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ABSTRACT

Inertial measurement units (IMUs) are a ubiquitous technology found in naviga-

tion systems, mobile devices, and multiple products related to the Internet of Things.

In its simplest form, an IMU contains a triaxial accelerometer and a triaxial angular

rate gyroscope needed to deduce the six degrees of freedom of a rigid body. While

their history traces back to navigation systems of aircraft, spacecraft, and satellites,

IMUs now support new and innovative applications made possible through minia-

turization via microelectromechanical systems (MEMS) fabrication methods. This

thesis specifically advances the use of IMU technology within two important fields,

namely, 1) human biomechanics and 2) engineering education.

Within the field of human biomechanics, this thesis makes two major contribu-

tions for using IMUs to quantify and understand human performance. The first

deploys a pair of thigh- and shank-mounted IMUs to estimate the three-dimensional

rotations across the human knee. This significant challenge requires a sequence of

estimations that define: 1) the orientation of the IMU frames relative to their inde-

pendent world frames, 2) the orientation of their independent world frames relative

to each other, and 3) the orientation of the IMU frames relative to their respective

body segment anatomical frames. Importantly, this thesis contributes a measurement

theory to correct for the inevitable integration drift error arising in this sequence of

estimates without reliance on magnetometer data. The theory exploits an anatomical

kinematic constraint that the knee acts (predominantly) as a hinge. The resulting

theory is first validated against data from high precision optical encoders embedded

within a mechanical linkage and yields RMS differences of less than 5 degrees. The

theory is further validated against data from conventional optical motion capture on

human subjects (and across increasingly dynamic tasks) and yields overall RMS dif-

ferences of less than 5 degrees. The second contribution leverages thigh- and upper
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arm-mounted IMUs to define novel metrics of human crawling performance and tech-

nique to support the evaluation of warfighters. Performance metrics derived from the

raw IMU data successfully distinguish superior from inferior crawling performance

and the degradations in performance from added body-borne loads.

Within the field of engineering education research, this thesis contributes a thor-

ough investigation of an active learning intervention that employs IMUs to explore

concepts in an introductory engineering dynamic course (ME240 at the University

of Michigan). The intervention takes three forms that elicit increasing cognitive

engagement per Chi’s ICAP framework, namely: 1) Demonstrations, 2) Prescribed

Experiments, and 3) Student Projects. Building from a foundation of supporting

literature and learning theories, this research tests the hypothesis that students who

engage with the active learning IMU intervention will demonstrate positive responses

in 1) conceptual understanding, 2) self-efficacy, and 3) intention to persist relative

to students who do not (control). As measured solely by the Dynamics Concept

Inventory, the active learning IMU intervention elicits little change in conceptual un-

derstanding relative to the control. By contrast, as measured by a modified version

of the Longitudinal Assessment of Engineering Self-Efficacy, the active learning IMU

intervention elicits significantly higher course-specific self-efficacy and intention to

persist in the field relative to the control.
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CHAPTER 1

Introduction and Overview

1.1 Opportunities for Advancing IMU Technology

Inertial measurement units (IMUs) are a ubiquitous technology found in naviga-

tion systems, most mobile devices, and a growing number of products in the space of

the Internet of Things (IoT). The history of IMUs traces back to their core function

within inertial navigation systems to support the navigation of aircraft, spacecraft,

and satellites (e.g. [1, 2]). With appropriate signal processing techniques, the data

harvested from IMUs are used to resolve the movements of a rigid body to which

they are affixed (e.g. orientation of spacecraft [3, 4]). Outside of their original

aerospace applications, IMUs are finding new and extraordinary implementations in

the wake of their miniaturization by microelectromechanical systems (MEMS) fab-

rication methods. These fabrication methods have created a class of IMUs often

referred to as tactical grade devices, which is in contrast to the highly accurate, of-

ten much larger inertial grade devices required for precision navigation [5]. MEMS

IMUs are inexpensive and suitable for many consumer products and applications [6].

Among the wide and varied applications of MEMS IMUs are those used in robotics,

ground vehicles (including personal transportation systems such as the Segway™),

gaming devices, virtual and augmented reality technology, mobile devices, personal

computers, monitoring devices for civil structures, sports equipment, and other con-

sumer products. Adding to this broad context of applications, this thesis advances
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the use of IMU technology within two important fields: human biomechanics and

engineering education. The figures below show the two versions of IMUs employed

in this work, respectively.

(a) (b)

Figure 1.1: Two versions of inertial measurement units. (a) APDM Opal. (b)
iNewton.

In its simplest configuration, an IMU contains a triaxial accelerometer and a tri-

axial angular rate gyroscope, both of which produce signals sampled simultaneously

by a microprocessor. Additional sensors like magnetometers, barometers, and global

positioning systems (GPS) are sometimes included in the design, and the supple-

mental data are used to improve estimates of orientation and position through a

variety of sensor fusion techniques [7]. When coupled with radio technology, indi-

vidual IMUs can form a multi-sensor system providing synchronized data to more

easily resolve the coordinated motions of multi-body systems, as in the analysis of

human motion described further below. The overall improvements over past decades

in MEMS fabrication methods have produced highly miniaturized, low-power, and

inexpensive IMUs to support exciting new applications, including the novel applica-

tions to human biomechanics and engineering education that are the focus of this

dissertation.
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1.2 Part I: Human Biomechanics

1.2.1 Motivation and Potential Impact

In recent years, IMUs have gained considerable popularity in human biomechan-

ics investigations. As a motion capture technology, IMUs present an attractive al-

ternative to more traditional methods because of their versatility, portability, and

relatively low cost [8]. Position-based methods like optical motion capture (MOCAP)

restrict movements to a finite (and often modest sized) capture volume, rendering

this method difficult to use in naturalistic environments (see, for example, [9, 10]). In

addition, MOCAP requires considerable set-up, post-processing time, and training.

IMU-based motion capture does not suffer from these limitations, particularly when

post-processing is automated in specialized mobile applications. However, IMU-

based motion capture introduces other challenges, most notably sensor integration

drift error that limits the accuracy of IMU-derived orientation, velocity, and position

estimates [11]. Despite the challenges, there are profound implications of deploy-

ing wearable (and inexpensive) IMU technology for measuring human biomechanics

in natural contexts. For example, consider the potential impact of this wearable

technology for applications in human health, worker safety, athletic performance,

warfighter performance, among many other applications.

Among the many possible applications of body-worn IMUs in biomechanics, the

first part of this thesis contains two distinct objectives. A common aim of many

IMU-based human biomechanics studies is to recreate more traditional performance

metrics (e.g. joint angles) derived from MOCAP-based studies. As such, the first

objective focuses on the kinematics of the human knee, specifically three-dimensional

(3D) rotations across the knee joint. There is strong motivation in doing so. The

kinematics of knee rotations have significant ramifications for human health and

performance and in a variety of contexts including human mobility, worker safety and

health, athletic performance, and warfighter performance. At first glance, the knee

joint may appear to function simply as a hinge (one dimensional rotation) undergoing

flexion-extension. In reality, it is considerably more complex that allows 3D rotations
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namely flexion-extension, internal-external rotation, and abduction-adduction as is

illustrated in Fig. 1.2b. Annually, approximately 2.5 million sportsrelated injuries

occur in adolescent athletes [12]. Furthermore, recent evidence suggests that ACL

injuries may actually be overuse injuries [13], in which case measuring the number

and severity of loading cycles each week may prove useful in athletes of any age.

The knee is also one of the most common joints for extensive reconstruction or

replacement, both of which require committed rehabilitation crucial to the healing

process for a successful outcome (e.g., [14]), for which there is significant motivation

for non-invasively measuring/monitoring and understanding the 3D rotations across

the human knee for long periods of time outside of a laboratory. Furthermore, with

the advent of MEMS IMUs, there is now an opportunity to accomplish this using an

inexpensive and wearable technology.

(a) (b)

Figure 1.2: (a) Anatomical planes and directions referred to in the document. (b)
Anatomical rotations of the knee. Image adapted from [15].

By contrast, great strides have also been taken to tap into the potential inherent

to this technology by defining new (nontraditional) metrics for well-defined tasks that
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draw on the strengths of this technology. Thus, the second objective of the human

biomechanics portion of the thesis focuses on defining and evaluating human perfor-

mance in the context of an outdoor obstacle course used by military organizations

worldwide to quantify the effects of clothing and individual equipment (CIE). This

obstacle course, introduced by the US Marine Corp as the Load Effects Assessment

Program (LEAP), incorporates a standard (10-task) obstacle course that embeds

combat-relevant movements and tasks [16]. Physical performance in the LEAP ob-

stacle course is historically quantified by the overall time to complete the course

together with the times to complete each obstacle (measured using timing gates).

Although the times to complete an entire course or any obstacle within it are valid

measures of performance, the times alone do not reveal the underlying biomechani-

cal movements that further discriminate performance levels or reveal sub-movements

that limit or enhance performance. Of course, measuring human movement in the

context of a large outdoor obstacle course (∼ 1800 m2 in the context of this work)

is largely precluded using standard MOCAP methods, whereas IMUs offer an al-

ternative to address this challenge. The specific task under investigation in this

dissertation is the high crawl, in which participants crawl on elbows and knees as

quickly as possible [17].

To this end, the overall objective for the first part of this dissertation is to ad-

vance the use of wearable IMU technology for accurately estimating the 3D rotations

across the human knee joint and for quantifying and evaluating human crawling per-

formance in an outdoor obstacle course. These objectives are achieved by completing

three major tasks, namely:

1.1 Demonstrate a proof of concept for deterministically aligning world frames

from independent sensors for a measurement theory for estimating 3D knee

rotations

1.2 Develop and validate a purely probabilistic measurement theory for esti-

mating 3D knee rotations

1.3 Validate the measurement theory on human subjects with MOCAP
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1.4 Develop and evaluate human crawling performance metrics

A brief summary for each of these major tasks is provided next, and each section rep-

resents a chapter of this dissertation. The first portion of this dissertation provides

a validated measurement theory for deploying wearable IMUs for resolving 3D knee

rotations, which will also provide a foundation for extending the method to other

major skeletal joints. Simultaneously, a thorough investigation of human crawling

performance demonstrating the power of nontraditional performance metrics in dis-

criminating superior crawling performance as well as quantifying the effects of load

on performance.

1.2.2 Chapter 2: Measurement Theory for Estimating Knee Rotations

with Deterministic World Frame Alignment

Task 1.1 is accomplished in Chapter 2, which contributes a theory of estimating

3D rotations across the knee via IMUs attached to the thigh (femur) and shank

(tibia). Rotation across the knee is defined as the relative orientation between the

femur and shank, which requires knowledge of the orientation of each bones anatomi-

cal frame of reference. This requirement creates two major challenges for IMU-based

methods. First, IMU-based methods are fundamentally incapable of adhering to the

International Society of Biomechanics (ISB) convention [18] for defining anatomi-

cally significant frames of reference for each bone, which relies on locating specific

bony anatomical landmarks. It is impractical to resolve the location and orientation

of the IMUs relative to these landmarks and so that information is essentially un-

available with IMU-based methods. Second, each IMU is an independent measuring

device and so one cannot estimate the orientation of one IMU (e.g. one attached to

the thigh) relative to a second IMU (e.g. one attached to the shank) without first

knowing the orientation of each IMU relative to a common world frame of reference.

Being independent devices, the two IMUs do not create identical world frames, even

if they are coupled with magnetometers (i.e., unequal magnetic field distortion from

ferromagnetic materials). This chapter lays out the methods for resolving both of

these challenges starting with an idealized version of a knee.
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The first challenge (deducing anatomically-relevant directions for the knee) is

addressed by introducing simple functional alignment movements that allow one to

estimate the medial-lateral axis of the knee and the superior-inferior axes of the tibia

and femur. The orientation of the shank and thigh are then deduced relative to these

“subject”-calibrated axes and from this follows anatomically-relevant estimates of 3D

rotations across the subjects knee. The second challenge is addressed by exploiting a

kinematic constraint [19] to create a common world frame from the independent world

frames of each IMU. The constraint follows from identifying time intervals when the

knee is functioning largely as a hinge joint and using the orientation of the hinge

axis to essentially “align” the two independent world frames of the IMUs. When

used in tandem as described in this chapter, the two methods yield a measurement

theory that successfully resolve 3D rotations across a joint. The validity of these

methods, particularly the proof of concept for the kinematic constraint, is assessed

using ground truth data collected from highly precise optical encoders embedded in

the rotational joints of a coordinate measurement machine (CMM). Two IMUs are

attached to links on the CMM (analogous to the shank and thigh) such that there are

three degrees of rotational freedom between them to mimic a human knee joint. The

resulting measurements clearly demonstrate that the theory can indeed resolve 3D

rotations across a mechanical joint with high precision (e.g., RMS errors less than 4◦)

[20]. In light of this success, albeit with an idealized mechanical testing apparatus,

an additional study was conducted to validate and extend the measurement theory

as described next.

1.2.3 Chapter 3: Measurement Theory for Estimating Knee Rotations

with Probabilistic World Frame Alignment

Chapter 2 addresses Task 1.2 by further developing the theory of estimating 3D

rotations across the knee by including estimates of IMU orientation from a robust

Error-State Kalman Filter (ESKF) and replacing the deterministic treatment of the

kinematic constraint with a probabilistic treatment in the ESKF formulation. This

chapter begins with a brief overview of approaches used for state estimation with
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an emphasis on those under the broad Kalman filtering umbrella. The first study

seeks to implement a robust EKSF with a novel treatment of magnetometer data

when local magnetic interference is detected. Specifically, when the IMU is static

and the magnetometer data is largely constant, this data is still provides a constant

direction of the magnetic field that can be used to correct integration drift error

about vertical. As a result, the agreement between the IMU-estimated orientation

and the orientation provided by the CMM is excellent (e.g., RMS errors less than 5◦

over a 5-minute period).

The second study then seeks to extend the robust ESKF from a single IMU to two

IMUs to then estimate the 3D angles between their respective measurement frames.

This is accomplished by incorporating the kinematic constraint described in Chapter

2 in which the knee analog frequently acts as a hinge. Specifically, the deterministic

world frame correction from Chapter 2 is incorporated into a measurement model to

be used to update the orientation of one of the sensors relative to the other. While

the results in Study 1 demonstrated a strong dependence on magnetometer data

for accurate estimates of absolute orientation for a single IMU, this study compares

the accuracy of the relative orientation estimates between two IMUs and with less

dependency on magnetometer data. Specifically, the kinematic constraint and the

novel magnetometer treatment are used as strategies to correct the integration drift

error between the sensors. Furthermore, a method is introduced for estimating the

orientation of each sensor relative to its respective link frame (i.e., its body-fixed

frame) without relying upon the alignment movements used in Study 1 and Chapter

2. Doing so reduces yet another source of error and allows for a clearer interpretation

of the efficacy of the ESKF. As a result, the agreement between the IMU-estimated

orientation and the orientation provided by the CMM is excellent (e.g., RMS errors

less than 6◦ over 2-minutes of challenging movements). Moreover, the probabilistic

treatment of the kinematic constraint is revealed to be far superior to the determin-

istic treatment from Chapter 2. Thus, an additional study is conducted to validate

the measurement theory developed in this chapter on human subjects and with in-

dependent measurements provided by optical motion capture (MOCAP).
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1.2.4 Chapter 4: Application of Measurement Theory to Human Sub-

jects and Validation with MOCAP

Task 1.3 is accomplished in Chapter 4, which describes the application and val-

idation of the measurement theory using human subjects and with independent

measurements from optical motion capture (MOCAP). In the preceding chapter,

complexities of the human knee were largely absent due to the rigidity and unam-

biguity of the rotational joints of the CMM. By contrast, present in experiments

on human subjects are the difficulties arising from imprecise determination of the

knee anatomical axes, laxity of the knee, superimposed motions of the underlying

soft tissues, among others. To establish the validity of the measurement theory in

the presence of these complexities, human subjects complete a range of increasingly

dynamic tasks to determine when and how rotation estimates from the IMU-based

measurement theory differ from those provided by MOCAP. The results of this in-

vestigation have two important implications. The first is a demonstration that the

anatomical kinematic constraint that the human knee acts predominantly as a hinge

is reliable in correcting relative integration drift error about vertical. The second

reveals that estimation errors due to skin artifact manifest differently in the two

motion capture modalities. Furthermore, the method introduced in Chapter 3 for

determining the relationships between the IMU body-fixed frames and the CMM’s

links is implemented here to determine the relationship between the IMU frames and

their respective “true” anatomical frames.

Finally, one of the significant, open challenges associated with IMU-based esti-

mation of joint angles relates to how the anatomical frames are defined. This chapter

also includes a systematic survey of the different methods reported in the literature

(n = 112) for defining anatomical frames of reference for inertial motion capture,

which are roughly categorized into one of four approaches. The first and most com-

mon method is functional alignment movements, which consist of a human subject

completing one or a set of movements from which at least one anatomical axis can

be estimated. The other most common method is to assume the sensor orientation is

aligned with the body segment’s anatomical frame, which is accomplished by the re-
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searcher carefully attaching the IMU to the body segment. Within the last few years,

self-aligning methods have been proposed in which the body segment anatomical axes

are estimated by exploiting a kinematic model or assumption of the joint. Finally,

some researchers have proposed using external information from a source other than

the IMUs to determine the relationship between the IMU body-fixed frame of refer-

ence and the anatomical frames. There are significant variations within each method

thereby highlighting the fact that there does not exist a common convention for defin-

ing anatomical frames of reference for inertial motion capture despite the exponential

growth in studies utilizing IMUs for human biomechanics research.

1.2.5 Chapter 5: Human Crawling Performance Metric Development

and Evaluation

Task 1.4 is addressed in Chapter 5, which includes developing and evaluating

metrics of performance for a crawling task defined in the context of an outdoor ob-

stacle course. For military organizations worldwide, crawling represents a type of

locomotion that is still operationally relevant to this day. Crawling has implications

for assessing functional capacity following injury [21], exposing the mechanisms and

types of injury [22, 23], and optimizing the size and configuration of carried loads [24–

28]. Historically, crawling performance for military assessment is quantified solely by

the time required to complete the task. To that end, four performance metrics were

developed to describe and distinguish crawling performance in population of human

subjects. Crawl speed is defined as the average speed the crawls at to complete the

task. Crawl stride time is the mean of the stride times defined by elbow strikes de-

tected in the data collected by upper arm-mounted IMUs. Two coordination metrics

describe the phasing of the ipsilateral (same side) and contralateral (opposite side)

pairs of upper arms and thighs as determined from data collected at the upper arms

and thighs.

A thorough statistical analysis of these metrics reveal these four metrics can

effectively distinguish superior crawling performance. In particular, faster crawl

speeds (denoting superior performance) are accompanied by shorter crawl stride
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times, largely in-phase contralateral limbs, and largely out-of-phase ipsilateral limbs.

In light of this success, an additional study was conducted to investigate the relation-

ship between these performance metrics and body-borne loads. In previously con-

ducted studies [24–28], the results suggest that added load deteriorates performance

as defined by a timing metric. However, the mechanisms driving that degradation

have largely been unknown until now. Additional human subjects were recruited to

completed the same crawling task four times: twice unloaded, once carrying 15% of

their body weight, and once carrying 30% of their body weight. The goal of this study

was to quantify and characterize the changes in performance due to the additional

load for which the hypothesis was guided by the results from the previous study.

In particular, the results confirm that performance degrades such that slower crawl

speeds are accompanied by longer crawl stride times and less coordinated limbs.

1.3 Part II: Engaged Learning of Engineering Dynamics

1.3.1 Motivation and Potential Impact

The second part of the dissertation leverages IMU technology (called iNewton)

as a platform for active learning of Newtonian mechanics to support undergraduate

education in engineering. Active learning is broadly defined as any instructional

practice that involves students in the learning process, and common approaches in-

clude techniques like cooperative learning, problem-based learning, and experiential

learning [29]. A systematic review conducted by Prince [30] provides strong evi-

dence that active learning results in positive gains in student learning and broader

educational experiences across a wide variety of science, technology, engineering,

and mathematics (STEM) fields. This mode of learning is largely grounded in con-

structivist learning theory, which posits that students construct new knowledge by

connecting new ideas and experiences to existing ideas and experiences to form new

or enhanced understanding [31]. John Dewey, arguably the philosophical founder of

this learning theory, says, “To ’learn from experience’ is to make a backward and

forward connection between what we do to things and what we enjoy or suffer from
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things in consequence. Under such conditions, doing becomes a trying; an experiment

with the world to find out what it is like” [32, p. 164]. As this applies to learning

Newtonian mechanics, a logical hypothesis is providing students with authentic op-

portunities to connect the mathematical models describing the physical phenomena

will improve their conceptual understanding of engineering dynamics. Additionally,

Betz and Schifano [33] demonstrated that active learning can improve self-efficacy

(the strength of one’s belief in knowledge and skills needed to achieve a task) while

Ohland et al. [34] showed that academic engagement via active learning is a precursor

to persistence (and by association intention to persist [35]).

Given the ease with which IMUs yield motion (kinematic) data, they provide a

novel and ready-made platform to provide authentic opportunities to explore and

learn Newtonian mechanics as a new form of engaged learning. Consequently, this

part of the dissertation represents a focused study within the field of Engineering

Education Research (EER) to assess how best to provide these opportunities in such

a way that are beneficial for students while also considering the feasibility for in-

structors to implement this in the future. Through this study, IMU technology is

systematically introduced as a new learning intervention to an otherwise traditional

lecture-based classroom for a large undergraduate course at the University of Michi-

gan. The learning intervention takes the form of simple experiments (with varying

levels of student engagement) that exploit IMU data to reveal important and com-

monly misunderstood concepts in particle and rigid body dynamics. Importantly,

these studies endeavored to quantify and compare the effects of the different types

of the intervention on student conceptual understanding, self-efficacy, and intention

to persist as summarized further below.

The overall objective for the second part of this dissertation is to advance the

use of IMU technology for engaged learning of Newtonian mechanics for engineering

education. This will be achieved by systematically scaling up the use of IMUs in the

classroom, which includes Demonstrations, Prescribed Experiments, and Student

Projects, and measuring the effects of the intervention on the students. Thus, this

objective is achieved by two main research tasks, namely:
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2.1 Quantifying and evaluating the cognitive effects of this intervention (i.e.,

conceptual understanding of engineering dynamics)

2.2 Quantifying and evaluating the non-cognitive effects of this intervention

(i.e., self-efficacy and intention to persist)

Summaries of the major tasks is provided as well as descriptions of the theoretical

basis for this research and the study design.

1.3.2 Chapter 7: Active Learning in Undergraduate Engineering

Background, a conceptual framework, and the learning theories that guide the

study and analysis are presented in Chapter 7. From the literature, research across

many disciplines has shown that active learning techniques positively affect concep-

tual understanding, self-efficacy, and intention to persist. A conceptual framework

relating these cognitive and non-cognitive effects to each other as well as to active

learning is proposed. Finally, two theories provide a basis for the study’s hypothesis

and the conceptual framework. The first learning theory guiding this work is con-

stuctivism, which theorizes that students construct their own understanding of new

concepts through a process that depends on their prior knowledge and experiences

[36]. The other is Albert Bandura’s psychological theory of self-efficacy, which “refers

to beliefs in one’s capabilities to organize and execute the courses of action required

to produce given attainments” [37, p. 3]. Constructivism and self-efficacy provide a

basis for why the different levels of the intervention are expected to positively impact

conceptual understanding, self-efficacy, and intention to persist.

1.3.3 Chapter 8: iNewton Study Design

This chapter provides a detailed description of the study design including the

class setting, a pilot study, participant demographics for the current study, and de-

scriptions for each active learning IMU intervention level. The study was designed

such that each subsequent intervention level increases the cognitive engagement the

students have with the IMU technology, which can be described by Chi’s ICAP
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framework [38] (also described in Chapter 7). This framework categorizes students’

engagement activities based on students overt (observable) engagement behaviors,

which correspond to one of four modes: Interactive, Constructive, Active, and Pas-

sive [39]. The first level of this intervention takes the form of two Demonstrations

conducted in class for the students (Passive). The second intervention level takes

the form of two Prescribed Experiments the students conduct on their own outside

of class with IMUs provided to them (Active). The third and final level of this

intervention takes the form of Student Projects for which the students design and

conduct experiments of their own imagining that are meant to reveal some subset of

course concepts (Constructive).

1.3.4 Chapter 9: iNewton Cognitive Effects

Chapter 9 addresses Task 2.1, which contains several subtasks in addition to

evaluating the cognitive effects of the active learning IMU intervention. Monfort,

Brown, and Pollock state, “Conceptual understanding (peoples personal explanations

of how and why the world works) is knowledge in context, and is therefore more

transferable than computational ability” [40, p. 111]. For this work, student con-

ceptual understanding is measured using a concept inventory called the Dynamics

Concept Inventory (DCI) [41, 42]. Concept inventories, like the DCI, are frequently

used to assess student understanding of a specific set of concepts, typically in a low-

stakes setting. These concept inventories are typically evaluated for their validity

and reliability, which is frequently repeated in a specific study’s context.

Thus, the first subtask (study) investigates how student performance during a

low-stakes evaluation of conceptual understanding relates to performance during a

high stakes evaluation. The synergy of the relationships between these evaluations

indicate the low-stakes overall DCI assessment is an authentic measure for quanti-

fying student conceptual understanding. Spurred by the results presented by Jorion

et al. [43], the second study evaluates the validity and reliability of the individual

items on the DCI with the goal of eliminating less informative items. As a result

of these analyses, four items were eliminated from the analysis for the final subtask
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evaluating the cognitive effects of the IMU-based active learning intervention. The

results of this analysis reveals the intervention had limited impact on conceptual

understanding as measured by the DCI. However, the evaluation of the DCI for the

second subtask and additional analyses conducted in the final subtask reveals the

DCI in its current form lacks the ability to differentiate conceptual understanding of

engineering dynamics concepts on a finer grain.

1.3.5 Chapter 10: iNewton Non-Cognitive Effects

The second task (Chapter 10) addresses quantifying the non-cognitive effects

that this intervention may have on students’ self-efficacy and intention to persist.

Self-efficacy is a term that, in this context, focuses on the student’s beliefs that

he or she will be successful in engineering in general as well as in this specific in-

troductory engineering dynamics course [44, 45]. As previously mentioned, both

conceptual understanding and self-efficacy have ramifications for students’ intention

to persist, which is defined as students’ choice to continue with the major. The final

non-cognitive response investigated in this chapter is student affect, which relates to

how students feel about engaging with the different intervention levels. Thus, these

four responses (Engineering Self-Efficacy, Course-Specific Self-Efficacy, Intention to

Persist, and Student Affect) are measured with a modified version of an instrument

called the Longitudinal Assessment of Engineering Self-Efficacy (LAESE) [46]. The

first study evaluates the validity and reliability of the four constructs in the modi-

fied LAESE before proceeding to evaluating the effects of the active learning IMU

intervention on each of them. The next three studies leverage the findings from the

first by explicitly evaluating the effects of the intervention on self-efficacy, intention

to persist, and student affect, respectively.

This first study confirms the validity and reliability of the four constructs. A

second study examines the effects of the active learning IMU intervention on En-

gineering Self-Efficacy (ESE) and Course-Specific Self-Efficacy (CSSE) and exhibits

mixed results. Decreases in ESE are associated with increasing levels of the in-

tervention (i.e., increasing levels of cognitive engagement). However, the significant
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interaction between ESE Pre-score and intervention level indicates that students who

enter the class with high ESE are also relatively unaffected by the intervention, which

could be evidence of students who have developed a resilient sense of self-efficacy.

For CSSE, there is a significant increase for students who engaged with the Student

Projects version of the intervention. A third study reveals differences in Intention to

Persist (PER) are significantly associated with the active learning IMU intervention.

The largest increases in PER, particularly for students with lower PER at the start

of the semester, relate to greatest engagement with the IMU technology. Specifi-

cally, Prescribed Experiments and Student Projects are associated with statistically

significant increases in PER with the gains associated with Student Projects being

the largest. A final (fourth) study confirms that students have a positive Student

Affect (SA) towards the interventions. While there is no significant difference in SA

between Demonstrations and Prescribed Experiments, there is a significant increase

in SA associated with Student Projects.
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Part I

Human Biomechanics
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CHAPTER 2

Measurement Theory for Estimating Knee

Rotations with Deterministic World Frame

Alignment

2.1 Introduction to Motion Capture

The human knee is susceptible to a number of injury mechanisms including non-

contact hyperextension, over-use, and direct impact (see, for example, [47, 48]. These

injuries can manifest as a number of different health problems like osteoarthri-

tis, which often severely limit mobility and activities of daily living [49, 50]. Ac-

cordingly, the three-dimensional (3D) rotations across the knee (flexion-extension,

internal-external rotation, and abduction-adduction) serve as important markers of

knee health and performance, and in multiple contexts such as human mobility,

worker safety and health, athletic performance, and warfighter performance. For

example, clinicians assess knee laxity and rotations to diagnose knee injuries and to

determine the need for medical interventions of varying degrees like physical therapy,

injections, or knee arthroplasty [14, 51]. Many biomechanical analyses incorporate

measurements of knee rotations including studies of the long-term effects from knee

injuries [52, 53], joint disorders including arthritis [54], and age- and gender-related

differences in knee health [55]. By analyzing knee rotations, researchers have also ex-

plored the effects of load carriage related to fall prevention [56], metabolic cost during
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walking [57, 58], and warfighter performance during walking [59]. Warfighter perfor-

mance in particular is difficult to study since the conditions under which warfighters

perform cannot be recreated well in a laboratory, but restricting studies to a labora-

tory have other ramifications as well. For example, unconstrained walking gait over

ground has been found to differ from gait employed while walking on a treadmill

[60–62].

The several commonly used methods for measuring knee rotations, namely go-

niometers, magnetic motion capture, and optical motion capture, are largely re-

stricted to laboratory settings. Uniaxial goniometers for measuring flexion-extension

are either purely mechanical (akin to a protractor) or electromechanical (e.g. poten-

tiometers), as are multiaxial goniometers for measuring any combination of flexion-

extension, internal-external rotation, and adduction-adduction [51, 54, 63]. In any

case, errors are induced by soft tissue sensor mounting as well as misalignment of

the goniometer sense axes relative to the knee anatomical axes. Magnetic motion

capture triangulates the location of magnetic sensors rigidly attached to major body

segments via a magnetic field generated by a transmitter, which restricts the capture

volume to modest sizes [64]. Errors can arise from low sampling rates, latency, and

magnetic field disturbances from electrical currents (i.e. wiring) and ferromagnetic

materials (i.e. building materials).

Most commonly, knee rotations are deduced from optical motion capture data,

which can be collected one of two ways. The more common method involves placing

markers on anatomically prominent bony landmarks located by the investigator by

palpating body segments. These markers are either passive or active. Passive markers

are retroreflective and are triangulated by light-emitting infrared cameras placed

around the capture space (see, for example, [14, 53, 56, 59, 65]. Active markers

produce the light via LEDs to be triangulated by cameras, which requires a battery

source and oftentimes the markers are daisy chained within a suit worn by the subject

[66]. Because these markers are the light sources instead of reflecting the light from

infrared cameras, the capture volumes are typically much larger with a higher signal-

to-noise ratio [67]. The less common method is markerless and requires complex

algorithms to resolve the motion of each body segment [68, 69]. Despite significant

19



advances in this methodology, the current state of these algorithms are not yet at

the point that they can resolve body kinematics to a level of precision and accuracy

comparable to the more traditional methods. Regardless, optical motion capture

methods place limits on the capture volume and may also suffer from occasional

marker occlusion, soft tissue movement relative to the underlying skeletal structure,

and marker placement precision on approximate bony landmarks [67]. Although

magnetic and optical motion capture share the same benefits of being position-based,

they still tether studies to a laboratory setting.

Body-worn inertial measurement units (IMUs) provide an attractive, alternative

means to estimate the 3D rotations across the knee from data collected from the

on-board accelerometers, angular rate gyros, and magnetometers (if available). Un-

like the above methods that are largely restricted to laboratory settings, body-worn

IMUs may readily be used outside the laboratory, thereby potentially increasing the

validity of research conclusions by enabling data collections in the real world. To

estimate 3D rotations across the knee, one must first estimate the relative orienta-

tion of the anatomical axes of the thigh to those of the shank, a result that does not

immediately follow from shank- and thigh-mounted IMUs as they are independent

devices [20]. However, this result is obtainable if the orientation of each IMU is

first established relative to a common world frame of reference, which is a technical

challenge addressed in this chapter. Furthermore, results from IMU-based estimates

will only agree with more traditional motion capture, like optical motion capture, if

the anatomical frames of reference for each body segment can be identified, which is

another challenge addressed in Chapter 4.

2.2 Inertial Motion Capture Literature Review

A number of prior studies propose strategies for estimating rotations across a

variety of joints using body-worn IMUs. Luinge et al. [70] deduce the relative ori-

entation of two IMUs by exploiting a wrist joint constraint. Similarly, Müller et al.

[71] determine the rotation axes for and ultimately the angles across the elbow via

an optimization algorithm built on the condition that the joint has only two degree
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of freedom. Using the medial-lateral axis of the knee as an anatomical constraint,

Cooper et al. [72] estimate (planar) knee flexion-extension during straight-line walk-

ing through fast running. Following suit, Seel et al. [19] also estimate knee flexion-

extension after first constructing the knee medial-lateral axis using angular rate data

from shank- and thigh-mounted IMUs assuming their world frames are identical. In

addition, they fuse gyro- and accelerometer-based knee flexion-extension estimates

to significantly reduce the effects of drift during long trials. An extension is offered

by Laidig et al. [73] where knee flexion-extension angles are accurately estimated by

exploiting the knees hinge axis to control misalignment about the vertical axis due

to drift and/or magnetic field interference. By contrast,Favre et al. [74] exploit the

anterior-posterior axis of the knee as an anatomical constraint to also estimate knee

internal-external rotation and abduction-adduction (i.e., full 3D rotations across the

knee) through an intermediate step employing the distinct world frames of the two

IMUs. The misalignment between the distinct world frames is estimated using an

assumed constant correction angle for relatively short duration trials. An extension

is offered by Brennan et al. [75] through a time-varying correction angle using cor-

rection estimates at the start and the end of each trial and by requiring the IMUs

return to their original orientations. This method is validated using an instrumented

gimbal that provides ground truth data from embedded optical encoders.

While the above methods do not consider IMUs that include magnetometers,

other methods do so and use magnetic North to align the IMU world frames as

well to estimate (yaw) drift about the vertical axis [76, 77]. An overall approach to

fusing magnetometer and inertial sensor data is outlined in [78] which also consid-

ers corrections for magnetic field interference. However, the estimates of magnetic

North from two IMUs may differ due to discrepancies in magnetometer data [79, 80]

despite these corrections, ultimately limiting this advantage. Reducing these dis-

crepancies may follow from improving IMU hardware, updating filter parameters, or

including additional (and complementary) sensors for fusion [81]. The remainder of

this chapter will detail a new method of controlling orientation drift by exploiting

an anatomical kinematic constraint specific to the knee, followed by results from a

validation conducted with a coordinate measurement machine (CMM) (MicroScribe
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G2X, Solution Technologies, MD, USA).

2.3 Methods

The CMM show in Figure 2.1a embeds high precision optical encoders (0.0003°
resolution [82]) that measure rotations about three axes representing knee flexion-

extension (FE), internal-external rotation (IE), and abduction-adduction(AA). Two

IMUs (Opal sensors, APDM, Portland, OR, USA; sensor characteristics and orienta-

tion estimate information available at http://www.apdm.com/wearable-sensors/),

rigidly mounted to the illustrated two links replicate the functions of thigh- and

shank-mounted IMUs (T and S, respectively). The resulting apparatus enables di-

rect comparison of IMU-estimated knee FE, IE, and AA to measured values from

the three high precision optical encoders and over a wide range of simulated knee

movements.

2.3.1 Experimental Procedure

For the validation, data from the two IMUs are first time-synchronized to the

encoder data from the CMM. The assembly is rotated by hand about the CMMs

base (white axis in Figure 2.1a) with the three knee axes (FE, IE, AA) locked.

The angle measured by the optical encoder about the base (dashed white) axis is

differentiated with respect to time yielding an angular velocity signal to compare

with those measured by the thigh (green) and shank (blue) IMUs. The data from

the two IMUs are already time-synchronized, and their synchronization with the

data from the CMM follows from measuring (and subsequently subtracting) the

time delay between their respective angular rates. Next, the two functional alignment

movements are conducted to estimate the anatomical axes of the shank and thigh for

the knee analog. First, the superior-inferior axes of the shank and thigh are estimated

by holding each segment still (for approximately 10 seconds) while vertical. The

measured acceleration for each segment defines the direction of gravity, which is also

aligned with the superior-inferior axis of each segment. Next, the medial-lateral axis
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(a) (b)

Figure 2.1: Knee analog formed by a coordinate measurement machine (CMM). (a)
Three anatomical axes for flexion-extension (FE), internal-external rotation (IE),
and abduction-adduction (AA) are labeled are the corresponding rotational joints of
the CMM. Two labeled IMUs are mounted to the CMM with T (green) analogous
to a thigh-mounted IMU and S (blue) analogous to a shank-mounted IMU. (b)
Definitions of three frames of reference for a human knee associated with a shank-
mounted IMU (blue) including the shank IMU frame, FS, the shank anatomical
frame, FAS, and the shank IMU’s world frame, FWS. Analogous frames of reference
are illustrated for the thigh-mounted IMU (green).

is established using essentially the procedure outlined in [19]. In particular, the CMM

is exercised purely about the flexion-extension axis with the two remaining knee axes

locked. In so doing, the knee acts as a pure hinge, and one can readily compute the

medial-lateral (hinge) axis with respect to the sense axes of each IMU. The resulting

medial-lateral axes, so measured by the thigh- and shank-mounted IMUs, play a key

role in the estimation process described below. Finally, four characteristically distinct

knee movements for generating the truth data are considered for validation. These

movements, each repeated for N = 50 trials, include: 1) pure flexion-extension, 2)

pure internal-external rotation, 3) pure abduction-adduction, and 4) combinations

of all three rotations. Each type of movement is made by hand, and one trial lasts

approximately 10 seconds (with the appropriate CMM axes either free or locked).
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2.3.2 Defining Segment Frames of Reference

Figure 2.1b illustrates three distinct frames of reference associated with each of

the thigh- and shank-mounted IMUs. In particular, note the shank IMU frame, FS

(defined by the IMU sense axes), the shank anatomical frame, FAS, and the shank

IMU world frame, FWS. The three analogous frames of reference (FT, FAT, FWT)

associated with the thigh-mounted IMU are also illustrated. The ultimate goal is

to estimate the 3D rotations (FE, IE, AA) across the knee and doing so requires

estimating the orientation of the shank anatomical frame, FAS, relative to the thigh

anatomical frame, FAT. That critical step, however, requires introducing a common

world frame of reference for the two IMUs as described below. Prior to that, the

separate world frames and anatomical frames for both segments are established and

described below.

The quaternion output (which is provided by proprietary software from APDM;

for examples on how to compute quaternion output from IMU data, refer to [70, 71,

75, 76]) from an IMU, say S, relates the orientation between an IMU frame, FS, and

a world frame, FWS. The world frame FWS is defined by three mutually orthogonal

axes (X̂WS, ŶWS, ẐWS) with the ẐWS axis chosen to align with gravity (using

accelerometer data from S), the X̂WS axis chosen to align with magnetic North (using

magnetometer data from S), and the ŶWS axis computed from ŶWS = ẐWS × X̂WS

and thus chosen to point west. Let RWS/S represent the resulting rotation matrix

from FS to FWS, a result that necessarily utilizes the magnetic North estimate

from S. An analogous procedure holds for the thigh-mounted IMU leading to the

construction of RWT/T representing the rotation matrix from FT to FWT, a result

that necessarily utilizes the magnetic North estimate from T. Note also that the

location and orientation of either IMU on its respective segment are arbitrary and

the orientation of each IMU relative to its respective anatomical axes is established

using functional alignment movements as detailed next.

