid is the semantic interval id, f is the name of a profiled function (or other for time spent
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in uninstrumented functions), and et is the total execution time of the function over the
course of the semantic interval (as functions may be invoked more than once). Thus,
there is a single row for each (semantic interval, function) pair. We process one semantic
interval at a time, aggregating time spent in each function while walking backwards
along the segments included in the interval, starting at the final segment. The key step
in the algorithm is monitor_exec_time. For a given semantic interval C, a thread T, and a
start and end timestamp ts and te, this step finds all 〈tid, cid, f , f s, f e〉 tuples that match
the semantic interval id and thread id and also overlap the segment’s duration. The
execution of each function overlapping the segment is then clipped against the bounds
of the segment and aggregated into the execution time table. The table is then output
when all semantic intervals have been processed.

2.3.3.4 Iterative Refinement

In each iteration, VProfiler identifies the top-k factors when profiling a subset of functions,
starting at the root of the call graph. This profile is then returned to the developer, who
determines if the profile is sufficient. If not, the children of the top-k factors are added
to the list of functions to be profiled, instrumentation code is automatically inserted by
VProfiler, and a new profile is collected. In detail:

Initialization (Algorithm 3, line 1 to 3). VProfiler starts with an empty variance tree, and
initializes the list of functions to profile with the root.

Variance Break Down (Algorithm 3, line 5 to 8). For each profiled function, VProfiler
automatically instruments the code to measure the latency of all invocations of the func-
tion and the latency of each child. The variance and co-variances of these children are
added to the variance tree, thereby expanding the tree by one level.

Factor Selection (Algorithm 3, line 9 to 17). After the variance tree is expanded, VProfiler
performs factor selection to choose the top-k highest scoring factors within the tree,
which are then reported. If the profile is insufficient, the developer requests another
iteration, which adds the children of these top-k functions to the list to be profiled.

Manual Inspection (Algorithm 3, line 15). Once the selected nodes are presented to
the user, some manual inspection is required. Depending on the node type, the user
needs to focus on different aspects of the involved functions. For a covariance node,
the user has to determine what the two functions do, why their execution times are
correlated, and how to de-correlate them. For a variance node, the user must mostly
focus on determining whether the function is specific enough. A specific function is
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Algorithm 2: Aggregate Segments
Inputs : sid, the target semantic interval id,

S, the segment to be aggregated,
B, a hard beginning timestamp to start aggregation (could be nil),
E, a ending timestamp to stop aggregation

1 function aggregate_segment (sid, S, B, E)
2 if execute_for_target_semantic_interval(S, sid) then

/* max will handle nil value correctly */
3 monitor_exec_time(S.C, S.T, max(B, S.ts), E);
4 end
5 else if is_blocked(S) then
6 S′ ← find_waking_segment(S.T, S.te);
7 aggregate_segment(S′.C, S′.T, max(B, S.ts), E);
8 end
9 if B = nil ∨ S.begin() > B then

10 P← get_previous_segment(S);
11 while P 6= nil do
12 if B 6= nil ∧ P.te ≤ B then
13 return;
14 end
15 if P.sid = sid then
16 accumulate_wait_time(P.te, S.ts);
17 break;
18 end
19 P← get_previous_segment(P);
20 end
21 if P 6= nil then
22 aggregate_segment(sid, P, B, P.te);
23 end
24 else
25 P← find_generator(S);
26 if P 6= nil then
27 T ← find_generating_time(S);
28 accumulate_wait_time(T, S.ts);
29 aggregate_segment(sid, P, B, T);
30 end
31 end
32 end
33 end

one that provides sufficient insight on how to reduce the variance. In this process, the
number of child functions invokved from the reported function is an important metric
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Algorithm 3: Iterative refinement.
Inputs : v: the starting function (i.e., entry point),

k: maximum number of functions to select,
d: threshold for minimum contribution

Output: s∗: top k most responsible factors

1 t← tree with Var(v) as root;
2 l ← {Var(v)};
3 e← true;

4 while e do

5 foreach f actor f ∈ l do
6 if is_variance(f) then
7 c← var_break_down(f);
8 t.add_children(f, c);
9 end

10 end

11 s∗ ← select_factors(t, k, d);

12 l.clear();
13 e← f alse;
14 foreach f actor f ∈ s∗ do
15 if needs_break_down(f) then
16 l ← l ∪ f ;
17 e← true;
18 else if is_variance(f) then
19 mark_as_selected(f);
20 end

21 end
22 return s∗;

to consider, but not a decisive one. A function with a large number of child functions is
usually not specific enough. However, a function with only a few child functions may
not be specific enough either. For example, row_row_ins_index_entry is a functions
in MySQL that invokes three other functions, dict_index_is_clust, row_ins_clust_-
index_entry and row_ins_sec_index_entry. Here ins is short for insert. Even without
much understanding of how MySQL works, we can guess from the function names that
there are two types of indices in MySQL, clust_index and sec_index, and this function
delegates the work to one of row_ins_clust_index_entry and row_ins_sec_index_-

entry depending on the type of index passed into this function. Therefore, although the
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number of child functions is very small in this case, we still need to further break down
this variance node in order to discover where variance occurs.

Note that, ultimately, VProfiler’s output is heuristic. It identifies code that contributes
to variance, but a developer must analyze this code to determine if the variance is inher-
ent or is indicative of a performance pathology.

VProfiler uses a parser to automatically inject instrumentation code as a prolog and
epilog to each function that is selected for profiling, using a source-to-source translation
tool and then recompiling the binary. Our approach is similar to conventional profilers,
such as gprof, except that VProfiler instruments only a subset of functions at a time.

2.3.4 Implementation

Our current implementation of VProfiler only supports C/C++ applications.4 VProfiler
takes in a list of synchronization primitives used in the application, creates instrumented
wrappers for them, and replaces all synchronization function calls with the wrapper calls
in order to construct the wake-up graph of the threads and created-by relationships be-
tween tasks. The programmer also uses an API provided by VProfiler to mark the creation
and completion of a semantic interval, and the places where a thread starts working on
behalf of a semantic interval. In addition, the programmer provides a script that copies
the instrumented source code files to the source repository, compiles the source code,
and runs the application. Given these inputs, VProfiler automatically instruments the
appropriate functions, runs the application, and returns k factors with the highest score
(k=3 by default). For each selected factor, VProfiler asks the programmer whether to
investigate it further or not. (In our experience, in many cases, this decision is usu-
ally straightforward and does not require a deep understanding of the source code.) If
the programmer deems it necessary, VProfiler re-instruments the selected function(s) and
reruns the application to collect new measurements.

2.4 Evaluation

In this section, we aim to evaluate the efficiency of VProfiler. We apply VProfiler to
a few complex, real-life software systems (e.g., MySQL), and make modifications to
these systems based on VProfiler’s findings (we defer this part to the next chapter). The
questions then becomes: (1) how much overhead does VProfiler incur to the profiled
system, and (2) how much programming effort (e.g., lines of code or hours) is involved in

4We also plan to add support for Java applications in our next release.
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Config Function Name Percentage of
Overall Variance

128-WH os_event_wait [A] 37.5%
128-WH os_event_wait [B] 21.7%
128-WH row_ins_clust_index_entry_low 9.3%
2-WH buf_pool_mutex_enter 32.92%
2-WH img_btr_cur_search_to_nth_level 8.3%
2-WH fil_flush 5%

Table 2.1: Key sources of variance in MySQL.

Function Name Percentage of Overall Variance
LWLockAcquireOrWait 76.8%

ReleasePredicateLocks 6%

Table 2.2: Key sources of variance in Postgres.

implementing these modifications (to measure how local and specific VProfiler’s findings
are). We answer the first question in Sections 2.4.1, and the second in Section 2.4.2.

Specifically, we conduct case studies on three popular open-source systems: MySQL
(a thread-per-connection database), Postgres (a process-per-connection database), and
Apache Web Server (an event-based server application). For MySQL and Postgres, we
treat each ‘transaction’ as a semantic interval, while for Apache we treat each ‘web
request’ as a semantic interval.

Finally, as a measure of practicality of our findings, in Section 3.7 we report on the
real-world adoption of some of the optimizations discovered using VProfiler.

In summary, our experiments indicate the following:

1. VProfiler’s profiling overhead is an order of magnitude lower than DTrace, and its
factor selection algorithm reduces the number of required runs by several orders
of magnitude compared to a naïve drill-down strategy.

2. VProfiler successfully reveals the actual sources of variance in these large and com-
plex codebases.

3. VProfiler requires minimum manual effort during both the profiling phase and the
optimization phase afterwards.
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Function Name Percentage of Overall Variance
(ap_pass_brigade, apr_file_open) 22%

(ap_pass_brigade, basic_http_header) 15.5%
apr_bucket_alloc 11.8%

Table 2.3: Key sources of variance in Apache HTTPD Server.

Application Semantic Avg. manual Modified
intervals inspection lines of
annotations time per run code

MySQL 9 lines of code 6 minutes 235
Postgres 7 lines of code 10 minutes 355
Apache 4 lines of code 12 minutes 45

Table 2.4: Our manual effort while using VProfiler.

2.4.1 Instrumentation Overhead

We first report the overhead introduced by VProfiler’s online instrumentation. In our
case studies, we almost never needed to profile a function with more than 100 children.
Nonetheless, as shown in Figure 2.3, we studied the overhead of VProfiler for MySQL
as we varied the number of children under an instrumented function from 1 to 500
running the TPC-C workload [160]. As one would expect, the overhead tends to grow
as the number of children grows (since we need to measure the execution time of more
functions). However, in all cases, overheads are below 14% in terms of both latency and
throughput.

As a baseline, we also report the same types of overhead using DTrace, a pro-
grammable profiler for troubleshooting arbitrary software. Similar to VProfiler, one can
use DTrace to measure the execution time of a parent function and its children, and then
compute variances using eq. (2.2).

DTrace’s key advantage is that, unlike VProfiler, it instruments the binary code and
does not need the source code. However, this flexibility comes at a cost in the perfor-
mance of the profiling code. As shown in Figure 2.3(left), DTrace’s overhead (on both
latency and throughput) is significantly higher than VProfiler, and grows rapidly with
the number of traced children, whereas VProfiler’s overhead stays below 6%. This is ex-
pected as DTrace must use heavy-weight mechanisms to inject generalized instrumenta-
tion code at run-time, while VProfiler inserts minimal profiling code prior to compilation
of the source. DTrace incurred 10-20x higher overheads than our source-level instrumen-
tation, and scales worse when tracing more children. VProfiler gains an advantage over
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Figure 2.3: (Left) Profiling overhead of VProfiler vs. DTrace. (Right) Number of runs
needed for the profiler to identify the main sources of variance.

DTrace because its instrumentation is minimal and inserted into the source, rather than
via binary modification.

VProfiler vs. Naïve Profiling— We also compare against a naïve profiling strategy, which
is similar to VProfiler, except that it decomposes every factor rather than only a few im-
portant ones. In total, there are 2× 1015 nodes in MySQL’s static call graph, 4.5× 1014 of
which are leaves. A naïve profiler has to break down every non-leaf, and thus the num-
ber of runs needed is extremely large. VProfiler’s selection strategy needs significantly
fewer runs to locate the main sources of variance, as confirmed in Figure 2.3(right).

2.4.2 Manual Effort

The manual effort in using VProfiler includes (i) annotating the semantic intervals, (ii) in-
specting the variance profile returned at each iteration, and (iii) making enhancements to
address pathologies VProfiler identifies. Quantifying these efforts objectively is difficult,
as they depend heavily on the programmer’s familiarity with the codebase. However,
here we simply report the experiences of one of the co-authors (who had no prior ex-
perience with these codebases) performing the case studies on MySQL, Postgres and
Apache. Table 2.1, 2.2 and 2.3 show the results of the profiles. We leave the detailed dis-
cussion of these results and the implications to the next chapter. Here we only focus on
the manul efforts during these case studies. As reported in Table 2.4, the annotation of
semantic intervals requires only a few lines of code. We expect this to hold in most cases,
as the notion of a semantic interval is typically intuitive to developers (e.g., a request or
a transaction). Identifying the synchronization functions is similarly straight-forward, as
codebases typically use a well-defined API for synchronization. Finally, the actual opti-
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Application Number of Variance tree Variance tree
VProfiler runs height breadth

MySQL 37 19 245025
Postgres 16 8 16900
Apache 17 15 36

Table 2.5: Statistics of the final variance trees.

mization modifications were quite small, due to the specificity of the functions identified
by VProfiler.

2.4.3 Variance Trees

Table 2.5 reports some statistics of the final variance tree for each application. Compared
to Postgres and Apache Web Server, studying latency variance in MySQL required more
runs but also less time inspecting the returned profile at each run. This is because
MySQL’s source code is more hierarchical with many functions simply delegating the
work to others. For the same reason, the height of the final variance tree of MySQL
is larger than the other two. The breadth of the variance tree is mainly affected by the
function that has the largest number of children. Note that with factor selection, VProfiler
always looks only at k selected factors, and, therefore, most of the nodes in the variance
tree are simply (yet safely) ignored.

2.4.4 The Choice of the Specificity Function

As discussed in Section 2.3.2.2, VProfiler uses a quadratic function in its factor selection
phase to quantify the specificity of a factor. We experimented with several specificity
formulations, including linear, quadratic, and cubic functions. We then compared the
quality of their findings. The linear function assigned insufficient weight to the height of
a factor, causing an important factor with 18.2% contribution to the overall variance to
be missed in an early iteration. On the other hand, the cubic function ultimately yielded
exactly the same factors as the quadratic function, providing no additional benefit. Con-
sequently, we have chosen the quadratic function defined equation (2.3) as our default
choice of the specificity function in VProfiler.
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2.5 Related Work

Call Graph Profilers— These profilers gather execution times and counts for a function
and its call descendants [93]. Some tools support shared subroutines, mutual recursion,
or dynamic method binding [178]. There are even domain-specific techniques, e.g., for
SQL applications [106]. While call graph profilers provide valuable information for long-
running operations, VProfiler aims to improve predictability and thus aggregates and
reports variance.

Call Path Profilers— Call path profilers can report the resource usage of function calls
in their full lexical contexts [98]. Users can learn how much of a program’s time is
spent in specializable calls to various functions. Techniques to reduce profiling overhead
include (i) sampling [88], which collects frequency counts without full instrumentation of
procedures’ code, and (ii) incremental profiling, which instruments only a few functions
of interest [49]. Some profilers [182] extend call path profiling to parallel applications,
and use semantic compression to reduce time and space overhead. VProfiler analyzes
function invocations in context, but it uses a technique similar to incremental profiling
by monitoring only a few functions at a time to reduce overhead. However, VProfiler
aggregates over a semantic interval, and selects the most interesting functions at each
iteration automatically.

Event Profilers— A variety of tracing tools collect event traces similar to the inputs
to VProfiler’s analysis. Many of these tools support concurrent and distributed request
traces (e.g., [45], [175]). Recent frameworks provide extensible tracing, allowing users
to define their own events and provide a LINQ-like query language for trace analy-
sis (e.g. [83], [135]), which allows the introduction of concepts like our semantic in-
tervals into the trace output. However, these profilers are not focused on analysis of
variance, and do not provide an equivalent abstraction to our variance tree. VProfiler’s
post-processing could likely be modified to adopt such tools for managing instrumenta-
tion and generating traces in lieu of our source-to-source instrumentation.

Trace Profilers and Statistical Profilers— Trace-based profilers [34, 46, 60, 70, 114, 149,
166, 173, 185, 199] can offer detailed full-system information by instrumenting the source
code, from one point in a program to another. However, such profilers are usually post-
mortem and the profile data is not available during execution. Moreover, their overhead
in tightly-coupled parallel applications can be quite high.
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Statistical or sampling-based profilers sacrifice accuracy for lower overhead and on-
line availability: At regular intervals, they probe the program’s call stack using interrupts
and collect the information they need [53, 93, 139, 140, 177, 194].

VProfiler belongs in the class of trace-based profilers. Its distinguishing contribution
lies in capturing semantic intervals across interleaving threads, and identifying informa-
tive high-variance functions through the use of the variance tree.

Transactional Profiling— There has been some work on transactional profiling, wherein
a transaction is a unit of work similar to our more generic concept of a semantic inter-
val. Whodunit [58] profiles transactions in generic multi-tier applications and can track
transactions that flow through shared memory, events, stages, or via message passing,
and identify request types that can cause high CPU usage or high contention. VPro-
filer’s goals are quite different from Whodunit in that it seeks to locate functions in the
system that cause high variance in latency, whereas the latter focuses on automatically
establishing transaction contexts and identifying request types that might cause high CPU
utilization.