The two functional alignment movements establish the shank anatomical axes

(X̂AS, ŶAS, ẐAS) that define FAS and the thigh anatomical axes (X̂AT , ŶAT , ẐAT )

that define FAT. The procedure for both body segments is identical, and so only that
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for the shank is detailed. First, the average acceleration measured during the still

period yields a first estimate of the shank-fixed ẐAS axis (superior-inferior axis) of

the shank anatomical frame that is approximately aligned with gravity. (Note that

during a trial with a human subject standing still, the direction of gravity remains

approximately aligned with the superior-inferior axis.) This still period is followed

by rotations purely about the CMM flexion-extension axis (while locking the other

two rotational degrees of freedom). Following Seel et al. [19], the resulting angular

velocity ωS and ωT measured by S and T, respectively, is used to define a unit vector

aligned with the medial-lateral (hinge) axis measured in FS. The medially pointing

direction of this unit vector defines the anatomical axis. The anterior-posterior axis

follows immediately from

ŶAS = ẐAS × X̂AS (2.1)

Finally, the superior-inferior axis is adjusted (if needed) so that the medial-lateral

axis remains orthogonal to the other two anatomical axes per,

ẐAS = X̂AS × ŶAS (2.2)

The resulting orthonormal triad (X̂AS, ŶAS, ẐAS), which are measured with respect

to the shank IMU frame FS, define the shank anatomical frame with the hinge axis

n̂S = X̂AS. The (constant) rotation matrix from the shank IMU frame, FS, to the

shank anatomical frame, FAS, follows from,

RAS/S =

X̂AS

ŶAS

ẐAS

 (2.3)

where each row contains the components of the anatomical axes measured with

respect to FS. Per ISB convention [18], the medial-lateral axis corresponds to the

FE axis, the anterior-posterior axis corresponds to the AA axis, and the superior-

inferior axis corresponds to the IE axis. An analogous procedure establishes the knee

hinge axis n̂T = X̂AT and the thigh anatomical frame (X̂AT , ŶAT , ẐAT ), which are
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measured with respect to the thigh IMU frame FT. The (constant) rotation matrix

from the thigh IMU frame, FT, to the thigh anatomical frame, FAT, follows from,

RAT/T =

X̂AT

ŶAT

ẐAT

 (2.4)

2.3.3 Estimating 3D Knee Rotations Following Construction of a Com-

mon World Frame

The dynamic 3D knee rotations are ultimately estimated from the (time-varying)

rotation matrix, R(t)AT/AS, from the shank anatomical frame, FAS, to the thigh

anatomical frame, FAT. One may believe that this rotation matrix follows from the

component rotations defined above per

R(t)AT/AS = RAT/TR(t)T/WTR(t)WS/SRS/AS (2.5)

However, this result is correct only in the rare instances when the two IMU world

frames, FWS and FWT, are aligned. Frequently, the magnetometers in the two IMUs,

S and T, provide distinct estimates of magnetic North (especially indoors where fer-

romagnetic interferences are often prevalent), and thus their respective world frames

FWS and FWT will be misaligned in general. This is also true for methodologies

that do not employ magnetometers, where changes in orientation are estimated from

world frames constructed by other means/assumptions. Furthermore, the estimated

world frames often vary with time due to sensor drift (bias) errors. In short, the

two IMUs are independent sensors yielding independent and time-varying (drifting)

world frames as also illustrated in the example results that follow.

Therefore, the key challenge here lies in constructing a common world frame of

reference for the two IMUs, or equivalently, estimating the “correction” rotation

matrix C(t)WT/WS from FWT to FWS. There is no clear way of determining the

angular differences in the estimates of magnetic North from the two IMUs. However,

one can exploit the constraint that the hinge (medial-lateral) axes, n̂S and n̂T , should
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be identical in a common world frame during the time intervals when the knee can

reliably simplified to a hinge joint. This “hinge constraint” is treated as a full vector

equation and therefore generalize the scalar treatment of this constraint employed

in [19]. Whenever this hinge criterion is satisfied, the correction rotation matrix

C(t)WT/WS can be constructed from n̂S and n̂T by computing the axis of rotation,

k̂, and the associated angle of rotation, θ, needed to align and in their respective

world frames. To this end, the cross product,

k̂(t) = R(t)WS/Sn̂S ×R(t)WT/T n̂T (2.6)

defines the axis of rotation and the dot product,

θ(t) = cos−1
(
R(t)WS/Sn̂S ·R(t)WT/T n̂T

)
(2.7)

defines the required angle of rotation. The requisite correction rotation matrix follows

from Rodrigues rotation formula [83] per

C(t)WT/WS = I + sin θ(t)k̂×(t) +
(
1− cos θ(t)

)
k̂×(t)2 (2.8)

where I is the identity matrix and k̂× is the skew symmetric form of k̂. The correction

rotation matrix corrects the small misalignment between the two world frames and

between successive times when the hinge criterion (described below) is satisfied. The

resulting corrected form of Eqn. 2.5 becomes

R(t)AT/AS = RAT/TR(t)T/WTC(t)WT/WSR(t)WS/SRS/AS (2.9)

where R(t)AT/AS is again the needed time-varying rotation matrix describing the ori-

entation of the anatomical shank frame relative to the anatomical thigh frame. Note

that the ISB recommends [18] first calculating FE, then IE, and finally AA. However,

due to the mechanical design of the knee analog, the reverse order is required. For

the knee analog, the joints are in series order such that the rotation sequence needed

to rotate from the shank link to the thigh link require rotations about the AA axis
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first, the IE axis second, and the FE axis third. Decomposing with that order in

mind (analogous to the procedure in [75]) yields the 3D rotation angles across the

knee analog.

The above strategy for aligning the two world frames holds for the time intervals

when the knee analog in this experiment is predominantly functioning as a hinge

joint. To this end, one must develop criteria for determining: 1) when the knee

is predominantly functioning as a hinge joint and, 2) a strategy for aligning the

two world frames in between those time intervals (i.e., when the knee is no longer

predominantly functioning as a hinge joint).

The time intervals when the knee is predominantly functioning as a hinge joint

are identified under two conditions: Case 1a) when the knee joint is approximately

stationary, and Case 1b) when the knee joint is rotating.

1a) Functioning as a Hinge - Stationary Case: The knee analog may be considered

a hinge joint in the limiting case when it is essentially locked (i.e. straight)

and stationary. These time intervals are identified when the segments are sta-

tionary and also nominally aligned with gravity (such as the still period in the

functional alignment movement sequence). In such instances, the knee func-

tions as a hinge with zero hinge rotation rate. These conditions are considered

satisfied in these experiments when

max
{
‖aS − g‖ , ‖aT − g‖

}
≤ 0.02 ‖g‖ (2.10)

mean

{
cos−1

(
a(t)S · a(0)S
‖a(t)S‖ ‖a(0)S‖

)
, cos−1

(
a(t)T · a(0)T
‖a(t)T‖ ‖a(0)T‖

)}
≤ 3° (2.11)

in which a(0)S and a(0)T denote the (constant) acceleration measured during

the functional alignment step with the segments vertical.

1b) Functioning as a Hinge - Rotating Case: When the conditions for the stationary

case above are not met, the knee joint is considered rotating. During such

instances, the knee may still function predominantly as a hinge joint (with

non-zero hinge rotation rate) whenever the angular velocities of the shank and
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the thigh are predominantly aligned with the hinge axis defined by and on each

segment respectively. For this experiment, the knee functions as a hinge with

non-zero hinge rotation rate whenever

min
{
|ωS|, |ωT |

}
> 30°/s (2.12)

mean

{
ωS · n̂S
|ωS|

,
ωT · n̂T
|ωT |

}
≥ 0.99 (2.13)

The numerical thresholds for the criteria above are stringent, but appropriate for

the knee analog employed in the study. There are frequent periods of times when

neither criteria are met and the knee analog no longer functions purely as a hinge as

described next.

2) Not Functioning as a Hinge: When neither case above holds, the knee is no

longer functioning as a hinge and appreciable internal-external rotation and/or

abduction-adduction exists. During such time intervals, it is assumed that

varies slowly and continuously and that it can be estimated by linear interpo-

lation between two consecutive “update” times when either of the two cases

above hold.

2.4 Results and Discussion

2.4.1 Qualitative Comparisons

The rotation matrices between the sensor frames and their respective world frames

are defined by both horizontal (or yaw) and vertical (or elevation) angular com-

ponents. Studying these angular components is important for understanding the

challenge (and the solution) to constructing the correction rotation matrix CWT/WS

introduced above that corrects the differing and drifting IMU world frames.

Figure 2.2 illustrates the orientation of the shank IMU frame FS relative to its

world frame FWS in terms of both yaw ψ and vertical φ angular components. In

particular, the unit vectors X̂WS and ŶWS define the horizontal plane for FWS, which
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differ from that of FS by the vertical angle φ. Moreover, the frames also differ by the

yaw angle ψ, which is defined as the angle between X̂WS and the projection of x̂S

onto the horizontal plane for FWS. One way to visualize the drift error is to examine

how either angle varies with time over a trial during which the knee is periodically

returned to its initial orientation.

Figure 2.2: The orientation of the shank IMU frame FS (blue) relative to the shank
world frame FWS (black). The orientation is defined by the illustrated yaw ψ and
vertical φ angular components. The horizontal dotted line is the projection of x̂S
onto the X̂S-ŶS plane and the vertical dotted line is the projection onto the vertical
direction.

For example, Figure 2.3a illustrates how the yaw angles computed for both IMUs

(relative to their respective world frames) vary with time for the simplest testing

session when the knee undergoes pure flexion-extension. The portion of the testing

session shown encompasses the two functional alignment movements (first shaded

interval corresponds to the still period and the first unshaded interval corresponds

to FE rotations), followed by another still period (second shaded interval), then
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a longer (second unshaded) interval with four trials of five repetitive knee flexion-

extension movements (with 46 more trials thereafter that are not shown). The knee

is approximately returned to its original position at the end of each knee flexion-

extension trial. Note that this approximately 3-minute sample is taken from a testing

session lasting approximately 15 minutes, and substantial drift arises over this long

period of time. Figure 2.3b illustrates the Boolean values for the criteria for the two

cases (Case 1a and Case 1b) when the knee acts as a hinge; a value of 1 corresponding

to the criteria being satisfied and a value of 0 corresponding to the criteria not being

satisfied. As expected, the knee analog functions as a hinge for the stationary case

(Case 1a) during the rest periods. Similarly, the knee analog functions as a hinge

during the subsequent rotations that induce pure flexion-extension for this trial (Case

1b). (There are also short intervals when Case 1b is not satisfied as the angular

velocity magnitudes fall below the selected threshold values.)
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(a) (b)

Figure 2.3: Example results from pure flexion-extension trial. (a) Yaw angles for
shank- and thigh-mounted IMU versus time encompassing two functional alignment
movements (first shaded and unshaded regions, respectively), a rest period (second
shaded region), and then four trials of five repetitive knee flexion-extension move-
ments between which the knee is returned to the original position. (b) Boolean (0 or
1) values for criteria defining Case 1a (stationary) and Case 1b (rotating) for which
the knee analog acts as a hinge. The solid black line is for Case 1a and the dashed
grey line is for Case 1b. The shaded and unshaded areas denote the same regions in
(a).

The orientation drift error manifests in the slowly changing (low frequency) com-

ponents of ψthigh and ψshank despite the fact that the knee returns to its nominal

orientation between successive flexion-extension movements. In particular, the net

change in ψthigh and ψshank over the entire 15-minute period are 65° and 101°, re-

spectively. This corresponds to drift rates for the thigh and shank sensors of -0.07°/s

and -0.11°/s, respectively, which are consistent with previously measured drift rates

for MEMS inertial sensors; see, for example, [84]. The two world frames are mis-

aligned at the start of the trial and continue to drift apart throughout the trial and

it should also be noted the drift is not exclusively about the vertical axis. The mis-

alignment of the world frames, and its associated drift, is compounded by sources

of ferromagnetic interference in the laboratory environment. Despite the observably
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large misalignment of the world frames, the method above correctly identifies the

correction rotation matrix needed to accurately estimate 3D rotations across the

knee analog.

Figure 2.4 illustrates the differences between the true (CMM) and estimated

(IMU) flexion-extension, internal-external rotation, and abduction-adduction angles

for one trial of five repetitive flexion-extension movements previously considered in

Figure 2.3. These estimates closely track the truth values reported by the optical

encoders; refer also to quantitative comparison that follows. Also shown are the

differences between the true and (uncorrected) estimates that result from using Eqn.

2.5 instead of Eqn. 2.9; or equivalently, assuming that CWT/WS = I. Clearly,

ignoring this correction leads to large errors and for all three rotation angles. Note

that throughout this trial, the knee analog functions largely as a hinge, meaning that

either Case 1a) or Case 1b) is almost always satisfied (and the linear interpolation

associated with Case 2 is not required); refer to results illustrated in Figure 2.3b.

However, this is not the case in the following trials that induce substantial internal-

external rotation and/or abduction-adduction.
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Figure 2.4: Example results from pure flexion-extension trial. The difference between
CMM truth data and IMU-derived estimates with the correction (black) and without
the correction (red) of flexion-extension, internal-external rotation, and abduction-
adduction are plotted for a representative time period.

Figure 2.5 illustrates example results for two trials that consider (a) pure internal-

external rotation and (b) pure abduction-adduction. As with the prior case, the dif-

ferences between the true and estimated flexion-extension, internal-external rotation,

and abduction-adduction angles remain small, meaning the estimates closely track

the truth values reported by the optical encoders. For instance, observe the very

slight off-axis errors along rotation axes that are otherwise physically constrained on

the knee analog. These small off-axis rotations likely derive from very minor errors

in the estimated orientations of one or both of the anatomical frames, FAS and FAT.

Nonetheless, the agreement between the IMU estimates and the truth data remains

excellent. By contrast, large errors again arise in general when one ignores the cor-

rection. The agreement with the correction for these limiting cases of 1D rotation

remains undiminished when the knee analog is unconstrained and undergoes fully

3D rotations as shown next.
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(a)

(b)

Figure 2.5: Example results from (a) pure internal-external rotation trial, and (b)
pure abduction-adduction trial. The differences between the CMM truth data and
IMU-derived estimates with the correction (black) and without the correction (red)
of flexion-extension, internal-external rotation, and abduction-adduction are plotted
for a representative time period.
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First, a sample time record of the yaw angles for each IMU is presented in Figure

2.6a when the knee undergoes combined 3D rotations. Following Figure 2.3, Fig-

ure 2.6 includes a portion of a testing session that encompasses the two functional

alignment movements (first shaded and unshaded intervals, respectively), followed

by a nominally still period during which the constraints are removed (second shaded

interval), then a longer interval with six repetitive 3D movements (with four more

thereafter that are not shown). The knee analog is approximately returned to its

original position at the end of each knee movement. Note that this is taken from

a testing session lasting approximately 6 minutes, and substantial drift arises over

this period of time. Compared to the results of Figure 2.3, the results of this longer

time sample in Figure 2.6a exhibit even greater drift error as again manifested in the

slowly changing (low frequency) components of ψthigh and ψshank. The net changes in

ψthigh and ψshank over the entire 6-minute period is 46° and 28°, respectively, which

correspond to drift rates of 0.14°/s and -0.08°/s. Despite the very apparent drift, the

method produces excellent estimates of the 3D rotations. Figure 2.6b documents the

Boolean values for the criteria for the two cases (Case 1a and Case 1b) when the knee

acts as a hinge; a value of 1 corresponding to the criteria being satisfied and a value

of 0 corresponding to the criteria not being satisfied. As before, the knee analog

functions as a hinge for the stationary case (Case 1a) during rest periods and func-

tions as a hinge during the flexion-extension functional alignment movement (Case

1b). Note that during the second shaded area, the physical constraints are being

removed from the CMM in preparation for the combination rotation trials to follow.
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(a) (b)

(c) (d)

Figure 2.6: Example results from combined 3D rotation trial. (a) Yaw angles for
shank- and thigh-mounted IMU versus time encompassing two functional alignment
movements (first shaded and unshaded regions, respectively), a nominal rest period
during which the constraints are removed (second shaded region), and then ten
repetitive 3D movements between which the knee is approximately returned to the
original position. (b) Boolean (0 or 1) values for criteria defining Case 1a (stationary)
and Case 1b (rotating) for which the knee analog acts as a hinge. The solid black
line is for Case 1a and the dashed grey line is for Case 1b. The shaded and unshaded
areas denote the same regions in (a). In addition, (c) and (d) illustrate sample
results from (a) and (b), respectively, on a fine (second-level) time scale.
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Figure 2.7 illustrates the estimated flexion-extension, internal-external rotation,

and abduction-adduction angles for a representative time period from Figure 2.6

during which all three angles were being simultaneously exercised. Consistent with

the above results, the estimates of all three angles closely track the truth values

reported by the optical encoders when the correction is employed. When the cor-

rection is not employed, the estimates can be rather poor and particularly so for

abduction-adduction in this example.

Figure 2.7: Example results from combined 3D rotation trial. The differences be-
tween the CMM truth data and the IMU-derived estimates with the correction
(black) and without the correction (red) for flexion-extension, internal-external ro-
tation, and abduction-adduction are plotted for a representative time period.

2.4.2 Quantitative Comparisons

The above results illustrate very close qualitative agreement between the IMU-

derived estimates of the joint angles and those measured directly using the embedded

optical encoders. Next, quantitative comparisons for the entire data set are provided

and discussed.
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To start, consider Figure 2.8 which shows the IMU-estimated flexion-extension

angle versus that measured by the optical encoder for the duration of all 5 testing

sessions (cumulatively about 30 minutes) of combined 3D rotations. The best fit

line to this data yields a slope of 1.01, a y-intercept of b = 0.07°, and a correlation

coefficient of r = 0.99. Thus, the estimates exhibit extremely high correlation with

the truth data (and just slightly over predicting flexion-extension relative to the truth

data). In addition, the root-mean square (RMS) error between the estimates and the

truth data is 3.46° or 2.96% relative to the 117° range of motion. These results, and

the analogous quantitative comparisons for all of the experiments, are summarized

in Tables 2.1 and 2.2.

Figure 2.8: Correlation of the results for the combined 3D rotation trials. IMU-
estimated flexion-extension plotted against the corresponding truth data from optical
encoder. The red line is the linear fit.
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Table 2.1: Quantitative comparisons for cases of pure rotation about a single axis
including range of motion (ROM), RMS error, correlation (r), and slope, and y-
intercept (b) of linear fit.

1D Rotation ROM (°) RMS Error (°) r Slope b (°)

Pure Flexion-Extension 161 3.90 0.99 1.01 0.12

Pure Internal-External 72.8 1.83 0.99 1.01 0.04

Pure Abduction-Adduction 17.0 0.12 0.99 0.99 -0.02

Table 2.2: Quantitative comparisons for the combined 3D rotation trial including
range of motion (ROM), RMS error, correlation (r), slope, and y-intercept (b) of
linear fit.

3D Rotation ROM (°) RMS Error (°) r Slope b (°)

Flexion-Extension 117 3.46 0.99 1.00 0.07

Internal-External 98.4 2.48 0.99 1.02 0.06

Abduction-Adduction 58.3 1.69 0.94 0.92 0.04

Table 2.1 reports the quantitative comparisons of IMU-estimated angles to those

measured by the optical encoders for the three limiting cases of pure rotation about

the FE, IE and AA axes. Reported are the range of motion (ROM) about each

axis, the RMS error between the estimated and measured angles, and the correlation

coefficient, slope and y-intercept of the associated linear fit. Analogous results are

reported in Table 2.2 for the combined 3D rotation movements. Regardless of the

trial (pure rotation about any one axis or combined rotation about all three axes),

the IMU-derived angle estimates remain within 4° of those measured by the optical

encoders, have correlation coefficients exceeding 0.94 and slopes between 0.99 and

1.02. In short, the method yields estimates that replicate the truth data with high

confidence. The ranges of motion for each angle are motivated by the behavior of the

human knee for which flexion-extension typically has the greatest range of motion,

followed by internal-external rotation, and abduction-adduction. However, the knee
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analog is exercised over far greater ranges of motion than observable on a healthy

human knee for the purpose of this thorough validation study.

2.5 Summary and Conclusions

This study contributes a new method to estimate the 3D rotations across the

knee using a pair of shank- and thigh-mounted IMUs that yields highly accurate

results when benchmarked on a coordinate measurement machine (CMM). Central

to this method is constructing a common world frame of reference for the two IMUs

by exploiting a vector constraint equation for the medial-lateral axis of the knee.

This constraint arises during the time periods when the knee behaves predominantly

as a hinge joint, during which and between times the common world frame can

be constructed despite sensor orientation drift errors. It therefore has considerable

potential for accurately estimating the 3D rotations across the human knee. Doing

so will also require further research to address additional considerations. First, the

sensor orientation estimates used in this work are provided by proprietary software.

To more accurately study the efficacy of implementing the anatomical kinematic

constraint as a world frame correction requires estimates of orientation, which is

addressed in Chapter 3.

Next, unlike the CMM, the knee joint has some laxity which may also influence

the estimated 3D joint angles. The stringent limits used in Eqns. 2.10-2.13, while

fully appropriate for the CMM, must necessarily be relaxed for the human knee.

Validations using human subjects will guide the selection of these new limits. Also,

while the IMUs were rigidly fastened to the links of the CMM, the IMUs attached

to the human shank and thigh may move slightly relative to the underlying skeleton

due to soft tissue movements, a problem common to all motion capture methods.

The anatomical significance of the estimated 3D rotations also depends on accurately

establishing the orientation of the shank and thigh anatomical frames relative to their

respective IMU frames as input to Eqn. 2.9. This motivates the need to study a

variety of functional alignment movements to achieve this intermediate result, which

will be discussed in Chapter 4.
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CHAPTER 3

Measurement Theory for Estimating Knee

Rotations with Probabilistic World Frame

Alignment

3.1 Introduction

The objective of this chapter is to expand and further validate the measurement

theory described in Chapter 2 via two important extensions. The first replaces the

sensor orientation estimates previously obtained using proprietary software with es-

timates obtained by a customized Kalman filter. The second replaces the determinis-

tic treatment of the anatomical kinematic constraint with a probabilistic treatment

employing a custom Error-State Kalman Filter. The resulting method, based on

(probabilistic) estimation theory, is superior in its ability to estimate three dimen-

sional knee rotations during extended periods of dynamic movements like what is

studied in Chapter 4.

Historical approaches in estimating orientation of IMUs fall into one of two cat-

egories, namely: 1) deterministic (complementary) or 2) probabilistic (stochastic).

Arguably the most well-known deterministic approach is Madgwick’s filter [85], which

is a nonlinear observer that provides a computationally efficient estimate of orienta-

tion by solving a gradient descent optimization problem (and with a single iteration).

However, the accuracy of this method requires that the convergence rate of the op-
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timization being equal or greater than the rate of orientation change (i.e., angular

velocity magnitude). As a result, the (fixed-step size) gradient descent optimization

tends to lag the true state during sustained highly dynamic movements resulting in

a tradeoff between computational cost and accuracy [86].

On the other hand, traditional probabilistic approaches, namely various types

of indirect Kalman filtering, have the reciprocal strengths and weaknesses. These

methods tend to be more computationally expensive due to their complexity [87],

but provide accurate estimates even during prolonged dynamic movements provided

the filter is parameterized properly (e.g., process and measurement noises are rea-

sonably well-estimated) [86]. Furthermore, these formulations allow for integration

of additional information to provide even more accurate orientation estimates. How-

ever, inappropriately updating the state estimation even once can cause the filter

to diverge [88]. Therefore, external disturbances must be carefully considered to

render the filter robust. For example, when the IMU is static (i.e., stationary), the

accelerometer provides an estimated direction of gravity, which is used to correct

the orientation relative to the horizontal plane (i.e., pitch and roll). Therefore, any

acceleration of the rigid body to which the IMU is attached is superimposed on the

acceleration due to gravity thereby polluting the estimated orientation. Similarly, an

estimate of magnetic North is frequently integrated into the estimation procedure us-

ing magnetometer data, which is then used to correct orientation about vertical (i.e.,

yaw) [76]. However, magnetometer data is often polluted by magnetic interference

from surrounding ferromagnetic materials in the local environment (e.g., equipment,

building materials, piping, wiring, etc.) thereby yielding faulty estimates of magnetic

North [89]. Many researchers have proposed distinct approaches to minimize the er-

rors introduced by the accelerometer and/or magnetometer data (see, for example,

[77, 90]).

The Kalman filter is the optimal estimator that minimizes the mean squared

error when the state and measurement dynamics are modeled as linear and the pro-

cess/measurement noise processes are modeled as white Gaussian [91]. However, the

equations governing orientation estimates (like many other dynamical quantities) are

nonlinear, which poses a challenge particularly for propagating the uncertainty over
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time. Fortunately, several successful solutions to this challenge have been discov-

ered. The first (and most common) is to use an Extended Kalman filter in which the

nonlinear dynamical equations are linearized about the current estimated state via

a Taylor series expansion using the Jacobian of the nonlinear dynamic (state transi-

tion) equations [90]. Another approach is to use a Sigma-Point (Unscented) Kalman

filter in which a set of samples (sigma points) are taken from the distribution describ-

ing the current state, propagated to the current time step via the nonlinear dynamic

(state transition) equations, and then averaged to provide an estimate of the cur-

rent state [92]. These two approaches produce similar results with the Sigma-Point

filter providing slightly better estimates, but it is computationally more expensive

and tends to lag the true state more than the Extended Kalman filter [93]. Other

noteworthy approaches also include the Particle filter [94], the Invariant Extended

Kalman filter [95], and the Error-State Kalman filter (ESKF) [96], the last of which

is pursued in this work.

The key idea underlying the error-state formulation of the Kalman filter is to

decompose the true state of the system (i.e., the quaternion representation of the

IMU’s orientation in this case) into a nominal-state and an error-state [96]. The

nominal-state arises from integrating the (potentially highly dynamic) IMU data

without consideration of noise (uncertainty) or model imperfections. Thus, any er-

rors resulting from that integration are attributed to the error-state, whose dynamic

equations are linear with respect to the error-state. Specifically concerning IMU

orientation, the benefits of the ESKF formulation are outlined by Madyastha et al.

[91] and Solà [97] and briefly summarized here. The orientation error-state is a min-

imal parameterization because the scalar term of the quaternion (q0) is assumed to

be unity since the error in orientation is assumed small (i.e., cos(θ) ≈ 1 when θ is

small). This approximation avoids singularities in the covariance matrices arising

from enforced constraints (i.e., forcing the quaternions to have unit magnitudes).

Next, the error-state is assumed small such that the linearization remains accurate.

Finally, the error state dynamics are relatively slow compared to those of the (deter-

ministic) nominal-state, which means corrections to the error-state can be made less

frequently than in an EKF. Consequently, the criteria for integrating measurements
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into the state estimation can be stricter to avoid divergence.

The remainder of this chapter reports two studies. The first provides a derivation

of the ESKF formulation developed for a single IMU which is then validated with

truth data provided by the same coordinate measurement machine (CMM) used in

Chapter 2. The second extends the ESKF to two IMUs by simultaneously treating

anatomical constraint of Chapter 2 as a probabilistic correction to the IMU world

frame estimates. This algorithm is similarly validated using truth data from the

CMM.

3.2 Study 1: Robust ESKF Validation for a Single IMU

3.2.1 Background on Kalman Filtering

This section provides a simplified description of Kalman filtering in the context of

estimating IMU orientation, which draws largely from [98] and [91]. For more com-

plete discussions of various types of Kalman filtering, see the descriptions provided

by Welch and Bishop [99] or Daum [100].

Assume a state vector, x̃, is a collection of stochastic (random) variables, say

x̃ =

[
x̃1

x̃2

]
=

[
q̃

ω̃b

]
(3.1)

where q̃ is a quaternion and ω̃b are the angular rate gyro biases. The probability

distribution of x̃, P (x̃), maps probabilities to all possible realizations of x̃. The

expectation of x̃ (denoted ε[x̃]) is the expected value of the state vector, which

represents the mean of x̃ (µx) otherwise known as the 1st moment of x̃. A moment

is a quantitative measure of the shape of a function, and probability distributions

are frequently described in terms of their moments (1st: mean=µx = ε[x̃], 2nd:

variance=ε[(µx − x̃)2], 3rd: skewness=ε[(µx − x̃)3], 4th: kurtosis=ε[(µx − x̃)4], ...).

Normally distributed (Gaussian) random variables are special in that they can be

fully characterized by their first two moments, namely the mean and variance.

As mentioned above, the Kalman filter yields the minimum mean squared error
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filter in the following sense; for a more thorough discussion, see [101]. Given the

true expected value is ε[x̃] = µx and the estimated expected value is ε[ ˆ̃x] = µ̂x,

the expected error e is defined as the innovation of the true and estimated expected

values per e = µx − µ̂x. The best guess in describing P (x̃) is to assume ẽ is

normally distributed about the estimated expected value, µ̂x (hereafter referred to

as x̂ for simplicity), with an (error) covariance matrix, P , describing the uncertainty

associated with that estimated expected value. Since the true state is assumed to be

an unobserved Markov process (i.e., the current state is conditioned on the previous

state only), Kalman filters easily implemented as recursive algorithms that consist

of two steps, namely: 1) predict (propagate) and 2) update (correct).

Step 1: Predict

This step employs solely the data from the angular rate gyro to propagate the

estimated state from the previous time step to that of the current time step. This

step starts with the process model governing the dynamics of the system per

x̃k = f(x̃k−1,uk) + w̃k (3.2)

where k is the current (discrete) time step, u is the (deterministic) input to the

process model, and w̃ is the unmodeled system uncertainty (process noise) which

is assumed Gaussian, uncorrelated, and with zero mean. Assuming the process de-

scribed by f(·) is linear, taking the expectation yields

x̂k = Ax̂k−1 +Buk (3.3)

where A represents the (time-invariant) state transition matrix relating the previous

state to the current state and B represents the (time-invariant) control input matrix

relating the input to the current state. A similarity transform propagates the esti-

mated error covariance matrix, P̂ , from the previous time step to the current time

step per

P̂k = AP̂k−1A
T +Q (3.4)
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where Q is the process noise matrix associated with w̃ from Eqn. 3.2.

However, the estimated states are a quaternion, q, describing the (potentially

rapidly changing) orientation of the IMU and the angular rate gryo biases, ωb, rep-

resenting the slowly varying dc offsets in the angular velocity measurements. The

differential equation governing the dynamics of the system are

˙̂x(t) =

[
˙̂q(t)
˙̂ωb(t)

]
=

[
1
2
q(t)⊗ (ω(t)− ωb(t)− ω̃n)

ω̃w

]
(3.5)

are based solely on the angular rate gyro data ω(t) where ⊗ represents the quater-

nion product, ω̃n is the measurement noise in the angular rate gyro, and ω̃w is the

process noise in the angular rate gyro bias estimate (modeled as a zero-mean random

walk about a constant). After taking the expectation of Eqn. 3.5, the continuous

differential equation can be discretized and solved (approximately) via zeroth-order

integration of the Taylor series expansion per

x̂k =

[
qk

ωbk

]
=

[
qk−1exp{(ωk − ωbk)∆t}

0

]

≈

[
qk−1 ⊗ q{(ωk − ωbk)∆t}

0

] (3.6)

where ⊗ again denotes the quaternion product and

q{·} =

[
cos(φ

2
)

p̂sin(φ
2
)

]
(3.7)

in which the (half) rotation angle φ = (ωk − ωbk)∆t and the rotation axis p̂ =

ωk/ ‖ωk‖. While the process described by f(·) is nonlinear, it can still be used to

predict the current estimated state and using the Jacobian of the process model

F =
∂

∂x̂
f(x̂,u) (3.8)
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to propagate the error covariance matrix to the current time step per

P̂k = F P̂k−1F
T +Q (3.9)

This is the premise of the EKF where the process model is linearized about the

current state trajectory, which is generally accurate but inherently suboptimal.

Step 2: Update

During the update step, additional currently available information (such as that

from the accelerometer and/or magnetometer) is fused with the estimated state,

yielding more accurate estimations than provided in Step 1. The relationship between

a measurement provided by one of the sensors in the IMU (e.g., accelerometer or

magnetometer) and the estimated state can be described as

ŷ = h(x̂) + ṽ (3.10)

where ŷ is the estimated measurement provided by the measurement model, h(·),
which is polluted by (zero-mean, Gaussian, uncorrelated) measurement noise, ṽ.

Accordingly, the measurement model for the accelerometer is

ŷa,k = R{q̂k}ĝ + ãn (3.11)

where R{q̂} is the direction cosine matrix representing the sensor orientation, ĝ is

the expected direction of gravity, and ãn is the accelerometer measurement noise.

Similarly, the measurement model for the magnetometer is

ŷm,k = R{q̂k}b̂+ m̃n (3.12)

where b̂ is the expected direction of the magnetic field (e.g., magnetic North) and

m̃n is the magnetometer noise.

After taking the expectations of both measurement models, the innovation, I,
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between the actual measurement and the estimated measurement becomes

Ik = yk − ŷk =

[
ya,k − ŷa,k
ym,k − ŷm,k

]
=

[
am,k −R{q̂k}ĝ
mm,k −R{q̂k}b̂

]
(3.13)

where am,k is the normalized accelerometer measurement and mm,k is the normal-

ized magnetometer measurement. The uncertainty (covariance) associated with the

innovation, S, is defined as

Sk = HkP̂kHk
T +R (3.14)

where R is the measurement noise associated with ṽ from Eqn. 3.10 and H is the

Jacobian of the measurement models, h(·) given by

H =
∂

∂x̂
h(x̂)

= 2

[
q0ĝ + ĝ × p pT ĝI + pĝT − ĝpT + q0ĝ

×

q0b̂+ b̂× p pT b̂I + pb̂T − b̂pT + q0b̂
×

]
(3.15)

Here, q0 is the scalar component of the quaternion, p is the vector component of

the quaternion, ĝ is the expected direction of gravity, b̂ is the expected direction of

magnetic North, and I is the identity matrix. For a thorough derivation of this result,

see [98]. The Jacobian, H , transforms the error covariance from the state space to

the measurement space so the measurement noise can be appropriately added to

yield a more accurate estimate of the uncertainty associated with the innovation.

The Kalman filter gain is therefore defined as

Kk = P̂kHk
TSk

−1 (3.16)

which is used to scale the correction provided by the innovation by taking into account

the uncertainty associated with both the estimated state and the measurements

themselves per

∆x̂k = KkIk (3.17)
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which is incorporated into the current estimate appropriately (multiplicative or ad-

ditive). The error covariance matrix is likewise updated per

P̂k = (I −KkHk)P̂k (3.18)

where I is an identity matrix.

This concludes the background on Kalman filtering for linear and nonlinear dy-

namic systems. The methods section begins by describing the Error-State Kalman

Filter (ESKF) formulation by building from the descriptions above.

3.2.2 Methods

ESKF Process Model

The model herein is drawn largely from [91] and [97]. The Error-State Kalman

Filter (ESKF) defines the true state of the system, xt, as the combination of a

nominal-state, xn, and an error-state, δx. The nominal-state is described by the

same dynamics in Eqn. 3.5 while ignoring the process noise. The error-state dynam-

ics are derived from the nominal-state by applying a small perturbation, δx, about

the nominal-state per

ẋ+ ˙δx = f(x+ δx) (3.19)

The Taylor series expansion about x is

ẋ+ ˙δx = f(x) +∇f(x)δx+O(x, δx) (3.20)

Neglecting higher order terms and observing ẋ = f(x) yields

˙δx = F δx (3.21)

where F = ∇f(x). Discretizing this differential equation and adding the appropriate

process noise yields

δxk = (I + Fk∆t)δxk−1 + ĩ (3.22)
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where I is an identity matrix and ĩ is the process noise. Combining this derivation

with Eqn. 3.5 yields the following continuous error-state process model

δx =

[
δθ

δωb

]
=

[
−u×δθ − δωb − ω̃n

ω̃w

]
(3.23)

where u = ωm − ωb, δθ is the quaternion angle error, and δωb is the angular rate

gyro bias error, ω̃n is the process noise associated with δθ, and ω̃w is the process

noise associated with δωb. The notation, u×, denotes the skew symmetric form of

the vector. Discretizing the error-state process model yields

δxk =

[
R{uk∆t}T −∆tI

0 I

][
δθk

δωb,k

]
+

[
θi,k

ωi,k

]
(3.24)

where θi,k and ωi,k are random impulses applied to the orientation and angular rate

gyro bias estimates modeled by the Gaussian processes ω̃n and δωb. For a thorough

derivation of this result, see [97].

Robust ESKF Measurement Models

The same measurement models for the accelerometer and magnetometer de-

scribed in Eqns. 3.11 and 3.12 are used below. However, a methodology is needed to

determine when the measurements are valid in order to avoid inappropriate correc-

tions that may cause the filter to diverge. This section describes the methodology,

illustrated by the decision tree shown in Fig. 3.1 that renders filter robust to inap-

propriate updates.

In Fig. 3.1, the blue boxes relate to the accelerometer data and the green boxes

relate to the magnetometer data. The decision tree starts by determining whether

the sensor is static based upon the acceleration and angular velocity data from the

IMU. If the sensor is static (i.e., stationary), then the accelerometer measurement

yields a valid estimate of the direction of gravity. If the sensor is not static, then the

accelerometer measurement is polluted by the additional acceleration experienced by

the rigid body to which the sensor is attached.
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Figure 3.1: Decision tree governing when to trust or not trust the additional mea-
surements from the accelerometer and magnetometer.

The decision tree continues by next determining if the sensor is in a ‘magnetically

clean’ environment, and it requires the data from all three sensors (acceleration, an-

gular velocity, and magnetometer). One criterion determines if magnetic interference

is present when the sensor is static and the second criterion determines if that is the

case when the sensor is not static. If no magnetic interference is detected, the mag-

netometer measurement yields a valid estimation of the direction of magnetic North.

Beyond that, an additional and novel criterion is introduced. If magnetic interfer-

ence is detected when the sensor is static, there is still an opportunity to use the

magnetometer data by determining if the magnetic interference is largely constant

or time-varying. If it is largely constant, then the magnetometer data is providing

a constant measured direction, albeit not in the direction of magnetic North. In

this instance, the magnetometer data provides an opportunity to correct for local

integration drift error about the vertical axis, in which case the expected direction

of the magnetic field remains the previous time step’s magnetometer measurement

(instead of magnetic North).
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Accelerometer Criteria

The criteria for determining whether the IMU is static leverages the triangle

inequality, i.e.,

‖x+ y‖ 6 ‖x‖+ ‖y‖ (3.25)

where x and y are two vectors with the same number of elements. Knowing that

the accelerometer is measuring both the acceleration of the rigid body (abody) and

the acceleration due to gravity (g), Eqn. 3.25 yields

‖Rabody + g‖ 6 ‖Rabody‖+ ‖g‖ (3.26)

where R is the direction cosine matrix relating the IMU frame to the world frame.

This can be further simplified to

‖am‖ 6 ‖abody‖+ ‖g‖ (3.27)

where am is the measured acceleration provided by the IMU and the magnitude of

abody is independent of reference frame. Clearly, if the rigid body to which the IMU

is attached is not accelerating (‖abody‖ = 0), then Eqn. 3.27 reduces to the equality

‖am‖ = ‖g‖ (3.28)

This can be relaxed slightly to account for measurement noise per

∣∣ ‖am‖ − ‖g‖ ∣∣ 6 εa (3.29)

for which Sabatini [90] successfully uses a value of εa = 0.2 m/s2. This represents

the first of two criteria (Criterion 1) which must be satisfied simultaneously in order

to determine if the accelerometer data can be used to estimate gravity.

However, there are other scenarios in which Eqn. 3.27 reduces to an equality.

Consider Fig. 3.2 in which the rigid body acceleration has components in the opposite

direction of (av) and perpendicular to (ah) gravity.
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Figure 3.2: An IMU illustrated with the measured direction of gravity, g, and hypo-
thetical rigid body accelerations in the vertical direction, av, (parallel to and in the
opposite direction of measured gravity) and horizontal direction, ah (perpendicular
to gravity).

The magnitude of this measured acceleration of the IMU becomes

‖am‖ =
√

(g − av)2 + a2
h (3.30)

If the magnitude of the measured acceleration is assumed to be equal to gravity, Eqn.

3.30 yields

av(2g − av) = a2
h (3.31)

which admits three solutions. The first is the trivial solution (the vertical and hor-

izontal components of the acceleration are zero), which replicates the first scenario

described above. A second solution arises when the horizontal component is zero and

the vertical component equals 2g. The third solution arises when ah =
√

2gav − a2
v

for av ∈ [0, 2g] (note the sign of av flips when av > 2g in which case the vertical

acceleration aligns with measured gravity). With respect to the two nontrivial so-

lutions, it is highly unlikely during human movement that these accelerations will

result from purely linear acceleration; that is, some proportion of the acceleration

will arise from the angular kinematics as evidenced by nonzero measured angular
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rate. Therefore, a second criterion (Criterion 2) considers the magnitude of the an-

gular velocity using the Mahalanobis distance [102]. The Mahalanobis distance, D,

is the generalized distance from any sample to a distribution composed of n normally

distributed variables per

D2 = (x− µ)TΣ−1(x− µ) (3.32)

where x denotes the sample, µ is the mean of the distribution, and Σ is the covariance

of the distribution. A χ2 test with n degrees of freedom can be used to determine

if an angular velocity sample is from the normal distribution characterized by data

collected during a static period at the beginning of a trial [103]. However, the

distributions for the angular velocity magnitudes are necessarily positively skewed

(and greater than 0), which is remedied with a natural log transformation on the

angular velocity data to yield

x = ln(|ωm|) (3.33)

which is used in Eqn. 3.32. Thus, when both Criterion 1 and Criterion 2 are met,

the IMU is considered to be static.