Similarly, AppInsight [165] captures the concept of a transaction for mobile appli-
cations. However, AppInsight uses a very limited notion of a transaction, as a user
manipulation of the UI and all the operations it triggers.

Instead of profiling transactions, there is also some work on passively predicting the
performance of transactions using machine learning techniques [142, 143, 202].

Performance Diagnosis— DBSherlock [203] relies on outlier detection and causality
analysis to diagnose the root cause of performance anomalies from telemetry data and
other statistics (collected from the application and the operating system). Chopstix [51]
proposes a diagnostic tool to continuously monitor low-level OS events, such as cache
misses, I/O, and locking. Reconstructing these events offline helps users reproduce in-
termittent bugs that are hard to catch otherwise. X-ray [43] dynamically instruments
program binaries and collects performance summaries to find the root cause of per-
formance anomalies. Reference executions can also be used to identify symptoms and
causes of performance anomalies [172]. Darc [187] is able to identify the root causes
of any peak for a given function by analyzing its latency distribution across multiple
runs and determining the major contributor of each bucket. VarianceFinder [169] lo-
cates the root causes of variances in a distributed system by using a two-tier method.
However, it focuses on the variance of requests taking exactly the same execution path.
Spectroscope [170] diagnoses performance changes by comparing request flow during
non-problem period and problem period.
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VProfiler is also a diagnostic tool that uses instrumentation to collect information that
it needs. However, unlike tools that focus on detecting individual anomalies/outliers,
VProfiler’s approach is based on the mathematical definition of variance. In contrast,
Darc finds only the outlying latency contributors, which may or may not be related to
large variance contributors. For example, in our case study on Postgres, the latency of
the RecordTransactionCommit function is only 10% of the ResourceOwnerRelease func-
tion, while the former contributes 37.7% more to the overall variance than the latter.
VProfiler is also capable of profiling multi-threaded programs. VarianceFinder ignores
the variance caused by the difference in execution paths for the same type of requests,
while VProfiler can also account for such situations. Spectroscope is not applicable to our
case, as there is usually no clear definition of a problem period.

Unpredictability in Multi-tier Server Stacks— Many modern applications run in a
cloud environment or on top of a complex software stack [71,183,205]. Here, the perfor-
mance unpredictability could originate in different layers of the system [72,75,132], or be
the result of cross-stack communications. While handling this type of unpredictability is
out of the scope of this dissertation, we believe that variance trees will shed some light
on this problem and plan to pursue this direction in the future.

2.6 Summary

In this chapter, we laid the foundation for our study of performance predictability issues
in modern transactional database systems. We presented a novel profiler, called VProfiler,
for identifying the major sources of latency variance in a semantical interval of a software
system. By breaking down the variance of latency into variances and covariances of
functions in the source code and accounting for thread interleavings, VProfiler makes it
possible to calculate the contribution of each function to the overall variance.
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Chapter 3

Improving Performance Predictability in
Existing Database Systems

3.1 Background

In this section, we briefly discuss the scope of our work.

Defining Predictability— There are different mathematical notions for capturing perfor-
mance predictability. One could minimize latency variance or seek to impose bounds on
high percentile latencies (e.g., limiting 99th percentile latency). Statisticians have also
used the ratio of standard deviation to mean (a.k.a coefficient of variation) as a stan-
dardized measure of dispersion for a distribution.

Since in this dissertation we target statistical (rather than hard) guarantees, we focus
on identifying the sources of latency variance (and thereby standard deviation). Mini-
mizing variance also serves as a surrogate for reducing high-percentile latencies [195].
Hence, our techniques reduce both latency variance and 99th percentile latency (see
Section 4.6).

Desirable Solutions— Simply padding all latencies with a large wait time would triv-
ially reduce variance but would also increase mean latency, and, thus, it would have
little practical value. While long-running queries and OLAP applications might tol-
erate an increase in mean latency in exchange for predictability or higher through-
put [39, 40, 92, 158, 163, 190], the same tradeoff is less appealing to many latency-critical
OLTP applications.1 Thus, in this dissertation we restrict ourselves to ideal solutions,
i.e., those that reduce variance without negatively impacting mean latency or through-

1This is perhaps why, despite the success of scan-only query plans in OLAP [55, 158], similar propos-
als [190] have not had widespread adoption in transaction processing.
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put. In fact, not only do our findings reduce variance, but they also reduce mean latency
and coefficient of variation (see Section 4.6). Such solutions are much more desirable in
practice. For example, some of this dissertation’s findings have been already adopted
(and even made a default policy) by some of the largest open-source communities (Sec-
tion 3.7).

Inherent versus Avoidable Variance— It is important to note that performance variance
is sometimes inherent and cannot be avoided. For example, processing a transaction that
updates 10 tables inherently involves more work than one that updates only one table.2

Avoidable sources of variance are those that are not caused by varying amounts of work
requested by the user, but are rather due to internal artifacts of the DBMS itself, such
as scheduling choices, contention, I/O, or other performance pathologies in the source
code. For example, two transactions requesting similar amounts of work, but experienc-
ing different latencies, indicate a performance anomaly that might be avoidable.

3.2 Case Studies

In this section, we conduct a case study of MySQL and Postgres (as popular open-source
traditional DBMSs), and VoltDB (as a popular modern DBMS) to identify their main
causes of latency variance.

3.2.1 Latency Variance in MySQL

In this section, we use VProfiler to analyze the source code of MySQL 5.6.23 and char-
acterize the main sources of variance therein. Here, we only report our findings using
the TPC-C benchmark. However, in Section 4.6 we evaluate our techniques using five
different benchmarks with various degrees of complexity and contention.

Setup— We use the OLTP-Bench [73] framework to run the TPC-C workload under
two configurations. First, we study a 128-warehouse configuration with a 30 GB buffer
pool on a system with 2 Intel(R) Xeon(R) CPU E5-2450 processors and 2.10GHz cores.
Second, we study a reduced-scale 2-warehouse configuration with a 128M buffer pool
on a machine with 2 Intel Xeon E5-1670v2 2.5GHz virtual CPUs. The reduced-scale
configuration exaggerates buffer pool contention, revealing latency sources that may
arise in workloads with a working set significantly larger than the available memory. We

2In prior work, we have studied the variance of performance caused by external factors (such as changes
in the workload environment) and strategies for mitigating them [144, 145].
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Config Function Name Percentage of
Overall Variance

128-WH os_event_wait [A] 37.5%
128-WH os_event_wait [B] 21.7%
128-WH row_ins_clust_index_entry_low 9.3%
2-WH buf_pool_mutex_enter 32.92%
2-WH img_btr_cur_search_to_nth_level 8.3%
2-WH fil_flush 5%

Table 3.1: Key sources of variance in MySQL.

refer to these configurations as 128-WH and 2-WH, respectively. In both cases, we use a
separate machine to issue client requests to the MySQL server.

Summary— Table 3.1 summarizes the key variance sources in MySQL identified by
VProfiler. Whereas MySQL has one of the most complex code bases with over 1.5M
lines of code and 30K functions, VProfiler narrows down our search by automatically
identifying a handful of functions that contribute the most to the overall transaction
variance. This demonstrates VProfiler’s value: one only needs to manually inspect these
few functions to understand whether their execution time variance is inherent or is
caused by a performance pathology that can be mitigated or avoided. Next, we explain
the role of each function found by VProfiler.

os_event_wait()— MySQL uses its own cross-platform API for synchronization; os_-

event_wait is one of the central functions in this abstraction layer. The implementation
of os_event_wait yields little insight into why the transaction has to wait. We thus ex-
amine the context for the two most significant call sites invoking os_event_wait (referred
to as A and B in Table 3.1). Both call sites occur within lock_wait_suspend_thread, a
function used to put a thread to sleep when its associated transaction requests a lock on
a record that cannot be granted due to a conflict. These two specific call sites correspond
to locks acquired during select and update statements, respectively.

This implies that variability of wait time for contended locks is the largest source
of variance in MySQL. Motivated by this finding, we later propose a variance-aware
transaction scheduling in Section 3.3, which seeks to minimize variance of wait times by
optimizing the order in which locks are granted to waiting threads.

row_ins_clust_index_entry_low()— This function inserts a new record into a clustered
index. VProfiler reports that none of this function’s children exhibit significant variance,
but the main variance arises in the body of the function itself due to varying code paths
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Function Name Percentage of Overall Variance
LWLockAcquireOrWait 76.8%

ReleasePredicateLocks 6%

Table 3.2: Key sources of variance in Postgres.

taken based on the state of the index prior to the insert. The variance here is thus
inherent to the index mutation, not a performance pathology.

buf_pool_mutex_enter()— This function is called by other functions when they access
the buffer pool. This function is called from various sites, but the call most responsible
for its variance occurs in buf_page_make_young, which moves a page to the head of the
LRU list. InnoDB uses this list to maintain the order of buffer page replacements based on
a variant of the least recently used algorithm. Upon certain types of accesses, a page is
moved to the head of the LRU list. Threads must acquire a lock before modifying the list.
That lock is acquired in buf_pool_mutex_enter. The variance in this function reflects
varying wait times, while other threads are reordering the LRU list. In Section 3.4.1, we
propose a strategy for mitigating this problem.

btr_cur_search_to_nth_level()— This function traverses an index tree level by level to
place a tree cursor at a given level, and then it leaves a shared or exclusive lock on the
cursor page. Its runtime, thus, varies with the depth to which the tree must be traversed.
The variance here is inherent to the index traversal, not a performance pathology.

fil_flush()— MySQL uses fil_flush to flush redo logs generated by a transaction. When
the operating systems uses disk buffering, the latency variance of disk I/O is exposed in
fil_flush (rather than the write system calls). The variance here is inherent to the I/O,
but might be mitigated by logging to faster I/O devices, e.g., [41, 154, 196].

3.2.2 Latency Variance in Postgres

In this section, we use VProfiler to analyze the source code of Postgres 9.6—another pop-
ular DBMS. For Postgres, we use the same setup as in Section 3.2.1. Here, we use TPC-C
with 32-warehouses and a 30 GB buffer pool. Table 3.2 shows the top two functions in
the Postgres source code identified by VProfiler as the main sources of variance (the top
source dominates, accounting for 76.8%).

LWLockAcquireOrWait()— Postgres uses write-ahead logging for atomicity and dura-
bility; before a transaction commits, all its redo logs must be flushed to disk. To en-
sure that only one transaction is flushing redo logs at a time, each transaction calls the
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LWLockAcquireOrWait function to acquire a single global lock, called WALWriteLock, be-
fore writing its logs. The latency variance in LWLockAcquireOrWait is due to varying
wait times to acquire this lock. A natural solution is to either reduce contention on this
global lock, or to allow multiple transactions to flush simultaneously. The former may
be attempted by accelerating I/O (e.g., tuning the I/O block size or placing the logs
on NVRAM [41, 196] or SSD [61, 168]), whereas the latter can be attempted by a vari-
ety of parallel logging schemes (e.g., [31, 33, 200]). Both strategies have proven effective
in improving throughput and mean latencies [41, 196]. However, VProfiler’s findings,
regarding LWLockAcquireOrWait’s contribution to the overall latency variance, call for
vetting these strategies in terms of improving predictability as well. We study some of
these ideas for Postgres in Sections 3.4.2 and 3.5.4.

ReleasePredicateLocks()— Postgres uses predicate locking to avoid phantom problems
(read conflicting with later inserts). As a transaction accesses rows in the database, locks
are acquired to prevent other transactions from inserting new rows into its selected
range. Upon commit, all its predicate locks are released by calling ReleasePredicate-

Locks. The execution time of this function varies with the number and type of conflicts
discovered during this release phase. Since ReleasePredicateLocks accounts for only
6% of overall variance, we do not pursue it further.

3.2.3 Latency Variance in VoltDB

We also used VProfiler on VoltDB’s source code to identify its major sources of variance.
VoltDB is an event-based system in which transactions are wrapped up as stored proce-
dure invocations. Each event needs to wait in a queue before a worker thread is available
to process it. VProfiler reports that almost 99.9% of latency variance in VoltDB is due to
the variance in the waiting time of these events in different queues. This finding leads
to the number of worker threads as a tuning parameter to control the queue size. As
shown in Figure 3.1, adjusting this parameter in VoltDB can eliminate 60.9% of the total
latency variance, reducing it by 2.6x.

3.3 Variance-Aware Transaction Scheduling

According to VProfiler’s findings from Section 3.2, lock wait times account for a signif-
icant portion of overall latency variance (over 59.2% in case of MySQL). Hence, in this
section we propose a lock scheduling algorithm that can dramatically reduce latency
variance.
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3.3.1 Problem Setting

Traditional databases often rely on variants of 2-phase locking (2-PL) for concurrency
control [1, 12, 21]. Conceptually, each database object b has its own queue Qb. When a
transaction T requests a lock on b, the lock is immediately granted if (i) no other locks
are currently held on b by other transactions, or (ii) the current locks on b are compatible
with the requested lock type and there are no other transactions currently waiting in Qb.3

When a lock on b cannot be granted immediately, transaction T is suspended and placed
in Qb until its lock can be granted. In general, each transaction may wait in multiple
queues during its lifetime, and each queue may contain multiple transactions waiting in
it. Let Qb = {T1, · · · , Tn} denote the transactions currently waiting to be granted a lock
on b.

Whenever all the currently held locks on b are released, the lock scheduling (a.k.a.
transaction scheduling) problem is the decision regarding which transaction(s) in Qb must
be granted the lock next. The transaction scheduler might choose one of the exclusive
(e.g., write) requests, or choose one or more of the inclusive ones.

The default transaction scheduling in many databases (including MySQL [24] and
Postgres [26] among others) is the First-Come-First-Served (FCFS) algorithm. In FCFS,
whenever the lock on b becomes available, the transaction which has arrived in Qb the
earliest, say Te, is granted the lock. Additionally, all the other transactions in Qb whose
requests are compatible with that of Te are also granted a lock. In other words, Te

is selected based on the amount of time it has spent in the current queue (not in the
system). Fairness and simplicity have contributed to FCFS’s popularity. However, FCFS
does not even minimize mean latency, let alone latency variance.

Challenge of unpredictable remaining times— A key challenge in transaction schedul-
ing is the lack of prior knowledge regarding a transaction’s remaining time. In other
words, when a transaction arrives in Qb, the system is only aware of its age (i.e., elapsed
since its birth), but does not know when it will finish and release its locks once it is
granted a lock on b. For example, it may need to wait on a few other locks before it
can proceed to completion. In fact, our studies reveal that there is very little correlation
between a transaction’s age and its overall latency in practice (figure 3.2). Thus, any
scheduling strategy must account for the fact that remaining times are unknown and
hard to estimate.

3To prevent the writes from starving, new read requests may not be granted if there are write requests
ahead of them.
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Figure 3.1: Effect of different numbers of worker threads on VoltDB’s performance (2 is
the default value).
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Figure 3.2: Correlation between a transaction’s age and its remaining time for different
transaction types (TPC-C).

A Convex Loss Function— As discussed in Section 3.1, our ultimate goal is to reduce la-
tency variance and tail latencies. However, solely minimizing variance as a loss function
may lead to undesirable side effects. For example, a scheduling algorithm that deliber-
ately adds a large delay to every completed transaction (before allowing it to leave the
system) will have a near-zero variance. However, it will also significantly increase mean
latency, and is, hence, impractical. To exclude such algorithms, a more effective loss
function is the so-called Lp norm, which if minimized, will indirectly reduce both mean
and variance (and, thereby, tail) latencies. When n transactions finish with latencies
〈l1, · · · , ln〉, their Lp norm (denoted as ||.||p) is defined as

Lp = ||〈l1, · · · , ln〉||p = (
n

∑
i=1
|li|p)1/p (3.1)

where p ≥ 1 is a real-valued number. The larger the p value, the more we penalize
deviations of the li values from the mean. For example, as p → ∞, Lp norm approaches
the max value of the list. A typical value of p in practice is 2. However, our results in
this section hold for all p ≥ 1 values.
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3.3.2 Our VATS Algorithm

Let A(T) denote the age of transaction T when it arrives at a queue Qb. Qb is the set of
transactions waiting to be granted a lock on b. We define the history Hb of an object b to
be the schedule of prior (and current) transactions holding a lock on b. In the following,
we drop b from our notation for convenience. Let F be some advice about the future
(our algorithm will not make use of such advice, but we will compare our algorithm to
other algorithms that may).

A scheduler S = (S f , Sa) is a set of two functions: S f , Sa : H×Q× F → 2Q. When the
lock becomes available, the function S f determines which transactions from Q should
be granted a lock. S f cannot grant two exclusive locks on b simultaneously. When
a new transaction arrives at Q, the function Sa decides which transactions should be
granted a lock. When other locks are currently held, Sa can only choose from transactions
acquiring inclusive locks compatible with the currently held locks.

Let R(T) be a random variable indicating T’s remaining time once it is granted a lock
on b. Finally, let a menu M be a sequence of transactions, where each transaction has an
age and an arrival time at the queue. This will define a problem instance.

We define the p-performance of a schedule S on a menu M to be the expected Lp

norm of the vector of transaction completion times of S on M.

Our Algorithm— Given a menu, we aim to design a scheduler that minimizes the ex-
pected p-performance. To this end, we define our scheduler as SVATS=(SVATS

f , SVATS
a )

where:

• SVATS
f grants the lock to the eldest transaction, i.e., one with the largest age.

• SVATS
a never grants any locks.

In general, optimal scheduling is an NP-complete problem when the R(T) values are
known [157]. Additionally, the online problem of scheduling even on one processor is
impossible to do with a competitive ratio of O(1).4

Interestingly, and counter-intuitively, we show that optimal scheduling becomes eas-
ier when the remaining times are not known! Specifically, we avoid the above negative
results by assuming that R(T) values are i.i.d. random variables drawn from some (un-
known) distribution D.5

4That is, for every scheduler S, there exists a menu M where the optimal offline algorithm performs
ω(1) better than S.

5To be more precise, what happens after transactions are granted a lock may depend on our schedule
itself, as similar transactions could interact in the future on other queues. For simplicity, in this discussion
we ignore this complication.
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We now show that our VATS algorithm performs optimally, even against algorithms
that know the distribution D (i.e., algorithms that receive F = D as an advice). Note
that VATS does not use or need any distributional information or advice on future.
Interestingly, this holds even if the menu and distribution are chosen adversarially.

Theorem 3.1. Fix any menu M, p ≥ 1, and distribution D with finite expected Lp norm. Let
the R(T)s be i.i.d random variables drawn from D. Then the p-performance of VATS is optimal
against all schedulers, even those that are given D as advice about the future.

Proof. Assume for the sake of contradiction that there exists a menu M of ` transactions
T1, T2, . . . , T`, where a schedule S has p-performance better than SVATS. We will trans-
form S into SVATS by a series of ` transformations: S = S0 → S1 → S2 → · · · → S` =

SVATS. We will show after each transformation that the performance of the schedule
improves. This yields a contradiction to the assumption that the p-performance of S was
better than that of SVATS.

In the kth transformation, we modify Sk−1 so that if ever Sk−1 schedules a transaction
Tk′ 6= Tk when Tk is the eldest transaction in the queue, then Sk will transpose the order
of Tk and T′k, but otherwise run identically to Sk−1.

Note that S` = SVATS, because S` will run the eldest transaction, no matter which one
it is.

Let TSk−1,1, TSk−1,2, . . . , TSk−1,` and TSk,1, TSk,2, . . . , TSk,` be the order of transactions sched-
uled in Sk−1 and Sk respectively. Note that these may be random variables, in that the
ith transaction scheduled might depend on the randomness of the scheduler, as well as
the time that previous transactions held onto the lock. Let US(T) be the time it takes
between when T arrives and when the lock is first free under schedule S. Let WS(T) be
the set of transactions scheduled while T is in the queue (including T) under schedule
S.

To compare the performance of Sk−1 and Sk, we create a coupling between two dif-
ferent drawings D1 and D2 of the R(·)s so that for all i, RD1(TSk−1,i) = RD2(TSk,i). First
note that there is no dependency problem here because (by induction on i) under this
coupling, TSk−1,i and TSk,i will be scheduled at the same time. Also, since the R(·)s are
all drawn i.i.d, this is a valid coupling, which is to say that D1 and D2 are (marginally)
drawn from the same distribution. Note that the performance of Sk−1 and Sk are respec-
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tively,

∫
D1

(
∑

i
|A[TSk−1,i] + USk−1(TSk−1,i)

+ ∑
Tj∈WSk−1

(TSk−1,i)

R(Tj)|p
1/p

and

∫
D2

∑
i
|A[TSk,i] + USk(TSk,i) + ∑

Tj∈WSk
(TSk ,i)

R(Tj)|p
1/p

To show that the first is greater than the second, we fix some realization of D1. Using
our coupling, this gives us a realization of D2. We will show that no matter what the
realization is we have:

∑
i
|A[TSk−1,i] + USk−1(TSk−1,i) + ∑

Tj∈WSk−1
(TSk−1,i)

R(Tj)|p

< ∑
i
|A[TSk,i] + USk(TSk,i) + ∑

Tj∈WSk
(TSk ,i)

R(Tj)|p

Note that the summands are identical except, possibly, for the terms of Tk and Tk′ .
Let Wk = WSk−1(Tk) ∩WSk(Tk) be the transactions scheduled while Tk is in the queue in
both schedules. Define Wk′ analogously. Let W ′ be the transactions scheduled between
k and k′. Then, WSk−1(Tk) = Wk ∪ {Tk′} ∪W ′, WSk−1(Tk′) = Wk′ , WSk(Tk) = Wk, and
WSk(Tk′) = Wk′ ∪ {Tk′} ∪W ′.

The rearrangement inequality states that if x1, x2, y are all nonnegative numbers then
|x1 + y|p + |x2|p ≤ |x1|p + |x2 + y|p if and only if x1 ≤ x2. We apply the rearrangement
inequality where:

x1 = A(Tk′) + USk−1(Tk′) + ∑
Tj∈Wk′

RD1(Tj)

x2 = A(Tk) + USk−1(Tk) + ∑
Tj∈Wk

RD2(Tj)

y = RD1(Tk′) + ∑
Tj∈W ′

R(Tj) = RD2(Tk) + ∑
Tj∈W ′

R(Tj).
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The age of Tk′ when it is scheduled in Sk−1 is x1 − RD1(Tk′), and the age of Tk when
Tk′ is scheduled in Sk−1 is x2 − RD2(Tk). Since, at the time Tk′ is scheduled in Sk−1, Tk is
older than Tk′ , and since RD1(Tk′) = RD2(Tk), we have that x1 < x2.

The theorem follows by noting that in the Sk−1 schedule, the Tk′ term is x1 and the Tk

term is x2 + y; while in the Sk schedule, the Tk′ term is x1 + y and the Tk term is x2.

In practice, we observe that R(T) has a near-zero correlation with A(T) (Section 3.5.6).
Thus, the I.I.D. assumption of Theorem 3.1 seems plausible. Interestingly, even if the
variance of the execution times were 0 (i.e., a correlation of -1), our theorem would be
even more true, as not only would VATS gain by avoiding losses from old transactions,
but it would also gain because such transactions would complete and release their locks
faster.

In our implementation, we slightly modify VATS such that it grants as many locks
as possible if a lock does not conflict with any of the locks in front of it in the queue
(including both the granted locks and the ones still waiting), which is preserved in an
eldest-first order, as a means to improve performance. We evaluate VATS in Section 3.5.2.

3.4 Additional Strategies

Based on our findings from Section 3.2, we present further strategies for improving per-
formance predictability. Unlike our VATS algorithm which is a generic way of reducing
variance in wait times, our techniques in this section are specific to MySQL, Postgres,
and VoltDB. We use these techniques to illustrate VProfiler’s effectiveness in localizing the
sources of variance in a massive and complex codebase (e.g., MySQL or Postgres). VPro-
filer enables us to drastically reduce overall variance with minimal modification (ranging
from changing tuning parameters to a few hundred lines of code) by examining only a
handful of functions out of tens of thousands (see Section 4.6).

3.4.1 Lazy LRU Update (LLU)

As noted in Section 3.2.1, the lock on the LRU list is a main source of variance in MySQL
when the working set exceeds the buffer pool size. Algorithm 4 shows how the LRU list
is updated in MySQL. First, a mutex is acquired by calling buf_pool_mutex_enter, and
then the page is moved to the head of the list by calling buf_page_make_young.

For better cache performance, MySQL does not implement the strict LRU policy.
Instead, it splits the LRU list into two sublists, young and old. Replacement victims are
selected from the old list, which by default contains 3/8 of the oldest pages. When a
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Algorithm 4: How the LRU list is updated in MySQL
Inputs : p: the page to be moved to start of the LRU list;

b: the buffer pool

1 buf_pool_mutex_enter(b);
2 buf_LRU_make_block_young(b, p);
3 buf_pool_mutex_exit(b);

page is accessed, if it is currently in the old list, it is moved to the head of the young list,
and the tail of the young list is placed at the head of the old list. To avoid frequent re-
ordering of the list, MySQL does not maintain precise LRU ordering within the young
list. However, when the working set exceeds 5/8 of the buffer pool, old pages are
accessed frequently, and the lock on the LRU list becomes a bottleneck. Our idea is to
further relax the precision of LRU tracking to avoid this contention, as described next.

To avoid excessive delays, our proposed algorithm, Lazy LRU Update (LLU), limits
the time that buf_pool_mutex_enter waits for the lock. Specifically, we replace the mutex
with a spin lock to control the wait time. When the buffer pool is sufficiently large,
this lock is typically uncontended, and the overhead of a spin lock remains minimal.
However, if a waiting thread cannot acquire the lock within 0.01ms, we abandon the
attempt to update the global list and instead add the page to a thread-local backlog of
deferred LRU updates, l. Later, when buf_pool_mutex_enter successfully acquires the
lock for a different page, we first process the pages in l (after confirming that they have
not been evicted) before moving the page that triggered the reordering.

3.4.2 Parallel Logging

As revealed by VProfiler in Section 3.2.2, over 70% of latency variance in Postgres is due to
the variation of wait times in redo log flush operations. This leads us to another strategy
for improving predictability: parallel logging, so that when a log file is unavailable,
a transaction can write to other log files instead of having to wait. While there are
sophisticated parallel logging schemes [31, 33, 200], we implement a simple variant that
allows Postgres to use two hard disks for storing two sets of redo logs. A transaction
only waits when neither of these sets is available, in which case it waits for the one with
fewer waiters. Though parallel logging is well-studied for improving mean latencies, we
vet its effectiveness in reducing latency variance in Section 3.5.4.
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3.4.3 Variance-Aware Tuning

In many cases, the behavior of the culprit function identified by VProfiler can be con-
trolled through external tuning parameters of the DBMS. Specifically, (i) in MySQL,
buf_pool_mutex_enter() leads us to buffer pool size while fil_flush() leads us to
innodb_flush_log_at_trx_commit parameter, (ii) in Postgres, LWLockAcquireOrWait()
leads us to I/O block size, and (iii) in VoltDB, the queuing delay leads us to the number
of worker threads.

3.5 Experiments

Our experiments aim to answer three key questions: (1) How effective are our techniques
(VATS, LLU, parallel logging, and variance-aware tuning) in reducing tail latency and la-
tency variance? (2) Does our reduction of latency variance come at the cost of sacrificing
mean latency or throughput? (3) How effective and efficient is VProfiler compared to
other profiling alternatives? In summary, our results indicate that:

• For contended workloads (TPC-C, SEATS, and TATP), our VATS algorithm makes the
DBMS significantly more predictable (and even faster) without compromising through-
put, with up to 6.3x, 5.6x, and 2.0x lower mean, variance, and 99th percentile laten-
cies, respectively. As expected, for non-contended workloads (Epinions and YCSB), the
choice of scheduling algorithm is immaterial. (Section 3.5.2)

• Our Lazy LRU Update algorithm makes MySQL faster and more predictable, with
1.4x, 1.2x, and 1.2x lower mean, variance, and 99th percentile latencies, respectively.
(Section 3.5.3)

• Parallel logging improves both predictability and overall performance of Postgres, with
1.8x, 1.3x, and 2.4x lower mean, variance, and 99th percentile latencies, respectively.
Also, variance-aware tuning can eliminate up to 88.3% of the overall latency variance.
(Sections 3.5.4 and 3.5.5)

• VProfiler’s profiling overhead is an order of magnitude lower than that of DTrace, and
its factor selection algorithm reduces the number of required runs by several orders of
magnitude compared to a naïve strategy. (Section 2.4.1)

These results are summarized in Table 3.3. We have also included and additional
experiments in Section 3.5.6, showing that there is no correlation between a transaction’s
remaining time and its age (3.5.6).
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System Name of the Original Modification Modified Ratio of overall Ratio of overall Ratio of overall
Identified Function contribution to lines of code latency variances 99th latencies mean latencies

overall variance or config (Orig. / Modified) (Orig. / Modif.) (Orig. / Modif.)
MySQL os_event_wait 59.2% replace FCFS 189 5.6x 2.0x 6.3x

with VATS
MySQL buf_pool_mutex_enter 32.92% replace mutex 46 1.6x 1.4x 1.1x

with spin lock
MySQL fil_flush 5% parameter tuning 2 1.4x 1.2x 1.2x
Postgres LWLockAcquireOrWait 76.8% parallel logging 355 1.8x 1.3x 2.4x
VoltDB [waiting in queue] 99.9% add # of worker threads 1 2.6x 1.4x 5.7x

Table 3.3: Impact of modifying each of the functions identified by VProfiler. The last 3
columns compare end-to-end transaction latencies before and after each modification.
For example, modifying os_event_wait eliminates more than 82% of MySQL’s total la-
tency variance, i.e., the ratio of the transaction variance of original MySQL to modified
MySQL is 1/(1−0.82)=5.56.

3.5.1 Experimental Setup

The hardware and software used for our experiments in this section are the same as
Section 3.2. For fairness, we used the same throughput of 500 transactions per second
across all workloads and algorithms. Also, to rule out the effect of external load changes
on latency variance, we used the OLTP-Bench [73] tool to sustain a constant throughput
throughout the experiment, and measured mean, variance, and 99th percentile latencies
for each algorithm and workload. In addition to TPC-C, we also used the following
workloads for a more extensive evaluation:

• SEATS [180]: This benchmark is a simulation of an airline ticketing system where
customers search flights and make online reservations. In our experiments, we used a
scale factor of 50, leading to a highly contended workload.

• TATP [197]: TATP models a typical caller location system used by tele-communication
providers. For TATP, we used a scale factor of 10, making it a contended workload (but
not as contended as TPC-C).

• Epinions [138]: Epinions simulates a customer review website where users interact
and write reviews for various products. We used a scale factor of 500 in our experiments.
This workload has a very low contention.

• YCSB [66]: YCSB is a set of micro-benchmarks simulating data management applica-
tions that have simple workloads but require high scalability. The scale factor used was
1200, causing little or no contention.

Given that varying lock wait times are a major problem for MySQL, we evaluate
VATS using MySQL. We evaluate LLU and parallel logging using MySQL and Postgres,
respectively. Finally, we study variance-aware tuning for all three: MySQL, Postgres
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Figure 3.3: Effect of different scheduling algorithms on MySQL performance. For exam-
ple, replacing FCFS with VATS makes MySQL 6.3x faster and 5.6x lower in variance.

and VoltDB. When results are similar across all workloads, we only report numbers for
TPC-C as a representative workload.

3.5.2 Studying Different Scheduling Algorithms

We compare VATS to two other scheduling algorithms:

• First Come First Served (FCFS): This is the default scheduling in many DBMSs (in-
cluding MySQL & Postgres).

• Randomized Scheduling (RS): Similar to VATS, except that transactions are sorted
according to a random order rather than by age.

The results are shown in Figure 3.3 for TPC-C (see Table 3.4 for other workloads). In
summary, FCFS is the least efficient scheduling algorithm for all three contended work-
loads. For example, for TATP, even a random scheduling (RS) improves upon FCFS by
25% in terms of latency variance. However, the randomness of RS can also be harm-
ful. For SEATS, RS performs about 2 orders of magnitude worse than other algorithms
(results omitted for space). The choice of lock scheduling algorithm does not make a
difference for YCSB simply because it does not have any lock contention. In case of
Epinions, the improvement is due to the fact that we place newly-granted locks at the
head of the list, and thus the time for traversing the list is reduced (MySQL uses a global
hash table where each bucket is a linked list storing some of the lock objects).

We have summarized VATS’s improvement over FCFS in Table 3.4 for all workloads.
Our VATS algorithm is consistently superior for contended workloads and comparable to
no-contention ones. Most notably, VATS eliminates 84.1% of the entire latency variance
of MySQL for TPC-C. In other words, replacing FCFS with VATS makes MySQL’s latency
variance 6.3x lower. On average, this number is 2.9x for all contended workloads, and
2.4x over all five workloads.
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Avg 2.9x 2.8x 1.5x
N

o
C

on
te

nt
io

n Epinions 1.4x 2.6x 1.0x

YCSB 1.0x 1.1x 1.1x

Table 3.4: Comparing VATS with MySQL’s original (FCFS) lock scheduling in terms of
overall transaction latency.
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Figure 3.4: Effect of LLU, buffer pool size (in % of the entire database size), and log flush
policy on MySQL (TPC-C).