Magnetometer Criteria

Determining whether there is magnetic interference present in the local environ-

ment of the IMU requires different criteria depending on if the sensor is static or

not. If the sensor is static, the angle between the accelerometer measurement and

magnetometer measurement is calculated per

θ =

∣∣∣∣ cos−1
(

mm · am
‖mm‖ ‖am‖

)∣∣∣∣ (3.34)

which is then compared to a distribution characterized by data collected during a

static period at the beginning of a trial via the squared Mahalanobis distance and

a χ2 test with a single degree of freedom. If the sensor is not static, then the yaw

angular velocity is calculated from the magnetometer data and compared to that

derived from the estimated state and measured angular velocity. The yaw angular
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velocity magnitude from the magnetometer data (ψ̇m) is calculated via a simple

numerical derivative per

ψ̇m =

∣∣∣∣ 1

∆t
cos−1

(
mk ·mk−1

‖mk‖ ‖mk−1‖

)∣∣∣∣ (3.35)

The yaw angular velocity magnitude (ψ̇ω) derived from the angular velocity is

ψ̇ω =

∣∣∣∣− sin(φ)

cos(θ)
ωy +

cos(φ)

cos(θ)
ωz

∣∣∣∣ (3.36)

where φ and θ are Euler angles representing the current estimated state (i.e., esti-

mated quaternion converted to Euler angles) and ωy and ωz are measured angular

velocity components. See Appendix A for a derivation of Eqn. 3.36. Similar to

Eqn. 3.29, the magnitude of the difference between these two estimated yaw rates is

assumed to be below some threshold, e.g.,

|ψ̇m − ψ̇ω| 6 εm (3.37)

where εm = 10 ◦/s, which is the RMS of the estimated angular velocity calculated

from the (noisy) magnetometer data collected during a known static period. If it

is determined that the sensor is in a ‘magnetically clean’ environment, then the

magnetometer measurement yields a reliable estimate of magnetic North and is used

accordingly.

If magnetic interference is detected, the next step is to determine if the interfer-

ence is largely constant or time-varying. While the magnetometer field around the

IMU varies spatially, it does not necessarily vary in time. Thus, if the IMU is static

and the magnetic field is time-invariant, it then yields an estimate of a constant

direction that may not be magnetic North. The constant direction can be used to

correct for local drift error in orientation about the vertical axis (i.e., yaw). This is

achieved by calculating the magnitude of the angular velocity of the sensor from the

magnetometer measurements using Eqn. 3.35 and testing the squared Mahalanobis

distance from that sample to the magnetometer-estimated angular velocity distribu-
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tion characterized by the data collected during a static period. If it is determined

the magnetic field is not time-varying, the expected direction of the magnetic field

used in Eqn. 3.12 is the magnetometer measurement from the previous time step

(instead of magnetic North).

Measurement Models

The measurement models (Eqs. 3.11 and 3.12) remain the same, but there are

additional steps associated with Step 2 (update) to accommodate the ESKF for-

mulation and the robust method described previously. First, the innovation I and

the innovation covariance S follow from whichever measurements are found to be

valid. For simplicity, the case when both the accelerometer and magnetometer mea-

surements are valid is presented and analogous results follow quickly for all other

cases.

The Jacobian of the measurement models becomes following

Hδx =
∂

∂δ̂x
h(x̂)

=
∂

∂x̂
h(x̂)

∂x̂

∂δ̂x

= HXδx

(3.38)

where H is the Jacobian from Eqn. 3.15. The Jacobian of the estimated state with

respect to the error-state is

Xδx =

[
Qδx 0

0 I

]
(3.39)

where I is the identity matrix and

Qδx =
1

2


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0

 (3.40)

For the full derivation of this result see [97].
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Experimental Procedure

To validate the accuracy of the above method for estimating the orientation of a

single IMU, data from the IMU is first time-synchronized to the encoder data from

the coordinate measurement machine (CMM) depicted in Fig. 3.3. To this end, the

assembly is rotated by hand about the CMM’s base (white dashed line) for approxi-

mately five seconds. The angle measured by the optical encoder about the base axis

is differentiated with respect to time yielding an angular velocity signal to compare

with that measured by the IMU, which allows for measuring (and subsequently sub-

tracting) the time delay between their respective angular rates. This movement is

Figure 3.3: Set-up for validation of IMU-predicted orientation with the IMU attached
to the CMM’s end effector. Body-fixed frames and inertial frames for the IMU
(green) and end effector (blue). The white dashed line denotes the rotational axis of
the CMM’s base.
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also used to determine the orientation between the IMU’s sense axes and those of the

body-fixed frame of the last link in the CMM’s kinematic chain (i.e., the link farthest

from the base), hereafter referred to as the end effector. The x̂CMM -axis is along the

longitudinal axis of the end effector (pointing down and also aligned with the base

axis in this configuration), the ŷCMM -axis is collinear with the final joint’s axis of

rotation (into the page), and the ẑCMM -axis is perpendicular to both (to the right).

Since the CMM is a simple kinematic chain of single degree-of-freedom rotational

joints, the orientation of the end effector is determined via sequential multiplication

of direction cosine matrices (see Appendix A).

The first calculation is to provide an intermediate estimate of the ẑCMM -axis

resolved in the IMU’s body-fixed frame of reference. To that end, the measured

acceleration of the IMU attached to the end effector as depicted in Fig. 3.3 can be

expressed as

am = ω̇m × r + ωm × (ωm × r) + g (3.41)

where r is the vector describing the position of the accelerometer embedded in the

IMU relative to the origin of the CMM and g is measured gravity. Since the CMM

is only rotating about vertical, the acceleration at the start of this movement (i.e.,

time step before the CMM starts to move) can be subtracted to remove gravity from

the accelerometer measurements. Note that when the angular velocity achieves an

extremum, the angular acceleration (ω̇m) is zero thereby circumventing the need for

numerically differentiating the angular velocity data (and injecting another source

of noise into the calculation). Thus, evaluating Eqn. 3.41 at the extremum (say n

times) results in n-equations

am,k = ωm,k × (ωm,k × r)

= (ω×m,k)
2r

= Ωm,kr

(3.42)

where k is the time step corresponding to the kth extremum in the measured angular

velocity. This produces an overdetermined, linear set of n equations that can be
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solved for r via

r = A/Ω (3.43)

where A is a vector concatenating the accelerometer measurements, Ω is a matrix

concatenating the angular velocity measurements, and the backslash operator de-

notes the QR decomposition of the system of equations. Normalizing the resulting

vector by its magnitude provides an intermediate estimate for the unit vector defining

the direction from the IMU (accelerometer) to the CMM’s origin (i.e., the ẑCMM -axis

resolved in the IMU’s body-fixed frame of reference).

Next, a principal component analysis conducted on the angular velocity measured

during this movement provides as its first component the x̂CMM -axis of the end

effector of the CMM resolved in the IMU’s body-fixed frame of reference. One

cross product (ẑCMM × x̂CMM) yields the ŷCMM -axis and a second cross product

(x̂CMM × ŷCMM) ensures the axes are orthonormal. Thus, the (constant) rotation

matrix from the IMU frame to the CMM’s end effector frame follows from

RCMM/IMU =

x̂CMM

ŷCMM

ẑCMM

 (3.44)

which is applied to the quaternions estimated from the ESKF.

Finally, the inertial frame of the CMM is different from the world frame defined

by the IMU. After the IMU to CMM correction has been applied to the ESKF

orientation estimates, this relationship is determined by comparing the initial orien-

tation of the IMU and the CMM end effector at time 0, which is then applied to the

quaternions estimated from the ESKF.

After the alignment movement, each of the five trials considered next lasts for

approximately five minutes. During this time, the CMM end effector is actuated

by hand to induce large differences in orientation with moderate dynamics. Brief

pauses (≤1 sec) during the data collection are also included to ensure opportunities

to correct the IMU orientation.
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3.2.3 Results and Discussion

Figure 3.4 illustrates representative quaternion components estimated from the

IMU via the ESKF as compared to the quaternion components provided by the

coordinate measurement machine (CMM) over a 30-second time interval. For an

intuitive quantitative comparison, the RMS error between the true Euler angles

provided by the CMM and the estimated Euler angles provided by the IMU for

this trial (approximately 5 minutes) are 3.8◦, 5.3◦, and 5.9◦ for roll, pitch, and yaw,

respectively. While this agreement is excellent, these errors are also the largest of the

5 trials, which have an overall RMS error of 3.4◦, 3.5◦, and 4.3◦ for roll, pitch, and

yaw, respectively. These results are comparable to others reported in the literature

(see, for example, [75] or [90]).

Figure 3.4: Example results comparing the CMM truth data (black) and the IMU-
derived estimates (red) approximately halfway into the 5 minute trial.
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These results also illustrate the effectiveness of the second stage of the magne-

tometer criteria described in Section 3.2.2. Specifically, the RMS errors without the

inclusion of the second stage increase to 5.2◦, 7.3◦, and 7.9◦, respectively, which

represents an average 27% degradation. Figure 3.5 illustrates the magnitude of the

magnetometer measurements from this trial (which ideally should be constant), along

with a call-out corresponding to the same time period in Fig. 3.4. The large fluc-

tuations demonstrate the challenge of using the magnetometer data to correct for

integration drift error about vertical. In this case, the magnetic interference is likely

Figure 3.5: Magnetometer field magnitude with a call-out of the time period illus-
trated in Fig. 3.4. Grey lines denote the case when the magnetic field is largely
constant and used to correct for local integration drift error.
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largely due to the CMM itself, which precludes using the magnetometer data as an

estimate of magnetic North. However, the grey shaded areas (see call-out) denote

instances when the magnetometer data is largely constant and used to correct the

estimated states.

Next, consider the results of Fig. 3.6 which show the IMU-estimated angles versus

those measured by the optical encoders across all 5 testing sessions (cumulatively

about 25 minutes) of combined 3D rotations.

Figure 3.6: Correlation of the results for all three Euler angles from all trials. IMU-
estimated angles plotted against the corresponding truth data from the CMM. The
red lines are the linear fit.

The best fit lines and correlation coefficients are reported in Table 3.1. Overall, the

IMU estimates exhibit excellent agreement with the CMM-provided truth data.

Table 3.1: Quantitative comparisons of Euler angles across all five trials,
including RMS error, correlation (r), and slope, and y-intercept (b) of
linear fit.

RMS Error (°) r Slope b (°)

Roll 3.4 0.99 1.00 -0.77

Pitch 3.5 0.99 0.99 0.13

Yaw 4.3 0.99 1.00 -0.07
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3.2.4 Conclusions

This study contributes a robust Error-State Kalman Filter (ESKF) for estimating

IMU orientations that yields highly accurate results when benchmarked on a coordi-

nate measurement machine (CMM). Included in this formulation is a novel treatment

of magnetometer data when local magnetic interference is detected. Specifically,

when the IMU is static and the magnetometer data is largely constant, this data

is still provides a constant direction of the magnetic field that can be used to cor-

rect integration drift error about vertical. As a result, the agreement between the

IMU-estimated orientation and the orientation provided by the CMM is excellent.

3.3 Study 2: Robust ESKF Validation for Two IMUs

3.3.1 Background

Leveraging the results from Study 1, this study seeks to extend the ESKF for-

mulation from one to two sensors to then estimate the three-dimensional angles

between their respective measurement frames. This is accomplished by incorporat-

ing the anatomical kinematic constraint described in Chapter 2 in which the knee

analog (i.e., the coordinate measurement machine) frequently acts as a hinge. Specif-

ically, the world frame correction, CWT/WS, from Chapter 2 will be incorporated into

a measurement model to be used to update the orientation (Step 2) of one of the

sensors. While the results in Study 1 demonstrated a strong dependence on mag-

netometer data for accurate estimates of absolute orientation for a single IMU, this

study compares the accuracy of the relative orientation estimates between two IMUs

and less dependency on magnetometer data. Specifically, the anatomical kinematic

constraint (Chapter 2) and the novel magnetometer criterion (Section 3.2.2) are

used as strategies to update the integration drift error between the sensors. It is hy-

pothesized that there will be good agreement between the CMM-derived orientation

(truth data) and the IMU-derived orientation since the relative drift about vertical

between the sensors will be constrained by these two update strategies. Furthermore,

a method is introduced for estimating the orientation of each sensor relative to its
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respective link frame (i.e., its body-fixed frame) without relying upon the alignment

movements used in Study 1 and Chapter 2. Doing so reduces yet another source of

error and allows for a clearer interpretation of the efficacy of the ESKF.

3.3.2 Methods

Probabilistic Construction of a Common World Frame

As outlined in Chapter 2, a key challenge in estimating relative orientations of

independent IMUs lies in constructing a common world frame of reference. As before,

one can exploit the constraint that the hinge (medial-lateral) axes, n̂S and n̂T , should

be collinear in a common world frame during the time intervals when the knee can

reliably be simplified to a hinge joint. Whenever this hinge criterion is satisfied, one

of the IMUs’ hinge axes, say n̂S, serves as a reference direction for the other, say

n̂T . Specifically, the shank IMU’s hinge axis is resolved into its world frame via

n̂ST = R{q̂S,k}n̂S (3.45)

where k is the kth time step and this vector is used in the measurement model

ŷnST ,k = R{q̂T,k}n̂ST + ω̃nST
(3.46)

where R{q̂T} is the direction cosine matrix representing the thigh sensor’s orien-

tation, n̂ST is the expected direction of the shank’s hinge axis, and ω̃nST
is the

measurement noise associated with estimating n̂S and n̂T via a functional alignment

movement. Specifically, this functional alignment movement consists of exercising the

thigh and shank links purely about the CMM flexion-extension axis (while locking

the other two rotational degrees of freedom). Following the protocol from Chapter

2, the resulting angular velocity ωS and ωT measured by the shank and thigh, re-

spectively, define a unit vector aligned with the medial-lateral (hinge) axis measured

in FS and FT, respectively. The Jacobian for this measurement model becomes

H = 2
[
q0n̂ST + n̂ST × p pT n̂STI + pn̂TST − n̂STpT + q0n̂

×
ST

]
(3.47)
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where q0 is the scalar component and p is the vector component of the thigh IMU’s

estimated quaternion. Next, the criteria for determining when the hinge assumption

is valid are redefined.

Robust ESKF Measurement Models

The methodology described in Study 1 to determine when the measurements

are valid needs to be adapted to incorporate the anatomical kinematic constraint.

Accordingly, the former decision tree in Fig. 3.1 (that renders the ESKF robust) is

slightly altered to form the new decision tree shown in Fig. 3.7. As before, the blue

boxes relate to the accelerometer data, the green boxes relate to the magnetometer

data, and the purple boxes relate to the anatomical kinematic constraint.

Figure 3.7: Modification of previous decision tree governing when to trust or not trust
the measurements from the accelerometer, magnetometer, and anatomical kinematic
constraint. Note the inclusion of a test of to determine when the knee acts as a hinge
and the anatomical kinematic constraint (purple boxes).

The decision tree starts by determining whether the sensor is static based on

the acceleration and angular velocity data from the IMU. Then, the decision tree
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continues (using the result of that first stage) by next determining if the anatomical

kinematic constraint holds using either the accelerometer or angular velocity data.

If the knee analog is reliably acting as a hinge, the hinge axes from each sensor

should be the same when resolved in the world frame. Finally, if the sensor is static

and the knee analog is not acting as a hinge, then the decision tree determines if

the magnetometer data is largely constant or time-varying. If it is largely constant,

then the magnetometer is providing a constant measured direction (likely not in the

direction of magnetic North).

Anatomical Kinematic Constraint Criteria

The criteria for determining when the knee can reliably be simplified to a hinge

(Eqns. 2.11 and 2.13 from Chapter 2) need to be redefined, namely: Case 1a)

when the knee is approximately stationary, and Case 1b) when the knee is rotating.

Determining if the knee is stationary or moving is simple Boolean logic using the

results from the robust decision tree described in Section 3.2.2. Specifically, the knee

is considered static when both sensors are independently determined to be static and

the knee is considered moving when both sensors are determined to be not static.

Furthermore, these criteria are modified to implement the Mahalanobis distance

(Eqn. 3.32) to determine the likelihood that the criteria are satisfied instead of the

thresholds used previously.

1a) Functioning as a Hinge - Stationary Case: The knee may be considered a hinge

joint when the segments are stationary and the angles between the hinge axes,

n̂S and n̂T , and directions of gravity measured in their respective sensor fixed

frames, ĝS and ĝT , are approximately the same. In such instances, the knee

functions as a hinge with zero hinge rotation rate. The measurement becomes

x =
∣∣∣ cos−1

(
n̂S · ĝS

)
− cos−1

(
n̂T · ĝT

)∣∣∣ (3.48)

in which n̂S, n̂T , ĝS, and ĝT are all unit vectors. The mean (µ) and variance

(Σ) are determined from the data from a static pose.

1b) Functioning as a Hinge - Rotating Case: When the angular velocities of the
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shank and the thigh are predominantly aligned with the hinge axis defined by

each segment respectively. The measurement becomes

x = mean
{ |ωS · n̂S|
|~ωS|

,
|ωT · n̂T |
|~ωT |

}
(3.49)

in which ωS and ωT are the angular velocities measured at the shank and

thigh, respectively. The mean (µ) and variance (Σ) are determined from the

data from the functional alignment movement used to calculate n̂S and n̂T .

Body-Fixed Frame Alignment

Next, the relationships between the IMU (body-fixed) frames and the frames

defined by their respective links is determined via optimization rather than the func-

tional alignment movements used previously. The motivation for the optimization

is to study the accuracy of the estimation methodology independent of potential

misalignment errors between the body-fixed frames.

Consider Eqn. 2.9 from Chapter 2 expressed in terms of quaternions instead of

direction cosine matrices,

q(t)AT/AS = qAT/T ⊗ q(t)T/WT ⊗ qC(t)WT/WS ⊗ q(t)WS/S ⊗ qS/AS (3.50)

where q(t)AT/AS is the time-varying estimated orientation of the anatomical shank

frame relative to the anatomical thigh frame. Let’s say there exists some misalign-

ment between the anatomical frames defined by the IMUs and the true anatomical

frames of their respective CMM links. Equation 3.50 can be rewritten to include

these potential misalignment errors per

q(t)AT ′/AS′ = qAT ′/AT ⊗ q(t)AT/AS ⊗ qAS/AS′ (3.51)

where AT ′ and AS ′ denote the true anatomical frames for the thigh and shank links,

respectively. Assuming the IMUs are affixed to the links such that there is no relative

movement between them, these misalignments (qAT ′/AT and qAS/AS′) are constant.

Since the relative orientations provided by the CMM and estimated by the IMUs
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are known, Eqn. 3.51 can be re-expressed as a linear, homogeneous, overdetermined

system of n equations of the form

q(tk)AT ′/AS′ ⊗ q∗AS/AS′ = qAT ′/AT ⊗ q(tk)AT/AS

[q(tk)AT ′/AS′ ]L q
∗
AS/AS′ = [q(tk)AT/AS]R qAT ′/AT

[q(tk)AT ′/AS′ ]L q
∗
AS/AS′ − [q(tk)AT/AS]R qAT ′/AT = 0[

[q(tk)AT ′/AS′ ]L −[q(tk)AT/AS]R

] [q∗AS/AS′

qAT ′/AT

]
= 0

Akxq = 0

(3.52)

where tk denotes the sampled-time for the kth time step, q∗ denotes the conjugate

of the quaternion, and [q]L or [q]R denote the left- or right- quaternion-product

matrices per [97]

[q]L =


q0 −q1 −q2 −q3
q1 q0 −q3 q2

q2 q3 q0 −q1
q3 −q2 q1 q0

 (3.53)

[q]R =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1

q3 q2 −q1 q0

 (3.54)

Collecting all n equations (one for every time step in the data set) yields
A1

A2

...

An

xq = Axq = 0 (3.55)

To find a non-trivial solution to this system of equations, a constrained least-squares
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problem is created

x∗q = arg max
xq

‖Axq‖ subject to ‖xq‖ = 1 (3.56)

such that it can be solved by defining a Lagrangian function

L(xq, λ) = ‖Axq‖+ λ(1− ‖xq‖)

= xTqA
TAxq + λ(1− xTq xq)

(3.57)

The critical points (i.e., points where the derivatives of L(·, ·) = 0) correspond to

nontrivial solutions.

∂

∂xq
L(xq, λ) = 2ATAxq − 2λxq = 0 (3.58)

∂

∂λ
L(xq, λ) = 1− xTq xq = 0 (3.59)

Note that Eqn. 3.58 can be expressed as a characteristic equation, meaning (ATA−
λI)xq = 0, which when combined with the constraint described by Eq. 3.59

‖Axq‖ = xTqA
TAxq

= xTq λIxq

= λ

(3.60)

reveals the solution of interest is the eigenvector corresponding to the smallest eigen-

value ofATA. While the magnitude of xq was constrained to 1, the actual magnitude

is
√

2 since xq is two stacked unit quaternions. Thus, xq is normalized by
√

2 to yield

the proper quaternions relating the orientation of the anatomical frames defined by

the IMUs to the true anatomical frames of their respective CMM links.

Experimental Procedure

Data from the two IMUs are first time-synchronized to the encoder data from

the CMM (Fig. 3.8). The assembly is rotated by hand about the CMM’s base
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Figure 3.8: Knee analog formed by a coordinate measurement machine (CMM).
Three anatomical axes for flexion-extension (FE), internal-external rotation (IE),
and abduction-adduction (AA) are labeled are the corresponding rotational joints of
the CMM. Two labeled IMUs are mounted to the CMM with T (green) analogous
to a thigh-mounted IMU and S (blue) analogous to a shank-mounted IMU.

with the three knee axes (FE, IE, AA) locked in their neutral angular positions

(i.e., zero angles). The angle measured by the optical encoder about the base axis

is differentiated with respect to time yielding an angular velocity signal to compare

with those measured by the thigh (green) and shank (blue) IMUs. The data from the

two IMUs are already time-synchronized, and their synchronization with the data

from the CMM follows from measuring (and subsequently subtracting) the time

delay between their respective angular rates. Next, the two functional alignment

movements are conducted to define the distributions characterizing when the knee

is acting as a hinge for Case 1a) when the knee is approximately stationary and

Case 1b) when the knee is rotating. First, the shank and thigh are held in a static

neutral pose for about 10 seconds. The measured acceleration for each segment is the

direction of gravity, which is used in Eqn. 3.48 to determine a mean and variance

characterizing when the stationary knee is acting as a hinge. Next, the CMM is
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exercised purely about the flexion-extension axis with the two remaining knee axes

locked. The angular velocities measured during this phase are used in Eqn. 3.49 to

determine a mean and variance characterizing when the rotating knee is acting as

a hinge. Following this, the knee analog is exercised for approximately two minutes

about all three axes to approximately mimic ranges of motion in a healthy human

knee. This procedure is repeated five times.

3.3.3 Results and Discussion

Figure 3.9 illustrates representative quaternion components estimated from the

IMUs via the ESKF as compared to the quaternion components provided by the

coordinate measurement machine (CMM) for a 50-second time window. The quater-

nions describe the relative orientation of the thigh and shank links on the CMM. The

Figure 3.9: Example results comparing the CMM truth data (black) and the IMU-
derived estimates (red). The black asterisks at the bottom of each graph denote time
steps when the knee analog is acting predominantly as a hinge.
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RMS errors between the true Euler angles provided by the CMM and the estimated

Euler angles provided by the IMUs for this example trial are 3.7◦, 3.0◦, and 3.9◦

for flexion-extension, internal-external rotation, and abduction-adduction, respec-

tively. Comparatively, the RMS errors across all 5 trials is 3.0◦, 2.5◦, and 5.4◦ for

flexion-extension, internal-external rotation, and abduction-adduction, respectively.

For comparison, the RMS errors from Study 1 are 3.5◦, 3.4◦, and 4.3◦ for pitch, roll,

and yaw, respectively. Thus, it is reasonable that the largest RMS errors for the joint

angles are those for abduction-adduction as they rely the most on the yaw estimates.

Next, consider Fig. 3.10, which shows the IMU-estimated angles versus those

provided by the optical encoders for the duration of all 5 testing sessions of combined

3D rotations. The results of the best fit lines and correlation coefficients are reported

in Table 3.2.

Figure 3.10: Correlation of the results for all three angles from all trials. IMU-
estimated angles plotted against the corresponding truth data from the CMM. The
red lines are the linear fit.

Overall, the IMU estimates for flexion-extension and internal-external rotation

exhibit excellent agreement (r > 0.9) with the truth data provided by the CMM

whereas the estimates abduction-adduction exhibit good agreement (r > 0.8). Specif-

ically, the abduction-adduction IMU estimates exhibit larger variation resulting in
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a lower correlation coefficient. The slope (1.01) suggests the variation is distributed

equally about the true values measured by the CMM. Interestingly, the trial with

the most frequent opportunities to use the anatomical kinematic constraint (28%)

exhibited the lowest average RMS error (3.1◦) and the trial with the least frequent

opportunities (10%) exhibited the highest average RMS error (4.2◦).

Table 3.2: Quantitative comparisons of Euler angles including RMS error, corre-
lation (r), and slope, and y-intercept (b) of linear fit.

RMS Error (°) r Slope b (°)

Flexion-Extension 3.0 0.99 0.99 0.46

Internal-External 2.5 0.99 0.98 -0.08

Abduction-Adduction 5.4 0.85 1.01 -0.08

For comparison to the methodology in Chapter 2, Fig. 3.11 illustrates the IMU-

estimated angles plotted against those provided by the optical encoders for all 5

testing sessions of combined 3D rotations. Specifically, the orientations of each sensor

are estimated using the algorithm from Study 1 for which the world frames are aligned

using the deterministic treatment of the anatomical kinematic constraint.
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Figure 3.11: Correlation of the results for all three angles from all trials. IMU-
estimated angles (using the methodology from Chapter 2) plotted against the corre-
sponding truth data from the CMM. The red lines are the linear fit.

Overall, the IMU estimates for flexion-extension exhibit excellent agreement (r >

0.9) with the truth data provided by the CMM whereas the estimates for internal-

external rotation and abduction-adduction exhibit poor agreement. Table 3.3 doc-

uments the results of these analyses. Clearly, the probabilistic treatment of the

anatomical kinematic constraint is superior to that of the deterministic treatment.

Table 3.3: Quantitative comparisons of Euler angles including RMS error, corre-
lation (r), and slope, and y-intercept (b) of linear fit.

RMS Error (°) r Slope b (°)

Flexion-Extension 11.0 0.94 0.96 0.95

Internal-External 16.1 0.53 0.62 0.96

Abduction-Adduction 13.7 0.26 0.36 -1.19

One significant difference between the experiment from Chapter 2 and the one

in Study 2 is the experimental protocol. In Chapter 2, the 3D rotations experiment
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consisted of exercising the CMM about all 3 axes for 10 second bouts (repeated 50

times), essentially ensuring that the hinge axis assumption is fulfilled before and

after each bout. In this experiment, the CMM is exercised about all 3 axes for two

minutes with sometimes limited opportunities for the hinge axis assumption to be

fulfilled. While the criteria used to determine when the knee analog was acting as a

hinge worked in the previous study, they were likely too strict to achieve the same

effect for this (significantly more challenging) data set.

3.3.4 Conclusion

This study contributes an extension of the robust Error-State Kalman Filter

(ESKF) from a single IMU from Study 1 to a pair of shank- and thigh-mounted

IMUs needed to estimate 3D rotations across a knee analog. This formulation in-

corporates the anatomical kinematic constraint into Step 2 (update) of the shank

sensor’s orientation estimation to ensure that the world frames provided by the (in-

dependent) IMUs are the same. Importantly, while the absolute integration drift

error about vertical is no longer corrected using magnetometer data and the rela-

tive integration drift error is corrected predominantly with the anatomical kinematic

constraint. However, the novel use of the magnetometer data as a largely constant

direction when the IMUs are static from Study 1 was still implemented. Results from

this extended theory are benchmarked using 3D rotations using a coordinate mea-

surement machine (CMM). Consequently, the agreement between the IMU-estimated

joint angles and those measured by the embedded optical encoders is excellent, which

was in part due to the new methodology for determining the orientation between the

IMUs’ body-fixed frames and their respective links’ body-fixed frames. Finally, the

(probabilistic) criteria for determining when the knee analog can conservatively and

reliably be simplified to a hinge joint is successful.
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3.4 Summary and Conclusions

This chapter contributes a successful extension of the measurement theory for

3D knee rotations described in Chapter 2 to a purely probabilistic theory through

two steps. The first step, described as Study 1, replaces the sensor orientation

estimates previously obtained using proprietary software with estimates obtained

by a customized Error-State Kalman Filter (ESKF). The results exhibit excellent

agreement with orientation estimates from highly precise optical encoders embedded

in the CMM that serve as the ground truth. The second step, described as Study

2, further customizes the ESKF by replacing the deterministic treatment of the

anatomical kinematic constraint with a probabilistic one. Compared to the method

explored in Chapter 2, the extension of the method is similarly successful in its ability

to estimate 3D knee rotations during extended periods of dynamic movements as will

be further studied in Chapter 4.
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CHAPTER 4

Application of Measurement Theory to Human

Subjects and Validation with MOCAP

4.1 Introduction

This chapter seeks to extend and validate the measurement theory of the prior

chapter for use on human subjects and to compare the resulting 3D joint angles to

measurements from optical motion capture (MOCAP). In Chapters 2 and 3, the rigid

and well-defined joints of the coordinate measurement machine (CMM) simplifies the

challenge of resolving 3D joint angles. By contrast, experiments on human subjects

are susceptible to additional considerations including the imprecise determination of

the thigh and shank anatomical axes, the laxity of the knee, and the superimposed

motions of the underlying soft tissues, among others. Although the results presented

in Chapter 2 demonstrate excellent agreement with truth data, that success depends

on the criteria for determining when the world frame correction is updated as well

as how trustworthy that correction is. Replacing that deterministic correction with

a probabilistic correction in Chapter 3 yields superior results. However, the criteria

for determining when the human knee is acting as a hinge must be investigated as

it will likely need to be subject-specific and perhaps movement-specific as well.

Several studies (see, for example, [104–106]) measure or simulate errors in 3D

joint angles due to misalignment of the estimated anatomical frames for a body seg-

ment across motion capture techniques. This is significant for two reasons. First,
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optical motion capture is susceptible to this type of error compared with truth data

provided by stereoradiography/dual-plane fluoroscopy or similar techniques (see, for

example, [107–111]). For this reason, the comparison between MOCAP and IMU

estimates will be discussed in terms of differences instead of in terms of errors, since

optical motion capture cannot reliably yield ground truth results. Second, recall the

misalignment (albeit slight) observed in Chapter 2 between the “anatomical” frames

of the CMM and those defined by the IMUs using the alignment movements, partic-

ularly for the abduction-adduction axes. This underscores the challenge of defining

common anatomical frames across different motion capture techniques, a challenge

amplified in biomechanics studies since no convention exists for defining anatomical

frames via inertial sensors. Thus, the small differences in anatomical frames observed

for the prior studies on a CMM will be significantly accentuated with human subjects.

This challenge motivates serious consideration for determining IMU-based anatom-

ical frames. While some misalignment between IMU-based anatomical frames and

MOCAP-based anatomical frames will contribute to differences in estimated joint

angles, differences will also arise from increasingly dynamic movements that induce

movement of the underlying soft tissue (i.e., skin artefacts).

The overall objective of this chapter is to successfully extend the measurement

theory developed in Chapter 3 to human subjects and to compare estimated joint

angles to those obtained by optical motion capture. Recall from Chapter 3 that the

orientation of the IMUs relative to their respective links on the CMM was determined

via an optimization method instead of from the functional alignment movements

used in Chapter 2. The optimization method will again be employed in this study

to compare the anatomical frames determined by the IMUs to those determined by

optical motion capture. Before doing so, this chapter first provides a systematic

survey of the various approaches reported in the literature for defining anatomical

frames of reference for inertial motion capture.
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4.2 Survey of IMU Anatomical Frame Definitions

4.2.1 Motivation

In 1983, Grood and Suntay [112] proposed in their landmark publication a method

of defining joint coordinate systems (with particular emphasis on the knee) such

that the convention would yield rotations of clinical significance that could be eas-

ily understood by a broader audience. Following their lead several years later, the

Standardization and Terminology Committee of the International Society of Biome-

chanics began the process of standardizing how to report kinematic data for every

joint [18]. In their seminal paper, Wu and Cavanagh observed “some uniformity in

presentation will make publications easier to read and allow for the more straightfor-

ward comparison of data sets from different investigators” [18, p. 1257]. However,

these early efforts and those that followed (most notably [113, 114]) were focused

solely on how to report kinematic data for optical motion capture systems which

remain prevalent today. Given the ease with which position data is collected using

optical motion capture, it is advantageous to define conventions based on position

alone. In particular, the conventions for defining anatomical frames require identi-

fying the positions of and placing markers upon anatomical landmarks as the first

step.

Unfortunately, this method of defining anatomical frames does not translate di-

rectly to inertial motion capture, whose strength lies in its ability to measure motion

(acceleration and angular velocity) rather than position. Consequently, the inertial

motion capture community finds itself in a similar state as the optical motion cap-

ture community roughly 40 years ago; namely, there is no common convention for

defining anatomical frames of reference using this new technology. Between advance-

ments to IMU hardware and signal processing techniques, the accuracy of orientation

estimates from IMUs have improved considerably despite the inevitable drift errors

that remain. In fact, differences in joint angles between inertial and optical motion

capture due to drift errors are of the same magnitude as those caused by differ-

ing anatomical frame definitions. Thus, it is increasingly important to address how
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anatomical frames should be defined in order to advance inertial motion capture for

the broader research community.

The objective of the literature survey below is to catalogue the different methods

used to define anatomical frames of reference for inertial motion capture and to

measure if the community is converging on a specific method or not. While not

exhaustive, this survey certainly includes representative studies.

4.2.2 Methods

Database searches were conducted in August 2018 using Pubmed (1781-2018),

Web of Science (1900-2018), and Scopus (1788-2018) with the following search terms:

• (inertial sensor OR wearable sensor OR accelerometer OR gyroscope OR in-

ertial measurement unit OR IMU) AND ((angle OR rotation OR kinematic)

AND (joint OR shoulder OR elbow OR wrist OR hip OR knee OR ankle OR

foot))

This alone produced 1,468 results. The subsequent search process included removing

duplicate works and reviewing titles and abstracts with the following initial inclusion

and exclusion criteria:

• Must be a journal article

• Must be published between 2000-2018

• Data collection must include living human subjects

• Cannot require invasive method for alignment (e.g., bone screws or surgery)

• Method cannot be indirect (e.g., inferring joint kinematics from other sensors)

• Method for estimating IMU orientations cannot depend on external sensor

information (e.g., Microsoft Kinect)

Then, the methods sections for each publication were reviewed with the following

additional inclusion criteria:

81



• If estimating at least one joint angle, at least one accelerometer or angular rate

gyro must be attached to each body segment or one body segment must be

sufficiently stationary during testing

• Must include information about how the sensor frames were aligned to the

body segment to which they were attached

Following these exclusion and inclusion criteria, 72 publications remained. A manual

search of the included articles’ references and citations lists was also conducted. The

final number of publications found as a result of this systematic survey is 112.

4.2.3 Results and Discussion

Figure 4.1 illustrates the breakdown of publications that estimated rotations

across the joints included in this survey, namely the shoulder, elbow, wrist, finger,

hip, knee, and ankle. Pertinent to this dissertation, more than half of the publications

(73) included estimations of knee rotations.

Figure 4.1: Breakdown of publications by joint.
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The methods reported in the literature for defining anatomical frames of reference

for inertial motion capture can be broadly categorized into one of four approaches:

1. Functional Alignment Movements (FAM): Participants complete some known

movement(s) or pose(s) for which at least one anatomical axis can be estimated

in an IMU’s body-fixed frame of reference [70, 74, 80, 106, 115–162].

2. Assumed Sensor Orientation (ASO): An IMU is attached to a body segment

such that the body-fixed frame of the sensor is approximately aligned with the

anatomical frame of the body segment to which it is attached [52, 163–208].

3. Self-Aligning (SA): Body segment anatomical axes are estimated by exploiting

a kinematic model or an assumption of the joint [19, 209–214].

4. External Information (EI): A source other than the IMUs (e.g., optical motion

capture) provides information needed to determine the relationship between

the IMU frames and the body segment anatomical frames [72, 215–219].

Figure 4.2 illustrates the breakdown of these approaches across all 112 papers found

in this survey.

Figure 4.2: Breakdown of publications by approach, namely Functional Alignment
Movements (FAM), Assuming Sensor Orientation (ASO), Self-Aligning (SA), and
External Information (EI).

83



The great majority of the publications employed either FAM or ASO approaches,

which is likely due to the fact that they are relatively simple to incorporate into an

experimental protocol. While this breakdown is informative, Fig. 4.3 illustrates the

frequency of these approaches over time.

Figure 4.3: Cumulative total number of publications employing each method over
time. The blue shaded area shows the cumulative sum across all approaches.

First, note the exponential growth in the number of studies either investigating

new methods for estimating joint angles with IMUs or using those estimates to

investigate differences between different subject populations. While the publications

included in this systematic survey represent a very small slice of the studies employing

inertial motion capture techniques, it is reasonable to assume that this growth also

indicates the growing popularity of using IMUs for the biomechanics community as

a whole. This trend further highlights the significant need to establish a convention

for defining anatomical frames of reference for inertial motion capture.
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Next, given the difficulties of estimating IMU orientation, it is reasonable that

the earliest papers would use ASO methods followed by FAM methods. The SA

methods have only just started to appear in the literature starting in 2014 with Seel

et al. [19] whose work is the basis for defining the hinge axis of the knee discussed

in this dissertation. Only a few researchers have used EI approaches for defining

the frames, which is likely due to the impracticality of requiring additional motion

capture modalities or equipment. Overall, it appears the community is still exploring

different methods for defining anatomical frames of reference for inertial motion

capture.

Focusing specifically on the knee, Fig. 4.4 illustrates which methods have been

employed and by how many degrees of rotational freedom were estimated. The 44

publications in the ‘1D’ category estimate solely flexion-extension rotations. The 5

publications in the ‘2D’ category estimate flexion-extension and abduction-adduction

rotations. Finally, the 24 publications in the ‘3D’ category estimate flexion-extension,

abduction-adduction, and internal-external rotations.

Figure 4.4: Breakdown of approaches by estimated rotational degrees of freedom
across the knee.
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From the 3D rotations results, FAM approaches are the most commonly used,

though the exact movements employed vary across the studies. For example, Favre

et al. [74] had participants stand in a neutral static pose followed by a hip abduction-

adduction movement during which the knee is locked. These movements were used

to define the superior-inferior and posterior-anterior axes, respectively, after which

a subsequent cross product defines the complete orthonormal anatomical frame of

reference. Fasel et al. [153] similarly had participants first stand in a neutral static

pose to define the superior-inferior axes, then complete slow squats to determine the

medial-lateral axes. Overall, these approaches tend to be consistent in estimating

anatomical frames of reference, though there is frequently misalignment relative to

frames defined using the (positional) optical motion capture conventions.

Only four publications employed ASO approaches to define anatomical frames of

reference. Ahmadi et al. [194] reported validation results only for flexion-extension

estimates, and Sun et al. [206] did not report any validation of their technique. The

success reported by Kun et al. [175] was influenced by attaching the IMUs to rigid

links strapped to the thigh and shank, which were connected by a universal joint.

The accuracy demonstrated by Favre et al. [52] was dependent on expert placement

of the IMUs on the body segments, which the authors described as being particularly

difficult for the knee abduction-adduction (anterior-posterior) axis.

Finally, it is interesting that six of the seven publications using SA methods were

specifically developed for the knee, one of which was proposed by Seel et al. [19]

for a single rotational degree of freedom. While SA methods are appealing in that

they do not require subjects to perfectly execute functional alignment movements,

the results remain limited to date. Only two of the six SA publications for the

knee aimed to estimate all three anatomical axes, and with the work by Bleser

et al. [211] providing the foundation for Zimmermann, Taetz, and Bleser [214]. The

most successful SA approach reported by Zimmermann et al. [214] implemented

deep learning techniques trained on real and simulated IMU data to determine the

anatomical frames. Although the results may hold promise, the methods would

likely benefit considerably from training the algorithms using truth data collected

with stereoradiography/dual-plane fluoroscopy techniques.
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4.2.4 Conclusion

The systematic survey of the methods used to define anatomical frames of ref-

erence for inertial motion capture provides compelling evidence that there does not

currently exist a common convention. In fact, there is evidence that not only has the

biomechanics community as a whole not converged on a specific method, researchers

are continuing to explore new approaches. In general, SA approaches are promising

in that they do not depend on the researchers’ ability to attach the IMUs to the body

segments in any specific orientation (as required in ASO) or for the participants to

properly execute functional calibration/alignment movements (as required in FAM).

However, the SA approaches are relatively new and likely require significant valida-

tion (and training data in the case of [214]). Thus, the FAM approach is implemented

in the next study to evaluate the measurement theory developed in Chapter 3 when

applied to human subjects. However, it could also be readily extended to include

future SA approaches.