3.5.3 Lazy LRU Update Algorithm

In this section, we evaluate our Lazy LRU Update (LLU) algorithm. We produce a
memory-contended workload using the same 2-WH configuration from Section 3.2.1.
As shown in Figure 3.4(left), LLU yields a more predictable (and even slightly faster)
MySQL with 1.1x, 1.6x, and 1.4x lower mean, variance, and 99th percentile latencies.
This improvement is because LLU avoids extremely long waits, delaying the re-ordering
of buffer pages until the overhead is fairly low. This reduces the contention on the LRU
data structure for memory-contended workloads.
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Figure 3.5: Effect of parallel logging and redo log block size on Postgres (TPC-C).

3.5.4 Parallel Logging

As discussed in Section 3.4.2, we implement a parallel logging scheme for Postgres. As
shown in Figure 3.5(left), this significantly reduces mean, variance, and 99th percentile
latencies, lowering them by 2.4x, 1.8x, and 1.3x, respectively.

3.5.5 Variance-Aware Tuning

In Section 3.4.3, we identified several tuning parameters in MySQL, Postgres, and VoltDB
that affect latency variance.

We first investigate the buffer pool size for MySQL and TPC-C, as shown in Fig-
ure 3.4(center). We set the buffer pool size to 33%, 66%, and 100% of the overall database
size, and report their relative performance compared to 33%. As expected, a larger
buffer pool retains more data in memory, thus effectively reducing the number of page
evictions, the number of I/O operations, and the degree of contention within the buffer
pool. Consequently, the larger the buffer pool, the lower the mean, variance, and 99th
percentile latencies. Ideally, a buffer pool as large as the entire database is recommended
for both better average performance and greater predictability. However, depending on
the working set size, a smaller buffer pool might be economically more appealing, while
producing comparable results.

Second, we investigate MySQL’s log flushing policies, as shown in Figure 3.4(right).
The results indicate that deferring both write and flush operations to a log flusher thread
minimizes transaction variances. This is not surprising: eagerly flushing logs prior to
commit places highly variable disk write latencies on the transaction execution path.
However, lazy flushing may lose forward progress (committed transactions) in the event
of a crash.

In Postgres, another strategy for reducing the variance of redo log flushes is to accel-
erate the I/O operations by tuning an appropriate block size (see Section 3.4.3), which
is by default 8 KB. Figure 3.5(right) shows that increasing the block size can reduce
variance, but only to a certain extent. A larger block can reduce the number of write
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operations per transaction, but when it becomes so large that the generated log records
only occupy a small portion of a block, the transaction still has to write the whole block.
In such cases, the disadvantage of writing more data than needed outweighs the advan-
tage of fewer writes.

Finally, we explore the effect of number of worker threads on VoltDB’s performance.
In a nutshell, adjusting this parameter in VoltDB can eliminate 60.9% of the total latency
variance, i.e., lower it by 2.6x (see Section 3.2.3).

3.5.6 Correlation of Transaction Age and Remaining Time

One might imagine that the larger a transaction age, the smaller its remaining time.
Interestingly, this is not the case in practice due to the intertwined nature of contended
transactions. Figure 3.2 shows the correlation between a transaction’s age and its remain-
ing time at the moment when scheduling decisions are made. As shown in Figure 3.2,
the correlation of these two values is quite small regardless of the transaction type, indi-
cating the difficulty in predicting the remaining time of a transaction given its age.

3.6 Related Work

Predictable Query Plans— There has been some pioneering work on enriching query
optimizers to account for parameter uncertainties (caused by cardinality and cost esti-
mates) when choosing a query plan [59, 64].

Florescu and Kossman [86] have taken the opposite direction by arguing for a radical
DBMS redesign. They propose a new tiered architecture for web applications, where
consistency maintenance is moved from DBMS to application layer. Others have advo-
cated the use of table scans for all queries [42, 103, 158, 163, 190], or simply restricted
themselves to query plans with a bounded worst-case [39, 40]. Although many of these
techniques share scans and joins across multiple queries, and use always-on operators to
reduce execution time [42, 55, 92, 103, 158, 190], they still have a negative impact on aver-
age latency. For instance, some of these approaches achieve predictability at the cost of
increasing latency by 1.6x [59] or 3x [92]. As such, these solutions are more appropriate
for long-running decision support queries than transaction processing. Thus, while suc-
cessfully adopted by OLAP vendors [55, 158], these proposals have not had widespread
adoption by major OLTP vendors, as foregoing low latency to achieve predictability
is an unattractive trade-off for many latency-critical and transactional applications (see
‘Desirable Solutions’ in Section 3.1).
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Instead of requiring richer statistics or dismissing traditional query optimizers alto-
gether, we take a top-down approach (see Section 4.1 for the distinction) by carefully
studying the entire source code of existing database systems to quantify and mitigate
their root causes of performance variance. Moreover, we seek practical solutions that re-
duce variance without sacrificing mean latency, a decision that has helped the real-world
adoption of our proposal (Section 3.7).

Real-Time Databases— Once an active area of research in the 1990s, real-time databases
(RTDBs) [28, 119, 152] sought real-time performance guarantees by (i) requiring each
transaction to provide its own deadline, and (ii) minimizing deadline violations by re-
stricting themselves to mechanisms that bounded worst case execution times. In contrast,
we study predictability in the context of today’s conventional best-effort transaction pro-
cessing systems, where sacrificing throughput or mean latency to obtain hard bounds
on execution time may not be an appealing trade-off.

Variance-Aware Job Scheduling— Outside a database context, theoretical literature has
examined the problem of scheduling general tasks to minimize completion time variance
(CTV) and waiting time variance (WTV). These formulations assume a set of jobs with
known processing times and seek a schedule that minimizes the variance of their com-
pletion or wait times. While CTV and WTV problems are both NP-complete [47, 123],
there are several heuristics [62, 79, 201], dynamic programming solutions [69, 124], and
polynomial-time approximations [125]. These techniques assume an offline setting, and
thus do not apply to our transaction scheduling problem, since the remaining and arrival
time of transactions are unknown in practice. In contrast, our VATS algorithm does not
require such knowledge.

Profiling Literature— There is a large body of work on profiling techniques [49, 93, 98,
178, 182]. In a nutshell, VProfiler is the first profiler to systematically break down the
contribution of individual functions to the overall latency variance and, with minimal
help from programmers, distinguish execution times that are relevant to transaction
latencies.

Performance Diagnosis and Prediction— There are several tools that help users di-
agnose performance anomalies or reproduce intermittent bugs, either by monitoring
fine-grained, low-level OS events [51] or by collecting statistics from the application and
the OS for post-mortem analysis [43, 203]. In contrast, we focus on finding the internal
causes of performance variance by instrumenting the application code and relying on
the mathematical definition of variance to narrow its search space.
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Instead of profiling transactions, there is also some work on passively predicting
the performance of transactions using machine learning techniques [142, 143, 202]. By
reducing the performance variance, our work should ultimately make performance pre-
dictions easier.

3.7 Real-world Adoption

After observing the considerable impact of our small modifications on performance pre-
dictability (Table 3.3), we decided to share these results with the open-source community.
In particular, our VATS algorithm was quickly adopted by MySQL distributions, and has
even been made a default policy by MariaDB [6]. These MySQL distributions comprise
over 2M+ installations around the world.

Meanwhile, the issue with LRU mutex contention found by VProfiler was indepen-
dently identified by the MySQL community and addressed by multi-threaded flush-
ing [19, 25] and other techniques [20, 22]. While their solution differs from our LLU
technique, they still confirm the validity of VProfiler’s finding regarding the cause of the
performance pathology.

3.8 Summary

In this chapter, we presented our findings of applying VProfiler on several popular and
complex open-source transactional database systems. We showed that, with VProfiler,
we were able to identify the exact functions and their contributions to the variance of
transaction latency under different configurations. For each of the root causes we found,
we proposed solutions to mitigate it, either by introducing new algorithms, changing
the implementation, or tuning configuration parameters that are related to those root
causes. With just small modifications, we were able to improve not only on performance
variance, but also on average performance.

Specifically, the most significant root cause we found from MySQL (i.e., time spent
on waiting for locks) led us to a new opportunity for further research. Inspired by this
finding, and our proposed VATS algorithm, we sought to further investigate the potential
of lock scheduling in transactional database systems, as we explore in the next chapter.
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Chapter 4

Contention-Aware Transaction
Scheduling

4.1 Introduction

Lock management forms the backbone of concurrency control in modern software, in-
cluding many distributed systems and transactional databases. A lock manager guar-
antees both correctness and efficiency of a concurrent application by solving the data
contention problem. For example, before a transaction accesses a database object, it has
to acquire the corresponding lock; if the transaction fails to get a lock immediately, it is
blocked until the system grants it the lock. This poses a fundamental question: when
multiple transactions are waiting for a lock on the same object, which should be granted
first when the object becomes available? This question, which we call lock scheduling,
has received surprisingly little attention, despite the large body of work on concurrency
control and locking protocols [27, 50, 56, 68, 107, 113, 128, 133, 171]. In fact, almost all ex-
isting DBMSs1 rely on variants of the first-in, first-out (FIFO) strategy, which grants (all)
compatible lock requests based on their arrival time in the queue [3, 8, 10, 11, 13]. In this
dissertation, we carefully study the problem of lock scheduling and show that it has
significant ramifications on overall performance of a DBMS.

Related Work— There is a long history of research on scheduling in a general con-
text [76,97,108,109,153,156,174,176], whereby a set of jobs is to be scheduled on a set of
processors such that a goal function is minimized, e.g., the sum of (weighted) completion
times [104, 108, 156] or the variance of the completion or wait times [48, 54, 80, 122, 191].

1The only exceptions are MySQL and MariaDB, which have recently adopted our Variance-Aware
Transaction Scheduling (VATS) [110] (see Section 4.8).
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There is also work on scheduling in a real-time database context [27, 99, 107, 188, 189],
where the goal is to minimize the total tardiness or the number of transactions missing
their deadlines.

In this dissertation, we address the problem of lock scheduling in a transactional con-
text, where jobs are transactions and processors are locks, and the scheduling decision
is about which locks to grant to which transactions. However, our transactional con-
text makes this problem quite different than the well-studied variants of the scheduling
problem. First, unlike generic scheduling problems, where at most one job can be sched-
uled on each processor, a lock may be held in either exclusive or shared modes. The
fact that transactions can sometimes share the same resources (i.e., shared locks) signif-
icantly complicates the problem (see Section 4.2.4). Moreover, once a lock is granted to
a transaction, the same transaction may later request another lock (as opposed to jobs
requesting all of their needed resources upfront). Finally, in the scheduling literature,
the execution time of each job is assumed to be known upon its arrival [48,130,176,191],
whereas the execution time of a transaction is often unknown a priori.

Although there are scheduling algorithms designed for real-time databases [38, 134,
179, 198], they are not applicable in a general DBMS context. For example, real-time
settings assume that each transaction comes with a deadline, whereas most database
workloads do not have explicit deadlines. Instead, most workloads wish to minimize
latency or maximize throughput.

Challenges— Several aspects of lock scheduling make it a uniquely challenging prob-
lem, particularly under the performance considerations of a real-world DBMS.

1. An online problem. At the time of granting a lock to a transaction, we do not know
when the lock will be released, since the transaction’s execution time will only be
known once it is finished.

2. Dependencies. In a DBMS, there are dependencies among concurrent transactions
when one is waiting for a lock held by another. In practice, these dependencies can
be quite complex, as each transaction can hold locks on several objects and several
transactions can hold shared locks on the same object.

3. Non-uniform access patterns. Not all objects in the database are equally popular.
Also, different transaction types might each have a different access pattern.

4. Multiple locking modes. The possibility of granting a lock to one writer exclusively
or to multiple readers is a source of great complexity (see Section 4.2.4).

Contributions— In this dissertation, to the best of our knowledge, we present the first
formal study of lock scheduling problem with a goal of minimizing transaction latencies
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in a DBMS context. Furthermore, we propose a contention-aware transaction schedul-
ing algorithm, which captures the contention and the dependencies among concurrent
transactions. The key insight is that a transaction blocking many others should be sched-
uled earlier. We carefully study the difficulty of lock scheduling and the optimality of
our algorithm. Most importantly, we show that our results are not merely theoretical,
but lead to dramatic speedups in a real-world DBMS. Despite decades of research on
all aspects of transaction processing, lock scheduling seems to have gone unnoticed, to
the extent that nearly all DBMSs still use FIFO. Our ultimate hope is that our results
draw attention to the importance of lock scheduling on the overall performance of a
transactional system.

In summary, we make the following contributions:

1. We propose a contention-aware lock scheduling algorithm, called Largest-Dependency-
Set-First (LDSF). We prove that, in the absence of shared locks, LDSF is optimal in
terms of the expected mean latency (Theorem 4.2). With shared locks, we prove that
LDSF is a constant factor approximation of the optimal scheduling under certain reg-
ularity constraints (Theorem 4.3).

2. We propose the idea of granting only some of the shared lock requests on an object
(as opposed to granting them all). We study the difficulty of the scheduling prob-
lem under this setting (Theorem 4.5), and propose another algorithm, called bLDSF
(batched Largest-Dependency-Set-First), which improves upon LDSF in this setting.
We prove that bLDSF is also a constant factor approximation of the optimal scheduling
(Theorem 4.6).

3. In addition to our theoretical analysis, we use a real-world DBMS and extensive ex-
periments to empirically evaluate our algorithms on the TPC-C benchmark, as well as
a microbenchmark. Our results confirm that, compared to the commonly-used FIFO
strategy, LDSF and bLDSF reduce mean transaction latencies by up to 300x and 290x,
respectively. They also increase throughput by up to 6.5x and 5.5x. As a result, LDSF
(which is simpler than bLDSF) has already been adopted as the default scheduling
algorithm in MySQL [2] as of 8.0.3+.

4.2 Problem Statement

In this section, we first describe our problem setting and define dependency graphs. We
then formally state the lock scheduling problem.
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4.2.1 Background: Locking Protocols

Locks are the most commonly used mechanism for ensuring consistency when a set of
shared objects are concurrently accessed by multiple transactions (or applications). In
a locking system, there are two main types of locks: shared locks and exclusive locks.
Before a transaction can read an object (e.g., a row), it must first acquire a shared lock
(a.k.a. read lock) on that object. Likewise, before a transaction can write to or update
an object, it must acquire an exclusive lock (a.k.a. write lock) on that object. A shared
lock can be granted on an object as long as no exclusive locks are currently held on that
object. However, an exclusive lock on an object can be granted only if there are no other
locks currently held on that object. We focus on the strict 2-phase locking (strict 2PL)
protocol: once a lock is granted to a transaction, it is held until that transaction ends.
Once a transaction finishes execution (i.e., it commits or gets aborted), it releases all of
its locks.

4.2.2 Dependency Graph

Given the set T of transactions currently in the system, and the set O of objects in
the database, we define the dependency graph of the system as an edge-labeled graph
G = (V , E ,L). The vertices of the graph V = T ∪O consist of the current transactions
and objects. The edges of the graph E ⊆ T×O∪O× T describe the locking relationships
among the objects and transactions. Specifically, for transaction t ∈ T and object o ∈ O,

• (t, o) ∈ E if t is waiting for a lock on o;

• (o, t) ∈ E if t already holds a lock on o.

The label L : E → {S, X} indicates the lock type:

• L(t, o) = X if t is waiting for an exclusive lock on o;

• L(t, o) = S if t is waiting for a shared lock on o;

• L(o, t) = X if t already holds an exclusive lock on o;

• L(o, t) = S if t already holds a shared lock on o.

We assume that deadlocks are rare and are handled by an external process (e.g., a
deadlock detection and resolution module). Thus, for simplicity, we assume that the
dependency graph G is always a directed acyclic graph (DAG).
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4.2.3 Lock Scheduling

A lock scheduler makes decisions about which transactions are granted locks upon
one or both of the following events: (i) when a transaction requests a lock, and (ii)
when a lock is released by a transaction.2 Let G be the set of all possible dependency
graphs of the system. A scheduling algorithm A = (Areq,Arel) is a pair of functions
Areq,Arel : G×O× T × {S, X} → 2T. For example, when transaction t requests an ex-
clusive lock on object o, Areq(G, o, t, X) determines which of the transactions currently
waiting for a lock on o (including t itself) should be granted their requested lock on o,
given the dependency graph G of the system. (Note that the types of locks requested
by transactions other than t are captured in G.) Likewise, when transaction t releases
a shared lock on object o, Arel(G, o, t, S) determines which of the transactions currently
waiting for a lock on o should be granted their requested lock, given the dependency
graph G. When all transactions holding a lock on an object o release the lock, we say that
o has become available. When the lock request of a transaction t is granted, we say that t
is scheduled.