4.3 Human Subject Testing

Given the successful results reported in Chapter 3, the remaining task for this

chapter is to evaluate the efficacy of the measurement theory when applied to human

subjects. There are two facets to this evaluation. The first considers the challenge of

estimating the anatomical frames of reference using IMUs that are consistent with the

definitions for optical motion capture. Following prior successes of employing func-

tional alignment movements as revealed in the systematic survey, the participants

in this study will also complete a set of movements to determine the anatomical

frames. The optimization-based alignment technique from Chapter 3 provides a way

of evaluating the success of this approach. The second facet considers the efficacy

of the assumption that the knee predominately acts a hinge, or at least frequently

enough for the measurement theory to provide reliable results. This assumption

will be tested by estimating 3D joint angles during increasingly dynamic movements

during which the hinge assumption would presumably begin to deteriorate.
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In the past, the vast majority of studies conducted to validate 3D knee rota-

tion estimations have done so using low dynamic, cyclical movements like walking or

stair climbing. In fact, only two studies from the survey considered more dynamic

movements. Fasel et al. [153] validated their algorithm on two minutes of alpine ski-

ing on an indoor skiing carpet. They reported excellent results for flexion-extension

and abduction-adduction and fairly good results for internal-external rotation (the

anatomical angle most dependent on orientation about vertical). Al-Amri et al. [160]

validated the Xsens MVN BIOMECH IMU-based system on walking, squatting, and

vertical jumping with the last two exercises generally inducing larger ranges of mo-

tion. They reported excellent results for flexion-extension across all three tasks and

“acceptable” results for the other two anatomical rotations. While the majority

of applications of inertial motion capture focus on human gait analysis, there is an

increasing need to investigate the differences between the two motion capture modal-

ities (MOCAP versus IMU) during other highly dynamic movements. Specifically, it

is likely that errors due to skin artefacts will manifest differently in the two motion

capture modalities (see, for example, [220]).

4.3.1 Methods

Experimental Procedure

Testing with human participants (2M, 1F; age = 26.6 ± 1.9) is conducted over a

range of increasingly dynamic tasks to expose differences in 3D rotations across the

knee using both IMU and MOCAP measurement modalities. Participants’ thighs

and shanks (Fig. 4.5.) were outfitted with four IMUs sampling at 128 Hz (Opal

sensors, APDM, Portland, OR, USA; sensor characteristics available at http://www.

apdm.com/wearable-sensors/). Additionally, a 20-camera motion capture system

(Motion Analysis, Santa Rosa, CA) sampling at 120 Hz tracked a MOCAP marker

set made up of 67 markers [221] (visible in Fig. 4.5) to create a lower body model.

This data set was collected for multiple purposes, one of which was for this validation

study for IMU estimated 3D knee rotations. The University of Michigan Institutional

Review Board approved the study and participants gave informed consent.
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Figure 4.5: Participant outfitted with IMUs and MOCAP markers with a call-out of
an IMU on the right.

Participants first completed three functional alignment movements to define the

anatomical frames of reference for the thigh and shank. The first movement is a

bicycle pedaling motion in which participants move their foot in an approximate

elliptical trajectory in the sagittal plane. This movement is used to determine the

medial-lateral axes of rotation using the procedure outlined by [19] and [20]. The

second movement is a static period where participants stand in a neutral pose as still

as possible. For the final movement, participants lock their knee and rotate their leg

about the superior-inferior axis of the hip (and femur) while retaining the heel on

the floor as a pivot point. Ideally, when the knee is locked the superior-inferior axis

of the femur is aligned with the superior-inferior axis of the tibia. These latter two

movements are used to determine the superior-inferior axes of the thigh and shank,

which will be compared to each other.

89



The participants then completed a series of dynamic tasks including step ups,

bicycle pedaling, drop landings, and jump cuts. This sequence of movements was

selected for several reasons. First, the movements induce dominantly 2D motions

(step ups, bicycle pedaling, drop landings) motions as well as motions with signifi-

cant 3D components (jump cuts). Second, the movements span considerable dynamic

ranges including slow to moderate steady-state motions (bicycle pedaling, step ups)

to highly dynamic transient motions (drop landings, jump cuts). Thus, this se-

quence of motions will likely reveal possible challenges to the measurement theory.

A summary of each movement follows.

A procedure similar to that described in [222] was used for the step-ups. The

participants started from a neutral static pose with feet on the floor approximately

shoulder-width apart, stepped up on a box (30 cm tall) with their left leg first before

returning to the neutral static pose on top of the box. The participants then took a

small step forward to the edge of the box, paused for a moment, then stepped down

with their left leg first. They repeated this sequence five times and then completed

the same protocol with the opposite leg leading the step up/down.

Prior to using the stationary bicycle, the proper saddle height was established

using a goniometer. The saddle height was adjusted to achieve knee flexion between

27◦ and 37◦ in the starting position [223]. The participants were instructed to pedal

while maintaining 70 RMP for one minute using the built-in bicycle speedometer for

reference (CycleOps, 400 Pro Indoor Cycle).

For single leg drop landings, the participants began by standing on one leg (test

leg) on a (30cm) step with their hands at their hips and with the contralateral leg

slightly flexed at the knee. Participants then hopped off the step and landed on the

test leg and were instructed to keep their eyes forward and their contralateral knee

bent behind the test leg. The participants first observed this task demonstrated by

the experimenter and then completed two practice trials prior to the test trials. A

test trial was considered successful if the subject maintained balance on the test leg

for three seconds on a force plate. Testing continued until ten successful trails were

obtained, and then repeated using the opposite leg [224].

For the jump cuts, the participants jumped forward on a level surface starting
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with both feet a distance 120% of their leg length onto a force plate, landed with

their left leg and cut to their right. A total of five trials were collected, and then the

procedure was repeated using the right leg for cutting. The criteria for a successful

trial included: 1) jumping forward using both feet, 2) making full contact with the

force plate, 3) absence of hopping on the force plate, and 4) cutting in the indicated

direction [225].

MOCAP Calculations

The motion capture system (Motion Analysis, Santa Rosa, CA) included 20 cam-

eras sampling at 120 Hz. After processing the marker position with a Butterworth

filter (4th order, fcutoff = 6 Hz), a model was constructed in Visual3D (C-Motion,

Germantown, MA) following ISB convention [113, 114]. Local coordinate systems

and rotations across the knee were decomposed also using ISB convention [18]. In

particular, the total (instantaneous) rotation across the knee was computed for com-

parison to that estimated using the IMU data per the following measurement theory

extending from Chapter 3. As mentioned previously, while MOCAP represents the

standard in the human biomechanics community, the estimates provided by this mo-

tion capture modality are not ground truth. Thus, the comparison between MOCAP

and IMU estimates are discussed in terms of differences instead of in terms of errors.

Extension of IMU Measurement Theory to Human Subjects

The anatomical reference frames depicted in Fig. 4.6 are established from the

functional alignment movements as follows. First, the angular velocity data collected

during bicycle pedaling functional alignment movement is used to define the medial-

lateral axes of the thigh and shank anatomical frames (X̂AT and X̂AS, respectively)

using the procedure outlined in [19]. The data collected during this movement is also

used to calculate subject-specific means and variances of the measurement described

in Eqn. 3.49 for Case 1b) when the knee is functioning as a hinge when the knee

joint is rotating. Measurements calculated using data from the experiments are used

to determine instances when the knee is reliably acting as a hinge via Mahalanobis

distances (Eqn. 3.32) and χ2 tests. As a reminder, a squared Mahalanobis distance

larger than the χ2 value for n degrees of freedom at a significance level α = 0.05
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indicates that the sample is an outlier of the distribution, in which case the knee is

not considered to be acting as a hinge.

Figure 4.6: Anatomical frame definitions for the thigh and shank.

From the functional alignment data for the static neutral pose, the acceleration

data is used to define the first estimate of the superior-inferior axes of the thigh

and shank (ẐAT,1 and ẐAS,1, respectively). Specifically, the average direction of

the measured acceleration during this still period is assumed to be aligned with the

superior-inferior axes of the thigh and shank anatomical frames. The means and

variances of the angular velocity and acceleration magnitudes are also calculated

to define subject-specific static distributions to later determine whether the body

segments are static or not via Mahalanobis distances and χ2 tests. Finally, this

acceleration data is also used to calculate subject-specific means and variances of
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the measurement described in Eqn. 3.48 for Case 1a) when the knee is functioning

as a hinge when the knee joint is stationary. Measurements calculated using data

from the experiments are used to determine whether the knee is acting as a hinge

via Mahalanobis distances and χ2 tests.

Finally, the functional alignment movement where participants lock their knee

and rotate their leg about the superior-inferior axis of the hip is used for secondary

estimates of the superior-inferior axes of the shank and thigh based on angular ve-

locity data instead of acceleration data. Specifically, a principal component analysis

(PCA) [226] of the angular velocity returns as its first component secondary estimates

of the superior-inferior axes of the thigh and shank (ẐAT,2 and ẐAS,2, respectively).

Table 4.1 summarizes how both anatomical frames are defined.

Table 4.1: Definitions of the two anatomical frame definitions for the thigh. These
descriptions are analogous to the shank anatomical frame definitions.

Frame Axis Definition Data

1 X̂AT Knee Pedaling Axis ωT , ωS

ẐAT,1 Static Neutral Posture Axis aT

ŶAT,1 ẐAT,1 × X̂AT

2 X̂AT Knee Pedaling Axis ωT , ωS

ẐAT,2 Hip Internal-External Rotation Axis ωT

ŶAT,2 ẐAT,2 × X̂AT

For both estimated anatomical frames, two cross products (preserving the medial-

lateral axis) ensures orthonormal IMU-derived anatomical frames.

Data Analysis

The estimates provided by the ESKF from Chapter 3 yield the orientation of

the shank IMU relative to the thigh IMU (q(t)T/S,IMU). Specifically, this quater-

nion describes the orientation of one IMU relative to the other with no regard to

the IMU-based anatomical frames. By contrast, two different estimates of 3D knee
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rotations are calculated using the two slightly different anatomical frames of refer-

ence summarized in Table 4.1. The first uses the anatomical frames defined with

the static neutral pose in Eqn. 3.50 yielding q(t)AT/AS,IMU1. The second uses the

anatomical frames defined with the hip internal-external rotation movement in Eqn.

3.50 yielding q(t)AT/AS,IMU2. Table 4.2 summarizes the different calculations using

the anatomical frames defined in Table 4.1.

Table 4.2: Descriptions of the relative quaternion calculations.

Relative Orientation

Quaternion Of... To...

q(t)T/S,IMU Shank IMU Frame Thigh IMU Frame

q(t)AT/AS,IMU1 Shank Anatomical Frame 1 Thigh Anatomical Frame 1

q(t)AT/AS,IMU2 Shank Anatomical Frame 2 Thigh Anatomical Frame 2

The optimization technique described in Section 3.3.2 for determining body-fixed

frame alignment is conducted three times. The first time uses q(t)T/S,IMU to de-

termine the “true” orientation of the IMUs relative to their respective body seg-

ments’ anatomical frames defined by MOCAP. In other words, this result employs

the MOCAP-determined anatomical frames. The second and third times use the

two anatomical frames determined by the IMUs via the functional alignment move-

ments (Table 4.2). Comparing these results allows one to determine misalignment

between the IMU-derived anatomical frames and the MOCAP-derived anatomical

frames. Determining these relationships provides direct comparison of the two IMU-

based anatomical frames and aids interpreting the 3D anatomical rotations derived

from the quaternions described previously. Table 4.3 describes the outputs from the

optimization procedure for each of the relative quaternions in Table 4.2.

Finally, the previous experiments using the coordinate measurement machine

only considered correlations and best fit lines between the IMU-derived estimates

and those provided by the highly precise optical encoders. That analysis is appro-

priate given that the highly accurate encoders provide truth data. However, that
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Table 4.3: Descriptions of the outputs from the optimization procedure relating the
anatomical frames (AF) for each of the relative quaternions.

Optimization Relative Orientation

Quaternion Output From... To...

q(t)T/S,IMU

qAT/T Thigh IMU MOCAP Thigh AF

qAS/S Shank IMU MOCAP Shank AF

q(t)AT/AS,IMU1

qAT1/T IMU Thigh AF 1 MOCAP Thigh AF

qAS1/S IMU Shank AF 1 MOCAP Shank AF

q(t)AT/AS,IMU2

qAT2/T IMU Thigh AF 2 MOCAP Thigh AF

qAS2/S IMU Shank AF 2 MOCAP Shank AF

analysis is less appropriate in this study given that MOCAP cannot provide truth

data for the reasons discussed in [107–111]. Therefore, Bland-Altman analyses are

conducted to assess the agreement between the two motion capture modalities, each

of which has error associated with their estimates [227]. However, decomposing the

relative orientation of the anatomical thigh to anatomical shank into Euler angles (as

described in prior chapters) will amplify the differences between IMU- and MOCAP-

based anatomical frames. Therefore, a comparison of the total rotation angle (i.e.,

axis-angle representation [228]) is also included since it offers a comparison that is less

sensitive to the differences between the anatomical frames for these two measurement

modalities.

4.3.2 Results and Discussion

This section begins by examining the results for a representative trial for a single

subject. Figure 4.7 illustrates all 4 quaternion components estimated for the thigh

IMU (green) and the shank IMU (blue) for 16 minutes of data that span all four
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movements (shaded regions) starting with the bicycle pedaling (approximately an

hour into the data collection). These quaternion components represent the absolute

orientation of each sensor relative to their respective world frames. Note that the

low frequency oscillations present in the data derive from the orientation estimates

drifting about the vertical axis, which is expected since the magnetometer data is not

being used to correct the absolute orientation of the IMUs in the horizontal plane.

The fact that the orientation estimates appear to drift at the same rate in the same

direction is evidence of the measurement theory correcting the relative drift between

the IMUs about the vertical axis, which is necessary to then accurately estimate the

rotations across the knee as shown next.

Figure 4.7: Quaternion estimates for the thigh (solid green) and shank (dashed
blue). Note that the estimates from both sensors are drifting. The four shaded areas
correspond to bicycle pedaling, box drops, jump cuts, and step-ups, respectively.

Next, Fig. 4.8 illustrates the resulting orientation of the shank anatomical frame

relative to the thigh anatomical frame for the same sample trial by using the first

anatomical frame described in Table 4.1. Doing so yields the IMU-estimated flexion-

extension (FE), internal-external rotation (IE), and abduction-adduction (AA) of
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the knee for this trial. Notice the absence of the low frequency drift error that

was previously observed in Fig. 4.7. These sample results are significant in that

they demonstrate the power of the measurement theory to estimate the relative

orientation between sensors by correcting the relative integration drift error. While

these results are for the illustrated 16 minute snapshot of data, the trend continues

for the remainder of the trial. Now, the results comparing the IMU-based knee

anatomical angles to those provided by MOCAP are presented.

Figure 4.8: Estimates for flexion-extension (FE), internal-external rotation (IE), and
abduction-adduction (AA) provided by the IMUs. The four shaded areas correspond
to bicycle pedaling, box drops, jump cuts, and step-ups, respectively.

For the comparisons to MOCAP that follows, the IMU-based anatomical angles

are derived from the optimization technique implemented on q(t)T/S,IMU to deter-

mine the “true” orientation of the IMUs relative to their respective MOCAP-based

anatomical frames. Figure 4.9 focuses on the quaternion estimates for the thigh and

shank IMUs relative to their world frames for just the bicycle pedaling portion of

the prior trial during which the subject pedalled at a constant speed for a minute.

The bicycle pedaling should produce entirely periodic variations in the quaternions.
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However, one clearly observes the superimposed linear variations due to integration

drift error. While the integration drift error is clearly accumulating, it also appears

to be accumulating at roughly the same rate for the thigh- and shank-mounted IMUs,

which again is evidence of the measurement theory correcting the relative drift be-

tween the IMUs.

Figure 4.9: Quaternion estimates for the thigh (solid green) and shank (dashed blue).
Note that the estimates from both sensors are clearly drifting.

Figure 4.10 illustrates the anatomical angles estimated by both IMU and MO-

CAP measurement modalities for the bicycle pedaling example above. Notice that

the drift present in the results of Fig. 4.9 is now largely absent in the IMU-estimated

anatomical angles of Fig. 4.10 due to the frequent drift correction over this time

interval. In particular, the black squares and black triangles at the top of the figure

denote time steps when the thigh and shank sensors, respectively, are considered to
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Figure 4.10: Estimates for flexion-extension (FE), internal-external rotation (IE),
and abduction-adduction (AA) provided by IMUs (solid) and MOCAP (dashed).
The black squares at the top denote times when the thigh is static, the black triangles
at the top denote times when the shank is static, and the black asterisks at the
bottom denote times when the knee is acting sufficiently as a hinge. The call-out at
the bottom provides a magnified view of a small fraction of this time record where
one can see the brief moments when the knee is not acting as a hinge (absence of
asterisks). At around 40 seconds, the subject readjusted their posture on the saddle
of the stationary bicycle, which is why the knee kinematics appear to change.

be static. However, these “static times” arise only at the very start of this time in-

terval thus it is unsurprising that the flexion-extension (FE) estimates from the IMU
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begin to drift near the end of this interval. Drift does not manifest in the internal-

external rotation (IE) or abduction-adduction (AA) angles. By contrast, the black

asterisks at the bottom of the figure denote times when the knee is acting sufficiently

like a hinge to reliably correct the misalignment in the shank and thigh world frames.

It is reasonable that the knee is acting as a hinge as frequently as is illustrated given

that the medial-lateral axis and the distribution characterizing when the rotating

knee is acting as a hinge is determined from the bicycle pedaling functional align-

ment movement. Additionally, since this anatomical kinematic constraint is a vector

constraint, these updates provide drift error corrections for the IE and AA angles.

Overall, the RMS differences between the IMU- and MOCAP-based estimates for

FE, IE, and AA for this time interval are 5.1◦, 2.4◦, and 3.1◦, respectively.

Completing this same analysis across all activities and subjects enables a full

comparison of the anatomical angles by both measurement modalities in this study.

Table 4.4 reports the resulting RMS differences in the anatomical angles as well as

the total rotation angle for each activity. Interestingly, the differences between the

IMU-based and MOCAP-based estimates were the greatest for the bicycle pedaling

and jump cut activities. For the bicycle pedaling, these differences are largely driven

by the FE estimates due to the aforementioned paucity of “static times” as in Fig.

4.10. For the jump cuts, the differences were also largely driven by the FE estimates

as well. Nevertheless, the differences in the three anatomical angles and the total

rotation angle across all activities remains below 5◦.

Table 4.4: RMS angular differences between IMU and MOCAP estimates for
each anatomical angle and total rotation angle for each activity type and across
all trials and subjects.

Angle Step-Ups Bicycle Drops Cuts All

FE 4.1 5.4 3.9 6.2 4.8

IE 4.3 2.4 4.6 3.5 3.7

AA 3.7 2.4 4.1 3.6 3.4

Total 4.4 5.5 4.1 6.1 4.9
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An in-depth analysis of these differences follow from the results of the Bland-

Altman analyses for each activity beginning with the step-ups. Figure 4.11 illustrates

Bland-Altman plots for the three anatomical angles and the total rotation angle for

the step-ups. The differences between the estimates provided by the two motion

Figure 4.11: Bland-Altman plots for step-ups for flexion-extension (FE), internal-
external rotation (IE), and abduction-adduction (AA) angles as well as the total
rotation angle. The solid red line represents the mean difference and the dashed red
lines represent the limits of agreement between the two motion capture modalities
(1.96 times the standard deviation of the differences) [229].

capture modalities are plotted against their averaged estimates. For the anatomical

angles, the mean differences are approximately zero. However, there is a slight offset

in the total rotation angle indicating that, on average, the IMU method yields similar

but consistently smaller estimates than MOCAP. The cause could be explained by

the FE results for which there appears to be a proportional bias between the two

modalities. This proportional bias is even more evident in the bicycle pedaling task.

Figure 4.12 illustrates the analogous Bland-Altman plots for the bicycle pedaling
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task. Note that the average FE range of motion for all three subjects estimated by

MOCAP is 88◦ whereas that estimated by the IMUs is 82◦. While the difference be-

tween these predicted ranges of motion is not statistically significant given the range

of agreement apparent in Fig. 4.12, the IMU method yields similar but consistently

smaller FE estimates than MOCAP. However, this is not the case for the IE or AA

angles. In fact, the IE and AA predictions have smaller ranges of agreement for the

bicycle pedaling than for the step-ups.

Figure 4.12: Bland-Altman plots for bicycle pedaling for flexion-extension (FE),
internal-external rotation (IE), and abduction-adduction (AA) angles as well as the
total rotation angle. The solid red line represents the mean difference and the dashed
red lines represent the limits of agreement between the two motion capture modalities
(1.96 times the standard deviation of the differences) [229].

Next, the Bland-Altman results for the box drops are illustrated in Fig. 4.13. As

with the step-ups and bicycle pedaling, there is some evidence of the proportional

error in the FE predictions. Also, the ranges of agreement for the IE and AA angles

are of a similar magnitude as the step-ups.
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Figure 4.13: Bland-Altman plots for box drops for flexion-extension (FE), internal-
external rotation (IE), and abduction-adduction (AA) angles as well as the total
rotation angle. The solid red line represents the mean difference and the dashed red
lines represent the limits of agreement between the two motion capture modalities
(1.96 times the standard deviation of the differences) [229].

Lastly, the results for the jump cuts are similar in magnitude for the IE and AA

angles whereas the proportional bias is again evident in the FE estimates. The FE

estimates also drive the differences in the total rotation angles as well. Unsurpris-

ingly, the results for the jump cuts exhibit the largest differences between the two

measurement modalities due to the highly dynamic nature of this task. During this

task, there are limited opportunities to correct the two IMU orientation estimates

since the knee is neither static nor acting as a hinge,. In addition, this task would

induce the greatest errors from skin artefacts.
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Figure 4.14: Bland-Altman plots for jump cuts for flexion-extension (FE), internal-
external rotation (IE), and abduction-adduction (AA) angles as well as the total
rotation angle. The solid red line represents the mean difference and the dashed red
lines represent the limits of agreement between the two motion capture modalities
(1.96 times the standard deviation of the differences) [229].

Finally, a brief discussion of the differences in the two IMU-derived anatomical

frames (determined by the two sets of functional alignment movements) with that

determined by MOCAP using the optimization technique of Chapter 3. Figure 4.15

shows the average angular difference between each of the IMU-derived anatomical

frames (summarized in Table 4.1) and their respective MOCAP anatomical frames.

These results are averaged across all trials, activities, and subjects. For the shank,

there does not appear to be any significant difference between the two IMU-derived

anatomical frames. Thus, using the acceleration measured during the static neutral

pose (Anatomical Shank Frame 1) or the angular velocity measured during the hip

internal-external rotation movement (Anatomical Shank Frame 2) yield essentially

the same difference in the shank anatomical frames relative to that determined by
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MOCAP (as measured by the total angle). For the thigh, however, the static neutral

pose (Anatomical Frame 1) yields a results that more closely aligns with that of

MOCAP.

Figure 4.15: Total angular differences between the IMU-based anatomical frames
and the MOCAP-based anatomical frame via the optimization technique of Chapter
3 averaged across all trials, activities, and subjects.

4.3.3 Conclusion

This study investigates the efficacy of the measurement theory to estimate three-

dimensional rotations across the human knee. This is achieved by comparing the

IMU-derived estimates for flexion-extension, internal-external rotation, and abduction-

adduction with those estimated by convention optical motion capture (MOCAP) for

three subjects across a range of four increasingly dynamic tasks, namely: 1) step-

ups, 2) bicycle pedaling, 3) box drops, and 4) jump cuts. Recognizing that MOCAP

should not be construed as providing ground truth results, the differences in the

three knee angles obtained by these two measurement modalities are examined us-
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ing Bland-Altman analyses. The following major conclusions are drawn from these

analyses. The majority of the differences between the two measurement modali-

ties derives from knee flexion-extension where the IMU-based estimates are the fact

that the IMU-based estimates are typically smaller than those estimated by MOCAP

(e.g., a 5◦ difference is typical). By contrast, smaller differences arise in the estimated

knee internal-external rotation and abduction-adduction angles. This is particularly

true for the bicycle pedaling and jump cut activities. Furthermore, the optimization

technique reveals a consistent misalignment between the MOCAP-defined anatomi-

cal frames and the IMU-defined anatomical frames and regardless of which of the two

sets of functional alignment movements are employed. This is not surprising given

that the anatomical frames are defined using entirely different procedures. Thus,

caution should be exercised in comparing (and even interpreting) the three anatom-

ical angles estimated by these two measurement modalities. However, both methods

should yield consistent results for the total angle across the knee as the total angle is

independent of the definition of the anatomical frame, though it is likely that errors

due to skin artefacts manifest differently in the two motion capture modalities.

4.4 Summary and Conclusions

The first major contribution of this chapter is a systematic survey of the prior

methods used to define anatomical frames of reference using IMUs, and his leads

to several important conclusions. Not only has the biomechanics community not

converged to a common method, researchers continue to explore new approaches. In

general, self-aligning approaches are promising in that they do not depend on the

researchers’ ability to attach IMUs to body segments in specific orientations (as re-

quired in the assumed sensor orientation method), or for the participants to properly

execute functional calibration/alignment movements (as required in the functional

alignment movement method). As the number of studies employing IMUs continues

to grow exponentially, there remains a significant need to establish a convention for

defining anatomical frames of reference for inertial motion capture.

The second major contribution is the extension of the measurement theory to hu-
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man subject testing, and the subsequent comparison of IMU-estimated knee angles

to those provided by conventional MOCAP. Regarding the measurement theory, the

study results clearly demonstrate the success of the anatomical kinematic constraint

to correct the relative drift error between the sensors over long periods of time.

The major differences between the two motion capture modalities derives from the

flexion-extension range of motion where the IMU method yields similar but consis-

tently smaller estimates than MOCAP. This small difference might also derive from

the optimization technique used to determine the orientation of the IMUs relative

to the MOCAP-defined anatomical frames. More importantly, the results highlight

the overall success of the measurement theory in aligning the two IMU world frames

without any reliance on magnetometer data, which can often be untrustworthy. Fi-

nally, the study reveals that the two sets of functional alignment movements used

to estimate the superior-inferior (internal-external rotation) axes of the thigh and

shank lead to anatomical axes that are misaligned with those defined by MOCAP.

This finding again underscores the need for the broader research community to de-

velop a standard for determining anatomical axes using IMU-based techniques.
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CHAPTER 5

Human Crawling Performance Metric

Development and Evaluation

5.1 Introduction

As was noted in Chapter 1, the second objective for this part of the disserta-

tion is to tap into the potential inherent to IMU technology by defining new (non-

traditional) metrics for well-defined tasks that draw on the strengths of this technol-

ogy. Thus, the studies in this chapter contribute a novel method for studying human

crawling performance in a naturalistic environment both in terms of discriminating

performance and evaluating the effects of additional body-borne load.

Crawling represents a form of quadrupedal gait often employed by humans, but

insights can be gleaned from studying the crawling of reptiles, amphibians, and

insects, among other organisms as well. A gait pattern, as defined by Song and

Waldron [230], is “the time and the location of the placing and lifting of each foot,

coordinated with the motion of the body in its six degrees of freedom, in order to

move the body from one place to another.” Relative to this definition, McGhee [231]

notes over 5,000 different possible quadruped gaits, including trotting, galloping,

and crawling that are considerably more common than others. One common form

of crawling gait common to many organisms consists of a diagonal interlimb pattern

where the limbs (e.g., arms and legs) on opposite sides of the body swing in unison

[232, 233]. Diagonal gait has further been shown to have implications in designing
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controllers for quadruped robots, which may leverage gait transitions observed in

nature to improve performance [234–236]. For example, several species of lizards

exhibit diagonal gait when transitioning to high speeds, and it is further believed

that diagonal gait affords greater stability and maneuverability [237].

In humans, diagonal crawling gait is commonly observed during infant develop-

ment and marks important motor learning gains [232, 233, 238]. Infants generally

transition from crawling with their abdomen contacting the floor to crawling with

contact solely through their hands and knees, which introduces new neural, biome-

chanical, and task constraints contributing to the challenges of maintaining balance

and support [239]. Despite these challenges, infants observed in a longitudinal study

systematically converge to the same diagonal interlimb gait [239]. Crawling balance

and dynamic stability follow from a base of support formed with as few as two limbs

contacting the ground [240]. Diagonal crawling gait yields a diagonal base of sup-

port that remains nominally beneath the center of mass. Studies of infant crawling

suggest that the diagonal gait pattern may also yield the most dynamically stable

crawling gait as it minimizes lateral (e.g., side to side) variation of the mass center

relative to the (diagonal) base of support [232]. Additional studies explore the effect

of limb length on diagonal gait. For example, short-legged animals (e.g., amphibians

and reptiles) adopt diagonal gait for greater stability per the aforementioned reason

[241]. The same holds for infants who preferentially adopt a wide stance with respect

to their shoulder width by placing their limbs further from the sagittal plane [233].

Relative to adults, infants have proportionally shorter limbs and adapt to relatively

poorer balance by widening their base of support. When adults are forced to widen

their base of support (limbs forced further from sagittal plane via obstructions), they

converge to using the same diagonal crawling gait of infants [233].

Using this literature as a foundation, this chapter proposes metrics that define

and discriminate human crawling performance (with particular attention paid to limb

coordination) in the context of an outdoor obstacle course that embeds a crawling

task for military personnel [16]. Crawling of military personnel may signal functional

capacity following injury [21], expose the mechanisms and types of injury [22, 23], or

be selected to optimize the size and configuration of carried loads [24–28]. Histori-
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cally, crawling performance for military assessment is quantified solely by the time

required to complete a crawling task. For example, the time to crawl a specified

distance may serve as the measure of crawling performance. Although completion

time is an important measure of performance, it does not reveal the techniques used

or the underlying biomechanical motions that contribute to superior crawling per-

formance. For example, studies [25, 26] conclude that large added loads from body

armor significantly increases completion time. However, completion time does not

reveal any of the companion changes in the biomechanical movements as also noted

by observation [26].

This chapter expands prior studies of crawling performance by considering a

broader range of performance metrics. In particular, crawling performance is stud-

ied across four measures of crawling performance; namely, crawl speed, crawl stride

time, ipsilateral limb coordination, and contralateral limb coordination. This chapter

begins by describing the development of the performance metrics, specifically detail-

ing how they are derived from IMU data collected at the upper arms and thighs. The

chapter then summaries two studies that: 1) investigate the ability of these metrics

to discriminate superior crawling performance as summarized in [17] and 2) discrimi-

nate crawling performance as a function of body-borne loads as summarized in [242].

The consideration of crawling performance with body-borne loads is motivated by

the need to understand the performance of warfighters with added load.

5.2 Methods

5.2.1 Participants, Equipment, and Protocol

For both studies, participants were recruited from a collegiate Reserve Officers

Training Corps (ROTC) and club sports population (see Table 5.1 for demographic

information) and completed numerous tasks embedded in a large outdoor obstacle

course. One task, which required the participants to crawl swiftly on their elbows

and knees, is often referred to as the “high crawl” in the context of military-style

obstacle courses as described further below. All participants self-reported inexperi-

110



ence with the obstacle course and were therefore considered novices. The University

of Michigan Institutional Review Board approved the study and participants gave

informed consent.

Table 5.1: Demographics for recruited participants for both studies.
Age, height, and mass are given as mean ± standard deviation

Study Number Age (years) Height (m) Mass (kg)

Study 1 33 (19M/14F) 20.2±2.0 1.75±0.12 71.6±4.2

Study 2 22 (15M/7F) 19.9±2.0 1.78±0.13 78.7±14.9

As mentioned above, participants wore an array of inertial measurement units

(IMUs) (Opal, APDM, Portland, OR, USA). Four IMUs attached to upper arms

and thighs with arbitrary orientation are pertinent to this study (Fig. 5.1).

Figure 5.1: Participant with four IMUs attached to upper arms and thighs (red
boxes) and a callout of an IMU node on the right.

Each IMU includes a triaxial accelerometer (6g range, 14-bit resolution, 650

µg/
√
Hz noise floor) and a triaxial angular rate gyro (2000°/s range, 16-bit reso-
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lution, 0.03°/sec/
√
Hz noise floor) sampled at 128Hz. Participants also carried a

mock (plastic) rifle (mass 3.2kg, length 0.75m) with an IMU mounted to the barrel

(Fig. 5.2(b)).

Figure 5.2: High crawl obstacle. (a) Layout of the high crawl obstacle, and (b)
photograph of a participant completing the high crawl.

Participants completed a crawling task as part of a larger outdoor obstacle course

modeled after the Load Effects Assessment Program (LEAP); see, for example,

[16, 27]. The LEAP obstacle course is used by military organizations worldwide

to evaluate the effects of load and other personal equipment on warfighter perfor-

mance. It was created to replicate the common movements of warfighters and was

specifically designed by the U.S. military to incorporate motions and tasks important

for military personnel as emphasized in [16, 27]. In the context of the LEAP, the

crawling task in this study is referred to as the high crawl. Participants started each

crawl trial prone with their elbows even with a set of cones and were instructed to

crawl as quickly as possible to another set of cones 9.1m (30ft) away while keeping

their body as low to the ground as possible. In so doing, participants crawled on

their elbows (not hands) and knees, though they also used their feet as additional

points of contact when moving forward. Prior to testing, each participant walked

through the course and received instruction on how to complete each obstacle. Si-
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multaneously, they were encouraged to try each obstacle to familiarize themselves

with the required movements and to reduce learning effects [27]. In the first study,

participants completed the obstacle course once without additional load (Fig. 5.2).

The second study investigated the effects of added load on the crawl performance

metrics developed from the first study. Thus, these participants completed the ob-

stacle course multiple times in various loading conditions. For the loaded conditions,

participants wore a (V-FORCE long) weight vest (Weightvest.com, Rexburg, ID,

USA) laden with a select number of cast iron weights (mass 1.1kg, dimensions 10cm

x 5cm x 4cm, equally distributed across front and back). Note that the participants

in Fig. 5.1 and Fig. 5.2(b) both illustrate the unloaded condition (no load vest). Par-

ticipants completed the crawling task a total of four times: two times without added

load (unloaded condition: UL), once wearing an additional 15% of their body weight

(loaded condition: 15BW), and once wearing an additional 30% of their body weight

(loaded condition: 30BW). The added loads are considered relevant to understand-

ing how body-borne loads influence the performance of warfighters. Participants

performed over two testing sessions (on separate days) each of which included the

UL condition and one of the two loaded conditions with 15 minutes in between for

recovery. The order of loading conditions within and between testing sessions was

randomized. In addition to the training period before testing, participants were en-

couraged to practice completing various obstacles (including the high crawl) during

the first loaded condition to experience how the load may affect movement. For con-

text, descriptive statistics for the additional loads are reported in Table 5.2. Note

that the mean load representing 30% body weight (23.6 kg) is comparable to typical

infantry fighting loads.

Table 5.2: Minimum, mean, maximum, and standard deviation
(STD) of additional loads (in kg) secured to the participants.

Condition Min (kg) Mean (kg) Max (kg) STD (kg)

15BW 8.3 11.8 16.9 2.2

30BW 16.6 23.6 33.8 4.4
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5.2.2 Analysis of IMU Data

Analysis of the IMU data begins by parsing the data into crawling gait cycles by

detecting events that define the start and end of each cycle. Subsequent analysis of

the parsed cycles reveals the speed of crawling and the coordination of the upper and

lower limbs. These metrics, described next, build from prior measures for crawling

(see, for example, [233, 237, 238, 243]). A description of each of these steps follows.

5.2.2.1 Crawl Gait Event Definition and Detection

The IMU data is parsed into individual gait cycles via the acceleration sampled at

both upper arms. In particular, the acceleration magnitude at an upper arm exhibits

a pronounced peak each time the associated elbow strikes the ground. These peaks

readily define the start and end of each crawling gait cycle (Fig. 5.3). By contrast,

Figure 5.3: A plot of the acceleration magnitudes (including superimposed gravity)
of IMUs attached to left (blue) and right (red) upper arm. Circles denote elbow
strikes for each arm. The vertical green line indicates the start of the crawl and the
vertical black line indicates the end of the crawl. A single “stride” time is illustrated
for the left arm.
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the acceleration sampled on each thigh does not readily distinguish gait cycles as

the acceleration for the associated knee strikes can be significantly attenuated rel-

ative to the elbow strikes. Additionally, the knee often slips on the ground further

confounding the detection of the cycle. Nevertheless, the motion of the thigh, and

particularly the phasing of the motion of each thigh relative to both upper arms

is critical to crawling performance. This phasing is captured by the coordination

metrics proposed below.

5.2.2.2 Crawl Speed and Stride Time

The crawl task is bookmarked by the first and last elbow strikes, which define

the crawl completion time (Fig. 5.3). The length of the crawl (9.1m) divided by the

crawl completion time yields the average crawl speed. Stride times are defined from

sequential elbow impacts on the same arm (i.e., time from one left elbow impact to

the next left elbow impact); refer to Fig. 5.3. For each participant, the stride time

is reported as the mean of the stride times for both right and left upper arms.

5.2.2.3 Ipsilateral and Contralateral Coordination Metrics

Two different (but related) metrics of crawl coordination are defined; namely ipsi-

lateral and contralateral coordination. Ipsilateral coordination measures the phasing

of limbs on the same side of the body (e.g., phasing of the right thigh relative to

the right upper arm). Contralateral coordination measures the phasing of limbs on

the opposite side of the body (e.g., phasing of the left thigh relative to the right

upper arm). These coordination metrics are computed from the angular velocities

measured synchronously on all four limbs as follows.

First, the principal axis of rotation for each upper arm during each stride is

estimated from a principal component analysis (PCA) [226] of each upper arms

angular velocity data. The PCA returns three orthogonal axes that describe the

variation in angular velocity where the first axis captures the majority of the variation

and is used as the principal axis of rotation. Additionally, the resulting principal axis

nominally points in the lateral direction. The angular velocity for each upper arm
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is projected onto the associated principal axis of rotation to yield “arm principal

angular velocities” ωarm,i where i=l or r for left or right upper arm. An analogous

procedure is followed for the angular velocity measured by each thigh-mounted IMU,

with one important difference. This PCA for each thigh is conducted twice, once

using the strides defined by the left elbow strikes and then again using the strides

defined by the right elbow strikes. Doing so yields “leg principal angular velocities”

ωleg,ij where i=l or r for left or right elbow strikes and j =l or r for left or right thigh.

For example, ωleg,rr is the right thigh principal angular velocities using the strides

defined by the right elbow strikes and ωleg,lr is the right thigh principal angular

velocities using the strides defined by the left elbow strikes. In summary, each of

these scalar quantities describes the angular speeds of each limb about the principal

axis of rotation of each limb.

Next, a coordination matrix β (2 x 2) is formed that measures the phasing of each

pair of arm and leg principal angular velocities. The components of the coordination

matrix are

βij =

∫ t2
t1
ωarm,i(t)ωleg,ij(t)dt√∫ t2

t1
ωarm,i(t)2dt

√∫ t2
t1
ωleg,ij(t)2dt

(5.1)

where the limits of integration begin with the time of the first elbow strike (t1) to

the last elbow strike (t2), i.e., the crawl completion time illustrated in Fig. 5.3. The

component βij is a measure of the phase between the principal angular velocities of

the ith upper arm and the jth thigh (calculated with the ith elbow strikes), where

again i, j = l(eft) or r(ight). Note that −1 ≤ βij ≤ 1 and that the limiting values

βij = 1 and βij = −1 denote perfectly in-phase and perfectly out-of-phase motions,

respectively; refer to illustrative example in Fig. 5.4 for principal angular velocities

that are sinusoids.
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Figure 5.4: Example illustrating the interpretation of the components of the co-
ordination matrix for principal angular velocities described by two (phase-shifted)
sinusoids having period 2π. In this case, βij reduces to cosφ where φ is simply the
phase angle between the two sinusoids. (a) βij=1 for two principal angular velocities
that are exactly in-phase (φ=0). (b) βij=-1 for two principal angular velocities that
are exactly out-of-phase (φ=π). (c) βij=0 for two principal angular velocities that
are out-of-phase by φ=π/2.

However, the principal angular velocities during crawling are not simple sinusoids

as illustrated in the example of Fig. 5.5. Shown are principal angular velocities for

each of the four limb combinations over a typical stride for an exemplar high per-

former. The associated components βij of the coordination matrix are also reported,

and they include values suggesting significant out-of-phase limb motions (-0.89, -0.72)

as well as values suggesting significant in-phase limb motions (0.71, 0.59).
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Figure 5.5: Representative principal angular velocities of the upper arms (blue) and
thighs (dashed red) over a single stride for an exemplar high performer. If, for
example, the right (left) upper arm is rotating counterclockwise (clockwise), the
principal angular velocity is positive. The top row illustrates the relative phasing of
the ipsilateral limbs and the bottom row illustrates the phasing of the contralateral
limbs. The resulting components of the coordination matrix βij for this example
stride are reported.

Reported next are the four components (βij) averaged across all strides and sum-

marize those results in a “coordination map” as illustrated by the example shown in

Fig. 5.6. The average values of βij (white circles) for each indicated pair of limbs are

shown relative to the possible range of values −1 ≤ βij ≤ 1. In the coordination map,
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positive (negative) values of βij that lie in the upper (lower) half of the range signify

limb phasing that tends towards in-phase (out-of-phase). The coordination map of

Fig. 5.6 is typical of a high performer as it reveals significant out-of-phase motion of

the ipsilateral limbs (βarmr,legr=-0.79, βarml,legl=-0.83) simultaneously with significant

in-phase motion of the contralateral limbs (βarmr,legl=0.66, βarml,legr=0.76).

Figure 5.6: Coordination map for exemplar high performer from Fig. 5.5. Compo-
nents βij (averaged across all strides) of the coordination matrix (white dots) are
shown relative to possible range -1 (blue)≤ βij ≤1 (red). The upper half designates
βij >0 for phasing that tends towards in-phase; the lower half designates βij <0 for
phasing that tends towards out-of-phase.

Leveraging this observation, two overall crawl coordination metrics are defined that

measure ipsilateral limb coordination

βi =
βarmr,legr + βarml,legl

2
(5.2)

and contralateral limb coordination.

βc =
βarmr,legl + βarmr,legl

2
(5.3)
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5.3 Study 1: Discriminating Crawling Performance

5.3.1 Cluster and Statistical Analysis

A k-means cluster analysis explored how crawl speed, stride time, contralateral

coordination, and ipsilateral coordination contribute to overall crawling performance

and technique. The optimal number of means is evaluated with a standard criteria

known as the silhouette criterion [244], which provides a measure of how similar

variables are within a cluster and how dissimilar they are across clusters. Prior to the

cluster analysis, each of the four variables were normalized by their respective ranges

to assign equal weighting in determining the clusters. After confirming normality,

differences in the four variables between groups are further assessed with Welchs t-

tests (to account for unequal variances between groups) with statistical significance

evaluated at α=0.05. These statistical tests were conducted to confirm the distinction

of the groups identified by the cluster analysis.

5.3.2 Results

The silhouette coefficient (0.63) indicated a reasonable structure [245] that dis-

tributed the participants into two groups (n1 = 26, n2 = 7). The ratio of inter-cluster

distance to intra-cluster distance (calculated using Euclidean L2 norm distances

[246]) for crawl speed, crawl stride time, ipsilateral coordination, and contralateral

coordination are 1.18, 1.19, 1.23, and 1.25, respectively. A ratio greater than 1 indi-

cates that the parameter significantly contributes to the group composition. Thus,

in this case, each of the four variables contributes approximately equally. Table 5.3

below provides the descriptive statistics distinguishing the two clusters (or groups)

from one another.
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Table 5.3: Mean ± standard deviation of four crawl performance metrics for two
groups identified by the cluster analysis. Performance metrics include average
crawl speed, crawl stride time, ipsilateral coordination and contralateral coordi-
nation. The differences (∆) denote Group 1 - Group 2. The t-statistic, p-value,
and Cohens d effect size results from the Welchs t-test.

Metric Group 1 Group 2 ∆ t p d

Crawl Speed (m/s) 0.7±0.2 0.5±0.2 0.2 2.80 0.02* 1.09

Crawl Stride Time (s) 1.3±0.2 1.8±0.6 -0.6 -2.59 0.04* -1.30

Ipsilateral Coord. -0.63±0.11 -0.27±0.20 -0.37 -4.72 <0.01† -2.29

Contralateral Coord. 0.57±0.20 0.22±0.37 0.35 2.42 0.04* 1.18

Significant at α = *0.05, †0.01.

The first cluster (Group 1) exhibits faster crawl speeds (denoting superior crawl-

ing performance), shorter crawl stride times, and coordination metrics closer to ±1

(denoting more coordinated limbs) as compared to the second cluster (Group 2).

Shapiro-Wilk normality tests and q-q plots for all variables in both groups did not

indicate any significant deviations from the normal distribution. Table 5.3 also pro-

vides the results of the Welchs t-tests. Importantly, Table 5.3 provides the effect

sizes (Cohen’s d) for the differences across the groups as referred to in the following

discussion. Differences in crawl speed, crawl stride time, and coordination across the

groups reveal clear differences in performance. Moreover, the performance difference

appears to manifest in differing crawling technique as identified by the coordination

metrics discussed next.

5.3.3 Discussion

It was hypothesized that superior crawling performance (as defined by faster

crawl speed) is associated with greater limb coordination and shorter stride time.

Confirming this hypothesis, the cluster analysis revealed one cluster (Group 1) was

characterized by faster crawl speeds, shorter crawl stride times, and greater limb

coordination. Additional statistical tests were conducted to further confirm the hy-

pothesis and the distinction of the groups identified by the cluster analysis. The
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effect size for the crawl speeds (also average crawl completion time) suggests the two

groups significantly differ by approximately one standard deviation (d=1.09). The

other speed related metric, crawl stride time, also significantly differs between the

two groups with the stride times of the high performers (1.3s) being significantly

shorter than those of the low performers (1.8s). Prior literature suggests the most

effective strategy to increase speed is to decrease the stance duration [238, 243], im-

plying the duration of the swing phases largely remains the same across different

speeds. If so, one can infer that high performers spend approximately half a sec-

ond less (on average) in the stance phase compared to low performers. Note that

the product of the average crawl speed and the average crawl stride time yields an

estimate for the average crawl stride distance, which is 0.9m for both high and low

performers. This lends further support to the belief that the mechanics of the swing

phase alone would not distinguish high from low performers [238, 243].

The most prominent difference in performance is revealed by ipsilateral coordina-

tion. The substantial effect size (d=-2.29) suggests the mean ipsilateral coordination

for the two groups differs by more than two standard deviations. Contralateral co-

ordination also significantly differs between the two groups, but the associated effect

size is about half that for ipsilateral coordination. To understand this from another

perspective, Fig. 5.7 compares the coordination maps for an exemplar high performer

(same as that of Fig. 5.6) adjacent to that of an exemplar low performer.

Figure 5.7: Example coordination maps for an exemplar (a) high performer (refer
to Fig. 5.6) and (b) low performer.
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For the exemplar high performer, the ipsilateral limbs are substantially out-of-

phase (note the proximity of βarmr,legr and βarml,legl to the blue end of the range where

β=-1) while the contralateral limbs are substantially in-phase (note the proximity of

βarmr,legl and βarml,legr to the red end of the range where β=1). In contrast, for the

exemplar low performer, the limbs are neither substantially in-phase nor out-of-phase

(note the closer proximity of βij to the center of the map where β=0).

It is also interesting to examine possible cycle-to-cycle variations of these coor-

dination metrics. To that end, Fig. 5.8 reports the moving averages (average of

right and left first stride, right and left second stride, etc.) of the ipsilateral and

contralateral coordination for (a) the exemplar high performer and (b) the exemplar

low performer. The moving average for the high performer exhibits rather small

Figure 5.8: Moving averages of ipsilateral (β̂i) and contralateral coordination (β̂c) for
the exemplar (a) high performer and (b) low performer. The black lines represent
the averages across the trial as reported in each figures title.
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variation. Thus, the high performer crawls with highly consistent coordination and

also with coordination components reasonably close to ±1 as illustrated by the over-

all average as well as in Fig. 5.7(a). Conversely, considerable variation is observed

in the moving average of the coordination components for the low performer, which

suggests that the low performer does not crawl with consistent coordination stride

to stride. Moreover, the averages of the coordination components are close to 0, as

illustrated by the overall average and in Fig. 5.7(b).

Overall, the exemplar low performer’s limbs do not exhibit strong limb pairing

and the limbs largely move independently of each another in cyclic sequence. Conse-

quently, members in the low performing group incur significantly longer stride times

as, for example, they wait to move their thigh only after the preceding elbow strike.

In other words, low performers incur added stance time while they wait for their legs

to catch up with their arms. In contrast, the exemplar high performers limbs remain

strongly paired and with coordination that mimics the diagonal interlimb pattern

often observed at faster locomotion speeds [233, 237]. Consequently, members in the

high performing group crawl rapidly through superior ipsilateral and contralateral

limb coordination. Indeed, the ipsilateral coordination is so strong that the ipsilat-

eral limbs mimic the pairs of coupled oscillators previously observed in other modes

of human locomotion (e.g., walking, creeping (i.e., crawling on hands and feet), and

swimming) [247]. In all, the results from the additional statistical tests further con-

firm the hypothesis that higher performance is associated with more coordinated

limbs and lower stride times.

One factor that may contribute to the ability to coordinate limbs could be the

additional constraint of cradling the mock rifle in the arms. Cradling the mock

rifle is an integral part of the testing protocol for the LEAP obstacle course (see, for

example, [27]). In the exemplar high performer video (supplied in the Supplementary

Material of [17]), the mock rifle remains firmly secured between the forearms and

biceps, essentially creating a rigid constraint between the forearms. Perhaps as a

result, the arm movements remain nearly perfectly out-of-phase. In the exemplar

low performer video (as well as videos of other members of the low performance

group) the mock rifle is secured using one hand and the crook of the contralateral
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arms elbow, rendering it considerably less stable (i.e., not a rigid constraint). The

added distraction and attention to stabilizing the mock rifle may contribute to the

observed poorer limb coordination.

5.4 Study 2: Evaluating Load Effects on Crawling Perfor-

mance

5.4.1 Statistical Analysis

Given the results from the first study, it was hypothesized that the performance

metrics will be affected by load and that increased load results in degradations in

performance as measured by those metrics. Since participants complete the obstacle

course in all loading conditions (unloaded (UL), carrying 15% body weight (15BW),

and carrying 30% body weight (30BW)), a repeated measures analysis of variance

(ANOVA) framework was used to evaluate the effects of load on performance. Of

the original 22 participants, 8 participants were eliminated from consideration based

on the following exclusion criteria: 1) the participant failed to complete all loading

conditions, 2) the data for one or more sensors was lost (sensor failure), or 3) the par-

ticipant did not follow instructions. For each performance metric, the residuals were

evaluated for normality with Shapiro-Wilk normality tests and q-q plots. The resid-

uals were also checked for heteroscedasticity with Mauchly’s test for sphericity. A

violation of the sphericity assumption was handled by evaluating the F-statistic from

the ANOVA with adjusted degrees of freedom via a Greenhouse-Geiser correction.

Additionally, effect sizes (η2) were calculated to quantify the magnitude of the effect

that load has on the performance metric. Post hoc analyses via Tukey pairwise-

comparisons were conducted for performance metrics with significant F-statistics.

For each comparison, effect sizes (Cohen’s d) were also calculated to evaluate the

magnitudes of the differences between loading conditions. All statistical tests were

evaluated at a significance level α=0.05. The relative magnitudes (as defined in [248])

of the effect sizes for the ANOVA and the Tukey post hoc analyses are summarized

in Table 5.4.
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Table 5.4: Relative magnitudes for the effect sizes for
the ANOVA (η2) and Tukey (d) analyses.

Effect Size
ANOVA Tukey

η2 d

Small 0.01 0.3

Medium 0.06 0.5

Large 0.14 0.7

5.4.2 Results

The results from the ANOVA reveal significant relationships with load for all four

crawl performance metrics (Table 5.5). In particular, the effect sizes (η2) indicate

that the relationship between load and the performance metrics produces a large

effect, the nature of which is described next.

Table 5.5: High crawl statistical results from the repeated-
measures ANOVA (F-statistics with degrees of freedom, p-values,
and effect sizes, η2).

F-statistic p η2

Crawl Speed (m/s) F(1.4,18.5)=43.2 < 0.001‡ 0.77

Crawl Stride Time (s) F(2,26)=18.1 < 0.001‡ 0.58

Ipsilateral Coordination F(2,26)=9.44 < 0.001‡ 0.42

Contralateral Coordination F(2,26)=4.25 0.03∗ 0.25

Significant at α = *0.05, †0.01, and ‡0.001.

The results from the post hoc Tukey analyses are reported in Table 5.6. These

pairwise comparisons reveal both the direction and magnitude of the differences

between the loading conditions as discussed next.
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Table 5.6: High crawl statistical results from all three post hoc Tukey pairwise
comparisons (p-values and effect sizes, Cohen’s d).

UL-15BW UL-30BW 15BW-30BW
p d p d p d

Crawl Speed (m/s) < 0.01† 0.55 < 0.001‡ 1.12 < 0.01† 0.57

Crawl Stride Time (s) < 0.01† -0.68 < 0.01† -0.98 0.03∗ -0.39

Ipsilateral Coordination 0.31 -0.32 0.07 -0.67 0.23 -0.33

Contralateral Coordination 0.27 0.28 < 0.01† 0.81 0.04∗ 0.49

Significant at α = *0.05, †0.01, and ‡0.001.

5.4.3 Discussion

The results from the Tukey post hoc analyses are further illustrated in the box

plots in Fig. 5.9. The three pairwise-comparisons for the crawl speed are significant,

implying the added loads increase the difficulty of the crawling task manifesting

in significantly slower crawl speeds (Fig. 5.9a). This is consistent with previously

reported results [24–28]. The three pairwise-comparisons for the crawl stride time are

also significant (Fig. 5.9b), though the effect sizes indicate a potentially nonlinear

increase in stride time with load. In particular, the effect size for the UL-15BW

comparison (p<0.01, d=-0.68) is nearly twice that of the 15BW-30BW comparison

(p=0.03, d=-0.39).

From the results from the first study, superior crawling performance is charac-

terized by a diagonal stride pattern where elbows and knees on opposite sides of the

body are in simultaneous ground contact [17]. This strategy results in ipsilateral

limbs moving largely out-of-phase and contralateral limbs moving largely in-phase

to produce faster crawl speeds and shorter crawl stride times [17]. Even though the

ANOVA results for the ipsilateral coordination indicate a relationship with load, the

Tukey analysis did not reveal any significant differences (Fig. 5.9c). This is likely

due to variation in crawling technique meaning changes in this coordination met-

ric may not be consistent across participants. The medium-large effect size for the

UL-30BW comparison (p=0.07, d=-0.67) for ipsilateral coordination suggests load
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Figure 5.9: Boxplots depicting the results from the Tukey post hoc analysis for (a)
crawl speed, (b) crawl stride time, (c) ipsilateral coordination, and (d) contralateral
coordination. The bars denote significant differences between loading conditions at
a significance level at α = *0.05, †0.01, and ‡0.001.

overall tends to reduce the degree to which the ipsilateral limbs move out-of-phase.

Contralateral coordination, however, has significant relationships for the UL-30BW

comparison as well as the 15BW-30BW comparison, which implies a possible nonlin-

ear effect between load and the coordination of the contralateral limbs (Fig. 5.9d).

In particular, the effect size for the 15BW-30BW comparison (p=0.04, d=0.49) is

nearly twice that of the UL-15BW comparison (p=0.27, d=0.28). This could mean

the 30BW condition is large enough that participants are unwilling and/or unable
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to support the added weight using only two points of contact and instead maximize

the time they have with three points of contact. This change in strategy is marked

by a simultaneously decrease in contralateral coordination and increase in ipsilateral

coordination yielding longer periods of three-point contact [233].

5.5 Conclusions

The first of the two studies contributes a novel method to measure and quantify

crawling motion using four body-worn inertial measurement units attached to the

upper arms and thighs. The data harvested from the embedded inertial sensors (ac-

celerometers and angular rate gyros) were used to construct four measures of crawling

performance; namely, crawl speed, crawl stride time, ipsilateral limb coordination,

and contralateral limb coordination. Ipsilateral and contralateral limb coordination

quantify the phasing of the rotations of the upper arms and thighs, and thus they are

also a product of the underlying motor control (not directly measured). Collectively,

these four metrics reveal the purposeful, coordinated movements that contribute to

superior (or inferior) crawling performance as further revealed in a cluster analysis

that aggregated participants into (statistically significantly different) high and low

performance groups. The results of the cluster analysis and statistical tests con-

firmed the hypothesis that higher performance is associated with limb coordination

and stride times. Overall, high performers exhibit superior limb coordination asso-

ciated with a “diagonal gait” that produces faster crawl speeds and shorter crawl

stride times. In contrast, low performers crawl at slower speeds with longer crawl

stride times and with significantly less limb coordination.

The second of the two studies further demonstrates the ability of these IMU-

derived performance metrics to quantify and characterize degradations in human

crawling performance as the result of additional body-borne loads. In particular, the

results revealed that added load decreases contralateral limb coordination thereby

increasing crawl stride time and decreasing crawl speed. Though it was outside the

scope of the study, one could readily study the effects of additional loading conditions

(both in terms of magnitude and configuration) on crawling performance.
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CHAPTER 6

Part I: Summary, Contributions, and Conclusions

Summary and Contributions

Part I of this dissertation advances the use of IMUs in the field of human biome-

chanics along two lines of research. The first contributes a new measurement the-

ory for employing a pair of shank- and thigh-mounted IMUs to estimate the three-

dimensional (3D) rotations across the human knee. The second contributes a method

for deploying leg- and arm-mounted IMUs to understand human crawling perfor-

mance. Summaries from both lines of research are detailed below.

Central to the measurement theory for the human knee is the following equation

(Eqn. 2.9) for the rotation matrix defining the orientation of the shank anatomical

frame relative to the thigh anatomical frame.

R(t)AT/AS = RAT/TR(t)T/WTC(t)WT/WSR(t)WS/SRS/AS

This rotation matrix, which yields estimates of the knee flexion-extension, internal-

external rotation, and abduction-adduction angles, is decomposed into five compo-

nent rotation matrices. Chapters 2–4 formulate each rotation matrix, starting in the

middle and working outwards until the measurement theory is complete.

Chapter 2 contributes the foundational idea that the misalignment between inde-

pendent world frames of the sensors, described by the rotation matrix C(t)WT/WS,

can be estimated by exploiting the fact that the human knee can reliably be simpli-
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fied as a hinge when certain criteria are met. When this is the case, the medial-lateral

hinge axes defined in each sensor’s (independent) world frame must be collinear. This

condition is formulated as a vector kinematic constraint for aligning the sensor world

frames and thus correcting for the inevitable relative drift error between these two

frames. In Chapter 2, this kinematic constraint is treated in a deterministic manner.

Results from the deterministic measurement theory are compared to ground truth

measurements provided by optical encoders embedded in a coordinate measurement

machine (CMM) that yield precise measurements of 3D rotations. Doing so yields

estimates for the three rotation angles to within 4◦ RMS error.

The measurement theory is then extended in Chapter 3 to a probabilistic theory

in anticipation of the challenges in using the deterministic theory for human subject

testing. This begins by estimating the orientation of a single IMU relative to its

world frame via a novel Error-State Kalman Filter (ESKF). After demonstrating the

success of ESKF formulation for a single IMU (RMS errors of less than 5◦ relative to

ground truth using the CMM), the ESKF formulation is then extended to two IMUs

to estimate the rotation matricesR(t)T/WT andR(t)WS/S shown above. Importantly,

replacing the deterministic treatment of the anatomical kinematic constraint from

Chapter 2 with a probabilistic one yields a dramatic improvement in performance

(RMS errors of less than 6◦ compared to RMS errors of more than 11◦).

Lastly, Chapter 4 extends the measurement theory to human subject testing.

Prior to doing so, the chapter opens with a systematic survey (n = 112) of the pre-

vious methods for defining anatomical frames (RAT/T and RS/AS) using IMUs. The

methods are classified as: 1) functional alignment movements, 2) assumed sensor

orientation, 3) self-aligning, and 4) external information. In general, self-aligning

methods are promising as they do not depend on the researchers’ ability to pre-

cisely orient IMUs to the body segments (as required in assumed sensor orientation

methods) or for the participants to properly execute functional calibration/alignment

movements (as required in functional alignment movements methods). However, the

self-aligning methods are relatively new and will require additional validation prior

to adoption. Consequently, the more well-established functional alignment move-

ments methods are employed in this study to determine the IMU-based anatomical
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frames RAT/T and RS/AS above. The study then extends the probabilistic mea-

surement theory developed of Chapter 3 to human subject testing for a range of

increasingly dynamic tasks, namely: 1) step-ups, 2) bicycle pedaling, 3) box drops,

and 4) jump cuts. Traditional MOCAP is simultaneously employed to provide in-

dependent, though not ground truth, estimates of the 3D knee angles. Overall, the

measurement theory yields comparable 3D knee rotations to those estimated by MO-

CAP (RMS differences of less than 5◦ across all tasks and subjects). Central to this

success is the measurement theory’s ability to correct the relative drift error between

the sensor world frames by exploiting the anatomical kinematic constraint that the

human knee frequently acts as a hinge as tested probabilistically.

Chapter 5 contributes a novel method to measure and quantify human crawling

motion using four body-worn inertial measurement units attached to the upper arms

and thighs through two studies. In the first study, raw IMU data is distilled to four

measures of crawling performance; namely, crawl speed, crawl stride time, ipsilateral

limb coordination, and contralateral limb coordination. Ipsilateral and contralateral

limb coordination quantify the phasing of the rotations of the upper arms and thighs,

and thus they are also a product of the underlying motor control (not directly mea-

sured). Collectively, these four metrics reveal the purposeful, coordinated movements

that contribute to superior (or inferior) crawling performance as further revealed in

a cluster analysis that aggregated participants into (statistically significantly dif-

ferent) high and low performance groups. The results of the cluster analysis and

statistical tests confirmed the hypothesis that higher performance is associated with

limb coordination and stride times. Overall, high performers exhibit superior limb

coordination associated with a “diagonal gait” that produces faster crawl speeds and

shorter crawl stride times. In contrast, low performers crawl at slower speeds with

longer crawl stride times and with significantly less limb coordination. The second of

the two studies further demonstrates the ability of these IMU-derived performance

metrics to quantify and characterize degradations in human crawling performance

as the result of additional body-borne loads. In particular, the results reveal that

added load decreases contralateral limb coordination thereby increasing crawl stride

time and decreasing crawl speed.
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Conclusions

Pivotal to the measurement theory is the anatomical kinematic constraint that

the knee can reliably be simplified to a hinge joint when certain criteria are met.

Initially, the world frame correction is deterministic and the criteria are fixed to in-

vestigate the feasibility of this approach for defining a common world frame. While

the theory succeeds during relatively simple movements (i.e., 10 second bouts of low

dynamic movements), its performance significantly degrades during more challeng-

ing movements (i.e., 2 minutes of exercising the knee analog about all three axes).

However, the purely probabilistic measurement theory dramatically improves the ac-

curacy of the IMU estimates for two reasons. First, the criteria for determining when

the knee is reliably acting as a hinge joint are developed during functional alignment

movements during which this simplification should be valid. For application to hu-

man subject testing, this allows for subject-specific probability distributions that

characterize that person’s (potentially unique) knee kinematics. Second, the proba-

bilistic treatment of the anatomical kinematic constraint injects measurement noise

in the Kalman gain calculation. This inclusion of noise in the correction allows for

uncertainty in the gross simplification of the knee as a hinge joint. Furthermore,

since joint angles are by definition relative orientations between body segments, it

is therefore sufficient to correct for the relative integration drift error between the

sensors. This finding is why the measurement theory succeeds without the inclu-

sion of magnetometer data to correct for the absolute integration drift error when

compared against ground truth provided by the CMM and conventional estimates

provided by MOCAP. Future research could explore extending the measurement the-

ory to other joints like the elbow or ankle, both of which may have similar anatomical

kinematic constraints that could be exploited for aligning the (independent) sensor

world frames.

Next, the results from the systematic survey of IMU anatomical frame definitions

show an exponential growth in the number of publications employing inertial motion

capture techniques to estimate joint angles. While this subset of publications rep-

resents a very small slice of the overall studies employing IMUs, it is reasonable to
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assume that this trend is indicative of the growing popularity of the technology in the

biomechanics community as a whole, which is significant for two reasons. First, this

trend highlights the need to establish a convention for defining anatomical frames of

reference for inertial motion capture so researchers can reasonably compare results

across studies. Each of the methods revealed in the systematic survey have strengths

and weaknesses, but as of today, the most promising method (the self-aligning meth-

ods) will require significant validation (and training data) before wide adoption in the

research community. Second, the growing popularity also illustrates the importance

of developing new (nontraditional) metrics that capitalize on the descriptive power

of raw IMU data, much like the work presented in this dissertation for human crawl-

ing performance. While there are certainly benefits to conforming to long-standing,

position-based performance metrics, there is so much untapped potential with this

technology for human biomechanics applications that have never been possible with

MOCAP. There are limitless opportunities to apply similar approaches as those used

to study human crawling performance to other well-defined tasks by leveraging the

strength of IMU technology, namely its ability to directly measure motion.
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Part II

Engaged Learning of Engineering

Dynamics
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CHAPTER 7

Active Learning in Undergraduate Engineering

7.1 Introduction

7.1.1 The Case for Active Learning

In the United States, research on issues concerning teaching and learning gained

substantial visibility in 1986 with the Neal Report commissioned by the National Sci-

ence Board on Undergraduate Science and Education [249]. The first of many reports

about the shortcomings of the nation’s undergraduate science and engineering educa-

tion, the Neal Report stressed reforms needed for the U.S. to maintain its “scientific

and technical capacity, its industrial and economic competitiveness, and the strength

of its national defense” [249, p. 1]. As reiterated by the Boyer Commission Re-

port a little more than a decade later, “Many students graduate having accumulated

whatever number of courses is required, but still lacking a coherent body of knowl-

edge or any inkling as to how one sort of information might relate to others...The

university has given them too little that will be of real value beyond a credential that

will help them get their first jobs” [250, p. 15]. In response to these and many

similar reports, the Engineering Education Research (EER) community answered

the call with renewed resolve to improve the quality of undergraduate instruction

and launched initiatives to investigate the many facets of teaching and learning. For

instance, the National Academy of Engineering (NAE) Engineer of 2020 report [251]

and the American Society of Engineering Education (ASEE) Transforming Under-
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graduate Education in Engineering initiative [252–255] describe the current state of

teaching and learning in engineering and offer insights into necessary improvements

and the National Science Foundation (NSF) Revolutionizing Engineering Depart-

ments (RED) program [256] facilitates drastic, innovative changes in engineering

departments across the nation that enable those improvements.

Stains et al. [257] note that there is a wealth of research reporting other methods

like active learning are more beneficial for student learning (see, for example, Prince

[30], Hake [258], Michael [259], and Freeman et al. [260]), yet the fact remains that

instructional methods emphasizing traditional lecturing still persist as the most com-

mon practice in the undergraduate engineering classroom. Borrego et al. [261] found

approximately 80% of engineering faculty are aware of at least one active learning in-

novation, but adoption rates for those innovations are considerably lower. Henderson

and Dancy [262] similarly note that achieving sustainable adoption of research-based

instructional practices has proven to be extremely difficult.

Recent research has identified several barriers to instructors adoption of active

learning that contribute to this slow progress (i.e., the research to practice gap),

including insufficient class time, lack of preparation time, and class size (see, for

example, Huba and Freed [263], Handelsman et al. [264], Friedrich et al. [265], Froyd

et al. [266], Prince et al. [267], and Finelli et al. [268]). Borrego et al. [261], Finelli

et al. [268], and Dancy and Henderson [269] all note a common barrier to adoption

of active learning is time, both in terms of covering material in class and preparation

time outside of the classroom. Henderson and Dancy [262] and Boylan-Ashraf et al.

[270] found instructors and researchers also cite the instructors’ ability to implement

active learning in a large class as a significant concern. This is the core of Benjamin

Bloom’s “2 Sigma Problem,” which describes the need to develop and implement

instructional methods for large group instruction that will allow students to perform

at the same level they would under individual instruction by a tutor [271].

Motivated by these challenges, the second half of this dissertation introduces and

systematically studies an active learning innovation designed for large undergraduate

courses in engineering dynamics.
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7.1.2 Definitions of Active Learning

A significant body of research supports the benefits of active learning and its over-

all importance in the future of higher education. In their seminal work, Chickering

and Gamson asserted, “Learning is not a spectator sport. Students do not learn much

just by sitting in classes listening to teachers, memorizing pre-packaged assignments,

and spitting out answers” [272, p. 4]. Several years later in a thorough report on

the state of active learning in higher education, Bonwell and Eison expanded on that

sentiment stating, “Most important, to be actively involved, students must engage in

such higher-order thinking tasks as analysis, synthesis, and evaluation” [273, p. 5].

This idea of higher-order thinking tasks is founded in Bloom’s taxonomy [274–276],

which posits that more complex learning opportunities allow students to have more

meaningful and impactful interactions with course material.

In Prince’s thorough literature review [30], he characterized active learning as

anything that allows students to participate in stimulating activities like cooperative

learning, problem-based learning, and hands-on exploration to build their conceptual

understanding through their own experiences. He investigated how active learning

improves conceptual understanding across a variety of engineering disciplines; how-

ever, this finding came with the stipulation that these instructional techniques be

applied correctly. Prince also drew attention to themes spanning several of the

studies included in that review that oppose longstanding assumptions held about

engineering education, particularly those related to the tradition of teaching deduc-

tively (e.g., starting with a derivation and then providing examples). In a subsequent

piece, Prince and Felder [29] reviewed the literature on inductive learning to provide

definitions, applications, and supporting evidence for the power of each inductive

instructional technique as compared to traditional instructional methods.

Some common types of active learning include inquiry learning, problem-based

learning, and experiential learning. Bateman [277] and Lee [278] defined inquiry

learning as a technique in which students learn to answer questions, solve problems, or

explain observations in such a way that they can think independently and creatively

to develop more accountability for their learning and intellectual growth. According
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to Prince and Felder [29], project-based learning occurs when a student or a group

of students complete an assignment containing one or more tasks that lead to the

production of a final product, which could be a design, model, device, or computer

simulation. Mills and Treagust [279] reviewed published evaluations of project-based

learning in engineering and concluded that students who participate in project-based

learning are more motivated, demonstrate better communication/teamwork skills,

have a better understanding of issues of professional practice, and know how to

apply their learning to realistic problems. Experiential learning, which is directly

related to Dewey’s experiential learning theory and constructivism, is described by

the Association of Experiential Education as “a process through which the learner

constructs knowledge, skill, and value from direct experience” [280, p. 7]. Gadola and

Chindamo [281] noted that experiential learning is generally considered as anything

opposite to traditional learning (passive student learners) and is often expressed as

‘active learning’, ‘learning by doing’, ‘hands-on learning’, or any other term that

implies an active student learner. A description of this technique applied outside of

the classroom is offered by Hajshirmohammadi [282]; specifically, students explored

the functionality of different parts of a simulated digital clock, after which they

demonstrated their understanding by incorporating a new part into the simulation.

7.1.3 Innovative Pedagogies in Engineering Dynamics Classrooms

Dynamics courses do not typically include opportunities for exploration of the

Newtonian mechanics derived and studied in class as noted by Gray et al. [41], Flori

et al. [283, 284], Fang and Guo [285], and Fang [286]. As Flori, Koen, and Oglesby

succinctly described, “Dynamics is the study of motion, but textbooks and chalk-

boards, the traditional classroom teaching tools, cannot show that motion” [283, p.

61]. Perhaps as a result, engineering dynamics is regarded by some (e.g., Self and

Redfield [287] and Rubin and Altus [288]) as one of the more difficult courses in

an undergraduate engineering curriculum, likely because of the abstract nature of

the subject as noted by Gray et al. [42] and Streveler et al. [289]. Some researchers

(e.g., Kozhevnikov et al. [290] and Trindade et al. [291]) hypothesized that students
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who explore the physical phenomena related to the mathematical concepts derived

in class could be more likely to understand those concepts. To that end, active learn-

ing innovations in undergraduate dynamics classrooms can be broadly categorized

into one of two pedagogical approaches, namely: 1) computer simulations and/or

animations and 2) hands-on experimentation.

The first pedagogical approach integrates computer simulations and/or anima-

tions into the curriculum. In addition to improved student conceptual understand-

ing (e.g., Flori et al. [283] or Fang and Guo [285]), a benefit of this intervention

is it typically requires minimal additional resources and (once developed) can be

easily implemented inside or outside of the classroom. As computers became preva-

lent in the 1980’s, researchers started developing software to visualize the dynamics

principles covered in introductory physics and dynamics courses (see, for example,

Kraige et al. [292], Gramoll [293], Iannelli [294], and Smith et al. [295]). The most

comprehensive example of these early advancements was a 1991 NSF-funded project

titled “Dynamic Dynamics” in which Whitman et al. [296] developed software-based

modules for particle dynamics concepts that students could engage with and also

manipulate. Flori et al. [283] expanded upon this work and showed improvements

in student understanding of a small subset of the course concepts covered by their

software-based modules for particle dynamics. Stanley [297] explored the student

affective response to his software (i.e., how they felt about engaging with the soft-

ware) and found students believed their overall understanding of the material had

improved. More recently, Fang and Guo [285] found that, as a result of engaging

with their custom software-based modules, students had significant improvements

in development of their conceptual understanding and procedural skills (ability to

set up mathematical equations describing the system), and they were able to iden-

tify and occasionally correct their misconceptions. Despite their promise, the time

commitment required to develop and maintain these software packages makes them

difficult to sustain.

Another successful way to engage students in their learning of engineering dynam-

ics is to employ hands-on laboratories during which students conduct experiments

and build mental models for specific concepts by observing physical phenomenon
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(e.g., Self et al. [298], Adam et al. [299], and Ferri and Ferri [300]). Feisel and

Rosa [301] confirmed that demonstrations and experiments can dramatically im-

prove student learning as compared to lecture-only instruction. From a 10-year

study that included over 1,000 students, Sharma et al. [302] provided compelling ev-

idence that interactive lecture demonstrations significantly improve student learning

gains. Likewise, using data from more than 6,000 students, Hake [258, 303] found

students taught with traditional methods had significantly lower learning gains than

those taught with interactive engagement methods, which include demonstrations

and experiments. In an introductory environmental engineering course, Flora and

Cooper [304] found the 109 students participating in a 5-year study favored open-

ended experiments to more traditional (plug-and-play) experiments. In particular,

the students reported their heightened perceived understanding of course concepts,

their increased ability to visualize applications of the theory covered in class, and

their improved capacity to create and conduct experiments of their own. However,

the large enrollment in introductory dynamics courses often preclude the creation

of dedicated hands-on laboratories due to equipment and facility costs [301]. For

example, the introductory engineering dynamics course considered in this disserta-

tion (ME240) enrolls approximately 500 students per year. Portable IMU technology

(explored in depth in this work) can be used to introduce hands-on laboratories in

large classes, thereby providing a feasible alternative to traditional brick-and-mortar

laboratories.

7.1.4 Active Learning IMU Intervention

The research in this half of the dissertation includes elements from both the

computer simulations/animations and hands-on experiments reviewed above, but

with significantly more emphasis on the latter. The active learning exercise allows

students to explore Newtonian mechanics; thus, it represents an intervention to a

teaching pedagogy that otherwise has limited opportunities for student engagement

in the learning process. Specifically, the active learning innovation employs iner-

tial measurement unit (IMU) technology (called iNewton) to provide new, hands-on
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experiments in an otherwise traditionally taught (i.e., lecture only) introductory dy-

namics course.

Given the ease with which IMUs yield motion (kinematic) data, they provide a

novel and ready-made platform to explore and learn Newtonian mechanics. With

carefully designed experiments, students also have the opportunity to simulate mo-

tion from derived equations of motion and to compare with what was measured dur-

ing an experiment. Furthermore, IMUs can be used without expensive laboratory

equipment or a traditional (brick-and-mortar) laboratory space that are otherwise

hurdles towards adoption. The experiments can be conducted outside of the class-

room, providing students with an additional opportunity to meaningfully engage

with the course concepts without taking away from in-class lecture time.

7.2 Conceptual Framework and Objective

In the same way that an input to a mechanical system is expected to produce an

output, a learning stimulus introduced to a student is expected to elicit a response.

In this research, the stimulus is an active learning IMU intervention and there are

three responses of interest, namely:

• Conceptual understanding. Streveler et al. [289] defined conceptual under-

standing in the engineering sciences as including both knowledge about quan-

tities (like acceleration and inertia) and knowledge about the relationships

among these quantities (like Newton’s 2nd Law).

• Self-efficacy. Described in more detail in Section 7.3.3, self-efficacy “refers to

beliefs in one’s capabilities to organize and execute the courses of action required

to produce given attainments” [37, p. 3].

• Intention to persist. Bean [35] described intention to persist as a students’

choice to leave or continue with a field of study. In that study, it was found to

have the largest influence on student persistence.
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Persistence, retention, and attrition are different, but related behavioral responses

frequently used (sometimes interchangeably) in education research and institution

assessment. Retention and attrition are measures that evaluate an institution’s abil-

ity to keep students (retention) or not (attrition) whereas persistence refers to an

individual’s choice to stay in a specific program, field, college, or institution. Bean’s

model [35] specifically operationalized student attrition as intent to leave and found

that it, along with grades, were the strongest predictors. In this work, student per-

sistence is operationalized as the intent to persist, thereby using it as a proxy for

student persistence.

The objective of this study is to test the hypothesis that introducing an active

learning IMU intervention will elicit different responses (e.g., conceptual understand-

ing, self-efficacy, and intention to persist) for students who engage with it than for

students who do not. As advocated by Svinicki [36], the conceptual framework de-

fined in Fig. 7.1 illustrates the relationship between the active learning intervention

and these responses.

Figure 7.1: Conceptual framework relating the active learning IMU intervention to
the three responses (conceptual understanding, self-efficacy, and intention to persist)
and relating the three responses to each other.
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While there is evidence to suggest that these responses are related to one another,

the exact nature of those relationships is currently unknown. Freeman et al. [260]

illustrated the relationship between active learning and student performance and

failure rates, two related ways to measure conceptual understanding. Specifically,

they showed improvements in student performance on examinations and decreases in

failure rates in core courses in undergraduate programs when active learning was used

(students taught with traditional methods were 1.5 times more likely to fail), and

they showed active learning has significant positive effects on student performance

in small (<50), medium (51-110), and large (>110) class sizes, though the effect

size was greatest in small classes. Watkins and Mazur [305] showed that improved

academic performance (indicating improved conceptual understanding) and increased

engagement both play a significant and positive role in retention of students (and

therefore students’ intention to persist) after an introductory physics course. In a

similar vein, Graham et al. [306] showed an increase in persistence (and by association

intention to persist) in college students in STEM disciplines as a direct result of active

learning techniques used in introductory courses. Ohland et al. [34] also showed that

engagement is a precursor to persistence (and accordingly intention to persist) and

that institution type had a significant impact in that smaller and/or teaching-focused

institutions provided more opportunities for higher levels of learning engagement.

Zeldin and Pajares [307] and Betz and Schifano [33] showed that certain types

of active learning exercises, particularly the ones that include hands-on experiences,

can improve self-efficacy, which has significant implications for selecting career paths,

especially for women. Marra et al. [308], for example, showed a strong sense of

self-efficacy can increase intention to persist and ultimately empower students to

become practicing engineers, and they showed this to be especially true for women.

Brown and Matusovich [309] also found that women generally report lower levels of

self-efficacy despite comparable academic performance, indicating men and women

achieve similar levels of conceptual understanding. Vuong et al. [310] showed that self-

efficacy has a positive effect on GPA and persistence rates (and by association levels

of intention to persist) for first-generation college sophomores, and Pajares and Miller

[311] showed an increase in self-efficacy can decrease the level of stress and anxiety
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students experience when engaging in an activity. Ballen et al. [312] showed ac-

tive learning can close the learning gain gap (using conceptual understanding-related

measures of course grades and knowledge assessment scores) between underrepre-

sented minority (URM) and non-URM students as revealed in a study of more than

250 students in an introductory STEM course. Additional analyses revealed that

active learning also increases student self-efficacy, which led to the improvements

in academic performance for URM students. In an introductory dynamics course

that included a variety of active learning methods, Fang [313] demonstrated for 71

students that self-efficacy is positively and moderately correlated (r = 0.55) with

academic performance as measured by average examination scores (a measure related

to conceptual understanding). Additionally, a thorough review of self-efficacy and its

implications for academic achievement is documented by Pajares and Schunk [314].

While these three responses (conceptual understanding, self-efficacy, and inten-

tion to persist) are clearly related, the focus of the present study is to investigate how

different levels of the active learning IMU intervention affects each of these responses

individually, rather than to study their relationships. These responses are further

categorized as cognitive (conceptual understanding) and non-cognitive (self-efficacy

and intention to persist).

7.2.1 Cognitive Responses to Active Learning

Research across several disciplines has provided strong evidence of the cogni-

tive impacts (e.g., students’ conceptual understanding) of active learning in STEM

courses. Springer et al. [315] conducted a meta-analysis of 39 studies of STEM courses

to reveal that active learning in small groups promotes academic achievement. John-

son et al. [316] found in their meta-analysis of 305 studies that cooperative learning

promotes higher individual achievement than more competitive or individualistic

approaches. Crouch and Mazur [317] reviewed 10 years of studies showing peer in-

struction in introductory physics courses taught for non-majors improves conceptual

understanding and problem-solving abilities. In a controlled experiment involving

two introductory undergraduate physics classrooms, Deslauriers et al. [318] found ac-
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tive learning increased student attendance, facilitated higher engagement, and more

than doubled the learning gains compared to traditional lectures. In large biology

courses, Knight and Wood [319] reported significant improvements in learning gains

and conceptual understanding in classrooms that incorporated interactive engage-

ment and cooperative work. Freeman et al. [260] also speculate that additional gains

in student achievement could be attained through exercises completed outside of the

classroom, much like the study design described in Chapter 8.