Since the execution time of each transaction is typically unknown in advance, we
model their execution time using a random variable with expectation R. Given a partic-
ular scheduling algorithm A, we define the latency of a transaction t, denoted by lA(t),
as its execution time plus the total time it has been blocked waiting for various locks.
Since lA(t) is a random variable, we denote its expectation as l̄A(t). We use l̄(A) to de-
note the expected transaction latency under algorithm A, which is defined as the average
of the expected latencies of all transactions in the system, i.e., l̄(A) = 1

|T| ∑t∈T l̄A(t).
Our goal is to find a lock scheduling algorithm under which the expected transaction

latency is minimized. To ensure consistency and isolation, in most database systems
Areq simply grants a lock to the requesting transaction only when (i) no lock is held
on the object, or (ii) the currently held lock and the requested lock are compatible and
no transaction in the queue has an incompatible lock request. This choice of Areq also
ensures that transactions requesting exclusive locks are not starved. The key challenge
in lock scheduling, then, is choosing an Arel such that the expected transaction latency
is minimized.

2These are the only situations in which the dependency graph changes. If a scheduler grants locks
at other times, the same decision could have been made upon the previous event, i.e., a transaction was
unnecessarily blocked. A lock scheduler is thus an event-driven scheduler.
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Notation Description
T the set of transactions in the sys-

tem
O the set of objects in the database
G the dependency graph of the

system
V vertices in the dependency

graph
E edges in the dependency graph
L labels of the edges indicating the

lock type
A a scheduling algorithm
lA(t) the latency of transaction t un-

der A
l̄A(t) the expectation of lA(t)
l̄(A) the expected transaction latency

under A

Table 4.1: Table of Notations.

4.2.4 NP-Hardness

Minimizing the expected transaction latency under the scheduling algorithm is, in gen-
eral, an NP-hard problem. Intuitively, the hardness is due to the presence of shared
locks, which cause the system’s dependency graph to be a DAG, but not necessarily a
tree.

Theorem 4.1. Given a dependency graph G, when a transaction t releases a lock (S or X) on
object o, it is NP-hard to determine which pending lock requests to grant, in order to minimize
the expected transaction latency. The result holds even if all transactions have the same execution
time, and no transaction requests additional locks in the future.3

Given the NP-hardness of the problem in general, in the rest of this dissertation,
we propose algorithms that guarantee a constant-factor approximation of the optimal
scheduling in terms of the expected transaction latency.

3All missing proofs can be found in our technical report [184].
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Figure 4.1: Transaction t1 holds the greatest number of locks, but many of them on
unpopular objects.

4.3 Contention-Aware Scheduling

We define contention-aware scheduling as any algorithm that prioritizes transactions
based on their impact on the overall contention in the system. First, we study several
heuristics for comparing the contribution of different transactions to the overall con-
tention, and illustrate their shortcomings through intuitive examples. We then propose
a particular contention-aware scheduling that formally quantifies this contribution, and
guarantees a constant-factor approximation of the optimal scheduling when shared locks
are not held by too many transactions. (Later, in Section 4.4, we generalize this algorithm
for situations where this assumption does not hold.)

4.3.1 Capturing Contention

The degree of contention in a database system is directly related to the number of trans-
actions concurrently requesting conflicting locks on the same objects.

our goal in contention-aware scheduling is to determine which transactions have a
more important role in reducing the overall contention in the system, so that they can be
given higher priority when granting a lock. Next, we discuss heuristics for measuring
the priority of a transaction in reducing the overall contention.

Number of locks held— The simplest criterion for prioritizing transactions is the num-
ber of locks they currently hold. We refer to this heuristic as Most Locks First (MLF).
The intuition is that a transaction with more locks is more likely to block other trans-
actions in the system. However, this approach does not account for the popularity of
objects in the system. In other words, a transaction might be holding many locks but on
unpopular objects, which are unlikely to be requested by other transactions. Prioritiz-
ing such a transaction will not necessarily reduce contention in the system. Figure 4.1
demonstrates an example where transaction t1 holds the most number of locks, but on
unpopular objects. It is therefore better to keep t1 waiting and instead schedule t2 first,
which holds fewer but more popular locks.
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Figure 4.2: Transaction t2 holds two locks that are waited on by other transactions.
Although only one of t1’s locks is blocking other transactions, the blocked transaction
(i.e., t3) is itself blocking three others.

Number of locks that block other transactions— An improvement over the previous
criterion is to only count those locks that have at least one transaction waiting on them.
This approach disregards transactions that hold many locks, but on these locks no other
transactions are waiting. We call this heuristic Most Blocking Locks First (MBLF). The
issue with this criterion is that it treats all blocked transactions as the same, even if they
contribute unequally to the overall contention. Figure 4.2 shows an example in which
the scheduler must decide between transactions t1 and t2 when the object o1 becomes
available. Here, this criterion would choose t2, which currently holds two locks, each at
least blocking one other transaction. However, although t1 holds only one blocking lock,
it is blocking t3 which itself is blocking three other transactions. Thus, by scheduling
t2 first, t3 and its three subsequent transactions will remain blocked in the system for a
longer period of time than if t1 had been scheduled first.

Depth of the dependency subgraph— A more sophisticated criterion is the depth of a
transaction’s dependency subgraph. For a transaction t, this is defined as the subgraph
of the dependency graph comprised of all vertices that can reach t (and all edges between
such vertices). The depth of t’s dependency subgraph is characterized by the number of
transactions on the longest path in the subgraph that ends in t. We refer to this heuristic
as Deepest Dependency First (DDF). Figure 4.3 shows an example, where the depth of
the dependency subgraph of transaction t1 is 3, while that of transaction t2 is only 2.
Thus, based on this criterion, the exclusive lock on object o1 should be granted to t1.
The idea behind this heuristic is that a longer path indicates a larger number of trans-
actions sequentially blocked. Thus, to unblock such transactions sooner, the scheduling
algorithm must start with a transaction with deeper dependency graph. However, con-
sidering only the depth of this subgraph can limit the overall degree of concurrency in
the system. For example, in Figure 4.3, if the exclusive lock on o1 is granted to t1 , upon
its completion only one transaction in its dependency subgraph will be unblocked. On
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Figure 4.3: Transaction t1 has a deeper dependency subgraph, but granting the lock to
t2 will unblock more transactions which can run concurrently.

the other hand, if the lock is granted to t2, upon its completion two other transactions in
its dependency subgraph will be unblocked, which can run concurrently.

Later, in Section 4.6.4, we empirically evaluate these heuristics. While none of these
heuristics alone are able to guarantee an optimal lock scheduling strategy, they offer
valuable insight in understanding the relationship between scheduling and overall con-
tention. In particular, the first two heuristics focus on what we call horizontal contention,
whereby a transaction holds locks on many objects directly needed by other transac-
tions. In contrast, the third heuristic focuses on reducing vertical contention, whereby
a chain of dependencies causes a series of transactions to block each other. Next, we
present an algorithm which is capable of resolving both horizontal and vertical aspects
of contention.

4.3.2 Largest-Dependency-Set-First

In this section, we propose an algorithm, called Largest-Dependency-Set-First (LDSF),
which provides formal guarantees on the expected mean latency.

Consider two transactions t1 and t2 in the system. If there is a path from t1 to t2

in the dependency graph, we say that t1 is dependent on t2 (i.e., t1 depends on t2’s
completion/abortion for at least one of its required locks). We define the dependency
set of t, denoted by g(t), as the set of all transactions that are dependent on t (i.e., the
set of transactions in t’s dependency subgraph). Our LDSF algorithm uses the size of the
dependency sets of different transactions to decide which one(s) to schedule first. For
example, in Figure 4.4, there are five transactions in the dependency set of transaction t1

(including t1 itself) while there are four transactions in t2’s dependency set. Thus, in a
situation where both t1 and t2 have requested an exclusive lock on object o1, LDSF grants
the lock to t1 (instead of t2) as soon as o1 becomes available.

Now, we can formally present our LDSF algorithm. Suppose an object o becomes
available (i.e., all previous locks on o are released), and there are m + n transactions
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Figure 4.4: Lock scheduling based on the size of the dependency sets.

Algorithm 5: Largest-Dependency-Set-First Algorithm
Input : The dependency graph of the system G = (V , E ,L),

transaction t, object o, label L ∈ {X, S}
// meaning t has just released a lock of type L on o

Output: The set of transactions whose requested lock on o should be granted

1 if there are other transactions still holding a lock on o then
2 return ∅;
3 end
4 Obtain the set of transactions waiting for a shared lock on o,

Ti ← {ti ∈ V : (ti, o) ∈ E and L(ti, o) = S} = {ti
1, ti

2, · · · , ti
m};

5 Obtain the set of transactions waiting for an exclusive lock on o,
Tx ← {tx ∈ V : (tx, o) ∈ E and L(tx, o) = X} = {tx

1 , tx
2 , · · · , tx

n};
6 Let τ(Ti) =

∣∣⋃n
i=1 g(ti

i)
∣∣;

7 Find a transaction t̂x ∈W s.t. |g(t̂x)| = maxtx
i ∈Tx

∣∣g(tx
i )
∣∣;

8 if τ(Ti) <
∣∣g(t̂x)

∣∣ then
9 return Ti;

10 else
11 return {t̂x};
12 end

currently waiting for a lock on o: m transactions ti
1, ti

2, · · · , ti
m are requesting a shared

lock o, and n transactions tx
1 , tx

2 , · · · , tx
n are requesting an exclusive lock on object o. Our

LDSF algorithm defines the priority of each transaction tx
i requesting an exclusive lock as

the size of its dependency set,
∣∣g(tx

i )
∣∣. However, LDSF treats all transactions requesting a

shared lock on o, namely ti
1, ti

2, · · · , ti
m, as a single transaction—if LDSF decides to grant

a shared lock, it will be granted to all of them. The priority of the shared lock requests
is thus defined as the size of the union of their dependency sets,

∣∣⋃m
i=1 g(ti

i)
∣∣. LDSF then

finds the transaction t̂x with the highest priority among tx
1 , tx

2 , · · · , tx
n. If t̂x’s priority is

higher than the collective priority of the transactions requesting a shared lock, LDSF
grants the exclusive lock to t̂x. Otherwise, a shared lock is granted to all transactions
ti
1, ti

2, · · · , ti
m. The pseudo-code of the LDSF algorithm is provided in Algorithm 5.
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Analysis— We do not make any assumptions about the future behavior of a transaction,
as they may request various locks throughout their lifetime. Furthermore, since we
cannot predict new transactions arriving in the future, in our analysis, we only consider
the transactions that are already in the system. Since the system does not know the
execution time of a transaction a priori, we model the execution time of each transaction
as a memoryless random variable. That is, the time a transaction has already spent in
execution does not necessarily reveal any information about the transaction’s remaining
execution time. We denote the remaining execution time as a random variable R with
expectation R̄. We also assume that the execution time of a transaction is not affected
by the scheduling.4 Transactions whose behavior depends on the actual wall-clock time
(e.g., stop if run before 2pm, otherwise run for a long time) are also excluded from our
discussion.

We first study a simplified scenario in which there are only exclusive locks in the
system (we relax this assumption in Theorem 4.3). The following theorem states that
LDSF minimizes the expected latency in this scenario.

Theorem 4.2. When there are only exclusive locks in the system, the LDSF algorithm is the
optimal scheduling algorithm in terms of the expected latency.

The intuition here is that if a transaction t1 is dependent on t2, any progress in the
execution of t2 can also be considered as t1’s progress since t1 cannot receive its lock
unless t2 finishes execution. Thus, by granting the lock to the transaction with the largest
dependency set, LDSF allows the most transactions to make progress toward completion.

However, this does not necessarily hold true with the existence of shared locks. Even
if transaction t1 is dependent on t2, the execution of t2 does not necessarily contribute
to t1’s progress. Specifically, consider the set of all objects that are reachable from t1

in the dependency graph, but are locked (shared or exclusively) by currently running
transactions. We call these objects the critical objects of t1, and denote them as C(t1).5 For
example, in Figure 4.5, we have C(t1) = {o1, o2}. Note that not all transactions that hold
a lock on a critical object of t1 contribute to t1’s progress. Rather, only the transaction that
releases the last lock on that critical object allows for the progress of t1. In the example
of Figure 4.5, t2’s execution does not contribute to t1’s progress, unless t3 releases the
lock before t2.

Nonetheless, when the number of transactions waiting for each shared lock is bounded,
LDSF is a constant-factor approximation of the optimal scheduler.

4For example, scheduling causes context switches, which may affect performance. For simplicity, in
our formal analysis, we assume that their overall effect is not significant.

5Note that the critical objects of a transaction may change throughout its lifetime.
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Figure 4.5: The critical objects of t1 are o1 and o2, as they are locked by transactions t2
and t3. Note that, although o3 is reachable from t1, it is not a critical object of t1 since it
is locked by transactions that are not currently running, i.e., t5 and t6 which themselves
are waiting for other locks.

Theorem 4.3. Let the maximum number of critical objects for any transaction in the system be c.
Assume that the number of transactions waiting for a shared lock on the same object is bounded
by u. The LDSF algorithm is a (c · u)-approximation of the optimal scheduling (among strategies
that grant all shared locks simultaneously) in terms of the expected latency.

4.4 Splitting Shared Locks

In the LDSF algorithm, when a shared lock is granted, it is granted to all transactions
waiting for it. In Section 4.4.1, we show why this may not be the best strategy. Then,
in Section 4.4.2, we propose a modification to our LDSF algorithm, called bLDSF, which
improves upon LDSF by exploiting the idea of not granting all shared locks simultane-
ously.

4.4.1 The Benefits and Challenges

As noted earlier, when the LDSF algorithm grants a shared lock, it grants the lock to all
transactions waiting for it. However, this may not be the optimal strategy. In general,
granting a larger number of shared locks on the same object increases the probability
that at least one of them will take a long time before releasing the lock. Until the last
transaction completes and releases its lock, no exclusive locks can be granted on that
object. In other words, the expected duration that the slowest transaction holds a shared
lock grows with the number of transactions sharing the lock. This is the well-known
problem of stragglers [65,78,85,155,206], which is exacerbated as the number of indepen-
dent processes grows.

To illustrate this more formally, consider the following example. Suppose that a set
of m transactions, t1, · · · , tm, are sharing a shared lock. Let Rrem

1 , Rrem
2 , · · · , Rrem

m be a set
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of random variables representing the remaining times of these transactions. Then, the
time needed before an exclusive lock can be granted on the same object is the remaining
time of the the slowest transaction, denoted as Rrem

max,m = max{Rrem
1 , · · · , Rrem

m }, which
itself is a random variable. Let R̄rem

max,m be the expectation of Rrem
max,m. As long as the Rrem

i ’s
have non-zero variance6 (i.e., σ2

i > 0), R̄rem
max,m strictly increases with m, as stated next.

Lemma 4.4. Suppose that Rrem
1 , Rrem

2 , · · · are random variables with the same range of values.
If σ2

k+1 > 0, then R̄rem
max,k<R̄rem

max,k+1 for 1 ≤ k < m.

We define the delay factor as f (m) =
R̄rem

max,m

R̄rem . According to Lemma 4.4, f (m) is
strictly monotonically increasing with respect to m. The exact formula for f (m) will
depend on the specific distribution of Ri’s. For example, if Ri’s are exponentially dis-
tributed (i.e., a memoryless distribution) with mean R̄, then their CDF is given by

F(x) = 1 − e−x/R̄rem
. Then, f (m) can be computed as f (m) = ∑m

i=1
1
i

However, re-
gardless of the distribution of the latencies, f (m) is guaranteed to satisfy the following
three properties:

C1. f (1) = 1;

C2. f (m) < f (m + 1);

C3. f (m) ≤ m.

The first property is trivial: granting the lock to only one transaction at a time does not
incur any delays. The second property is based on Lemma 4.4. The third is based on
the fact that sharing a lock between a group of m transactions cannot be slower than
granting the lock to them one after another and sequentially.

Since granting a shared lock to more transactions can delay the exclusive lock re-
quests, it is conceivable that granting a shared lock to only a subset of the transactions
waiting for it might reduce the overall latency in the system. Intuitively, when many
transactions are waiting for the same shared lock, it would be better to grant the shared
lock only to a few that have a higher priority (i.e., a larger dependency set), and leave
the rest until the next time. This strategy can therefore reduce the time that other trans-
actions have to wait for an exclusive lock, as illustrated in Figure 4.6. However, lock
scheduling in this situation becomes extremely difficult. We have the following negative
result.