Research conducted specifically in undergraduate engineering classrooms has sim-

ilarly demonstrated that active learning has positive cognitive responses. In an en-

gineering statistics course, Kvam [320] showed that active learning methods have a

significant impact on knowledge retention for students who scored average or below

average on a test. In a nanotechnology engineering course, Hersam et al. [321] iter-

ated on their traditional instructional pedagogy to incorporate collaborative group

learning, interdisciplinary learning, problem-based learning, and peer assessment. By

comparing final course project scores and course evaluations, they found the increased

interactive nature of the class improved student performance by a significant amount

while also improving the overall student experience. Bjarne [322] studied an intro-

ductory dynamics course in which students anonymously answered clicker questions

and subsequently discussed the results with their peers, thereby participating in peer

instruction. As compared to a traditionally taught class, the results indicated that

this instructional method led to students performing at the same level when solving

traditional problems (despite having solved fewer traditional problems in class) while

also exhibiting greater conceptual understanding of the subject. In an introductory

electrical engineering course, Yadav et al. [94] used traditional lecturing and problem-

based learning in an A-B-A-B study design to compare learning gains between the

two instructional methods for 55 students. The results suggested the students saw

significantly greater (roughly twice) learning gains from the problem-based learn-

ing instructional methods than from traditional lecture, though they interestingly

perceived greater learning gains from traditional lecture.
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7.2.2 Non-Cognitive Responses to Active Learning

Active learning techniques have been shown to be related to non-cognitive re-

sponses like self-efficacy and intention to persist. In particular, active learning

has been shown to increase students’ self-efficacy, directly [323, 324] and indirectly

[325, 326]. Fencl and Scheel [323] provide evidence of several types of active learning

significantly contributing to student self-efficacy whereas Schunk and Mullen [324]

describe how students who are engaged in their learning develop a strong sense of

self-efficacy for learning. Similarly, Lent et al. [325] and Hutchison et al. [326] found

students report personal (successful) performance experiences as the most common

and influential source for their self-efficacy. As is further highlighted by Schunk,

“Sustained motivation depends on students believing that if they change their behav-

ior they will experience better outcomes, valuing those outcomes, and feeling they

can change those habits (high self-efficacy)” [327, p. 72]. As Weiner [328] opines,

students persist and achieve at a higher level if they believe added effort will lead

to success. For example, Dunlap [329] introduced realistic problem-based learning

activities into a senior software engineering capstone course that were intended to

reflect the true nature and requirements of the workplace. Using a mixed methods

approach, the results indicated that the students’ self-efficacy improved (as mea-

sured by the student responses on the General Perceived Self-Efficacy Scale), and

students further articulated in guided journal entries that they felt prepared to work

effectively in their profession.

Hoit and Ohland [330] showed many of the strategies employed to improve per-

sistence in general can significantly reduce the gap in persistence for students his-

torically underrepresented, such as women and students of color. Specifically, they

oversaw the conversion of the University of Florida’s lecture-based Introduction to

Engineering course to one with laboratory activities, resulting in a 17% improvement

in retention for the general population with a 36% improvement for women and a

12% improvement for URM students. Lorenzo et al. [331] found that interactive

engagement in lecture through cooperative learning significantly reduced the gender

performance gap, though they also note that both genders benefited from this ped-
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agogical shift. Ballen et al. [312] found a similar result in their study and attributed

the improvement in academic performance for URM students to increases in stu-

dents’ science self-efficacy. However, in a follow up study to replicate the results in

[331], Pollock, Finkelstein, and Kost concluded, “Interactive engagement techniques

are necessary, but not sufficient for addressing the gender gap” [332, p. 2]. They

indicated that the ways in which instructors enact active learning is critical in how it

affects student achievement. The research of Haak et al. [333] also supports the no-

tion that active learning is at least part of the solution to close the achievement gap

for underrepresented or underprepared students by providing them with more op-

portunities to practice their higher-order cognitive skills. In that study, over 100,000

students enrolled in a college-level introductory biology class were included to com-

pare the performance of those who were taught with traditional teaching methods

to those who participated in weekly active learning innovations like problem-solving,

data analysis, and other activities requiring higher-order cognitive skills.

Active learning has also been shown to improve persistence of STEM students in

introductory courses (see, for example, Graham et al. [306]). As Seymour and Hewitt

[334] showed in their landmark study, many students opt out of STEM majors as a

result of the perceived uninspiring nature of introductory courses that focus more on

fundamentals than applications. In response, Felder et al. [335] compared a tradi-

tionally taught cohort of 189 students to an experimental cohort of 123 students who

took 5 subsequent chemical engineering courses taught with extensive use of active

learning. The experimental cohort outperformed the traditional group in measures

of retention/graduation in chemical engineering as well as in the percentage choosing

to pursue advanced study in the field. However, the authors noted that the success

of replicating this approach elsewhere likely depends heavily on the instructor, both

in terms of support and experience with implementing these methods. Furthermore,

intention to persist has been shown to depend on institution type, perhaps because

as Ohland et al. [34] note, smaller institutions usually achieve higher levels of student

engagement. Strong evidence arose from their massive aggregated data set (140,000

students), which showed more positive results in faculty interaction, student satis-

faction with institution, and overall satisfaction at smaller institutions.
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7.3 Learning Theories

To further help ground the conceptual framework in the literature, it is important

to anchor it in the context of existing learning theories and three such learning theo-

ries are highlighted herein as being relevant to this work. Constructivism is a learning

theory which provides the basis for understanding why active learning positively af-

fects student conceptual understanding. The ICAP (Interactive-Constructive-Active-

Passive) framework offers a useful way of describing levels of active learning. Lastly,

the psychological theory of self-efficacy has significant implications for motivation

(e.g., a student’s intention to persist in a field of study). Each of these learning

theories is reviewed briefly below.

7.3.1 Constructivism

Active learning is fundamentally the realization of constructivism, which has a

long history (e.g., Liu and Matthews [336] and Phillips [337]). At the turn of the

last century, educational reformer John Dewey, in opposition to behaviorism (the

leading learning theory of the time that emphasized rote learning), developed expe-

riential learning theory, which stressed the roles that previous experiences and prior

knowledge play in the development of new understanding [338]. Von Glasersfeld

[339] described constructivism as a broad learning theory that at its core places the

responsibility of learning with the student. Roberts [340] similarly noted, according

to that theory, the instructor is viewed as a facilitator whose responsibility is to or-

ganize and deliver the content in the form of authentic (real-world) opportunities for

structured discovery learning. The success of those learning opportunities “depends

on the quality of the experience which is had” [338, p. 27].

As is described by Liu and Matthews [336], this student-centered philosophy pro-

vided a foundation for two camps of constructivism (each of which has variants of

its own): 1) cognitive constructivism and 2) social constructivism. Bodner [341]

attributed the origin of cognitive constructivism (sometimes referred to as personal

or radical constructivism) to Jean Piaget, who posited that knowledge construction
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was not only dependent on previous experiences and knowledge, but that the pro-

cess occurs in the mind of the learner [342]. Further, as Harlow, Commings, and

Aberasturi summarize, “New knowledge could be constructed only when the learner

is confronted with objects (i.e., external experiences) that could not be assimilated

into prior knowledge. Rather, the new experience must be accommodated, resulting

in a reconstitution of prior knowledge” [343, p. 45]. In other words, knowledge

construction – and by association conceptual understanding – is unique to an indi-

vidual, which implies that how that knowledge merges with their mental models is

also unique.

On the other hand, social constructivism (or realist constructivism), which was

guided by Lev Vygotsky’s social development theory [344, 345], built from cognitive

constructivism to include social interactions with peers and instructors. Individual

student learning occurs in a specific community in which those social experiences

shape the ways that students think and interpret their world. A community generally

has a traditional discourse associated with their conceptual knowledge, which means

a physical phenomenon can be understood differently for members of various groups.

At the core of both broad categorizations of constructivism is the belief that the

students learn most effectively when given the opportunity to personally engage

meaningfully and authentically with the concepts.

As noted by Ertmer and Newby [346], learning theories like cognitive construc-

tivism and social constructivism offer guidance for facilitating learning and a foun-

dation for selecting effective instructional techniques like those that fall under the

purview of active learning. For example, Rhodes and Rozell described constructivism

as providing “critical guidance on the design and development of activities and mate-

rials that create the greatest opportunities for students to learn difficult information,

retain that information, and apply it at a later date and even to a novel problem”

[347, p. 174]. They further provided an overview of constructivism as a means for

developing student centered electronic texts for an undergraduate physiology course.

Several researchers have drawn from constructivism to design and study teaching

approaches in the engineering dynamics classroom. For instance, Bosman et al. [348]

followed a constructivist teaching approach by incorporating problem-based learn-
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ing activities, on-line discussions, and research/presentations into an introductory

engineering course to improve incoming students’ communication skills and under-

standing of basic engineering concepts. Similarly, Gill and Wright [349] successfully

developed computer-aided learning activities for students using a constructivist ap-

proach with the goal of improved student conceptual understanding of Newtonian

mechanics. In a dynamic systems and controls class, Coller [350] designed and im-

plemented a video game-based learning activity with constructivism to make the

activities flexible enough that the students have more ownership over the activity

without too great a cognitive load. In this current research, constructivism guided

the development of an IMU-based learning intervention to reveal and explain the en-

gineering dynamics phenomenon of interest and to interpret the resultant responses

(e.g., conceptual understanding and self-efficacy).

7.3.2 ICAP Framework

In applying the theory of constructivism, it is helpful to categorize active learning

according to the level of student cognitive engagement. To that end, Chi developed

the ICAP framework to describe students’ cognitive engagement according to one of

four modes (by decreasing level of engagement): Interactive, Constructive, Active,

and Passive [38, 39]. The underlying hypothesis of this framework is that higher lev-

els of student cognitive engagement result in greater learning gains based on different

modes of learning. These modes of learning are largely dependent on four so-called

“knowledge change processes,” or the dynamic cognitive processes in which students

engage while learning new information [39]:

• Store: New information is stored in an isolated way (Passive)

• Integrate: New information activates relevant prior knowledge and while stor-

ing, new information is integrated with activated prior knowledge (Active)

• Infer: New information is integrated with activated prior knowledge, and new

knowledge is inferred from activated and integrated knowledge (Constructive)
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• Co-Infer: Each learner infers new knowledge from activated and integrated

knowledge and iteratively infers knowledge with new inputs from conversational

partner(s) (Interactive)

As Chi and Wiley highlighted in the ICAP framework, the same learning activity can

be classified differently based on how the student engages with it [39, p. 228]. For

example, Litzinger, Lattuca, Hadgraft, and Newstetter noted, “Traditional labs where

students follow prescribed procedures often fail to engage students in the deep learning

processes that lead to conceptual understanding” [351, p. 136]. Even though labs

are designed to guide students through their exploration of a physical phenomenon,

students often do not engage with the process as intended.

Many researchers have used the ICAP framework to categorize active learning as

a way to compare learning gains. In an introductory biology class, Wiggins et al. [352]

used the ICAP framework to develop active and interactive activities, successfully

predicting that improvements in student learning outcomes for interactive instruc-

tional methods were greater than the gains for active instructional methods. Wang

et al. [353] used the ICAP framework to develop a coding scheme for categorizing

students discussion behaviors in a massive online open course (MOOC) context to ex-

plore the relationship between discussion and learning gains. Their results indicated

that students who demonstrated active and constructive behaviors had significantly

more learning gains than students who did not, but there were not additional gains

for those who engaged in interactive behaviors. The authors explain this last finding

by noting the necessity that students must be “constructively” interactive to reap

the benefits of collaboration, with each collaborator contributing meaningfully to the

interaction. In further support of this finding and the ICAP framework, Menekse and

Chi [354] showed that 72 engineering students’ understanding of material science and

engineering concepts were significantly greater in the interactive condition as com-

pared to the students in the constructive condition. The ICAP framework provides

a useful way for describing the different levels of learning interventions studied in

this work.
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7.3.3 Self-Efficacy

Albert Bandura originally proposed and described the psychological theory of

self-efficacy as follows: “Self-efficacy is concerned with judgments of how well one

can execute courses of action required to deal with prospective situations” [44, p.

122]. According to this definition, self-efficacy (a students’ realization of their abili-

ties to complete a task) is distinctly different from perceived competence (a students’

perception of their ability to complete a task), and Rodgers et al. [355] demonstrated

a conceptual and significant statistical difference between these two concepts. The

theoretical foundation of this psychological phenomenon illuminates how an inter-

vention can elicit a positive or negative response in developing a person’s self-efficacy.

Bandura described four sources for self-efficacy, namely: enactive attainment,

vicarious experiences, verbal persuasion, and physiological state [44, 45]. Enactive

attainment relates to the process of using knowledge, skills, and experience to suc-

cessfully reach a goal or to complete a task (frequently referred to as a mastery

experience). Bandura and his colleagues have shown that success during a mastery

experience can improve self-efficacy whereas repeated failures may lower it, especially

if failures occur before a resilient sense of self-efficacy can be developed. Vicarious

experiences are those in which an observer sees others with perceived similar capa-

bilities perform successfully, and this can raise students’ self-efficacy with respect

to comparable activities. Similarly, observing these others of comparable perceived

abilities fail despite their best efforts can lower the observers’ judgments of their own

abilities. Verbal persuasion is overt or covert positive affirmation from others that

one can (realistically) master the abilities needed to complete a specific task. With

respect to verbal persuasion, Hanson [356] and Hazari et al. [357] showed that the

presence or absence of social support can impact overall course achievement. Finally,

physiological state refers to how mood, emotion, physical reaction, and stress level

can influence how one feels about their personal abilities. The most notable example

of physiological state is stereotype threat, which Steele and Aronson [358] character-

ized as debilitating performance anxiety for individuals who identify as a member of

a particular group for which there is a negative stereotype associated with the task.

153



Many studies have used self-efficacy to guide research regarding student academic

achievement. In a longitudinal study of 42 students, Lent et al. [359] found students

who reported high academic self-efficacy achieved higher grades and persisted more

in technical and scientific majors over the following year as compared to those re-

porting low self-efficacy. In a quasi-experimental study, Bresó et al. [360] developed a

self-efficacy-based intervention designed to promote healthy psychological states and

engagement in “at-risk” students. Two months after the intervention, the students

who participated reported higher levels of self-efficacy and achieved higher levels of

performance (defined as the ratio between ‘exams taken’ and ‘exams passed’) than

those who did not participate. Marra et al. [308] conducted a longitudinal study

that included 196 undergraduate women studying engineering at 5 different pub-

lic institutions. They found significant relationships between the female students’

intentions to persist in their current degree programs and their self-efficacy, which

partially explains the findings presented by Brainard and Carlin [361] who found

more women leave engineering regardless of how their actual performance compared

to their peers who persist in the major. In this research, the active learning IMU

intervention effectively represents a mastery experience in which the students apply

their procedural skills and conceptual understanding gained during the traditional

instructional methods. Thus, as previous work suggests, the active learning IMU

intervention should also build students’ self-efficacy and intention to persist.

7.4 Summary

This chapter began by providing evidence in support of the positive cognitive

and non-cognitive impacts of active learning across many disciplines of educational

research. In response to the active learning IMU intervention investigated in this re-

search, conceptual understanding, self-efficacy, and intention to persist were defined

and described in relation to one another and in relation to active learning in general.

Finally, the theoretical foundation was described to provide support for the hypothe-

sis that the intervention will incite positive responses in each of these measures. The

next chapter describes in detail the intervention and the overall study design.
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CHAPTER 8

iNewton Study Design

This chapter provides an overview of the iNewton study design including de-

scriptions of the class setting (and enrollments), a prior pilot study, the iNewton

technology, and the overall design of the current study including descriptions of the

three levels of the intervention using the iNewton technology.

8.1 Class Setting

The class setting for both a pilot study (described in the next section) and this

dissertation’s study is an introductory dynamics course, ME240: Introduction to

Dynamics and Vibrations, required for students (typically sophomores) enrolled in

three different programs within the College of Engineering: mechanical engineering,

aerospace engineering, and naval architecture and marine engineering. The course

also serves as a technical elective for a number of other engineering disciplines. In a

typical semester, two or three sections of ME240 are offered, each with an enrollment

ranging from 60-120 students for a total annual enrollment of approximately 500

students. The major topics covered in ME240 are three-dimensional (3D) particle

motion, planar (2D) rigid body motion, and basic vibrations. The prerequisites

include a first-year physics course on Newtonian mechanics and a second-year calculus

course on differential equations, which can be taken concurrently. Course grades for

the 15-week semester are based on student performance on 13 homework assignments
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(15%), two midterm examinations (50%), and a final examination (35%). There is

no lab or discussion section associated with this course. Within a semester, each

section is taught by a different instructor; however, there are common instructors

between semesters. A timeline for a semester is illustrated in Fig. 8.1, which also

shows when the active learning IMU interventions are implemented in the class.

Figure 8.1: Generic timeline for a typical semester. Each tick represents one week,
with the survey label at the far left end representing the first week of the course.

8.2 Pilot Study

During the 2013-2014 academic year, a pilot study for the active learning IMU

experiments was conducted in ME240 to ascertain the feasibility of implementing

this instructional technique in such a large class. This pilot study was funded by a

grant from the University’s Provost Office for the “Transforming Learning for the

Third Century” program, which is dedicated to early-stage education research to

increase engaged student learning. Three of the five large sections of the course

taught during that academic year served as the control group for the pilot project.

The active learning IMU interventions took the form of two instructor-led demonstra-

tions. These were offered in the remaining two sections and comprise the intervention

group. Table 8.1 reports the student enrollment for each control and intervention

group which, summed over the year, represent a near equal split of the total stu-

dent enrollment. The two instructor-led demonstrations were conducted during two
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Table 8.1: Total number of students enrolled in the pilot study.

Fall 2013 Winter 2014 Total

Control 61 (1 section) 174 (2 sections) 235

Intervention 149 (1 section) 72 (1 section) 221

Total 210 246 456

separate lectures (same times as indicated in Fig. 8.1) to highlight concepts in the

dynamics of particles and rigid bodies. For example, in one demonstration, the in-

structor jumped on a pogo stick with an IMU attached to a belt with the instructor

modeled as a particle. An in-depth assignment was designed around the data col-

lected from the IMU in which students explored the kinematics and energetics of a

particle representing human jumping. The other instructor-led demonstration con-

sidered rigid body dynamics and similarly produced IMU data that was passed to

the students who used that data to reveal multiple concepts in rigid body dynamics.

The pilot study hypothesized that the demonstrations would positively impact

student conceptual understanding, self-efficacy, and intention to persist. Like the

current study, student conceptual understanding was assessed using a concept inven-

tory known as the Dynamics Concept Inventory (DCI) [41, 42] (described in depth

in Section 9.1.2). The impact on students self-efficacy and intention to persist in

engineering was measured using a modified version of the Longitudinal Assessment

of Engineering Self-Efficacy (LAESE) [46, 362] (described in depth in Section 10.1.4).

Students completed the modified LAESE at the beginning of the term (pre-LAESE)

and they completed both the DCI and modified LAESE at the end of the term (post-

LAESE). The response rates for the pre-LAESE, the DCI, and the post-LAESE were

81%, 72%, and 54%, respectively of the total number (N=456) of enrolled students.

The overall scores on the DCI showed no significant differences between the con-

trol and intervention groups. Students in the Fall 2013 term intervention group did

demonstrate greater understanding of the concept related to zero/non-zero accelera-

tion and zero/non-zero velocity, a concept that was addressed in the first of the two

instructor-led demonstrations that term. For this concept on the DCI, the scores were
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statistically significantly higher in the intervention group (53±3.9% vs. 26±6.0%,

p<0.0001). For most LAESE items, there were no significant differences between the

control and intervention group, but gains in students’ course-specific self-efficacy for

the Winter 2014 term was significantly higher in the intervention group (2.5±1.2%

vs. 7.6±2.1%, p<0.001). These early findings warranted a thorough investigation,

which is captured by the study completed in this dissertation. The design of that

current study is described in the remainder of this chapter.

8.3 Participant Demographics for Current Study

Data were collected from 1,070 of the 1,388 students enrolled in 19 sections of

ME240 over 3 years, for an overall response rate of about 80%. The timeline and

enrollment details for the study are illustrated in Fig. 8.2 below. Demographic data

was collected with the beginning of the semester survey and is displayed in Table

8.2. Students were incentivized to complete the surveys with modest course extra

credit for completion (not performance). To discriminate between students who

completed the survey questions with effort from those who did not, three inclusion

criteria were used: 1) number of questions answered, 2) time spent taking the survey,

and 3) longest run of the same answer (e.g., selecting the response “a” repeatedly).

Furthermore, there were also students who took the class multiple times thereby

completing the surveys on more than one occasion. For these cases, the first instance

of their participation was retained in the study. Finally, data from students who

only completed one of the two surveys were eliminated as well. As a result of these

exclusions, the final data set included 1032 students for a response rate of 75%.

Figure 8.2: Timeline and enrollment data for the study.
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8.4 Intervention Levels for Current Study

The active learning IMU intervention has three levels (Table 8.3) that systemati-

cally increase student engagement with the IMUs (incremental assessments detailed

by Vitali et al. [363, 364, 365]). These three levels, referred to as 1) Demonstra-

tions, 2) Prescribed Experiments, and 3) Student Projects, respectively map onto

the passive, active, and constructive modes defined by Chi’s ICAP framework [38, 39].

Students watch instructor-led demonstrations as passive observers in Level 1, they

actively conduct prescribed experiments in Level 2, and they construct their own

experiments to study specific concepts from class in Level 3.

Table 8.3: Descriptions of the intervention levels with the IMU-based experiments.

Level Intervention Description

0 Control Instructors teach course without intervention

1 Demonstrations
Instructors demonstrate experiments with
IMUs in class

2 Prescribed Experiments
Students conduct prescribed experiments
with IMUs outside of class

3 Student Projects

Students propose and conduct an experiment
of their own imagining (with instructor feed-
back) with IMUs outside of class

Misunderstood concepts identified from the DCI for the control group formed the

basis for designing the demonstrations and prescribed experiments. For the student

projects, students designed experiments concerning concepts in planar rigid body

dynamics. A detailed description of each of the three intervention levels is pro-

vided next. Sample assignments for each of the intervention levels are provided at

https://inewton.engin.umich.edu/. The following two chapters discuss the ef-

fects these intervention levels have on student conceptual understanding (Chapter

9), self-efficacy (Chapter 10), and intention to persist (Chapter 10).

160



8.4.1 iNewton IMUs

The IMUs (Fig. 8.3) used and provided to the students to conduct the ex-

periments, and known as iNewtons, were custom made specifically for this project

(Insight Limited, Hong Kong).

Figure 8.3: Photo of the iNewton IMUs used by the students in this project.

Each sensor contains a triaxial accelerometer and triaxial angular rate gyroscope

with programmable ranges and sampling frequencies as follows:

• Accelerometer: ±4g, ±8g, ±16g, ±32g

• Angular Rate Gryoscope: ±500°/sec, ±1000°/sec, ±2000°/sec, ±4000°/sec

• Sampling Frequency: 100 Hz, 200 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz

Turning the sensor on (sliding the switch to the “on” position) immediately starts

writing acceleration and angular rate data to on-board flash memory. The data

collection ends when the iNewton is turned off (sliding the switch to the “off” posi-

tion). The data can then be downloaded to a host computer via USB where the

iNewton is recognized as an external storage container. Further details on the

operation of the iNewton are provided in the User Manual that is accessible at

https://inewton.engin.umich.edu/, which was also provided to the students.
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8.4.2 Level 1 Intervention: Demonstrations

Two demonstrations were conducted in class by instructors, and they each took no

more than 15 minutes to set up, conduct, and explain the relevant concepts revealed

by the experiment. The first demonstration (Fig. 8.4) focused on measuring and

understanding the Coriolis acceleration in the context of particle dynamics. The

IMU was attached to a slider (the particle) that was free to slide along a rotating

arm. An approximately constant force was applied to a string to generate a constant

moment on a shaft that rotated the arm. The rotating shaft was rigidly attached to

the arm, thus the constant moment created a constant angular acceleration of the

arm. The experiment included the phase of motion where the slider stuck to the arm,

followed by the phase when it slid outwards along the arm (ultimately impacting a

hard stop). Students modeled this experiment by deriving the equations of motion of

the slider (with the attached IMU) as a particle and were asked a series of conceptual

questions to be answered using the recorded IMU data.

Figure 8.4: Experimental set-up of a rotating arm with a slider that demonstrates
the Coriolis acceleration (Demonstration #1).

The second demonstration was designed to study rigid body kinematics, rolling

without slipping, and Newtons 2nd law for a rigid body. Two versions of this demon-
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stration were offered in different semesters. The first version (Fig. 8.5a), demon-

strated in Winter 2017, consisted of three IMUs attached at three locations on a

wheelchair; namely, on the outer perimeter of a wheel, near the axle of the same

wheel, and on the back of a chair. The second version (Fig. 8.5b) of the demon-

stration, used in Fall 2017, consisted of two IMUs attached at radially-symmetric

locations on the underside of a Frisbee. In both versions, the object was pushed to

produce initial linear and angular velocities that then allowed to roll freely thereafter

subject to dissipative effects. Following the demonstrations, students were given the

relevant (pre-processed) data collected with the IMUs to complete an assignment

designed to expose and explain these concepts.

(a) (b)

Figure 8.5: The two versions of Demonstration #2. (a) The wheelchair version
included three IMUs located on the back of the chair (green), on a wheel near the
outer perimeter (blue), and on the same wheel near the axle (red). (b) The Frisbee
version included two IMUs located symmetrically on the underside. The IMU in the
solid red box collected data for the assignment whereas the IMU in the dashed red
box was placed to minimize the effects of an eccentric mass on a rotating object.

Follow-On Assignments for Demonstrations

For the first demonstration, students estimated the angular acceleration of the

rotating arm from a linear approximation for the recorded angular velocity. Then,

they drew a free body diagram of the slider when it was sliding along the rotating
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arm. Using Newtons 2nd law, they developed an equation of motion for the slider in

the radial direction that they solved numerically for the slider velocity and position.

These results were used to estimate the normal lateral force acting on the slider,

which has components deriving from the Coriolis acceleration and the arm angular

acceleration. They then compared the force component magnitudes, which reveals

the Coriolis component is much larger than the angular acceleration component.

The first version of Demonstration #2 (Fig. 8.5a) included a portion focused on

the rigid body kinematics of the wheel. Students compared the angular velocities

recorded by the IMUs at the two positions on the wheel to confirm (or to learn) that

they were the same. Then, they resolved the components of the recorded acceleration

from one IMU in the sensor frame of the second IMU to confirm (or to learn) that

the accelerations were different in both magnitude and direction, but also similar

in their (out of phase) fluctuations. A second portion of the assignment focused on

rigid body kinetics. This portion required drawing a free body diagram to understand

how to estimate the force from the push at the beginning of the trial as well as the

dissipative rolling resistance force after the initial push ended. For the second version

of Demonstration #2 (Fig. 8.5b), students estimated the velocity of the center of

mass of the Frisbee using only the measured angular velocity, knowing that the

Frisbee was rolling without slipping. Using this result, they further computed the

translational and rotational kinetic energies of the Frisbee. From the work-energy

principle, they estimated the work done by the dissipative forces and also specified

which forces acting on the Frisbee did work.

8.4.3 Level 2 Intervention: Prescribed Experiments

The prescribed experiments for the Level 2 intervention were performed by the

students outside of class, and so they were designed to be conducted anywhere with

an easily transported experimental set-up. Furthermore, students worked in groups

of two or three to encourage collaborative learning and to minimize the number of

experimental set-ups. Prescribed Experiment #1 (Fig. 8.6) focused on familiarizing

the students with the iNewtons as well as developing student intuition for accelera-
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tion. The goal for this experiment was to balance an inverted pendulum on the palm

of a hand and use the measured acceleration from the iNewton to understand the

dynamics of active balancing treating the inverted pendulum bob as a particle.

Figure 8.6: Photo of the experimental set up for Prescribed Experiment #1 with a
callout of the iNewton attached to the bob of the inverted pendulum.

The assignment was purposefully kept simple so as not to overwhelm the students

with conducting the experiments on their own and how to interpret data from the

iNewton. Students used the fact that the iNewton remained essentially still and

so the acceleration data described gravity and thus also the tilt of the pendulum

from vertical. Students also explored the difficulty of balancing the pendulum under

a variety of conditions (e.g. using dominant versus non-dominant hand, pendulum

bob high above hand versus closer to hand, and both eyes open versus one eye closed).

In the first version offered in Winter 2018, students studied their ability to balance
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the inverted pendulum at three different predefined heights. They were asked to

repeat the experiment with the bob at the tallest height with both hands. Whichever

hand did better (using a balance performance metric they estimated from iNewton

acceleration data), they were then instructed to conduct the experiment two more

times with the bob at the other two (more difficult) heights. In the second version

offered in Fall 2018 and Winter 2019, students studied their ability to balance the

inverted pendulum at the tallest height with their dominant hand with both eyes

open. They then compared that to their performance balancing the pendulum with

one eye closed, effectively eliminating their depth perception and making the task

considerably more difficult.

Prescribed Experiment #2 (Fig. 8.7) follows the design of Demonstration #2

with a Frisbee. Consequently, it was designed to study rigid body kinematics, rolling

without slipping, and Newtons 2nd law for a rigid body. Students were instructed to

Figure 8.7: An example configuration for the iNewton sensor attached to the Frisbee
(Prescribed Experiment #2).
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push the Frisbee in such a manner as to produce initial linear and angular velocities

and then allow it to roll freely thereafter subject to dissipative effects. They measured

how far the Frisbee rolled and compared it to the distance they estimated from the

iNewton data.

Following the experiments, the students were given code to pre-process the data

collected with the iNewtons and to complete an assignment designed to expose and

explain the relevant course concepts.

Follow-On Assignments for Prescribed Experiments

For the first prescribed experiment, students were asked to derive the lean an-

gles of the pendulum relative to the horizontal plane (i.e. pitch and roll) using the

components of acceleration measured by the iNewton. They used these angles to

estimate the coordinates of the pendulum bob in the horizontal plane relative to

their hand using the known height of the bob. For the first version of the experi-

ment, the students computed and plotted the location of the bob after each of the

four experiments (three with their “better” hand and one with their “worse” hand).

Then, they calculated the root-mean-square (RMS) of the radial position, which is a

measure of balance performance. They compared balancing performance across the

four trials. For the second version of the experiment, students also computed and

plotted the location of the bob for both trials (both eyes open and one eye closed)

and similarly calculated and compared the RMS of the radial position. They were

also asked to model their control strategy for keeping the pendulum upright as a

spring (effectively describing a proportional controller). To this end, they numeri-

cally differentiated the Cartesian coordinates of the bob twice to obtain acceleration

and, from that, estimated the horizontal force applied to the bob (via Newton’s 2nd

law). A scatter plot of this force plotted against position reveals an approximately

linear relationship, and the slope of the fitted line reveals the gain employed in their

control strategy (i.e. the stiffness of an effective spring).

For the second prescribed experiment, students studied both the kinematics and

kinetics of the rolling Frisbee. They estimated the velocity of the mass center using

the angular velocity data. Numerically integrating this velocity estimate produced
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an estimate for the horizontal position of the Frisbee, the final value of which they

compared to the distance they measured during the experiment. Numerically dif-

ferentiating the estimated velocity produced a noisy estimate for the acceleration of

the Frisbee, which they compared with a (low pass) filtered estimate from a tem-

plate code. Using their estimate for mass center velocity and the measured angular

velocity, students then calculated the kinetic energy of the Frisbee. They also iden-

tified the likely sources of energy dissipation and used the work-energy relationship

to determine the work done by each source. A challenge question was also posed,

which most students attempted, in which they derived expressions for the friction

forces acting on the Frisbee and the work done by each of those forces. This question

highlighted the fact that with the rolling without slip assumption the friction force

between the Frisbee and the ground does no work because there is no relative motion.

8.4.4 Level 3 Intervention: Student Projects

For this version of the intervention, the students worked in groups of two or

three to complete one prescribed experiment early in the term and then one student

project near the end of the term. The prescribed experiment was offered first to allow

students to learn how to use the iNewton prior to designing their own experiments.

The prescribed experiment was the same inverted pendulum experiment described

in Level 2 in which they compared their balancing performance with both eyes open

to their balancing performance with one eye closed.

The student projects provided a unique opportunity to students to conceive of

their own experiment and to pursue a study in rigid body dynamics that interested

them. This project was broken into three smaller parts to promote progress and

provide students with timely feedback. In the first part, the student groups pro-

posed two or three potential experiments using the rubric provided in Fig. 8.8 to

guide them. Students were requested to list of the course concepts in rigid body

dynamics revealed by the experiment, describe a proposed experimental procedure,

predict what they expect to see in the data measured by the iNewton, and discuss

any potential risks in conducting their experiment. Instructors then evaluated the
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proposals to make sure at least one of the experiments was achievable and acceptably

safe for the students to pursue.

In part 2, the groups submitted a preliminary report that showed progress towards

one of the instructor-approved experiments and discussed any challenges they were

facing. The preliminary report included a description of the experimental procedure

used (including a video showing the procedure) with special attention paid to how

the iNewton was oriented on the rigid body of interest. They provided plots of

their preliminary measurements along with a discussion of how these measurements

compared to their predictions made in the first part of the project. The reports

also included a preliminary analysis in which they developed free body diagrams and

equations of motion needed to derive specific kinematic or kinetic variables of interest.

Finally, students reiterated any risks associated with their chosen experiment. At

Figure 8.8: Rubric describing the general expectations for the student projects.
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this point, instructors offered feedback including alternatives to the experimental

procedure and/or proposed analyses to better reveal course concepts.

In part 3, students incorporated the feedback offered by the instructors into

their projects and completed a summary report. The summary report included an

introduction listing the course concepts and reasons for the group’s decision to pursue

their experiment. They then described the final experimental procedure, analytical

model, and analyses. Final results and a discussion comparing their experimental

data with their predictions were included as well. Lastly, students reflected on the

course concepts they elected to study and described whether the experiment they

designed and conducted reinforced their understanding of these concepts.

8.5 Chapter Summary

To summarize, this chapter provides a detailed description of the study design

including the class setting, a pilot study, participant demographics for the current

study, and descriptions for each active learning IMU intervention level. The next

two chapters will discuss the effects of the active learning IMU intervention levels

on student conceptual understanding (Chapter 9), self-efficacy (Chapter 10), and

intention to persist (Chapter 10).
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CHAPTER 9

iNewton Cognitive Effects

9.1 Background to Studies

As described in detail in Chapter 7, engineering dynamics is historically challeng-

ing for students to understand and to transfer concepts to new contexts as demon-

strated by Gray et al. [41], Flori et al. [283, 284], Fang and Guo [285], and Fang

[286]. It is especially difficult for first-time learners to imagine motion through static

examples and illustrations [283, 285], which are common in traditional instructional

methods (e.g. lecturing, note taking, and book problem solving) typically only pas-

sively engaging students with the material. Pertinent to this dissertation are ac-

tive learning innovations that employ inertial sensors (either self-contained IMUs or

smart-phone-embedded sensors) for active learning as reviewed next in the context of

various engineering courses and, more specifically, undergraduate dynamics courses.

9.1.1 Educational Studies Using IMUs

Given the versatility of IMUs, researchers have utilized this technology for a

wide range of educational applications and disciplines. For example, Espinosa et al.

[366, 367] employed inertial sensors as a means to teach human biomechanics. Specif-

ically, undergraduate distance learners used IMUs to conduct biomechanical exper-

iments to complement their theoretical curriculum. At the United States Naval
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Academy, Bradshaw and Nicholson [368] provided inertial sensors to systems en-

gineering students to facilitate learning principles of navigation systems (including

coordinate transformations and Kalman filtering) in a prescribed experiment. Brill

et al. [369] designed a laboratory for an undergraduate controls course in which stu-

dents controlled the position of an actuated arm using outputs provided by a smart-

phone application. A follow-up expert analysis and a content knowledge assessment

revealed this activity yielded significant improvement in understanding of controls

concepts. The authors further expand on how smart-phone platforms are feasibly

implementable for a wide range of laboratory education for science and engineering

fields [370]. Chen et al. [371] describe a senior capstone design project wherein stu-

dents utilized a wearable, wireless triaxial accelerometer to monitor human motion.

Similarly in a design course, Jordan and Lande [372] highlight a student group who

visualized arm movements from data collected by an IMU embedded in a bowling

ball. In an upper division mechanical engineering laboratory course, Nordenholz [373]

provided dual axis accelerometers and uniaxial angular rate gyroscopes to students

who investigated the planar motion of remote controlled cars and estimation errors.

Finally, Shayesteh et al. [374] incorporated wearable and Internet of Things (IoT)

devices in a senior course to introduce various engineering applications via hands-

on experiences to mechanical engineering and electrical and computer engineering

students, who responded positively to the experience.

Several studies of implementing IMU technology as a learning platform have also

taken place in undergraduate introductory dynamics courses as well. Bevill and

Bevill [375] designed a sophomore-level engineering dynamics laboratory activity in

which students compared normal and tangential components of acceleration mea-

sured by an accelerometer embedded in a smartphone to those derived from GPS

data measured by the smartphone. Students reported enjoying the process of collect-

ing and analyzing data outside of a laboratory setting and feeling that the activity

contributed positively to their conceptual understanding of particle dynamics. The

authors also note they designed this experiment specifically because students tend

to struggle with kinematic analyses [375], one of the cornerstones of Newtonian me-

chanics as evidenced by its prevalence in the Dynamics Concept Inventory [41, 42]
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(described subsequently) and the Force Concept Inventory [376]. Ferri and Ferri

[300] describe several different hands-on experiments, including those facilitated by

IMUs, to provide additional learning opportunities in an undergraduate dynamics

course. Students reportedly prefer and benefit from conducting experiments, which

the authors attributed to the fact that experiential learning activities (i.e., hands-on

experiments) can influence memory and recall. Finally, students designed and con-

ducted experiments of their own imagining with their smartphones, which resulted in

a variety of different projects ranging from studying Coriolis acceleration to studying

the kinematics of a home-made trebuchet [377]. O’Connor reported “overwhelmingly

positive feedback from the student survey, as well as the remarkable nature of the re-

ports, this first student-led investigation project into dynamics theory was an absolute

success” [377, p. 12].

Given the recent history of employing IMUs for teaching undergraduate engineer-

ing dynamics, it is important to measure the impact of this new form of engaged

learning on student conceptual understanding, which was only formally assessed by

Brill et al. [369]. As described by Treagust [378] and Fulmer et al. [379], diagnostic

evaluation of student conceptual understanding takes a number of forms in student

outcome assessment and education research. Researchers like Osborne and Gilbert

[380], Nelson [381], and Watts [382] advocate the use of interview sessions with stu-

dents to probe their understanding of the subject matter, though this approach is

not scalable to large classes (as in this research). Others like Kirbulut and Geban

[383] and Tamir [384] opt for multiple choice questions populated with answers usu-

ally developed from students past answers and typifying frequently misunderstood

topics known as distractors. Concept inventories (CIs) are an example of the latter.

As Jorion et al. [43, 385] describe, CIs undergo extensive evaluation to assess valid-

ity and reliability in assessing student conceptual understanding and ensuring that

similarly-grouped items test the same underlying concept. This will be discussed fur-

ther in Section 9.2.2. Furthermore, CIs like the Dynamics Concept Inventory [41, 42]

have been used in both high-stakes assessment (e.g., counted in the score on a final

exam) and low-stakes assessment (e.g., offered outside of the normal course grading

scheme). However, as is noted by Finn [386], scores from low-stakes evaluations may
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not produce unbiased representations of student knowledge, which will be discussed

in Section 9.2.1. Next is an introduction and description of the Dynamics Concept

Inventory.

9.1.2 The Dynamics Concept Inventory

At a mini-conference on Undergraduate Education in Dynamics, Vibrations, and

Strength of Materials in 2002, attendees discussed instructional innovations in the

physics education community that might benefit engineering mechanics as well [41].

The attendees concluded that a new assessment tool would first be needed to evaluate

the efficacy of future teaching innovations for Newtonian mechanics [42]. Headed up

by Gray et al. [41, 42], the Dynamics Concept Inventory (DCI) was borne from

that initiative. The DCI consists of 29 questions focused on 14 important and/or

commonly misunderstood concepts in engineering dynamics [385]. The concepts,

provided in Appendix B, were identified via a modified Delphi process by veteran

course instructors [42].

A number of prior studies employ the DCI to evaluate potential gains in con-

ceptual understanding following changes in teaching pedagogy in undergraduate dy-

namics courses. Shelley [387] used the DCI as an objective metric for iteratively

altering teaching instruction for improving student learning outcomes. Benson et al.

[388] used the DCI to quantify improvements from the Student-Centered Activities

for Large Enrollment Undergraduate Programs (SCALE-UP) approach, which incor-

porated inquiry-based learning exercises. Similarly, Self et al. [298] used the DCI to

assess the effects of two inquiry-based learning activities that aim to correct student

misconceptions concerning friction forces and the dynamics of rolling bodies. Em-

ploying the DCI, Bedillion et al. [389] evaluated the effects of including SolidWorks

motion simulations to improve visualization skills and knowledge transfer. Tang

and Bai [390] used the DCI to evaluate the effectiveness of identifying elements of

problem solving skills, developing exercises to improve those elements, and creating

sequentially more complex activities for improved transferability.

In 2015, Jorion et al. determined the “DCI can function as a low-stakes instru-
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ment that educators can use to identify overall understanding of all concepts identi-

fied in the DCI ” [43, p. 479]. Similarly, Stites et al. [391] described a reliable and

valid abbreviated DCI that correlates with student performance on traditional long-

answer problem-solving exam questions in a high-stakes setting. These two studies

conducted by Jorion et al. [43] and Stites et al. [391] provide support for the relia-

bility of the DCI as an evaluative tool to measure student conceptual understanding

and represent the basis of the first study described in Section 9.2.1. However, the

findings from the 2015 study [43] also raised concerns about the DCI that are further

discussed in Section 9.2.2.

9.2 Three Studies Concerning Cognitive Effects

The remainder of this chapter is organized into three studies that all probe the

conceptual understanding of students in ME240. The first study considers the au-

thenticity of student performance on the DCI in a low-stakes setting. The second

study considers the validity and reliability of the DCI as an instrument designed

to measure student conceptual understanding. The third and final study uses the

results from the first two studies to investigate the impact of the active learning IMU

intervention on conceptual understanding.

9.2.1 Study 1: Authenticity of DCI Performance in Low-Stakes Settings

Study Background and Objective

This first study investigates how conceptual understanding in a low-stakes set-

ting is related to both conceptual understanding and performance on traditional

long-answer problem-solving in a high-stakes setting. A “high-stakes” setting is one

in which there are significant consequences for students’ grades (e.g., a midterm

examination) while a “low-stakes” setting is one in which there is little grade conse-

quence (e.g., an assignment for extra credit independent of their performance). In

this study, the DCI is offered in a low-stakes setting, namely as part of an online

survey at both the beginning (pre) and end (post) of the semester. Students are
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incentivized to participate with modest course extra credit for filling out any portion

of the survey (independent of performance). Given the leniency of these testing con-

ditions, the first hypothesis concerns whether student performance on the low-stakes

evaluation (DCI post) will correlate with that on two high-stakes evaluations, namely

short-answer concept questions and long-answer problems on in-class examinations.

It is hypothesized there will be low correlation between performance on the low- and

high-stakes evaluations. It should be noted that prior studies conducted by Ates and

Catologlu [392], Malone [393], and Stites et al. [391] show conceptual understanding

can be correlated with problem-solving skills. Therefore, a secondary hypothesis is

there will be a statistically significant correlation between the student scores on the

two high-stakes performance assessments (i.e., the short-answer concept questions

and the long-answer problems). As a result of the anticipated correlation, a third

hypothesis is that student performance on the two high-stakes evaluations will be

predictive of their performance on the low-stakes evaluation.

Methods

The DCI was offered twice during one term (Fall 2017) for one course section

near the start and end of the term (weeks 2 and 15). Students took the DCI in

the low-stakes setting of an online survey (see Fig. 8.1 for a semester timeline).

The online survey was offered without time limitation, and students who completed

any portion of the DCI received modest course extra credit (e.g., 1% course extra

credit). For each administration, the performance of each student is calculated as

the percentage of the 29 questions answered correctly. For the subsequent analysis

in this first study, only student performance on the DCI administered at the end of

the semester is considered. Fifty-seven of the 70 students enrolled in this section of

the course participated (81% response rate).

A midterm examination was administered 12 weeks into the 15-week semester that

focused on concepts for the unit on rigid body dynamics. That examination included

six questions, namely: 1) a set of four short-answer concept questions related to the

course concepts, and 2) two traditional long-answer problem-solving questions. The

4 short-answer questions were formulated around 6 of the 14 concepts on the DCI.
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As an example of a short-answer concept questions, students were asked to identify

the relationship between angular velocities measured at two points on the same rigid

body. One of the long-answer problem-solving questions probed the same concept

by asking students to complete velocity analyses for a wheel rolling without slipping.

Each long-answer problem-solving question was graded by the same person (either

the instructor or graduate student instructor) for consistency. Performance on this

examination contributed to 25% of the students final course grade, representing a

high-stakes evaluation of concepts in rigid body dynamics. This examination was

offered at the conclusion of the unit on rigid body dynamics, and thus may coincide

with the peak in student understanding of this material.

Due to the nonnormalities in the data, Spearman correlation coefficients were

calculated to evaluate the first two hypotheses regarding the relationship between

student performance on the low-stakes evaluation (DCI post) and the high-stakes

evaluations (short- and long-answer questions on midterm examination). To ad-

dress the third hypothesis that high-stakes performance is predictive of low-stakes

performance, stepwise linear regression (backwards elimination) was conducted to

determine a final model with the best fit. The predicted (outcome) variable is the

DCI score at the end of the semester (DCI post), and the regressors are the scores

on the high-stakes midterm evaluation (short- and long-answer scores). Normality

and heteroscedasticity of the residuals are confirmed for the final model.

Results and Discussion

Table 9.1 documents student performance on the DCI and summarizes the low-

stakes evaluation of student conceptual understanding. Reported are the mean (stan-

dard deviation) of overall DCI scores taken at the end of the term (post). Table

9.1 also documents student performance on the midterm examination, the high-

stakes evaluation of student conceptual understanding. Reported are the mean (stan-

dard deviation) of the four short-answer concept questions and the two long-answer

problem-solving questions used to evaluate student conceptual understanding.
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Table 9.1: Means (standard deviations) for low-stakes (DCI) and
high-stakes (Short- and Long-answer questions on midterm exam-
ination) evaluations of student performance.

DCI % Exam Short % Exam Long %

Scores 48.0 (19.7) 75.3 (19.1) 84.5 (13.2)

To evaluate the relationships between the scores, Spearman correlation coefficients

(rS) are calculated for each pair and are reported in Table 9.2.

Table 9.2: High-stakes evaluation of student performance.

High-Stakes
Exam Short Exam Long

High-Stakes Exam Long 0.68***

Low-Stakes DCI 0.42** 0.43***

Significant at α = *0.05, **0.01, ***0.001.

The first hypothesis is supported by the moderate correlation between the DCI post

scores and both the midterm long-answer problem-solving questions (rS=0.43) and

the midterm short-answer concept questions (rS=0.42), indicating that conceptual

understanding as evaluated by the high-stakes measures is moderately correlated with

conceptual understanding as evaluated by the low-stakes DCI. The correlation be-

tween the midterm short-answer concept questions and the traditional long-answer

problem-solving questions (rS=0.68) confirms the second hypothesis that student

performance on the concept questions is correlated with performance on problem-

solving questions. These findings confirm research demonstrating significant rela-

tionships between conceptual understanding and problem-solving [391–393].

To address the third hypothesis and further evaluate the relationships between

the low-stakes evaluation (DCI) and the high-stakes evaluation (Exam Long and

Exam Short), stepwise linear regression with backwards elimination was conducted.

The final model showed the low-stakes evaluation is related most strongly with only
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the long-answer high-stakes evaluation (F(1,56)=8.35, p<0.01, R2=0.13) such that

scores on the long-answer problem-solving questions positively predict scores on the

low-stakes evaluation (β=0.38, p<0.01). In other words, removing the short-answer

concept question scores as a predictor variable did not significantly change the fit

of the model (F(1,54)=1.84, p=0.18). However, as was shown in Table 9.2 above,

the short-answer concept question scores are in fact strongly correlated with the

long-answer problem-solving question scores. The regression analysis was therefore

re-conducted with the long-answer scores removed as a predictor variable to verify

the relationship between the short-answer concept questions and the low-stakes eval-

uation. The model revealed the low-stakes evaluation is also strongly related with

the short-answer high stakes evaluation (F(1,56)=7.81, p<0.01, R2=0.12) such that

the scores on the short-answer concept questions positively predicts scores on the

low-stakes evaluation (β=0.37, p<0.01). As expected, this relationship is nominally

weaker than that between the low-stakes evaluation and the long-answer problem-

solving question scores.

Students performance on the low-stakes evaluation (post) was predicted by their

performance on the long-answer problem-solving questions on the midterm evalu-

ation. Furthermore, their low-stakes evaluation (post) was also predicted by their

performance on the short-answer concept questions on the midterm evaluation. Cou-

pled with the moderate Spearman correlation coefficient, this confirms the third hy-

pothesis that students performance on the low-stakes evaluation is predicted by the

conceptual understanding demonstrated on both high-stakes evaluations.

Conclusion

Overall, the study described in this section supports the finding reported by

Jorion et al. [43] that student performance on the DCI in a low-stakes setting is

representative of their understanding of the dynamics concepts covered by the CI

[394]. As such, the results from the DCI appears to be an authentic representation

of overall student conceptual understanding of the dynamics concepts addressed by

the DCI.
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9.2.2 Study 2: DCI Instrument Evaluation

Study Background and Objective

While the first study offers evidence of the DCI’s ability to quantify student

conceptual understanding, some concerns about the reliability and validity of the

DCI remain, which will be addressed in this second study. This is achieved using

the analytical framework for evaluating CIs outlined by Jorion et al. [43, 385]. The

authors centered the psychometric-inspired framework on the validity and reliability

of potential interpretations and uses of CI scores and not necessarily of the CI itself

[43]. This means the results do not indicate whether the CI is or is not valid; rather,

the CI is evaluated based on the level of its plausibility and appropriateness for those

potential interpretations and uses [395].

The three claims underlying CIs for educational research are that students’ CI

scores indicate: 1) their overall understanding of all concepts identified in the CI, 2)

their understanding of specific concepts, and 3) their propensity for misconceptions

(or student errors) [43]. Individual items (i.e., questions) are evaluated using clas-

sical test theory (CTT) [385] and item response theory (IRT) [43] to determine if

any items have poor properties that would warrant their removal from the CI. After

removing problematic items, the framework recommends conducting factor analyses

(exploratory and confirmatory) as well as defining a diagnostic classification model to

ensure that the CI’s structure is consistent with what the developer intended [43]. As

Jorion et al. [43] show, this procedure identifies several items on the DCI as exhibiting

very poor properties, which means the inclusion of these items is introducing unnec-

essary noise into the measurement of overall conceptual understanding. Furthermore,

Jorion’s exploratory factor analysis indicated very poor structural qualities, which

indicates that the 29 items on the DCI do not map well onto the 14 concepts (listed

in Appendix B). Thus, the authors found support for the first claim that the DCI

can be used to indicate student overall understanding of the concepts in the DCI,

but not for the other two claims [43]. As such, the objective of this second study

is to conduct CTT and IRT analyses in a local context (i.e. with data collected in

ME240 classrooms) to determine if any items warrant removal for subsequent statis-

180



tical analyses evaluating the effects of the engaged learning IMU intervention (Study

3).

Methods

The DCI items are evaluated using data collected during the pilot study described

in Section 8.2 [396]. This data set includes 329 students who elected to participate in

the study in either the control or intervention group (note Vernon et al. [396] found

no statistically significant differences for overall DCI scores between the groups).

Items were evaluated using the two approaches (CTT and IRT) thoroughly outlined

by Jorion et al. [43, 385] and briefly described next. These two approaches are

similar and can be considered complementary in determining which (if any) items

are potentially problematic in subsequent analysis of CI overall scores.

Classical test theory (CTT) is regarded as the “true score theory” and assumes

that each measured score is actually the true score plus some error. Cronbach’s

alpha provides an estimate of CI score reliability, meaning a student’s score would

be nearly the same if the CI were administered multiple times to the same student.

Acceptable values for Cronbach’s alpha are typically greater than 0.7, though mea-

sures between 0.8 and 0.9 are desirable [397]. To evaluate the effectiveness of a CI’s

ability to quantify performance, a confidence interval is constructed to represent a

range of scores that are not distinguishably different [398]. The greater the relia-

bility (Cronbach’s alpha), the smaller the standard error of measurement is and the

greater the ability of the CI to measure the students’ true scores (a maximum value

for reliability would yield a standard error of measurement of 0).

Three additional analyses for CTT investigate the quality of individual items. The

first is an assessment of item difficulty, or the proportion of students who answered

an item correctly. Ideally, items are not too easy (item difficulties greater than 0.8)

or too difficult (item difficulties less than 0.2). The second is an assessment of item

discrimination, which is the correlation between how a student answered an item

(correctly or incorrectly) and their overall score. A larger value means the item can

discriminate between students with high and low total scores, and acceptable values

are greater than 0.2. Finally, Cronbach’s alpha-with-item-deleted indicates how well
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an item fits with the rest of the items and is consistent with the total score. If

Cronbach’s alpha-with-item-deleted is greater than overall Cronbach’s alpha, then

the CI is more reliable without the item. Nunnally and Bernstein [397] and Clark

and Watson [399] recommended CTT analyses be conducted on samples of at least

300 observations. Thus, the sample of 329 is sufficient.

Item response theory (IRT) considers the relationship between a student’s perfor-

mance on an item and the student’s overall performance on the CI. This relationship

between item and overall performance is assumed to be a probabilistic logistic model

that relates a student’s ability (as a value on a continuous scale) to the probability of

that student answering that item correctly [400]. Three common model types (1PL,

2PL, and 3PL) of increasing complexity are traditionally used. As Jorion et al. sum-

marize, “The 1PL has an item difficulty parameter for each item, the 2PL model has

an additional discrimination parameter for each item, and the 3PL model has these

two parameters plus a guessing parameter to account for the forced choice aspect of

multiple-choice questions” [43, p. 486]. The models are compared with a likelihood

ratio test to determine which fits are significantly different from one another with

the expectation that including more parameters in the model should significantly

improve the fit [401–403]. The reliability of an IRT analysis is a function of both

the instrument length and sample size [404]. A simulation study determined for a

30 item instrument that the recommended minimum sample sizes for the 1PL, 2PL,

and 3PL models were 150, 250, and 350, respectively [405]. Thus, since the DCI has

29 items, the sample of 329 is adequate. The IRT analysis was conducted using the

R package “ltm” [406].

Results and Discussion

The mean (standard deviation) of correct responses for the (end of term) DCI

for the 329 students included in the pilot study was 13.8 (4.6), or 47.7 %. The

DCI as a whole had adequate reliability (α=0.74), which is also the same as what

was reported by Jorion et al. [43]. The standard error of estimation for the sample

was 2.02, which is also the same as what was reported by Jorion et al. [43]. For

a given student with a score of 14, the 68% confidence interval is 11.94 to 15.97,
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which means students with scores between 12 and 16 cannot be inferred with 68%

confidence to have different true scores. Figure 9.1 illustrates two of the analyses

from CTT, namely item difficulty and item discrimination. Items that are potentially

problematic are labelled by their question number. Note that Q1, Q5, Q13, Q14,

and Q29 have problematic item difficulty while Q5, Q10, and Q19 have problematic

item discrimination.

Figure 9.1: A scatter plot of item difficulty and discrimination values for the DCI.
The recommended minimum and maximum values are denoted by the dotted lines.
Seven items did not meet the recommended values.

Figure 9.2 illustrates the results from the Cronbach’s alpha-with-item-deleted anal-

ysis. Four items (Q5, Q10, Q19, Q28) produced Cronbach’s alpha-with-item-deleted

greater than the overall Cronbach’s alpha (0.74).
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Figure 9.2: A plot of the Cronbach’s alpha-with-item-deleted values for each of the
DCI items. The solid black horizontal line indicates the overall Cronbach’s alpha for
the instrument. Four items did not meet the criteria.

Three different logistical models (1PL, 2PL and 3PL) were fit to the data, and

likelihood ratio tests were conducted to evaluate which had the best fit. As a re-

minder, the 1PL model is parameterized by item difficulty, the 2PL model is param-

eterized by item difficulty and item discrimination, and the 3PL model is parame-

terized by these two quantities plus a guessing parameter to account for the forced

choice aspect of multiple-choice questions. The three models are nested in the sense

that the 1PL model is contained within the 2PL and 3PL models and the 2PL model

is contained within the 3PL model. The first likelihood ratio test assessed whether

the 2PL model was a statistically significantly better fit as compared to the 1PL
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model, which the results indicate is the case (p<0.001). The second likelihood ratio

test assessing whether the 3PL model was a better fit than the 2PL model did not

determine it was in fact a better fit (p=0.17). Thus, it can be inferred that guessing

did not significantly contribute to how students performed on the DCI. The item

response curves are shown in Figs. 9.3, 9.4, and 9.5.

Note that Q5, Q10, Q13, Q19, and Q28 are highlighted as potentially troublesome

according to this analysis.

Figure 9.3: Graphs of item response function DCI items 1-10. The shapes for items
Q5 and Q10 indicate that these items do not differentiate well between students of
high and low ability.
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Figure 9.4: Graphs of item response function DCI items 11-20. The shapes for items
Q13 and Q19 indicate that these items do not differentiate well between students of
high and low ability.

Figure 9.5: Graphs of item response function DCI items 21-29. The shape for item
Q28 indicate that this item does not differentiate well between students of high and
low ability.
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Conclusions

To summarize, item difficulties ranged from 0.12 to 0.89 (Fig. 9.1), and five

items had difficulty values outside the recommended range. Item discrimination val-

ues ranged from -0.02 to 0.53 (Fig. 9.1), and three items did not exhibit the ability to

adequately discriminate between high and low performing students. Four items had

Cronbach’s alpha-with-item-deleted that were greater than the overall Cronbach’s

alpha (Fig. 9.2). Recalculating the Cronbach’s alpha after removing these items

nominally improved the reliability of the DCI (α=0.76). The best fitting IRT model

was the 2PL model and five items did not fit the model, thus demonstrating poor

ability to discriminate between students of high and low ability. Potentially prob-

lematic items identified in all of these analyses are catalogued in Table 9.3 below.

Table 9.3: Summary of flagged items from CTT and IRT analyses.

Approach Analysis Flagged Items

CTT

Item Difficulty Q1, Q5, Q13, Q14, Q29

Item Discrimination Q5, Q10, Q19

Cronbach’s alpha-with-item-deleted Q5, Q10, Q19, Q28

IRT

Item Response Curves Q5, Q10, Q13, Q19, Q28

Given these results and those reported by Jorion et al. [43], four items (Q5, Q10,

Q13, and Q28) were removed for the analyses for the final study as they failed at

least two inclusion criteria. The total scores for the remaining 25 items retained

are then considered to be representative of student conceptual understanding of the

engineering dynamics concepts.
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9.2.3 Study 3: Active Learning IMU Intervention

Study Background and Objective

This final study leverages the findings from the previous two studies to evaluate

the effects of the active learning IMU intervention on student conceptual under-

standing of engineering dynamics. Study 1 provided support that conceptual under-

standing evaluated in a high-stakes setting is moderately correlated and predictive of

conceptual understanding measured by the DCI in a low-stakes setting [394], thereby

allowing the DCI scores to act as a proxy for conceptual understanding. The second

study evaluated the reliability and validity of the DCI in a local context (i.e. with

data collected from students enrolled in ME240) and identified 4 items to exclude

from subsequent analyses. Thus, each students’ overall correct scores are calculated

from the remaining 25 DCI items for the analyses conducted in this study. Thus,

the measurements of conceptual understanding made via the DCI are representative

of student understanding of general engineering dynamics concepts covered by the

instrument, all of which are covered to varying degrees by the ME240 curriculum.

This study’s objective is to investigate the intervention levels’ effects on concep-

tual understanding, including a comparison with a Control group (Level 0) who did

not engage with any form of the intervention. As a reminder, the three levels of

the intervention are: 1) Demonstrations, 2) Prescribed Experiments, and 3) Student

Projects. These levels systematically increase engagement with the IMU technology

and cognitive engagement. Specifically, students watch instructor-led demonstrations

as passive observers in Level 1, they actively conduct prescribed experiments in Level

2, and they construct their own experiments to study specific concepts in Level 3.

According to Chi’s ICAP framework [38, 39], higher levels of cognitive engagement

hypothetically result in higher gains in conceptual understanding.

Methods

It is common in educational research to evaluate the effects of an intervention on

conceptual understanding through learning gains, which have been defined several

different ways [407]. Raw gains are simply defined as the difference in scores on

an assessment before (Pre) and after (Post) an intervention. Normalized gains are
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defined as this raw gain normalized by the amount of room for improvement that

exists (i.e. the difference between the Pre-score and a perfect score). In some studies

(e.g. Hake [258]), the normalized gains are calculated with the averaged Pre- and

Post-scores for an entire classroom. Others extended this definition by calculating

normalized gains on an individual student basis (e.g. Marx and Cummings [408]).

However, Theobald and Freeman [407] make a compelling case for using regression

analyses to investigate the effects of an intervention. Alone, gains (raw or normal-

ized, averaged or individual) lack the ability to distinguish if learning gains are the

result of an intervention or differences in student characteristics. With regression,

differences in conceptual understanding at the beginning of the semester can be ac-

counted for by treating the Pre-score as a predictor variable. Regression analyses can

also be used to test whether differences in gender, ethnicity, or other factors explain

variation in the Post-scores. Finally, regression models can include interaction terms

to investigate whether the learning intervention disproportionately impacts different

students. Therefore, in this study, multiple linear regression analyses are conducted

to evaluate the effects of the active learning IMU intervention on student conceptual

understanding. Table 9.4 below specifies each of the outcome and predictor variables

as well as the different groups for the categorical variables.

Table 9.4: Summary of multiple linear regression variables. Post and Pre
are continuous variables whereas the rest are categorical variables.

Type Variable Categories

Outcome

Post

Predictor

Pre

Intervention Level 0, Level 1, Level 2, Level 3

Gender Male, Female

Ethnicity White, Asian, URM

Section Type Large, Small

Major ME, AERO, NAME, Elective
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Referring to the student demographics reported in Table 8.2, White students are

those who identified themselves as not of Hispanic origin and Asian students are

those who specifically identified themselves as Asian. Students in the URM (under-

represented minorities) category are those who identified as Black/African Amer-

ican, Hispanic/Latino, American Indian/Alaskan Native, Native Hawaiian/Pacific

Islander, or two or more. The small section describes sections with 20 or fewer stu-

dents whereas large section are those with far more than 20 students. Students who

were required to take ME240 as part of their major were in Mechanical Engineering

(ME), Aerospace Engineering (AERO), or Naval Architecture and Marine Engineer-

ing (NAME). Students who took the class as a technical elective (i.e. did not declare

one of those three majors) were broadly categorized as an “Elective” group.

Using the variables described in Table 9.4, the final multiple linear regression

model used is

Post ∼ 1+Intervention∗(Pre+Gender+Ethnicity)+SectionType+Major (9.1)

where “1” is a potentially significant intercept and the asterisk indicates that interac-

tions between the intervention and each of the predictor variables in the parentheses

are included in the model. It is assumed that each student’s response is indepen-

dent of other students’ responses. Also, for the results to follow, normality and

heteroscedasticity assumptions are confirmed for the residuals for the model.

Results and Discussion

Table 9.5 contains the full results from the multiple linear regression analy-

sis conducted using the formula described in Eq. 9.1. The model was significant

(F (23, 966) = 52.16, p < 0.001), indicating that it is a significantly better fit than

an intercept-only (average-only) model. Overall, the model describes 55% of the

variation in the DCI post scores (R2 = 0.55). In the table, CI:LB and CI:UB denote

the lower and upper bounds of the confidence intervals for the estimated coefficient.

The options in parentheses are the baseline (comparison) categories.
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Table 9.5: Summary of (unstandardized) multiple linear regression results.

Variable Coefficient (β) CI:LB CI:UB t-value p-value

(Intercept) 16.4 9.5 23.3 4.7 < 0.001‡

Pre 0.9 0.7 1.0 12.2 < 0.001‡

Intervention (Level 0)

Level 1 -0.7 -9.0 7.6 -0.2 0.87

Level 2 1.9 -6.4 10.2 0.4 0.66

Level 3 2.9 -6.0 11.9 0.6 0.52

Gender (Male)

Female 0.5 -5.9 6.8 0.1 0.88

Ethnicity (White)

Asian -3.6 -8.4 1.1 -1.5 0.13

URM 1.1 -6.2 8.4 0.3 0.77

Major (ME)

AERO -0.9 -2.9 1.0 -0.9 0.35

NAME 1.0 -3.0 4.9 0.5 0.63

Elective -3.2 -6.8 0.3 -1.8 0.07 •

Section Type (Large)

Small 5.0 1.5 8.7 2.8 < 0.01†

Interactions

Level 1*Pre -0.1 -0.2 0.1 -0.4 0.68

Level 2*Pre -0.1 -0.2 0.1 -0.8 0.44

Level 3*Pre -0.1 -0.3 0.1 -1.1 0.27

Level 1*Female -0.9 -8.2 6.4 -0.2 0.81

Level 2*Female -4.4 -11.8 3.0 -1.2 0.24

Level 3*Female -7.2 -14.9 0.5 -1.8 0.07 •

Level 1*Asian -0.6 -6.6 5.4 -0.2 0.83

Level 2*Asian 0.4 -5.8 6.6 -0.4 0.91

Level 3*Asian 2.3 -4.2 8.9 0.1 0.48

Level 1*URM -1.6 -10.2 7.0 -1.4 0.71

Level 2*URM -6.1 -14.7 2.5 0.7 0.16

Level 3*URM -4.6 -13.4 4.2 -1.0 0.31

Significant α = •0.1, ∗0.05, †0.01, and ‡0.001.
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The significant intercept and Pre-score coefficient describes on average how con-

ceptual understanding changed over a semester regardless of intervention level or

specific student demographics. The intercept means a student who answered no DCI

items correctly at the beginning of the semester can answer 16.4% (about 4) items

correctly at the end of the semester. The significant Pre-score coefficient (βPre)

means students earned 0.9 Post-score percentage points for every Pre-score percent-

age point. Figure 9.6 illustrates these two predictor variables relative to the baseline

case (no change in conceptual understanding as measured by the DCI).

Figure 9.6: The background is a heat map of the joint distribution of Pre- and Post-
scores (black areas are void of data). The solid white line denotes the baseline case
when the Pre- and Post-scores are equal (no change in conceptual understanding as
measured by the DCI). The dashed line illustrates the significant intercept (16.4)
and significant slope (βPre = 0.9) relating Pre- and Post-scores.

Given the spread of the joint distribution of Pre- and Post-scores, there is a great

deal of variation in student performance on the DCI in this study’s data set. As

is further illustrated by the dashed white line, the majority of the distribution is
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concentrated slightly above the baseline case (i.e. the white slide line denoting no

change in conceptual understanding). Discussions of the results for the remaining

predictor variables in Table 9.5 follow next. While each discussion pertains to a

subset of predictor variables, the results presented are with respect to controlling for

variations due to the other variables.

Intervention

While Fig. 9.6 illustrates the joint distribution of Pre- and Post-scores for all

students, the distributions for each of the intervention levels are informative as well.

Figure 9.7 contains split violin plots describing each intervention level’s Pre- (grey)

and Post-score (gold) distributions. The black boxes at the middle of each violin are

box plots corresponding to each distribution with the black horizontal lines indicating

the median. Across intervention levels, it is clear from the seemingly equal differ-

ences between Pre- and Post-score distribution medians that there is a consistent

improvement in conceptual understanding as measured by the DCI.

Figure 9.7: Split violin plots of the Pre- and Post-score distributions (grey and
gold, respectively) for each of the intervention levels: Level 0 (Control), Level 1
(Demonstrations), Level 2 (Prescribed Experiments), and Level 3 (Student Projects).
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However, as is evidenced by the largely overlapping distributions in Fig. 9.7,

there were no significant differences in the improvements in conceptual understand-

ing as measured by the DCI across the intervention levels. Figure 9.8 illustrates the

slight differences between intervention levels as well as the interactions between the

intervention levels and Pre-scores. The nonsignificant interactions mean the inter-

ventions had equivalent effects on student conceptual understanding regardless of

their conceptual understanding at the beginning of the semester.

Figure 9.8: The solid black line denotes the baseline case when the Pre- and Post-
scores are equal (no change in conceptual understanding). The other lines represent
the multiple regression results for each intervention level while controlling for varia-
tions in the other predictor variables: Level 0 (Control), Level 1 (Demonstrations),
Level 2 (Prescribed Experiments), and Level 3 (Student Projects).

There are many reasons why no significant differences in conceptual understand-

ing are detected, which Chi’s ICAP framework hypothesizes should be the result of

increased cognitive engagement [38, 39]. First and foremost, the three levels involv-

ing the iNewton IMUs were conducted outside of the classroom and in groups of
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two or three. Given that there is no regulation for how the students completed the

assignments, it is possible that not all of the students fully engaged with the activi-

ties as they were intended. As Chi [38] notes, it matters how the students actually

engage with the activities, not just how the instructors intended the students to be

engaged. This information is not available with the quantitative data collected for

this study, but it could be procured in the future using qualitative methods.

Next, there is also the fact that this is a very modest intervention as compared

to the rest of the course. Each of the intervention levels involving the iNewton IMUs

effectively consisted of two administrations of the intervention among eleven other

homework assignments, two midterm examinations, and a final examination, and in

addition to the other classes students take concurrently with ME240. As was noted

by Hake [258], activities that facilitate a “small amount” of student engagement will

not produce the same learning gains as those with a lot of engagement. It is possible

that the frequency and intensity of the interventions as they have currently been

implemented is not “enough” to yield significant learning gains.

It is also possible that the DCI is too blunt an instrument to measure the learning

gains in conceptual understanding resulting from the active learning IMU interven-

tion. Jorion et al. [43] and Study 2 of this chapter both determined that the DCI

can be used to assess general conceptual understanding of the engineering dynamics

concepts covered by the instrument, not all of which are addressed by the active

learning IMU intervention. The types of learning achieved by the students might

also not be measured by the DCI as well. For example, in the medical education

literature, the effects of problem-based learning (PBL) have been largely measured

through traditional modes of assessment (e.g. examinations testing knowledge acqui-

sition) producing roughly 50 years of conflicting results (see, for example, the review

and discussion offered by Neville [409]). However, Zahid et al. [410] recently showed

that PBL-taught and traditionally-taught students performed the same on questions

that test recall of facts or basic comprehension, but PBL-taught students signifi-

cantly outperform their traditionally-taught peers on questions that test the depth,

integration, analysis, and application of knowledge in clinical situations as well as on

Objective Structured Clinical Examinations (assessments of clinical skills and pro-
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fessional competency). Similarly, it could be the case that what the students are

actually learning during the different levels of the active learning IMU intervention

are simply not captured by the DCI.

Finally, to gain a sense for how students historically perform on the DCI from

past studies, the scores reported in the literature were consolidated and reported

in Fig. 9.9. Using all DCI items, the Pre- and Post-scores for the students in this

Figure 9.9: The box plots (and solid black dots) are generated from results reported
in the literature for approximately 3,930 students involving the DCI administered as
either a Pre- and/or Post-evaluation [42, 298, 385, 387–390, 411–413]. The solid red
dots are the averaged Pre- and Post-scores for each of the intervention levels in this
study (calculated from all 29 questions for comparison).

study’s dataset were 40% and 46%, respectively, yielding a 6% raw difference or

the equivalent of just 2 more questions answered correctly. The Pre- and Post-score

averages for the data consolidated from the literature were 29% and 42%, respectively,

yielding a 13% raw difference or 4 more questions answered correctly. Students in

this study scored higher on the Pre-evaluation than the reported data and scored on
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the higher end of the interquartile range of the reported Post-evaluation data.

Combining this study’s data with the data collected from the literature (N ≈
3, 930), the average Pre- and Post-scores is 32% and 43%, yielding an 11% raw gain (3

questions) or a normalized gain of 0.16. For comparison, the Force Concept Inventory

developed by Hestenes et al. [376] has been administered in physics classrooms around

the nation, and Hake [258] collected a large subset of this data to assess the effects

of interactive engagement in classrooms. That data set (N = 6, 542) yielded an

average normalized gain (regardless of teaching pedagogy) of 0.35, more than double

that measured by the DCI. This evidence is offered in support of the conclusion that

one of the reasons for the limited impact of the active learning IMU intervention

on conceptual understanding could be due to the instrument’s inability to measure

conceptual understanding on a finer scale.

Gender

Next, Pre- and Post-score distributions by gender are illustrated in Fig. 9.10, and

the results from the multiple regression by gender are plotted in Fig. 9.11. Despite

Figure 9.10: Split violin plots of the distributions for each gender. (Pre- and Post-
score distributions are grey and gold, respectively.)
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Figure 9.11: The solid black line denotes the baseline case and the other two lines
are for each gender.

the fact that female students appear to consistently score lower than their male

counterparts (i.e. the median Pre- and Post-scores are lower for female students), the

differences are not statistically significant. This nonsignificant finding can partially

be explained by the large variation in Fig. 9.10 and the unequal sample sizes of male

students (N = 797) versus female students (N = 227) in the study.

With respect to the relationship between gender and the intervention, the results

from the regression analysis indicate the interactions are not statistically significant

at α = 0.05. However, the results illustrated in Fig. 9.12 show there could po-

tentially be a meaningful interaction between the intervention and female students,

particularly for Level 3 (Student Projects). Although the p-value (0.07) does not

indicate significance, the magnitude of the estimated coefficient (-7.2) is larger than

every other estimated coefficient with the exception of the intercept (16.4). The non-

significance can at least be partially explained by unequal sample sizes between male
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and female students as well as the large variations in Figs. 9.7 and 9.10. Specifically,

students in Level 0, Level 1, Level 2, and Level 3 were 14%, 24%, 23%, and 22%

female, respectively.

Figure 9.12: The four lines illustrate by gender each of the intervention levels: Level
0 (Control), Level 1 (Demonstrations), Level 2 (Prescribed Experiments), and Level
3 (Student Projects).

However, the trend of increasing female students’ engagement with the iNewton

IMUs seemingly associated with poorer conceptual understanding is concerning. The

difference between Level 0 and Level 3 is roughly 7% or 2 questions on the DCI, which

is substantial given the magnitude of the largest estimated coefficient (the intercept)

is 16.4% or 4 questions. In Level 2 (Prescribed Experiments) and Level 3 (Student

Projects) of the intervention, students worked in self-selected groups. During office

hours specifically for the iNewton assignments, it was observed that many groups

delegated work to expedite the process. It is possible that the female students were

more frequently responsible for secretarial roles (e.g. organizing and writing up the
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assignment) and otherwise not as fully engaged with the learning activity (see, for

example, Cech [414] or Smith and Gayles [415]). Figure 9.13 shows the composition of

Student Project groups by gender for which only 6 of the 116 groups were comprised

solely of female students.

Figure 9.13: Student Project group composition by gender. Each color corresponds
to the number of female students (FS) in the group. In total, there were 61 groups
of 2 and 55 groups of 3.

In a 2013 study conducted in the University of Michigan’s College of Engineering,

Meadows and Sekaquaptewa found women often adopt stereotypical roles in group

work without perceiving pressure to do so, which the authors explained “that in

adopting stereotypical behaviors, women are taking a specific action to increase their

sense of belonging on the team to align with team members biased expectations” [416,

p. 12]. Hirshfield [417] further elucidates this finding by showing undergraduate

students may be recognized as gendered stereotypes. For a discussion of implicit

bias and female engineering students’ socialization in group work, see Seron et al.

[418]. However, this speculation can only be answered by interviewing the female

students who participated in Level 3 of the intervention.
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Ethnicity

Next, the Pre- and Post-score distributions by ethnicity are illustrated in Fig.

9.14. As expected from the distributions illustrated in Figs. 9.7 and 9.10, there is an

increase in scores from beginning to end of the semester (evidenced by the median

lines). However, there are also large variations in scores across all three groups of

students.

Figure 9.14: Split violin plots of the distributions for each ethnicity. (Pre- and
Post-score distributions are grey and gold, respectively.)

The results from the multiple regression by ethnicity are plotted in Fig. 9.15. In

both the distributions in Fig. 9.14 and the regression results in Fig. 9.15, White

students appear to consistently score higher than Asian or URM students. How-

ever, the results from the multiple regression analysis reveal these differences are not

statistically significant.
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Figure 9.15: The solid black line denotes the baseline case and the other lines are for
each ethnicity.

The relationship between ethnicity and the intervention is illustrated in Fig. 9.16,

though the results from the multiple regression analysis reveal none of these inter-

actions are statistically significant. Like with gender, these nonsignificant findings

can be partially explained by the large variations in the distributions in Fig. 9.14.

The URM group in particular is a very heterogeneous collection of students who are

otherwise lumped together largely for the sake of statistical power. It is likely that

the students in this group have considerably different experiences in preparing for

an engineering curriculum, which could partially account for why the distributions

for URM students exhibit such large variations in Fig. 9.14. In tandem with the

large variation in DCI scores is unequal sample sizes of White students (N = 657)

as compared to Asian (N = 203) and URM (N = 130) students. In particular,

15 (10%), 40 (11%), 41 (13%), and 34 (15%) of the students in the Level 0, Level

1, Level 2, and Level 3 intervention groups, respectively, identified as members of
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a URM. Large variations in small samples (relative to White students) yields large

confidence intervals (i.e., less precise estimates of the true value of the groups’ DCI

scores), which makes statistical significant difficult to achieve.

Figure 9.16: The four lines illustrate by ethnicity each of the intervention levels:
Level 0 (Control), Level 1 (Demonstrations), Level 2 (Prescribed Experiments), and
Level 3 (Student Projects).

Major

Next, Pre- and Post-score distributions by major are illustrated in Fig. 9.17, and

the results from the multiple regression by major are plotted in Fig. 9.18. In general,

students who take ME240 as an elective underperform on the DCI as compared to

their peers who are required to take the course as a part of their major’s curriculum.

However, this estimated coefficient (-3.2) describing the difference between Mechan-

ical Engineering (baseline) and Elective students is marginally significant (p=0.07).
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Figure 9.17: Split violin plots of the distributions for each major. (Pre- and Post-
score distributions are grey and gold, respectively.)

Figure 9.18: The solid black line denotes the baseline case and the other lines are for
each major.
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Section Type

The different section sizes are the result of a small section initiative at the Uni-

versity of Michigan, which began with the Provost’s Office in the form of a request

for proposal from major units, including the College of Engineering. The college re-

sponded by identifying via department input potential “gateway” courses where stu-

dents who frequently appear to struggle may benefit from offerings of small sections

(i.e., enrollments of 20 students or less). The Mechanical Engineering department

identified their sophomore engineering science courses (including ME240) as those

gateway courses, and began offering small sections for these courses intermittently

starting in the Fall 2016 semester (i.e., the same semester this current study began).

The Pre- and Post-score distributions by section type are illustrated in Fig. 9.19.

Referring specifically to the Post-score distributions’ medians in Fig. 9.19, students

enrolled in Small sections appear to score higher during the end of semester evaluation

as compared to their peers enrolled in Large sections.

Figure 9.19: Split violin plots of the distributions for each section type. (Pre- and
Post-score distributions are grey and gold, respectively.)
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The results from the multiple regression are plotted in Fig. 9.20, which also reveal

that students in the Small sections outperformed their peers in the Large sections of

the class. Educational research across various disciplines also supports the positive

effects of small section offerings with implications for students, faculty, and staff.

For students, Cheng [419], McDonald [420], and Bradley et al. [421] all found that

small section sizes are associated with improved learning gains, critical thinking and

problem-solving skills, overall satisfaction, and retention rates. Likewise, Freeman

et al. [260] showed active learning has the most significant positive effects on stu-

dent academic performance in smaller classrooms. Toth and Montagna [422] also

identified large class sizes as a barrier of entry for those who enter higher education

underprepared, including those who are educationally disadvantaged. For faculty

and staff, Cheng [419] and Gillespie et al. [423] described negative effects on overall

well-being and morale, student evaluations, and research productivity with increased

enrollments.

Figure 9.20: The solid black line denotes the baseline case and the other lines are for
each section type.
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Conclusions

Overall, the results of the statistical analysis investigating the effects of the ac-

tive learning IMU intervention on conceptual understanding were mixed. Given the

nonsignificant estimated coefficients for the intervention levels, the impacts of the

intervention levels on conceptual understanding, at least as measured by the DCI,

were limited. Future work should consider the interactions between the Student

Projects version of the intervention and gender and ethnicity (Figs. 9.12 and 9.16,

respectively). Other results not related to the intervention levels were also revealed

through the statistical analysis. Differences in student performance by major re-

vealed students who take the course as a technical elective tend to underperform on

the DCI as compared to their peers who are required to take ME240 as a part of

their major’s curriculum. Finally, the results concerning section size confirm the pre-

vious findings reported in the literature as to having a significant impact on student

learning with smaller sections facilitating greater learning gains.