6This assumption holds unless all instances of a transaction type take exactly the same time, which is
unlikely.
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Figure 4.6: Assume that f (2) = 1.5 and f (3) = 2. If we first grant a shared lock to
all of t1, t2, and t3, all transactions in t4’s dependency set will wait for at least 2R̄. The
total wait time will be 10R̄. However, if we only grant t1’s lock, then t4’s lock, and then
grant t2’s and t3’s locks together, the transactions in t4’s dependency set will only wait
R̄, while those in t2’s and t3’s dependency sets will wait 2R̄. Thus, the total wait time in
this case will be only 9R̄.

Theorem 4.5. Let A¬ f be the set of scheduling algorithms that do not use the knowledge of the
delay factor f (k) in their decisions. For any algorithm A¬ f ∈ A¬ f , there exists an algorithm A,

such that
w̄(A¬ f )

w̄(A) = ω(1) for some delay factor f (k).

According to this theorem, any algorithm that does not rely on knowing the delay
factor is not competitive: it performs arbitrarily poor, compared to the optimal schedul-
ing. Thus, in the next section, we take the delay factor f (k) as an input, and propose an
algorithm that adopts the idea of granting shared locks only to a subset of the transac-
tions requesting it. We also discuss the criteria for choosing delay factors that can yield
good performance in practice.

4.4.2 The bLDSF Algorithm

In this section, we present a simple algorithm, called bLDSF, which inherits the intuition
behind the LDSF algorithm, but also exploits the idea that a shared lock does not have
to be granted to all transactions waiting for it.

While LDSF measures the progress enabled by different scheduling decisions, our
bLDSF algorithm measures the speed of progress. If a transaction tx waiting for an exclusive
lock is scheduled, |g(tx)| transactions will make progress over the next R̄ (expected) units

of time. Thus, the speed of progress can be measured as
|g(tx)|

R̄
. On the other hand,

by scheduling a batch of transactions ti
1, ti

2, · · · , ti
k waiting for a shared lock together,

|⋃k
i=1 g(ti

i)| transactions will make progress over the next f (k) · R̄ units of time. The

speed of progress can then be measured as
|⋃k

i=1 g(ti
i)|

f (k)R̄
.

The bLDSF algorithm works as follows. First, it finds the transaction waiting for an
exclusive lock with the largest dependency set, denoted as t̂x. Denote the size of its
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Algorithm 6: The bLDSF Algorithm
Input : The dependency graph of the system G = (V , E ,L),

transaction t, object o, label L ∈ {X, S}
// meaning t has just released a lock of type L on o

Output: The set of transactions whose requested lock on o should be granted

1 if there are other transactions still holding a lock on o then
2 return ∅;
3 end
4 Obtain the set of transactions waiting for a shared lock on o,

Ti ← {ti ∈ V : (ti, o) ∈ E and L(ti, o) = S} = {ti
1, ti

2, · · · , ti
m};

5 Obtain the set of transactions waiting for an exclusive lock on o,
Tx ← {tx ∈ V : (tx, o) ∈ E and L(tx, o) = X} = {tx

1 , tx
2 , · · · , tx

n};

6 Let t̂i
1, t̂i

2, · · · , t̂i
k be the set of transactions in Ti such that

|⋃k
i=1 g(t̂i

i)|
f (k)

is maximized ;

7 Let t̂x be the transaction in Tx with the largest dependency set;

8 if
∣∣g(t̂x)

∣∣ · f (k) ≤
∣∣∣⋃k

i=1 g(t̂i
i)
∣∣∣ then

9 return {t̂i
1, t̂i

2, · · · , t̂i
k};

10 else
11 return t̂x;
12 end

dependency set as p =
∣∣g(t̂x)

∣∣. Then, bLDSF finds the batch of transactions, t̂i
1, t̂i

2, · · · , t̂i
k,

waiting for a shared lock such that q =
|⋃k

i=1 g(t̂i
i)|

f (k)
is maximized. When q < p, the

system will make faster progress if t̂x is scheduled first, in which case bLDSF will grant
an exclusive lock to t̂x. Conversely, when q > p, the system will make faster progress if
the batch of t̂i

1, t̂i
2, · · · , t̂i

k is scheduled first, in which case bLDSF will grant shared locks
to t̂i

1, t̂i
2, · · · , t̂i

k simultaneously. When q = p, the speed of progress in the system will
be the same under both scheduling decisions. In this case, bLDSF grants shared locks
to the batch, in order to increase the overall degree of concurrency in the system. The
pseudocode for bLDSF is provided in Algorithm 6.

We show that, when the number of transactions waiting for shared locks on the same
object is bounded, the bLDSF algorithm is a constant factor approximation of the optimal
scheduling algorithm in terms of the expected wait time.

Theorem 4.6. Let the maximum number of critical objects for any transaction in the system be c.
Assume that the number of transactions waiting for shared locks on the same object is bounded by
v. Then, given a delay factor of f (k), the bLDSF algorithm is an h-approximation of the optimal
scheduling algorithm in terms of the expected wait time, where h = cv2 · f (v).
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Unlike the LDSF algorithm, bLDSF requires a delay factor for its analysis. How-
ever, since the remaining times of transactions can be modeled as random variables,
the exact form of the delay factor f (k) will also depend on the distribution of these
random variables. For example, the delay factor for exponential random variables is
f (k) = O(log k) [67], for geometric random variables is f (k) = O(log k) [81], for Gaus-
sian random variables is f (k) = O(

√
log k) [115], and for power law random variables

with exponent 3 is f (k) =
√

k. In Section 4.6.7, we empirically show that bLDSF’s perfor-
mance is not sensitive to the specific choice of the delay factor, as long as it is a sub-linear
function that grows monotonically with k (conditions C1, C2, and C3 from Section 4.4.1).
This is because, when the batch size is small, the difference between all sub-linear func-
tions is also small. For example, when b = 10,

√
b ≈ 3.16 and log2(1+ b) ≈ 3.46, leading

to similar scheduling decisions. Even though
√

log2(1 + b) ≈ 1.86 is smaller than the
other two, it can still capture condition C2 quite well.

4.4.3 Discussion

In our analysis, we have assumed no additional information regarding a transaction’s
remaining execution time, or its lock access pattern. However, with the recent progress
on incorporating machine learning models into DBMS technology [35,142], one might be
able to predict transaction latencies [143,202] in the near future. When such information
is available, a lock scheduling algorithm could take that into account when maximizing
the speed of progress: a transaction that will take longer should be given less priority.
The priority of a transaction would then be the size of its dependency set divided by its
estimated execution time. Likewise, a transaction performing a table scan will request
a large number of locks, and will not make any progress until all of its locks can be
granted. Thus, knowing a transaction’s lock pattern in advance would also be beneficial.
We leave such extensions of our algorithms (e.g., to hybrid workloads [146]) to future
work.

4.5 Implementation

We have implemented our scheduling algorithm in MySQL. Similar to all major DBMSs,
the default lock scheduling policy in MySQL was FIFO.7 Specifically, all pending lock
requests on an object are placed in a queue. A lock request is granted immediately upon
its arrival only if one of these two conditions holds: (i) there are no other locks currently

7Now, our LDSF algorithm is the default (MySQL 8.0.3+).
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Figure 4.7: The effective size of t1’s dependency set is 5. But its exact size is only 4.

held on the object, or (ii) the requested lock type is compatible with all of the locks
currently held on the object and there are no incompatible requests ahead of it waiting
in the queue. Similarly, whenever a lock is released on an object, MySQL’s scheduler
scans the entire queue from beginning to the end. It grants any waiting requests as
long as one of these conditions holds. As soon as the scheduler encounters the first lock
request that cannot be granted, it stops scanning the rest of the queue.

One challenge in implementing LDSF and bLDSF is keeping track of the sizes of
the dependency sets. Exact calculation would require either (i) searching down the
reverse edges in the dependency graph in real-time, whenever a scheduling decision
is to be made, or (ii) storing the dependency sets for all transactions and maintaining
them each time a transaction is blocked or a lock is granted. Both options are relatively
costly. Therefore, in our implementation, we rely on an approximation of the sizes of
the dependency sets, rather than computing their exact values. When a transaction t
holds no locks that block other transactions, |g(t)| = 1. Otherwise, let Tt be the set
of transactions waiting for an object currently held by transaction t. Then, |g(t)| ≈
∑t′∈Tt |g(t

′)|+ 1. The reason this method is only an approximation of |g(t)| is that the
dependency graph is a DAG (but not necessarily a tree), which means the dependency
sets of different transactions may overlap. Figure 4.7 illustrates an example, where the
dependency set of t1 is {t1, t2, t3, t4} and is therefore of size 4. However, its effective
size is calculated as one plus the sum of the effective sizes of t2 and t3’s dependency
sets, resulting in 5. To ensure that transactions appearing on multiple paths will not be
updated multiple times, we also keep track of those that have already been updated.

Another implementation challenge lies in the difficulty of finding the desired batch
of transactions in bLDSF. Calculating the size of the union of several dependency sets
requires detailed information about the elements in each dependency set (since the de-
pendency sets may overlap due to shared locks). Therefore, we rely on the following
approximation in our implementation. We first sort all transactions waiting for a shared
lock in the decreasing order of their dependency set sizes. Then, for k = 1, 2, · · · , we
calculate the q value (see Section 4.4.2) for the first k transactions. Here, we approximate
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the size of the union of the dependency sets as the sum of their individual sizes. Let
k∗ be the k value that maximizes q. We then take the first k∗ transactions as our batch,
which we consider for granting a shared lock to.

In Section 4.6, we show that, despite using these approximations in our implementa-
tion, our algorithms remain quite effective in practice.

Starvation Avoidance— In MySQL’s implementation of FIFO, when there is an exclu-
sive lock request in the queue, it serves as a conceptual barrier: later requests for shared
locks cannot be granted, even if they are compatible with the currently held locks on
the object. This mechanism prevents starvation when using FIFO. In our algorithms,
starvation is prevented using a similar mechanism. We place a barrier at the end of the
current wait queue. Lock requests that arrive later are placed behind this barrier and
are not considered for scheduling. In other words, the only requests that are consid-
ered are those that are ahead of the barrier. Once all such requests are granted, this
barrier is lifted, and a new barrier is added to the end of the current queue, i.e., those
requests that were previously behind a barrier are now ahead of one. This mechanism
prevents a transaction with a small dependency set from waiting indefinitely behind an
infinite stream of newly arrived transactions with larger dependency sets. An alterna-
tive strategy to avoid starvation is to simply add a fraction of the transaction’s age to its
dependency set size when making scheduling decisions. A third strategy is to replace a
transaction’s dependency set size with a sufficiently large number once its wait time has
exceeded a certain timeout threshold.

Space Complexity— Given the approximation methods mentioned above, both LDSF
and bLDSF only require maintaining the approximate size of the dependency set of each
transaction. Therefore, the overall space overhead of our algorithms is only O(|T|).

Time Complexity— In MySQL, all lock requests on an object (either granted or not)
are stored in a linked list. Whenever a transaction releases a lock on the object, the
scheduler scans this list for requests that are not granted yet. For each of these requests,
the scheduler scans the list again to check compatibility with granted requests. If the
request is found compatible with all existing locks, it is granted, and the scheduler
checks the compatibility of the next request. Otherwise, the request is not granted, and
the scheduler stops granting further locks. Let N be the number of lock requests on an
object (either granted or not). Then, FIFO takes O(N2) time in the worst case. LDSF
and bLDSF both use the same procedure as FIFO to find compatible requests that are not
granted yet, which takes O(N2) time. For bLDSF, we also sort all transactions waiting for
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Figure 4.8: Throughput improve-
ment with bLDSF (TPC-C).
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Figure 4.9: Avg. latency improve-
ment with bLDSF (under the same
TPC-C transactions per second).
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Figure 4.10: Tail latency improve-
ment w/ bLDSF (under the same
number of TPC-C transactions per
second).

a shared lock by the size of their dependency sets, which takes O(N log N) time. Thus,
the time complexity of LDSF and bLDSF is still O(N2).

4.6 Experiments

Our experiments aim to answer several key questions:

• How do our scheduling algorithms (LDSF and bLDSF) affect the overall throughput
of the system?

• How do our algorithms compare against FIFO (the default policy in nearly all
databases) and VATS (recently adopted by MySQL), in terms of reducing average
and tail transaction latencies?

• How do our scheduling algorithms compare against various heuristics?
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• How much overhead do our algorithms incur, compared to the latency of a trans-
action?

• How does the effectiveness of our algorithms vary with different levels of con-
tention?

• What is the impact of the choice of delay factor on the effectiveness of bLDSF?

• What is the impact of approximating the dependency sets (Section 4.5) on reducing
the overhead?

In summary, our experiments show the following:

1. By resolving contention much more effectively than FIFO and VATS, bLDSF improves
throughput by up to 6.5x (by 4.5x on average) over FIFO, and by up to 2x (1.5x on
average) over VATS. (Section 4.6.2)

2. bLDSF can reduce mean transaction latencies by up to 300x and 80x (30x and 3.5x,
on average) compared to FIFO and VATS, respectively. It also reduces the 99th per-
centile latency by up to 190x and 16x, compared to FIFO and VATS, respectively.
(Section 4.6.3)

3. Both bLDSF and LDSF outperform various heuristics by 2.5x in terms of throughput,
and by up to 100x (8x on avg.) in terms of transaction latency. (Section 4.6.4)

4. Our algorithms reduce queue length by reducing contention, and thus incur much
less overhead than FIFO. However, their overhead is larger than VATS. (Section 4.6.5)

5. As the degree of contention rises in the system, bLDSF’s improvement over both FIFO
and VATS increases. (Section 4.6.6)

6. bLDSF is not sensitive to the specific choice of delay factor, as long as it is chosen to
be an increasing and sub-linear function. (Section 4.6.7)

7. Our approximation technique reduces scheduling overhead by up to 80x.

4.6.1 Experimental Setup

Hardware & Software— All experiments were performed using a 5 GB buffer pool on a
Linux server with 16 Intel(R) Xeon(R) CPU E5-2450 processors and 2.10GHz cores. The
clients were run on a separate machine, submitting transactions to MySQL 5.7 running
on the server.

Methodology— We used the OLTP-Bench tool [74] to run the TPC-C workload. We also
modified this tool to run a microbenchmark (explained below). OLTP-Bench generated
transactions at a specified rate, and client threads issued these transactions to MySQL.
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The latency of each transaction was calculated as the time from when it was issued
until it finished. In all experiments, we controlled the number of transactions issued per
second within a safe range to prevent MySQL from falling into a thrashing regime. We
also noticed that the number of deadlocks was negligible compared to the total number
of transactions, across all experiments and algorithms.

TPC-C Workload— We used a 32-warehouse configuration for the TPC-C benchmark. To
simulate a system with different levels of contention, we relied on changing the following
two parameters: (i) number of clients, and (ii) number of submitted transactions per
second (a.k.a. throughput). Each of our client threads issued a new transaction as
soon as its previous transaction finished. Thus, by creating a specified number of client
threads, we effectively controlled the number of in-flight transactions. To control the
system throughput, we created client threads that issued transactions at a specific rate.

Microbenchmark— We created a microbenchmark for a more thorough evaluation of
our algorithm under different degrees of contention. Specifically, we created a database
with only one table that had 20,000 records in it. The clients would send transactions
to the server, each comprised of 5 queries. Each query was randomly chosen to be
either a “SELECT” query (acquiring a shared lock) or an “UPDATE” query (acquiring
an exclusive lock). The records in the table were accessed by the queries according to a
Zipfian distribution. To generate different levels of contention, we varied the following
two parameters in our microbenchmark:

1. skew of the access pattern (the parameter θ of the Zipfian distribution)

2. fraction of exclusive locks (probability of “UPDATE” queries).

Baselines— We compared the performance of our bLDSF algorithm (with f (k)=log2(1+
k) as default) against the following baselines:

1. First In First Out (FIFO). FIFO is the default scheduler in MySQL and nearly all other
DBMSs. When an object becomes available, FIFO grants the lock to the transaction
that has waited the longest.

2. Variance-Aware Transaction Scheduling (VATS). This is the strategy proposed by
Huang et al. [110]. When an object becomes available, VATS grants the lock to the
eldest transaction in the queue.

3. Largest Dependency Set First (LDSF). This is the strategy described in Algorithm 5,
which is equivalent to bLDSF with b = inf, and f (k) = 1.

4. Most Locks First (MLF). When an object becomes available, grant a lock on it to the
transaction that holds the most locks (introduced in Section 4.3.1).
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Figure 4.11: Maximum throughput
under various algorithms (TPC-C).
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Figure 4.12: Transaction latency un-
der various algorithms (TPC-C).
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Figure 4.13: Scheduling overhead of
various algorithms (TPC-C).

5. Most Blocking Locks First (MBLF). When an object becomes available, grant a lock
on it to the transaction that holds the most locks which block at least one other trans-
action (introduced in Section 4.3.1).

6. Deepest Dependency First (DDF). When an object becomes available, grant a lock on
it to the transaction with the deepest dependency subgraph (Section 4.3.1).

For MLF, MBLF, and DDF, if a shared lock is granted, all shared locks on that object
are granted. For LDSF and bLDSF, we use the barriers explained in Section 4.5 to prevent
starvation. For FIFO and VATS, if a shared lock is granted, they continue to grant shared
locks to other transactions waiting in the queue until they encounter an exclusive lock,
at which point they stop granting more locks.
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Figure 4.16: Average latency for dif-
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(microbenchmark).

4.6.2 Throughput

We compared the system throughput when using FIFO and VATS versus bLDSF, given
an equal number of clients (i.e., in-flight transactions). We varied the number of clients
from 100 to 900. The results of this experiment for TPC-C are presented in Figure 4.8.

In both cases, the throughput dropped as the number of clients increased. This is
expected, as more transactions in the system lead to more objects being locked. Thus,
when a transaction requests a lock, it is more likely to be blocked. In other words, the
number of transactions that can make progress decreases, which leads to a decrease in
throughput.

However, the throughput decreased more rapidly when using FIFO or VATS than
bLDSF. For example, when there were only 100 clients, bLDSF outperformed FIFO by
only 1.4x and VATS by 1.1x. However, with 900 clients, bLDSF achieved 6.5x higher
throughput than FIFO and 2x higher throughput than VATS. As discussed in Section 4.4.2,
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bLDSF always schedules transactions that maximize the speed of progress in the system.
This is why it allows for more transactions to be processed in a certain amount of time.

4.6.3 Average and Tail Transaction Latency

We compared transaction latencies of FIFO, VATS, and bLDSF under an equal number of
transactions per second (i.e, throughput). We varied the number of clients (and hence,
the number of in-flight transactions) from 100 to 900 for FIFO and VATS, and then ran
bLDSF at the same throughput as VATS, which is higher than the throughput of FIFO.
This means that we compare bLDSF with FIFO at a higher throughput. The result is
shown in Figure 4.9. Our bLDSF algorithm dramatically outperformed FIFO by a factor
of up to 300x and VATS by 80x. This outstanding improvement confirms our Theo-
rems 4.3 and 4.6, as our algorithm is designed to minimize average transaction latencies.

We also report the 99th percentile latencies in Figure 4.10. Here, bLDSF outperformed
FIFO by up to 190x. Interestingly, bLDSF outperformed VATS too (by up to 16x), even
though the latter is specifically designed to reduce tail latencies. This is because bLDSF
causes all transactions to finish faster on average, and thus, those transactions waiting at
the end of the queue will also wait less, leading to lower tail latencies.

4.6.4 Comparison with Other Heuristics

In this section, we report our comparison of both bLDSF and LDSF algorithms against
the heuristic methods introduced in Section 4.3, i.e., MLF, MBLF, and DDF. Moreover,
we compare our algorithms with VATS too.

First, we compared their throughput given an equal number of clients. We varied the
number of clients from 100 to 900. The results are shown in Figure 4.11. LDSF and bLDSF
achieve up to 2x and 2.5x improvement over the other heuristics in terms of throughput,
respectively.

We also measured transaction latencies under an equal number of transactions per
second (i.e, throughput). We varied the number of clients from 100 to 900 for the heuris-
tics, and then ran bLDSF and LDSF at the maximum throughput achieved by any of the
heuristics. For those heuristics which were not able to achieve this throughput, we com-
pared our algorithms at a higher throughput than they achieved. The results are shown
in Figure 4.12, indicating that MLF, MBLF, and DDF outperformed FIFO by almost 2.5x
in terms of average latency, while our algorithms achieved up to 100x improvement over
the best heuristics (MBLF with 900 transactions). Furthermore, bLDSF was better than
LDSF by a small margin.
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4.6.5 Scheduling Overhead

We also compared the overhead of our algorithms (LDSF and bLDSF) against both FIFO
and VATS: the overhead of a scheduling algorithm is the time needed by the algorithm
to decide which lock(s) to grant.

In this experiment, we fixed the number of clients to 100 while varying throughput
from 200 to 1000. The result is shown in Figure 4.13. We can see that, although all three
algorithms have the same time complexity in terms of the queue length (Section 4.5),
ours resulted in much less overhead than FIFO because they led to much shorter queues
for the same throughput. This is because our algorithms effectively resolve contention,
and thus, reduce the number of waiting transactions in the queue. To illustrate this, we
also measured the average number of waiting transactions whenever an object becomes
available. As shown in Figure 4.14, this number was much smaller for LDSF and bLDSF.
However, VATS incurred less overhead than LDSF and bLDSF, despite having longer
queues. This is because VATS does not compute the sizes of the dependency sets.
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4.6.6 Studying Different Levels of Contention

In this section, we study the impact of different levels of contention on the effectiveness
of our bLDSF algorithm. Contention in a workload is a result of two factors: (i) skew in
the data access pattern (e.g., popular tuples), and (ii) a large number of exclusive locks.
There is more contention when the pattern is more skewed, as transactions will request
a lock on the same records more often. Likewise, exclusive lock requests cause more
contention, as they cannot be granted together and result in blocking more transactions.
We studied the effectiveness of our algorithm under different degrees of contention by
varying these two factors using our microbenchmark:

1. We fixed the fraction of exclusive locks to be 60% of all lock requests, and varied the
θ parameter of the Zipfian distribution of our access distribution between 0.5 and 0.9
(larger θ, more skew).

2. We fixed the θ parameter to be 0.8 and varied the probability of an “UPDATE” query
in our microbenchmark between 20% and 100%. The larger this probability, the larger
the fraction of exclusive locks.

First, we ran FIFO using 300 clients, and then ran both VATS and bLDSF at the same
throughput as FIFO. The results of these experiments are shown in Figures 4.15 and 4.16.

Figure 4.15 shows that when there is no skew, there is no contention, and thus most
queues are either empty or only have a single transaction waiting. Since there is no
scheduling decision to be made in this situation, FIFO, VATS and bLDSF become equiv-
alent and exhibit a similar performance. However, the gap between bLDSF and the
other two algorithms widens as skew (and thereby contention) increases. For example,
when the data access is highly skewed (θ = 0.9), bLDSF outperforms FIFO by more than
50x and VATS by 38x. Figure 4.16 reveals a similar trend: as more exclusive locks are
requested, bLDSF achieves greater improvement. Specifically, when 20% of the lock re-
quests are exclusive, bLDSF outperforms FIFO by 20x and VATS by 9x. However, when
all the locks are exclusive, the improvement is even more dramatic, i.e., 70x over FIFO
and 25x over VATS. Note that, although VATS guarantees optimality when there are only
exclusive locks [110], it fails to account for transaction dependencies in its analysis (see
Section 4.8 for a discussion of the assumptions made in VATS versus bLDSF). In sum-
mary, when there is no contention in the system, there are no scheduling decisions to
be made, and all scheduling algorithms are equivalent. However, as contention rises, so
does the need for better scheduling decisions, and so does the gap between bLDSF and
other algorithms.
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4.6.7 Choice of Delay Factor

To better understand the impact of delay factors on bLDSF, we experimented with several
functions of different growth rates, ranging from the lower bound of all functions that
satisfy conditions C1, C2, and C3 (i.e., f (k) = 1) to their upper bound (i.e., f (k) = k).
Specifically, we used each of the following delay factors in our bLDSF algorithm, and
measured the average transaction latency:

• f1(k) = 1;

• f2(k) =
√

log2(1 + k);

• f3(k) = log2(1 + k);

• f4(k) =
√

k;

• f5(k) = 0.5(1 + k);

• f6(k) = k.

The results are shown in Figure 4.17. We can see that all sub-linear functions (i.e.,
f2, f3, and f4) performed comparably, and that they performed better than the other
functions. Understandably, f1 did not perform well, as it did not satisfy condition C2
from Section 4.4.1. Functions f5 and f6 did not perform well either, since linear functions
overestimate the delay. For example, two transactions running concurrently take less
time than if they ran one after another.

4.6.8 Approximating Sizes of Dependency Sets

We studied the effectiveness of our approximation heuristic from Section 4.5 for choosing
a batch of shared requests. Computing the optimal batch accurately was costly, and
significantly lowered the throughput. However, we measured the scheduling overhead,
and compared it to when we used an approximation. We ran TPC-C, and varied the
number of clients from 100 to 900. As shown in Figure 4.18, our approximation reduced
the scheduling overhead by up to 80x.

We also measured the error of our approximation technique for estimating the depen-
dency set sizes—the deviation from the actual sizes of the dependency sets—for varying
ratios of shared locks in the workload. Figure 4.19 shows the complementary cumula-
tive distribution function (CCDF) of the relative error of approximating the dependency
set sizes. The error grew with the ratio of shared locks; this was expected, as shared
locks are the cause of error in our approximation. However, the errors remained within
a reasonable range, e.g., even with 80% shared locks, we observed a 2-approximation of
the exact sizes in 99% of the cases.
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4.7 Future Work

In this section, we present some initial ideas regarding extending the LDSF algorithm to
handle Hybrid OLTP-OLAP (a.k.a. HTAP) workloads. Due to their drastically different
characteristics, these two types of workloads are typically served by different systems
with the data in OLAP systems periodically refreshed in order to keep it up to date
with the transactional data. This solution suffers from data staleness as well as extra
operational costs. A recent trend is to merge these two systems into one and to run
OLAP queries on the most recent transactional data. In this section, we explore the
possibility of supporting such hybrid workloads in a transactional database by extending
our transaction scheduling algorithm. In particular, we focus on MySQL.

4.7.1 Background

Traditionally, database workloads have been categorized under two distinct types of
database workloads: online transaction processing (OLTP) workloads, comprised of
high-frequency, read-write queries each touching a small portion of the data, and on-
line analytical processing (OLAP) workloads, comprised of ad-hoc, read-only queries
that process large volumes of data and compute aggregate values. Due to drastically
different requirements of these workloads, different database systems are used to sup-
port each: a transactional DBMS to support OLTP workloads, and an OLAP database
(a.k.a. data warehouse) to support OLAP workloads. These two types of systems use
specialized, and sometimes contradicting optimization techniques and data structures
to achieve the best performance for their target workload [146]. In order to keep the data
up to date, the data is copied from the OLTP database to the OLAP database periodi-
cally through ETL (Extract-Transform-Load) operations [82, 120, 161, 192, 193] However,
the periodic nature of this process as well as the freshness gap are still unacceptable to
many modern applications (e.g., fraud detection, IoT).

In recent years, there has been an increased demand for real-time or operational busi-
ness intelligence (BI), whereby business decisions are made on the latest (i.e., up-to-date)
transactional data. Achieving this goal requires designing a database system that is ca-
pable of supporting both OLTP and OLAP workloads. Designing such systems, a.k.a.
HTAP (Hybrid Transactional-Analytical Processing) databases, is a challenging task. For
example, frequent insertion/deletion naturally favors data organization schemes where
all columns of the same row are stored consecutively, thus making row store a better
option for OLTP workloads. On the other hand, since OLAP workloads usually contain
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aggregation operations on a few columns, storing all values of the same column consec-
utively is more cache-friendly, and would also increase compression opportunities.

Designing a single system that can efficiently support HTAP workloads is a chal-
lenging problem. Several approaches have been proposed. BatchDB [137] merges two
different systems into one by keeping two replicas of the data, each optimized for one
type of workload. It uses a light-weight propagation of transactional updates to keep the
OLAP replica up-to-date. Other systems maintain a snapshot of the transactional data
for serving OLAP queries, either by utilizing the snapshots in multi-version concurrency
control (MVCC) and refreshing relevant data before answering an OLAP query [159],
or by using hardware-assisted virtual memory management in in-memory database sys-
tems [117, 118, 147]. To reduce the memory footprint of the snapshots—so that more
memory can be allocated for storing intermediate results during query processing—data
compaction schemes are proposed to compress the data while still allowing for efficient
updates [89].

Yet another approach is to resolve the conflicting physical data layouts (row/column
stores) required by each type of workload. SnappyData [146] uses a hybrid stores where
the most recent data is kept in a row-store and periodically merged into a compressed
column-store. Other proposals learn the data access pattern of a given workload offline
to decide on the optimal data layout [95], or adaptively change the data layout as queries
come in [36, 90]. One of the characteristics of OLTP workloads is that typically a small
portion of the entire data is frequently updated, while the rest of the data remains almost
unchanged. Some HTAP solutions take advantages of this observation, dividing their
data into hot and cold and using different storage layouts for each [89, 127].

A key assumption behind our LDSF and bLDSF algorithms is that the execution time
of transaction (time spent after acquiring all locks) follows the same distribution. While
a reasonable approximation for most transactional workloads, this assumption is clearly
violated in HTAP workloads where the execution time of an analytical query can be
several orders of magnitude larger than that of a transaction. Next, we discuss initial
ideas for extending our scheduling algorithm to support HTAP workloads, which we
call hLDSF (hybrid-LDSF).

4.7.2 hLDSF: A Scheduling Algorithm for HTAP Workloads

hLDSF is an initial attempt to extend our LDSF algorithm to support HTAP workloads.
Our intuition behind hLDSF is quite similar to LDSF. We still use the notion of speed of
progress, but instead of assuming that all transaction execution times follow the same
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distribution, we allow different types of transactions and OLAP queries in the workload
to have execution times that follow different (and independent) random variables. For
simplicity, in the rest of this section, we refer to both transactions and OLAP queries
as transactions. Denote the execution times of the transactions waiting in a queue as
random variables R1, R2, · · · , Rn. hLDSF relies on the expected value of these random
variables to measure the time it takes to make progress. hLDSF tries to find one or a
batch of transactions that, if granted the lock, would maximize the speed in which we
can make progress. The speed of progress we can achieve for the current workload—by

granting the lock to a set of transactions—can be measured as
∑m

i=1 |g(t∗i )|
max(E(Rt∗1 ), · · · , E(Rt∗m))

,

where t∗ ∈ G is the set of transactions to be granted the lock. The pseudocode for hLDSF
is shown in Algorithm 7. As shown in Line 4, hLDSF groups all transactions requesting
for shared locks, and schedules all of them together if it decides to grant a shared lock.
In other words, it considers granting the lock either to one of the transactions requesting
for an exclusive lock (the one that maximizes the value above, Line 5), or to grant the
lock to the batch of shared transactions (Line 7 to 11).

Algorithm 7: The hLDSF Algorithm
Input : The dependency graph of the system G = (V , E ,L),

execution time random variables Rt1 , Rt2 , · · · for each ti ∈ V
transaction t,
object o,
label L ∈ {X, S}
// meaning t has just released a lock of type L on o

Output: The set of transactions whose requested lock on o should be granted

1 if there are other transactions still holding a lock on o then
2 return ∅;
3 end
4 Obtain the set of transactions waiting for a shared lock on o,

Ti ← {ti ∈ V : (ti, o) ∈ E and L(ti, o) = S} = {ti
1, ti

2, · · · , ti
m};

5 Obtain the set of transactions waiting for an exclusive lock on o,
Tx ← {tx ∈ V : (tx, o) ∈ E and L(tx, o) = X} = {tx

1 , tx
2 , · · · , tx

n};

6 Let t̂x be the transaction in Tx such that
|g(t̂x)|
E(Rt̂x)

is maximized ;

7 if
|g(t̂x)|
E(Rt̂x)

≤ ∑m
i=1 |g(ti

i)|
max(E(Rti

1
), · · · , E(Rti

m
))

then

8 return Ti;
9 else

10 return t̂x;
11 end
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Figure 4.20: Example of how hLDSF works

Figure 4.20 shows a toy example to demonstrate how hLDSF can perform better than
LDSF. Let t1 and t2 be an analytical query and a transaction, respectively, and let their
expected execution times be E(R1) and E(R2), where E(R1) ≈ 100 · E(R2). Under LDSF,
the lock on o will be granted to t1 first, because it has a larger dependency set. For
simplicity, assume that transactions t3 to t7 all try to acquire shared locks, and their
expected execution times are all E(R3). Granting the lock to t2 first will result in a total
latency of 7E(R1) + 3E(R2) + 5E(R3). Under hLDSF, on the other hand, the lock will

be granted to t2 since
|g(t1)|
E(R1)

<
|g(t2)|
E(R2)

, and the total latency of all transactions will be

4E(R1) + 7E(R2) + 5E(R3), which is much smaller than that of LDSF. We discuss the
implementation of this algorithm in Section 4.7.3, and present some preliminary results
on its performance in Section 4.7.4.

4.7.3 Implementation of hLDSF

As discussed in Section 4.7.1, most transactional databases suffer a significant slowdown
when faced with HTAP (i.e., hybrid) workloads. MySQL, which we use in this disserta-
tion as a target system, is not an exception. While its row-store data layout allows for
extremely efficient transaction processing, it is a major disadvantage for OLAP queries,
which mostly operate on the same column of numerous rows. Since MySQL relies on
locking for concurrency control, depending on the isolation level, even running just a
handful of OLAP queries can block most of the in-flight transactions, bringing down the
entire system to a near halt.

Our focus in this section is not on building an entirely new DBMS for HTAP work-
loads. Rather, we aim to study the impact of the scheduling algorithm on increasing the
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ability of an off-the-shelf transactional DBMS (i.e., MySQL) in coping with HTAP work-
loads. In other words, to implement our hLDSF algorithm, we only modify MySQL’s lock
manager, leaving its storage engine unchanged. Our implementation of hLDSF is quite
similar to that of LDSF and bLDSF, except for the following modifications. Unlike LDSF’s
implementation, with hLDSF we now have to estimate the expected remaining time of
each transaction. Predicting transaction’s execution or remaining time is an extremely
difficult open problem [142, 143]. Therefore, in our current implementation, we assume
a template-based OLTP workload, whereby each transaction is generated from the same
query template (a.k.a. transaction type), modulo actual constants in the query. For each
transaction type, we compute and maintain their average remaining time whenever a
scheduling occurs. We then use this value as our estimated remaining time of the trans-
actions of a particular type, which in turn helps us decide on which transactions to grant
the lock to.

4.7.4 Preliminary Experiments

In this section, we present some preliminary results to demonstrate the performance of
hLDSF. First, we compared our implementation of the hLDSF algorithm to the original
FIFO algorithm in MySQL. For this, we created an HTAP workload based on the TPC-C
workload, with one extra OLAP query:

SELECT COUNT(DISTINCT OL_O_ID)

FROM WAREHOUSE , ORDERLINE

WHERE ? <= W_ID AND

W_ID >= ? AND

AND OL_W_ID = W_ID

GROUP BY W_STATE

We also reduced the ratio of the StockLevel transaction by 0.5%, and set the ratio of
this OLAP query to 0.5%. In this experiment, we first get the maximum achievable rate
under hLDSF with different number of clients, and then we run both algorithms under
this rate. Figure 4.21 and 4.22 show the comparison of their average latency and 99th
percentile, respectively. As we can see here, hLDSF fails to produce stable improvement
over FIFO.

Our hypothesis for the result is that this is due to two main reasons: (i) the overall
difficulty of supporting a HTAP workload in MySQL, which reduces the impact that
the lock scheduling algorithm can have on overall performance, and (ii) the additional
overhead of hLDSF as well as the inaccuracy of our remaining time estimation. Thus,
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Figure 4.21: Avg. latency of hLDSF
and FIFO.

Figure 4.22: 99th percentile of hLDSF
and FIFO.

Figure 4.23: Improvement of hLDSF over FIFO in average latency in simulator

to rule out these two possibilities, we also implement a simulator that mimics a trans-
actional database. However, instead of measure actual time, we measure the number of
epochs each transaction spends in the simulator. Further, to avoid the estimation error,
our simulator uses its a priori knowledge of each transaction (again, expressed in number
of epochs).

In this simulator, we use a single thread to simulate multiple transactions running in
parallel in order to avoid the randomness caused by thread scheduling. The simulator
creates N transaction objects, each with a list of locks it requires as well as the number of
epochs needed to finish execution once all locks have been acquired. We use a mixture
of two types of transactions, one which acquires fewer locks and takes less time to
finish, and another one which acquires significantly more locks and takes much longer
to finish. The simulator then loops through all active transactions, making progress for
each of them for one epoch. The scheduling decisions happen at the end of each epoch
and are assumed to take zero time. In other words, once a transaction releases a lock, the
scheduling happens immediately after, granting the lock to another transaction. As soon
as a transaction finishes, the simulator creates a new one to maintain a fixed number of
concurrent transactions in the system.
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Similar to the experiment in MySQL, we varied the number of concurrent transactions
in the simulator, and measured improvement of hLDSF over FIFO in terms of mean, 95th
percentile and 99th percentile. As is shown in Figure 4.23, although not improving much
on average latency, our hLDSF is able to improve on 95th percentile up to 20%.

4.8 Related Work

In short, the large body of work on traditional job scheduling is unsuitable in a database
context due to the unique requirements of locking protocols deployed in databases. Al-
though there is some work on lock scheduling for real-time databases, they aim at sup-
porting explicit deadlines rather than minimizing the mean latency of transactions.

Job Scheduling— Outside the database community, there has been extensive research
on scheduling problems in general. Here, the duration (and sometimes the weight and
arrival time) of each task is known a priori, and a typical goal is to minimize (i) the sum
of (weighted) completion times (SCT) [104, 108, 156], (ii) the latest completion time [63,
96,167], (iii) the completion time variance (CTV) [48,54,122,191], or even (iv) the waiting
time variance (WTV) [80]. The offline SCT problem can be optimally solved using
a Shortest-Weighted-Execution-Time approach, whereby jobs are scheduled in the non-
decreasing order of their ratio of execution time to weight [176], if they all arrive at the
same time. However, when the jobs arrive at different times, the scheduling becomes
NP-hard [130].

None of these results are applicable to our setting, mainly because of their assump-
tion that each processor/worker can be used by only one job at a time, whereas in a
database, locks can be held in shared and exclusive modes. Moreover, they assume
the execution time of each job is known, which is not the case in a database (i.e., the
database does not know when the application/user will commit and release its locks).
Finally, with the exception of [108,156], prior work on scheduling either assumes that all
tasks are available at the beginning, or that their arrival time is known. In a database,
however, such information is unavailable.

Dependency-based Scheduling— Scheduling tasks with dependencies among them has
been studied for both single machines [109, 174] and multiprocessors [76, 77, 84, 148].
Here, each job only needs one processor and once scheduled, it will not be blocked
again. However, in a database, a transaction can request many locks, and thus, can be
blocked even after it is granted some locks.
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Real-time Databases (RTDB)— There is some work on lock scheduling in the context
of RTDBs, where transactions are scheduled to meet a set of user-given deadlines [27,
29, 38, 57, 91, 99, 101, 107, 131, 134, 164, 179, 186, 188, 189, 198]. It is shown that the First-In-
First-Out (FIFO) policy performs poorly in this setting [27, 29, 91, 131], compared to the
Earliest-Deadline-First policy [134, 179, 198], which is also used in practice [38].

Unfortunately, the work in this area is not applicable to general-purpose database sys-
tems. First, in an RTDB, each transaction comes with a pre-specified deadline, while in
a general-purpose database such deadlines are not provided. Second, a key assumption
in this line of work is that the execution time of each transaction is known in advance,
whereas in a general database the execution time of a transaction is only known once it
is finished. Finally, the scheduling goal in an RTDB is to minimize the total tardiness or
the number of missed deadlines. In other words, as long as a transaction meets its dead-
line, RTDBs do not care whether it finishes right before the deadline or much earlier. In
contrast, general databases aim to execute transactions as fast as possible.

Scheduling in Existing DBMS— For simplicity and fairness [37], the First-In-First-Out
(FIFO) policy and its variants are the most widely adopted scheduling policies in many
of today’s databases [30], operating systems [52], and communication networks [129].
FIFO is the default lock scheduling policy in MySQL [8], MS SQL Server [13], Post-
gres [11], Teradata [10], and DB2 [3]. Despite its popularity, FIFO does not provide
any guarantees in terms of average or percentile latencies. Huang et al. [110] propose
a scheduling algorithm, called Variance-Aware Transaction Scheduling (VATS), which
aims at minimizing the variance of transaction latencies, and its optimality holds only
when there are no shared locks in the system. In contrast, we focus on minimizing mean
latency, and allow for both shared and exclusive locks. In short, designing optimal lock
scheduling algorithms for databases has remained an open problem.

VATS— Based on the findings of a new profiler, called VProfiler [111], we have previ-
ously proposed Variance-Aware Transaction Scheduling (VATS) [110]. VATS prioritizes
transactions according to their arrival time in the system, as opposed to FIFO, which
prioritizes them according to their arrival time in the current queue. Our prior work
proves the optimality of VATS in terms of minimizing the Lp-norm of transaction la-
tencies [110], when there are no shared locks. In contrast, the current paper proves the
optimality of bLDSF in terms of minimizing mean latency. More importantly, our analy-
sis of VATS uses a simplifying assumption that models the latency of a transaction t as
l(t) = A(t) + U(t) + R · (N(t) + 1), where A(t) is the age of t (i.e., time since arrival),
U(t) is the time since t arrives in the current queue until the lock becomes available, and
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N(t) is the number of transactions in the current queue that will be scheduled before
t. However, VATS does not account for the fact that U(t) itself can be affected by the
scheduling decision. In this dissertation, in our analysis of bLDSF, we have been able to
remove both assumptions and hence, prove optimality under a more realistic setting. We
consider both shared and exclusive locks, and account for the impact of our scheduling
decision on the wait times of other transactions waiting for other objects in the system.
Our experiments show that bLDSF’s more realistic assumptions lead to better decisions
(see Section 4.6).

Deadlock Resolution— The problem of deadlock resolution is about deciding which trans-
action(s) to abort in order to resolve a deadlock [87, 100, 112, 136, 162]. Typically, trans-
actions with lower priority are aborted, in order to reduce the amount of work wasted.
Here, transactions are prioritized based on their age [32, 87], deadline [116], or number
of held locks [141]. Franaszek et al. [87] empirically show that an age-based priority
improves concurrency, and reduces the amount of work wasted. Agrawal et al. [32] ar-
gue that choosing victims based on their age and number of held locks leads to fewer
rollbacks, than (i) choosing a transaction randomly, or (ii) aborting the most recently
blocked transaction. These proposals take contention into account only for deadlock
resolution. In contrast, we focus on lock scheduling and show that contention-aware
scheduling yields significant performance benefits in practice.

4.9 Summary

In this chapter, we studied a fundamental (yet, surprisingly overlooked) problem: lock
scheduling in a transactional database system. Despite the massive body of work on
transactional databases, the dramatic impact of lock scheduling on overall performance
of a transactional system seems to have gone largely unnoticed—to the extent that every
DBMS to date has simply relied on FIFO. To the best of our knowledge, we are the first to
propose the idea of contention-aware lock scheduling, and present efficient algorithms
that are guaranteed to reduce mean transaction latencies down to a constant-factor-
approximation of the optimal scheduling. We also empirically confirm our theoretical
analysis by modifying a real-world DBMS. The experiments in this chapter show that
our algorithms reduce transaction latencies by up to two orders of magnitude, while
delivering 6.5x higher throughput. Our algorithm has already been adopted by MySQL,
and has started to impact real world applications.
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Chapter 5

Conclusion and Future Work

This dissertation is an extensive study of performance unpredictability in modern trans-
actional systems, a key, yet neglected problem in database research. Diagnosing the
causes of performance unpredictability is challenging, due to a lack of suitable profilers.
Existing software profilers are mostly designed for reporting average. To help diagnose
performance unpredictability in large and modern codebases (such as a DBMS), we pro-
pose VProfiler, a novel profiling tool that supports semantic intervals and analyzes con-
current executions spanning multiple threads. We conduct a quantitative case study of
performance unpredictability in real-world database systems, and present our findings
and the lessons learned. We also introduce alternative algorithms, implementations, and
tuning strategies that make performance more predictable.

One of our main findings is the importance of lock scheduling on the overall per-
formance of a transactional database. Consequently, we formalize and investigate this
problem, and introduce the concept of Contention-Aware Transaction Scheduling (CATS).
CATS aims to improve performance predictability through scheduling decisions that re-
duce overall contention in the system.

5.1 Contributions

The first major contribution of this dissertation is the design and implementation of
VProfiler. As the first profiler designed to diagnose performance predictability issues,
VProfiler introduces a novel abstraction called variance tree to capture performance vari-
ance in a software system. It employs critical path reconstruction to support modern
software systems, where the execution of a semantically defined interval can happen on
multiple threads. VProfiler is able to pinpoint a few most important variance contribu-
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tors out of hundreds of thousands of functions within a complex codebase, making it
much easier to closely study the actual root causes of performance unpredictability. The
design of VProfiler is therefore a fundamental stepping stone of this dissertation, as it
allows us to diagnose and analyze existing systems to better understand the causes of
unpredictability.

Our second major contribution is our detailed case study of the most popular database
systems under various configurations. Typically, users and companies are often reluctant
to abandon a database system into which they have invested their time and resources.
Our case study is designed to improve these existing systems: first to investigate their
main sources of performance variance, and second to resolve them by modifying their
underlying data structures, algorithms or parameters. In particular, we carry out our
case study by running VProfiler on MySQL, PostgresSQL and VoltDB, and despite our
lack of familiarity with their codebases, we are able to identify their main causes of
performance variance. Based on our findings, we propose Variance-Aware Transaction
Scheduling (VATS) and Lazy LRU Update (LLU) to improve MySQL’s predictability, and
implement Parallel Logging to improve PostgresSQL’s predictability. We also introduce
Variance-Aware Tuning, where we tune configuration parameters to reduce the perfor-
mance variance. All of these techniques achieve predictability without sacrificing average
performance. In fact, in some cases, our techniques even result in improved average
performance.

The final major contribution of this dissertation is the introduction of Contention-
Aware Transaction Scheduling for transactional database systems. One of the most impor-
tant findings from our case study is that lock scheduling is a main source of performance
unpredictability. We thus design a new abstraction called a dependency graph, which cap-
tures the dependency among in-flight transactions in the system, which we then use to
develop our new scheduling algorithms LDSF and bLDSF. We provide theoretical guar-
antees regarding the optimality of these algorithms. They work by granting locks in a
manner that maximizes the speed with which the transactions can make progress in the
system. Experimental results show that our algorithms significantly increase throughput
and reduce percentile latency.

Most notably, our VATS and LDSF algorithms are already adopted by MariaDB and
MySQL, respectively, making a positive impact in the real world.
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5.2 Real-World Adoption

A key advantage of our top-down approach is its easier adoption by existing systems.
Therefore, after the case study with MySQL, we sought to merge our VATS algorithm
into MariaDB, which is a fork of MySQL. After we submitted our initial pull request,
VATS algorithm was reviewed and merged into MariaDB.

After proposing our CATS algorithms, we followed the same process for integra-
tion. Since our bLDSF algorithm required a delay factor, which would depend on the
actual workload, we decided to merge the simpler yet efficient variant, namely LDSF,
into MySQL and Percona, which is another fork of MySQL. First, we made the neces-
sary changes to the code to conform to MySQL’s coding style, and handled corner cases
that we had not considered in our experiments. We also addressed various test failures
reported by MySQL and Percona teams that were not exposed by our own tests. Subse-
quently, both MySQL and Percona teams performed their own independent evaluations,
using TPC-C and SysBench [121], respectively. They both observed the same perfor-
mance (i.e., no improvement) for low-contention settings, while observing significant
performance improvements for high-contention settings, e.g., up to 20x and 5x in terms
of mean and 95th percentile latencies, respectively. Their independent tests led to the ap-
proval and merging of our patch into MySQL’s main codebase as its default scheduling
algorithm. Later, we further communicated with both teams to ensure they completely
understand the logic and the code and can take it over for future maintenance needs.
We also contributed additional test cases. Finally, MySQL 8.0.3 was released, as the first
version of MySQL with our LDSF algorithm as the default scheduling algorithm. Later,
Percona 8.0, which was was based on MySQL 8.0, also included LDSF.

5.3 Future Work

Based on our findings, we recommend further research on transaction scheduling. In
particular, our results on hybrid scheduling are not conclusive. We see no obvious trend
in the experiment results as the number of clients increase in both MySQL and the
simulator under the HTAP workload, even with the original FIFO algorithm. This is
counter-intuitive and might lead to some interesting findings about why our hLDSF is
not working as expected in the experiments.

Another direction for future research is to extend our existing algorithms to differ-
ent isolation levels. So far, our algorithms assume a serializible isolation level in the
transactional database systems. However, this is a very strict requirement, and a lot of
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workloads do not need such a strict isolation level. For example, MySQL defaults to the
Repeatable Read isolation level [7]. Some of the assumptions we made in our current
algorithms will break under different isolation levels. For example, under read commit-
ted, read locks are not required to be held until a transaction commits. On the contrary,
they can be released as soon as the current query finishes. The algorithms themselves
will have to be changed to adapt to these kind of differences.
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