9.3 Summary and Conclusions

To summarize, this chapter evaluated the efficacy of the DCI administered in a

low-stakes setting as a measure of conceptual understanding, investigated the relia-

bility and validity of the DCI as an instrument, and assessed the impacts of three

versions of an active learning IMU intervention on conceptual understanding as mea-

sured by the DCI. The first study confirmed that conceptual understanding measured

in a high-stakes setting (i.e. a midterm evaluation) was moderately correlated and

predictive of conceptual understanding measured in a low-stakes setting (i.e. DCI

scores at the end of the semester). However, the regression models confirming the

predictive relationship only explained roughly 13% of the variation in DCI perfor-

mance. One reason for this is the DCI covers many more concepts than what was

covered in the high-stakes evaluation (a midterm examination). Another reason was

revealed in Study 2, which found there were several items on the DCI that were

unreliable and subsequently removed for the statistical analysis conducted in Study

3. The nonsignificant regression results in the final study revealed the impacts of the
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active learning IMU intervention on conceptual understanding, at least as measured

by the DCI, were limited. However, differences in student performance by major and

section size were also revealed by the results of the regression analysis.

Finally, an attempt was made to categorize the remaining 25 DCI items by course

concepts described by the ME240 curriculum, but the internal reliabilities were un-

acceptably low (the highest Cronbach’s alpha was 0.57). Coupled with the poor

structural qualities revealed by an exploratory factor analysis conducted by Jorion

et al. [43], the DCI in its current form cannot reliably be used to evaluate changes

in conceptual understanding for any subsets of concepts covered by the DCI. Future

work should include revisions to the DCI to improve its ability to differentiate levels

of conceptual understanding.
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CHAPTER 10

iNewton Non-Cognitive Effects

10.1 Background to Studies

Past research identified student self-efficacy (the strength of one’s belief in knowl-

edge and skills needed to achieve a task) and conceptual understanding as being

related to intention to persist in a STEM major (for a more extensive discussion,

refer to Section 7.2 in Chapter 7). The underlying assumption is that improvements

in student conceptual understanding and self-efficacy positively interact with one

another and with intention to persist. Importantly and relevant to this chapter, Hoit

and Ohland [330] showed strategies that foster self-efficacy and intention to persist

in the general student population are disproportionately successful for students who

are historically underrepresented in engineering, like women and students of color.

Albert Bandura stresses the far reaching influences of self-efficacy as “the courses of

action people choose to pursue, how much effort they put forth in given endeavors,

how long they will persevere in the face of obstacles and failures, their resilience to

adversity, whether their thought patterns are self-hindering or self-aiding, how much

stress and depression they experience in coping with taxing environmental demands,

and the level of accomplishments they realize” [45, p. 3].

This chapter examines how the active learning IMU intervention influences stu-

dent self-efficacy as well as intention to persist and student affect (e.g., how students

feel about the IMU intervention), collectively referred to as non-cognitive effects. To
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begin, a review and introduction of instruments that measure each of these three

effects is presented.

10.1.1 Self-Efficacy

Self-efficacy has been studied at various grain sizes, meaning with respect to the

specificity of the skills being assessed. For example, Schwarzer and Jerusalem [424]

developed the General Perceived Self-Efficacy Scale to assess a broad sense of personal

competence to deal effectively with a variety of stressful situations. Scholz et al. [425]

administered this survey to over 19,000 individuals in 25 countries to establish that

self-efficacy is a universal construct. Among a population of engineering students,

Dunlap [329] used this instrument to track differences in self-efficacy over the course

of an academic term after introducing realistic problem-based learning activities into

an engineering capstone course. In the study, she concluded that such activities

positively influence overall self-efficacy. While these findings (and many others) are

pertinent, Bandura recommends “scales of perceived self-efficacy must be tailored to

the particular domain of functioning that is the object of interest” [426, p. 307-308].

In other words, instruments designed to measure self-efficacy need to be developed

for a specific context, and the degree of the specificity will vary with that context.

To that end, a more focused instrument is the Mathematics Self-Efficacy Scale,

which was developed by Betz and Hackett [427] to investigate differences in mathematics-

related behaviors by gender. While this instrument focuses on a specific domain

(mathematics), it is general in the sense that it can be applied to students in do-

mains other than mathematics with little to no alteration. For example, Morán-

Soto and Benson [428] used this instrument in a mixed-methods study to determine

the relationship between first-year engineering student mathematics self-efficacy and

preparation. Another example of an instrument focused on a domain-specific skill is

the Engineering Design Self-Efficacy Instrument developed by Carberry et al. [429].

In that study, self-efficacy differed between experienced and novice engineers, corre-

lated positively with student motivation and outcome success expectancy, and corre-

lated negatively with anxiety. Finally, an example of a singularly focused instrument
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is found within the Motivated Strategies for Learning Questionnaire developed by

Pintrich et al. [430, 431]. Items on this instrument probe student knowledge and

skills for a specific class, though the questions are applicable to any course (e.g. “I

am confident I can learn the basic concepts taught in this course.”) [430]. Fang

[313] used this instrument to evaluate the relationship between course-specific self-

efficacy and academic performance in an undergraduate dynamics course, finding

that self-efficacy was significantly and positively correlated with performance.

Self-efficacy can also have longitudinal variations and thus change over time. In a

study investigating the relationship between career interests and general self-efficacy,

Nauta et al. [432] found no significant differences in self-efficacy after three or seven

months in psychology undergraduate students. The instrument used in that study

was the Skills Confidence Inventory, which was originally developed by Betz et al.

[433] to evaluate gender differences in self-efficacy. Similarly, no changes in self-

efficacy were detected after five months in first year engineering students using an

instrument designed by Lent et al. [434] to measure self-efficacy for academic mile-

stones and coping. However, in a follow-up study, Lent et al. [435] did report statisti-

cally significant (negative) changes in self-efficacy measured by the same instrument

in the same population after 2 years. The Longitudinal Assessment of Engineer-

ing Self-Efficacy (LAESE) is an instrument specifically designed to study changes

in self-efficacy over time. Most of the studies that employ the LAESE (described

in Section 10.1.4) typically administer it annually. For example, Payton et al. [436]

contextualized the LAESE while measuring the positive effects of a service learning

intervention over the course of an academic year. These studies indicate that changes

in self-efficacy could depend not just on time but also other factors not considered

in this research (e.g., intensity or frequency of an intervention).

10.1.2 Intention to Persist

The following review is focused on the ways intention to persist has been measured

in the literature, after briefly discussing the construct itself. Persistence, retention,

and attrition are different but related metrics frequently used (and sometimes in-
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terchangeably) in education research and institution assessments. Retention and

attrition are usually terms reserved for evaluating an institution’s ability to keep

students (retention) or not (attrition). However, this can be misleading when one

considers, for example, transfer students who stay in the field but move between

institutions (e.g. community colleges). Persistence refers to an individual’s choice to

stay in a specific program, field, college, or institution.

The notion of intention to persist follows from Ajzen’s Theory of Planned Be-

havior [437, 438], which describes intention as preceding subsequent behavior. This

was adapted by Bean’s model [35] for student attrition in which he operationalized

persistence as the intent to leave to find that it, along with grades, were the strongest

predictors of student attrition. Subsequently, researchers developed various measures

of intention to persist. The most common method employs one or a set of Likert-

type items. For example, Hausmann et al. [439] use a single item (e.g. “I intend to

complete my degree at <name of institution>”) to determine its relationship with

sense of belonging and ethnicity. Similarly, Hatch and Garcia [440] employed a sin-

gle item to investigate the relationship between advising and intention to persist for

community college students. The Persistence in Engineering survey developed by

Eris et al. [441] also includes a single item to measure intention to persist. In the

absence of a well-established measure of intention to persist, Wheeless et al. [442]

created a six-item survey to study undergraduate students’ intention to continue

their education. Robinson [443] developed the Undergraduate Persistence Inten-

tions Measure to measure undergraduate persistence/drop-out intentions across two

categories, namely: 1) Persistence at the Institution and 2) Persistence in Higher

Education. Davidson et al. [444] developed the College Persistence Questionnaire,

which operationalized intention to persist as Institutional Commitment and Degree

Commitment. Recently, Pugh et al. [445] altered that questionnaire specifically to

measure intention to persist in nursing students. Within the LAESE, Marra et al.

[46] included three items related to intention to persist, though the creators did not

designate this set of items to be a specific construct measured by the instrument.

Importantly, all of these studies successfully employed their respective measures of

intention to persist in the context of larger related research question(s).
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10.1.3 Student Affect

Student affect is defined as the students’ feelings towards or interest in a specific

activity, which in this research is the active learning IMU intervention described in

Chapter 8. Hidi [446] described interest as determining how one preferentially per-

sists in processing certain types of information, which inevitably leads to improved

performance. Hidi and Renninger [447] expanded on this by showing personal char-

acteristics and social contexts can also influence the development of interest when

engaging in an activity. In a meta-analysis of more than 150 studies, Schiefele et al.

[448] found statistically significant correlations between interest and both academic

and laboratory performance (rs = 0.31 and rs = 0.27, respectively). The research

of Harackiewicz and Hulleman [449] revealed interest can play a significant role in

future choices and career paths. Finally, Betz et al. [433] found significant corre-

lations between self-efficacy and interest for both undergraduate male and female

students. Accordingly, student affect is an additional effect that may provide useful

information for comparing the active learning IMU intervention levels.

Students often respond positively towards active learning innovations implemented

in undergraduate engineering dynamics classrooms. For example, Ferri and Ferri

[300] implemented several hands-on experiments facilitated by IMUs, and students

reported preferring and learning more from those experiments compared to tradi-

tional instructional methods. Bevill and Bevill [375] similarly found students enjoyed

collecting and analyzing IMU data outside of a laboratory setting and felt the IMU

activity contributed positively to their conceptual understanding of particle dynam-

ics. In a crossover study comparing demonstrations and hands-on experiments, Self

and Widmann [450] found no student preference for one active learning mode over

the other, but they observed that either mode yielded significantly more learning

gains compared to traditional instructional modes. Finally, O’Connor [377] reported

predominantly positive feedback from students who designed and conducted exper-

iments of their own imagining using the inertial sensors embedded in their smart-

phones. Accordingly, student affect provides another means to assess the impact of

the active learning IMU intervention and at each level of implementation.
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10.1.4 The Longitudinal Assessment of Engineering Self-Efficacy

This research employs the LEASE to measure non-cognitive effects, and a sum-

mary of that instrument and some history of its development is provided here.

In 2004, as a part of the NSF-funded Assessing Women in Engineering project,

Marra, Moore, Schuurman, and Bogue describe the development and early results

of an instrument to “identify sources of barriers or obstacles in the task of obtaining

an engineering degree and ascertain how capable a person feels in those situations”

[362, p. 6]. The instrument, now known as the Longitudinal Assessment of Engi-

neering Self-Efficacy (LAESE), was designed to measure self-efficacy in women who

are studying engineering [46], and the authors piloted it to confirm the reliability

and validity of the subscales. Since its conception, the LAESE instrument has un-

dergone several revisions, and the latest version has 31 Likert-type items assessing

6 constructs, namely: 1) Engineering Self-Efficacy I, 2) Engineering Self-Efficacy II

3) Engineering Career Success Expectations, 4), Feeling of Inclusion, 5) Coping Self-

Efficacy, and 6) Math Outcome Expectations. Engineering Self-Efficacy I focuses on

students’ self-efficacy in an engineering major in general. Engineering Self-Efficacy

II is focused on students’ self-efficacy in their engineering curriculum. Engineering

Career Success Expectations measures students’ beliefs in finding a job they would

like. Feeling of Inclusion assesses the degree to which students’ feel like they are a

part of their engineering community. Coping Self-Efficacy measures students’ abil-

ity to cope as engineering students. Finally, Math Outcome Expectations evaluates

students’ perception of the value and utility math in engineering.

Studies employed the LAESE to explore various facets of self-efficacy across dif-

ferent engineering student demographic groups. Marra et al. [46] collected longi-

tudinal LAESE data and provided evidence that women may experience a loss of

self-efficacy in the first year of an engineering curriculum. In a follow-up study col-

lecting data from multiple institutions for two years, the authors found somewhat

conflicting results in that several constructs increased while others decreased [308].

Specifically, Engineering Self-Efficacy II, Coping Self-Efficacy, and Math Outcome

Expectations increased over the year-long study (including 196 women engineering
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students), whereas Engineering Self-Efficacy II, Engineering Career Success Expec-

tations, and Feeling of Inclusion decreased. The results did not reveal any significant

differences by institution or year standing.

Using an altered version of the LAESE, Concannon and Barrow [451, 452] con-

firmed the results above in finding no significant differences in engineering self-efficacy

from year-one students to year-four students regardless of gender as well as no signif-

icant differences between first- to fifth-year women. However, in another study [453],

the authors then found womens intentions to persist in undergraduate engineering

were more dependent on their ability to achieve higher academic performance than

their male counterparts. In other words, women’s beliefs in their ability to obtain

an ‘A’ or ‘B’ in their courses were predictive of their persistence whereas in men

they were not. Jordan et al. [454] also found that engineering self-efficacy did not

vary across first- and second-year engineering students, but URM students’ engineer-

ing self-efficacy was significantly lower than that of majority students. Ranalli and

Ritzko [455] administered an altered version of the LAESE to evaluate the effects of

video gamebased design projects on changes in self-efficacy for first-year engineering

students, and found that Engineering Self-Efficacy I declined while Technology Self-

Efficacy and Communication Self-Efficacy improved. Finally, Gaikwad and Kulkarni

[456] measured changes in self-efficacy for 600 women engineering students in In-

dia across 2 years using the LAESE and found significant decreases in Engineering

Career Success Expectations and Feelings of Inclusion over time.

10.2 Four Studies Concerning Non-Cognitive Effects

The remainder of this chapter is organized into four studies focused on the non-

cognitive effects the active learning IMU intervention has on students in ME240. The

first study considers the validity and reliability of a modified version of the LAESE

as an instrument measuring self-efficacy (engineering and course-specific), intention

to persist, and student affect. The remaining three studies leverage these results to

investigate the impact of the active learning IMU intervention on 1) self-efficacy, 2)

intention to persist, and 3) student affect, respectively.
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10.2.1 Study 1: LAESE Instrument Evaluation

Study Background and Objective

This study considers two types of self-efficacy, namely engineering self-efficacy and

course-specific self-efficacy. Because the mastery experience provided by the active

learning IMU intervention could contribute to students’ perceptions of their skills and

abilities, it could impact their self-efficacy in engineering (engineering self-efficacy)

as well as in understanding and applying engineering dynamics (course-specific self-

efficacy). The LAESE instrument explicitly includes two constructs measuring en-

gineering self-efficacy (Engineering Self-Efficacy I and Engineering Self-Efficacy II)

and as well as an item related to course-specific self-efficacy.

Concerns over the validity and reliability of the LAESE instrument have been

raised including some relating to the two Engineering Self-Efficacy constructs of

interest to this research. For example, Mamaril et al. [457] noted the ambiguous

wording of several items that may assess expectancy of success rather than self-

efficacy. Concannon and Barrow [452] reported a strong correlation (r = 0.83)

between Engineering Self-Efficacy I and II; a correlation of 0.85 or greater implies

these two constructs are not likely distinct from one another [458]. A recent study by

Yoon and Sorby [459] catalogued concerns and documented a thorough analysis of the

reliability and validity of the LAESE. Included in that analysis was an exploratory

factor analysis and multiple confirmatory factor analyses to determine the best fit

model. Yoon and Sorby [459] offered a final revised version which reduced the number

of items on the LAESE from 31 to 16 and comprised 4 constructs with acceptable

validity and reliability, namely: 1) Engineering Self-Efficacy (6 items), 2) Engineering

Career Expectations (3 items), 3) Sense of Belonging (3 items), and 4) Coping Self-

Efficacy (4 items). The six items identified in their study as measuring Engineering

Self-Efficacy are used in this study. Also, two items were added to the original single

item in the LAESE to create a Course-Specific Self-Efficacy construct.

The active learning IMU intervention may also impact student intention to persist

in engineering, and given that no well-established intention to persist instrument

exists [442], the three items from the original LAESE instrument are used. Though
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not explicitly identified as a construct, three items on the LAESE assessed student

intention to persist (referred to as “retention items” in [308]). Four additional items

were included in the modified version of the instrument to create a Student Affect

construct.

The objective of this study is to confirm the validity and reliability of the four

constructs before proceeding to evaluating the effects of the active learning IMU

intervention on each of them. To that end, Fig. 10.1 summarizes the source of

the items associated with each of the four constructs within the modified version of

the LAESE instrument selected for this study. In addition, Table 10.1 reports each

item on the modified LAESE. Thus, the instrument includes six items measuring

Engineering Self-Efficacy, three items measuring Course-Specific Self-Efficacy, three

items measuring Intention to Persist, and four items to assess Student Affect.

Figure 10.1: Original, revised, and modified versions of the LAESE. Boxes designate
constructs (number of items). Blue boxes are those designed by the original creators.
Purple and green boxes denote items included in the original version, but not as
stand-alone constructs by themselves. The orange box represents an added new
construct.
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Table 10.1: Items on the modified LAESE for each of the four constructs: Engineer-
ing Self-Efficacy (ESE), Course-Specific Self-Efficacy (CSSE), Intention to Persist
(PER), and Student Affect (SA).

Construct No. Item

ESE

1 I can succeed in an engineering curriculum.

2 I can complete the math requirements for most engineering
majors.

3 I can complete the physics requirements for most engineering
majors.

4 I can do well in an engineering major during the current aca-
demic year.

5 I can complete any engineering degree at this institution.

6 Someone like me can succeed in an engineering career.

CSSE

7 I am confident that I can earn an A or B in this course.

8 I am confident that I understand the concepts presented in
this course.

9 I am confident that I can apply the concepts from this course
to a problem in the future.

PER

10 At the present time, how confident are you that you will keep
your intended major through college?

11 At the present time, how confident are you that you will be
enrolled in any major in science or engineering in the next
academic year?

12 At the present time, how confident are you that you will grad-
uate with your intended major?

SA

13 The experiments improved my learning experience.

14 The experiments increased my interest in the subject matter.

15 The experiments were engaging.

16 The experiments increased my confidence in running my own
experiments.
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Methods

The data for the aforementioned modified version of the LAESE were collected at

the end of the course for four semesters in this study (i.e., Fall 2017 onward). Refer

to Chapter 8 for the semesters encompassed by this study and related demographic

data. Furthermore, students who did not provide answers to all 16 items were elim-

inated from consideration. Consequently, 584 observations (nearly 20% more than

the number of samples used by Yoon and Sorby [459] for their factor analyses) are

included in the analysis described next.

Given the thorough investigation described and conducted by Yoon and Sorby

[459], only a confirmatory factor analysis was conducted to substantiate the validity

of the latent factor structure of the modified version of the LAESE used in this

research. Specifically, there are 16 items mapping onto 4 constructs, namely: 1)

Engineering Self-Efficacy, 2) Course-Specific Self-Efficacy, 3) Intention to Persist,

and 4) Student Affect. The confirmatory factor analysis is conducted and evaluated

using the R package “lavaan” [460]. Based on the fit indexes provided by that

package, the residual mean square error of approximation (RMSEA), comparative fit

index (CFI), Tucker-Lewis index (TLI), and standardized root mean square residual

(SRMR) were used to judge the fit of the confirmatory factor analysis model [461].

The model fit indexes are considered in the acceptable range when RMSEA is close

to 0.06 or less, CFI and TLI values are close to 0.95 or greater, and the SRMR is less

than 0.08 [458, 461]. For reliability, internal consistency reliability coefficients were

obtained for the items identified for the confirmed constructs. Acceptable values for

Cronbach’s alpha are typically greater than 0.7, though measures between 0.8 and

0.9 are desirable [397].

Results and Discussion

First, the correlation coefficients among the four constructs ranged from 0.11 to

0.77 as shown in Table 10.2, which suggests no significant multicollinearity exists

between constructs [458]. The strongest correlation was between Engineering Self-

Efficacy and Intention to Persist, and the weakest correlation was between Course-

Specific Self-Efficacy and Student Affect.
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Table 10.2: Correlation coefficients among the four constructs: En-
gineering Self-Efficacy (ESE), Course-Specific Self-Efficacy (CSSE),
Intention to Persist (PER), and Student Affect (SA).

Construct ESE CSSE PER SA

ESE 1.00 0.24 0.77 0.24

CSSE 1.00 0.22 0.11

PER 1.00 0.26

SA 1.00

All fit indexes from the confirmatory factor analysis indicated the latent factor

structure for the constructs described in Table 10.1 was acceptable: χ2(98)=271.6,

p<0.001, RMSEA=0.055, CFI=0.959, TLI=0.950, and SRMR=0.046. The 90% con-

fidence interval for RMSEA was [0.047, 0.063], which is well within the acceptable

range of values. Table 10.3 reports the factor loadings for the model, all of which

were statistically significant. Cronbach’s alpha for Engineering Self-Efficacy, Course-

Specific Self-Efficacy, Intention to Persist, and Student Affect were 0.76, 0.76, 0.77,

and 0.92, respectively. The overall Cronbach’s alpha for the modified LAESE is

0.83. These results indicate acceptable reliability in the students’ responses for these

constructs [462].

Conclusions

The first objective of this study was to validate that the four constructs (Engi-

neering Self-Efficacy, Course-Specific Self-Efficacy, Intention to Persist, and Student

Affect) contained within the modified version of the LAESE are distinguishably dif-

ferent from each another. The second objective was to confirm the internal reliability

of the four constructs as well as the modified LAESE as a whole. The results from the

confirmatory factor analysis, which includes the correlation coefficients among con-

structs and the item factor loadings contributing to their corresponding constructs,

indicate that the constructs are distinct and their respective items are all contribut-

ing meaningfully to them. The Cronbach’s alpha for the four constructs individually

as well as the overall instrument indicate it is reliable as well. Thus, the four con-
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structs are valid and reliable for investigating the effects of the active learning IMU

intervention on self-efficacy (engineering and course-specific), intention to persist,

and student affect as pursued in the remaining three studies.

Table 10.3: Unstandardized and standardized parameter estimates (FL: factor load-
ings and SE: standard errors) for the items contributing to each of the four constructs:
Engineering Self-Efficacy (ESE), Course-Specific Self-Efficacy (CSSE), Intention to
Persist (PER), and Student Affect (SA).

Unstandardized Standardized
Construct No. FL SE FL SE

ESE

1 1.00 NA 0.69 0.03

2 0.87 0.07 0.58 0.03

3 0.97 0.07 0.63 0.03

4 1.14 0.07 0.77 0.02

5 1.33 0.13 0.50 0.04

6 0.79 0.07 0.55 0.03

CSSE

7 1.00 NA 0.85 0.03

8 0.26 0.03 0.37 0.04

9 1.09 0.07 0.94 0.03

PER

10 1.00 NA 0.75 0.03

11 0.79 0.06 0.60 0.03

12 0.95 0.06 0.82 0.02

SA

13 1.00 NA 0.88 0.01

14 1.08 0.03 0.93 0.01

15 0.95 0.03 0.85 0.01

16 0.89 0.04 0.80 0.02

All factor loadings were statistically significant with p<0.05.
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10.2.2 Study 2: Active Learning IMU Intervention and Self-Efficacy

Study Background and Objective

The second study leverages the findings from the first study to investigate the

effects of the active learning IMU intervention on students’ self-efficacy, both engi-

neering and course-specific. Included in this investigation is a comparison with a

Control group (Level 0) who did not engage with any implementations of the in-

tervention, the levels of which are: 1) Demonstrations, 2) Prescribed Experiments,

and 3) Student Projects; refer to Section 8.1. These three levels increase student en-

gagement with the IMU technology, thereby providing increasingly more authentic

mastery experiences that have the potential to build students’ self-efficacy. However,

it is currently unclear how the levels of the intervention will affect the two different

types of self-efficacy given that Engineering Self-Efficacy relates to the students’ per-

ceptions of their abilities in a general engineering curriculum whereas Course-Specific

Self-Efficacy pertains to their perceptions of their abilities relating to ME240.

Methods

As with the investigation into the intervention effects on conceptual understand-

ing (Section 9.2.3), regression analyses are used to investigate the effects of the

intervention rather than gains. As explained by Theobald and Freeman, gains alone

lack the ability to distinguish if improvements are the result of an intervention or

differences in student characteristics [407]. With regression analyses, differences in

self-efficacy at the beginning of the semester can be accounted for by treating the Pre-

score values as a predictor variable. Regression analyses also facilitate investigations

into differences due to gender, ethnicity, or other factors as well as investigations

into the interactions between them. Table 10.4 specifies each outcome and predic-

tor variables as well as the different groups for the categorical variables. The Post

outcome variable and Pre predictor variable refers to the Post- and Pre- scores for

either Engineering Self-Efficacy (ESE) or Course-Specific Self-Efficacy (CSSE).

Referring to the student demographics described by Table 8.2, White students

are those who identified themselves as Caucasian but not of Hispanic origin and

Asian students are those who specifically identified themselves as Asian. Students
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Table 10.4: Summary of multiple linear regression variables. Post and Pre
(referring to Engineering Self-Efficacy or Course-Specific Self-Efficacy) are
continuous variables whereas the rest are categorical variables.

Type Variable Categories

Outcome

Post

Predictor

Pre

Intervention Level 0, Level 1, Level 2, Level 3

Gender Male, Female

Ethnicity White, Asian, URM

Section Type Large, Small

Major ME, AERO, NAME, Elective

in the URM (underrepresented minorities) category are those who identified as

Black/African American, Hispanic/Latino, American Indian/Alaskan Native, Na-

tive Hawaiian/Pacific Islander, or two or more. The Small sections enroll fewer than

20 students whereas Large sections enroll significantly more than 20 students. Stu-

dents who were required to take ME240 as part of their major were in Mechanical

Engineering (ME), Aerospace Engineering (AERO), or Naval Architecture and Ma-

rine Engineering (NAME). Students who took the class as a technical elective (i.e.

did not declare one of those three majors) were broadly categorized as an “Elective”

group.

Using the variables described in Table 10.4, the final multiple linear regression

model used for Engineering Self-Efficacy (ESE) is

Post ∼ 1+Intervention∗(Pre+Gender+Ethnicity)+SectionType+Major (10.1)

where “1” is a potentially significant intercept and the asterisk indicates interactions

between predictor variables are included in the model.

Using an Analysis of Variance (ANOVA), it was determined that the interactions
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between the intervention and CSSE Pre-score, gender, and ethnicity did not signif-

icantly improve the model (F (12, 948) = 0.57, p = 0.87), so those interactions are

removed from the model. However, in considering the joint distributions for Pre- and

Post-scores by different student demographics, a potentially significant interaction

between CSSE Pre-score and both gender and ethnicity was revealed. An ANOVA

provides support for this assertion as well (F (3, 957) = 2.60, p = 0.05). Thus, the

final linear regression model used for Course-Specific Self-Efficacy (CSSE) is

Post ∼ 1+Intervention+Pre∗(Gender+Ethnicity)+SectionType+Major (10.2)

where “1” is a potentially significant intercept and the asterisk indicates interactions

between predictor variables are included in the model.

It is assumed that each students’ response is independent of other students’ re-

sponses. For the results that follow, normality and heteroscedasticity assumptions

are confirmed for the residuals for the models.

Results and Discussion

Table 10.5 contains the full results from the linear regression analysis conducted

for ESE, represented in Eqn. 10.1. The model was significant (F (23, 962) = 15.6,

p < 0.001), indicating that it is a significantly better fit than an intercept-only

(average-only) model. Overall, the model accounts for 25% of the variation in the

ESE Post-scores (R2 = 0.25). Similarly, Table 10.6 contains the full results from

the linear regression for CSSE. This model was also significant (F (14, 957) = 20.0,

p < 0.001), indicating that it is a significantly better fit than an intercept-only

(average-only) model. Overall, it describes 21% of the variation in the CSSE Post-

scores (R2 = 0.21). In both tables, CI:LB and CI:UB denote the lower and upper

bounds of the confidence intervals for the estimated coefficient. The variables in the

parentheses are the baseline (comparison) categories. For interpretation of the results

in the tables, all items were on a 7-point Likert scale that were normalized to 1. A

value of 0 corresponds to low self-efficacy, 0.5 corresponds to neutral self-efficacy, and

1 corresponds to high self-efficacy.
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Table 10.5: Summary of ESE multiple linear regression results.

Variable Coefficient (β) CI:LB CI:UB t-value p-value

(Intercept) 0.56 0.42 0.70 8.0 < 0.001‡

Pre 0.35 0.20 0.50 4.5 < 0.001‡

Intervention (Level 0)

Level 1 -0.22 -0.39 -0.04 -2.4 0.01∗

Level 2 -0.21 -0.38 -0.04 -2.4 0.02∗

Level 3 -0.32 -0.50 -0.13 -3.4 < 0.001‡

Gender (Male)

Female -4e-3 -0.05 0.04 -0.2 0.88

Ethnicity (White)

Asian -7e-3 -0.04 0.03 -0.4 0.68

URM -3e-3 -0.06 0.05 -0.1 0.92

Major (ME)

AERO 0.01 -0.01 0.02 1.3 0.20

NAME -0.01 -0.04 0.02 -0.5 0.65

Elective 0.01 -0.02 0.03 0.4 0.65

Section Type (Large)

Small 1e-3 -0.03 0.03 0.1 0.93

Interactions

Level 1*Pre 0.25 0.05 0.44 2.5 0.01∗

Level 2*Pre 0.22 0.04 0.41 2.3 0.02∗

Level 3*Pre 0.35 0.15 0.56 3.4 < 0.001‡

Level 1*Female -0.02 -0.07 0.04 -0.6 0.57

Level 2*Female 3e-4 -0.05 0.05 0.01 0.99

Level 3*Female 3e-3 -0.05 0.06 0.1 0.92

Level 1*Asian -0.01 -0.05 0.04 -0.3 0.79

Level 2*Asian -0.02 -0.06 0.03 -0.7 0.51

Level 3*Asian -7e-4 -0.05 0.05 0.03 0.98

Level 1*URM 0.01 -0.06 0.07 0.2 0.86

Level 2*URM 0.01 -0.06 0.07 0.2 0.83

Level 3*URM -0.02 -0.09 0.05 -0.6 0.58

Significant α = •0.1, ∗0.05, †0.01, and ‡0.001.
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Table 10.6: Summary of CSSE multiple linear regression results.

Variable Coefficient (β) CI:LB CI:UB t-value p-value

(Intercept) 0.34 0.25 0.43 7.5 < 0.001‡

Pre 0.55 0.44 0.65 10.6 < 0.001‡

Intervention (Level 0)

Level 1 0.02 -0.01 0.06 1.2 0.24

Level 2 0.01 -0.03 0.04 0.3 0.78

Level 3 0.05 0.01 0.09 2.4 0.02∗

Gender (Male)

Female 0.09 -0.05 0.23 1.3 0.20

Ethnicity (White)

Asian -0.17 -0.31 -0.03 -2.4 0.02∗

URM -0.13 -0.31 0.05 -1.4 0.17

Major (ME)

AERO -0.02 -0.05 0.01 -1.4 0.16

NAME -0.07 -0.12 -0.01 -2.4 0.02∗

Elective -0.03 -0.08 0.02 -1.2 0.22

Section Type (Large)

Small -0.3 -0.09 0.02 -1.3 0.19

Interactions

Pre*Female -0.16 -0.34 0.01 -1.8 0.07 •

Pre*Asian 0.18 0.01 0.35 2.1 0.04∗

Pre*URM 0.14 -0.08 0.36 1.2 0.22

Significant α = •0.1, ∗0.05, †0.01, and ‡0.001.

The significant intercepts and Pre-score coefficients describe on average how self-

efficacy (engineering or course-specific) changed over a semester regardless of in-

tervention level or specific student demographics. For example, the ESE intercept

means a student who had very low (0) ESE at the beginning of the semester had

at least neutral (0.56) self-efficacy at the end of the semester. The significant ESE

Pre-score coefficient means students gained on average 35% of their Pre-score ESE
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by the end of the semester. The CSSE intercept means a student who had very low

(0) CSSE at the beginning of the semester had slightly low (0.34) self-efficacy at

the end of the semester. The significant CSSE Pre-score coefficient means students

gained on average 55% of their Pre-score ESE by the end of the semester. Figure 10.2

illustrates how these two predictor variables relate to the baseline case (no change)

for each type of self-efficacy. The majority of both the ESE and CSSE joint distribu-

tions is concentrated in the upper right corner of the plots, indicating a significant

proportion of students entered and exited ME240 with high self-efficacy.

(a) (b)

Figure 10.2: The background is a heat map of the joint distribution of Pre- and Post-
scores for (a) ESE and (b) CSSE (black areas are void of data). The solid white
line denotes the baseline case when the Pre- and Post-scores are equal (no change
in self-efficacy as measured by the LAESE). The dashed line illustrates significant
intercepts and the significant slopes relating Pre- and Post-scores.

Students appear to have higher ESE than CSSE, which could be the result of the

fact that they are evaluated on a weekly basis on their performance in ME240. The

end of the semester survey is administered after the last day of class, but before the

cumulative final. As such, students likely have a realistic sense for the strength of

their abilities in ME240. However, it is unclear what (if any) kind of feedback stu-

dents receive with respect to their abilities as engineers in their major’s curriculum.

It could be that other classes taken concurrently with ME240 could be providing op-
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portunities to authentically practice their engineering skills (i.e. laboratory classes).

Discussions of the results for the remaining predictor variables in Tables 10.5 and

10.6 follow. While discussions pertain to a subset of predictor variables, the results

presented are with respect to controlling for variations due to the other variables.

Intervention Level

Figure 10.3 contains split violin plots describing each intervention level’s Pre-

and Post-score distributions for ESE and CSSE. Each plot presents two separate

distributions: the distributions for the Pre-scores are on the left (grey), and the one

for the Post-scores is on the right (gold). The black boxes at the middle of each

side of the violin are box plots corresponding to each distribution with the black

horizontal lines indicating the median of that distribution. With respect to the

medians in Fig. 10.3a, Levels 1 (Demonstrations) and 2 (Prescribed Experiments)

may be associated with a decrease in ESE as compared to Level 0 (Control) and

Level 3 (Student Projects), which appear not to change ESE. With respect to the

medians in Fig. 10.3b, only Level 2 appears to be associated with decreases in CSSE

as compared to the other levels, which do not appear to have any effect.

(a) (b)

Figure 10.3: Split violin plots by intervention level of the Pre- and Post-score distri-
butions (grey and gold, respectively) for (a) ESE and (b) CSSE. The distributions
are for each of the intervention levels: Level 0 (Control), Level 1 (Demonstrations),
Level 2 (Prescribed Experiments), and Level 3 (Student Projects).
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As evidenced by the differences in the distributions in Fig. 10.3, there are qualita-

tive differences in ESE and CSSE by intervention level. Figure 10.4 illustrates these

differences by intervention level. This includes the significant interactions between

intervention and ESE Pre-score whereas the final CSSE regression model (Eq. 10.2)

did not include these interactions.

(a) (b)

Figure 10.4: Results of the regression analyses by intervention level for (a) ESE and
(b) CSSE. The black line denotes the baseline case that there was no change over the
course of the semester. The four other lines distinguish each of the intervention levels:
Level 0 (Control), Level 1 (Demonstrations), Level 2 (Prescribed Experiments), and
Level 3 (Student Projects).

From the regression results, ESE improves less for students who are more en-

gaged with the active learning IMU intervention. However, the significant interac-

tions between intervention and Pre-scores indicates that the different levels of the

intervention disproportionately affect students based on their ESE at the beginning

of the semester. For example, the Student Projects group (Level 3) has the most

significant drop on average (-0.32) as well as the greatest interaction with Pre-score

(0.35). For comparable start of semester ESE, more engagement with the technology

is associated with lower ESE at the end of the semester, though this gap shrinks

as the start of semester ESE is higher. This could be evidence that students who

have developed a resilient sense of ESE are less deterred by the increase in cognitive
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engagement required for the higher levels of the intervention. The opposite trend

is observed for CSSE; on average, CSSE improved for students who participated in

the Student Projects. This is expected as this level of the intervention provides stu-

dents with opportunities to apply what they are learning in ME240 to a relatively

unstructured dynamic system of their choosing. During this process, they are also

receiving feedback on how to interpret their results and improve their experiments,

which likely further solidifies their CSSE. The difference in results between ESE and

CSSE could indicate that there are other factors contributing to ESE (and possi-

bly interacting with their experiences engaging with the intervention) that are not

included in the current analyses.

Gender

Next, the distributions for Pre- and Post-scores for ESE and CSSE with respect

to gender are illustrated in Fig. 10.5 with split violin plots. Noting the distributions’

medians, both male and female students appear to experience a drop in ESE of

approximately the same magnitude whereas differences in CSSE from the beginning

to the end of a semester in both genders appear nominal. The results from the

multiple regression are illustrated in Fig. 10.6.

(a) (b)

Figure 10.5: Split violin plots by gender of the Pre- and Post-score distributions
(grey and gold, respectively) for (a) ESE and (b) CSSE.
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(a) (b)

Figure 10.6: Results of the regression analyses by gender for (a) ESE or (b) CSSE.
The black line denotes the baseline case that there was no change over the course of
the semester. The other two lines distinguish gender.

As evidenced by the largely overlapping distributions in Fig. 10.5, ESE and

CSSE differences by gender are not significant. The final ESE regression model (Eq.

10.1) included interactions between intervention and gender, which were also not

significant. However, the final CSSE regression model (Eq. 10.2) included a note-

worthy interaction between gender and Pre-score (β = −0.16, p = 0.07). Female

students with higher initial CSSE had larger decreases at the end of the semester

as compared to their male peers. This result is partially explained by the results

reported by Brown and Matusovich [309], who found female students report lower

self-efficacy despite comparable academic performance. In Chapter 9, the differences

in conceptual understanding as measured by the DCI between male and female stu-

dents were found to be statistically nonsignificant. The results of that chapter also

found performance on the DCI is representative of performance on a midterm ex-

amination. Using DCI performance as a proxy for academic performance in ME240,

female students were reporting lower CSSE at the end of the semester despite com-

parable academic performance. It is unclear if female students were underestimating

their abilities, male students were overestimating their abilities, or potentially both
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groups of students have a mismatch between their self-efficacy and abilities.

Ethnicity

The Pre- and Post-scores distributions for ESE and CSSE by ethnicity are illus-

trated in 10.7. With respect to the distributions’ medians, White and URM students

appear to have decreases in ESE over the semester whereas Asian students seem to

stay relatively constant. The CSSE distributions’ medians do not indicate there are

any differences for any group.

(a) (b)

Figure 10.7: Split violin plots by ethnicity of the Pre- and Post-score distributions
(grey and gold, respectively) for (a) ESE and (b) CSSE.

The results from the multiple regression analyses are illustrated in Fig. 10.8.

The differences in ESE for each group were not significant nor were the interactions

between intervention and ethnicity. However, there were significant differences in

CSSE by ethnicity, particularly for Asian students (β = −0.17, p = 0.02). The CSSE

regression model (Eq. 10.2) also included an interaction between Asian students

and their Pre-scores (β = 0.18, p = 0.04). When considering the results in Fig.

10.8, Asian students with lower levels of CSSE at the beginning of the semester

report significantly lower levels at the end of the semester as compared to White

students. There is some support for this finding in the literature. For example,
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(a) (b)

Figure 10.8: Results of the regression analyses by ethnicity for (a) ESE and (b)
CSSE. The black line denotes the baseline case that there was no change over the
course of the semester. The other three lines distinguish ethnicity.

Eaton and Dembo [463] found Asian American 9th grade students reported lower

self-efficacy than their non-Asian counterparts. In Fig. 10.8, it appears that URM

students, particularly those with lower CSSE at the beginning of the semester, may

also have a more significant drop by the end of the semester as compared to White

students. From Table 10.6, the coefficient for URM students (-0.13) has a comparable

magnitude as the coefficient for Asian students (-0.17), but the difference is not

statistically significant (p = 0.17). This result is partially explained by the large

variations in Fig. 10.7 and the unequal sample sizes of URM (N = 130) students

compared to White (N = 657) and Asian (N = 203) students in addition to the

large variation in the Post-score distribution for URM students in Fig. 10.8.

Major

The Pre- and Post-score distributions for ESE and CSSE by major are illustrated

in Fig. 10.9. Observation of the distributions’ medians reveals students taking

ME240 as an elective or students in the NAME department may experience decreases

in ESE over the course of a given semester. Students in the NAME department also

appear to have more significant decreases from the beginning to the end of a semester
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in CSSE as compared to students in other majors. The results from the regression

analysis are illustrated in Fig. 10.8.

(a) (b)

Figure 10.9: Split violin plots by major of the Pre- and Post-score distributions (grey
and gold, respectively) for (a) ESE and (b) CSSE.

(a) (b)

Figure 10.10: Results of the regression analyses by major for (a) ESE and (b) CSSE.
The black line denotes the baseline case that there was no change over the course of
the semester. The other four lines distinguish major.
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The regression analyses revealed no significant differences in ESE by major. How-

ever, there is a significant difference in CSSE for NAME students, who on average

report lower levels of CSSE at the end of the semester as compared to ME students.

Given that the results of Chapter 9 detected no significant differences in conceptual

understanding as measured by the DCI between NAME and ME students, the reason

for this difference can only be answered with a follow-up qualitative study.

Section Type

The different section sizes are the result of a small section initiative at the Uni-

versity of Michigan, which began with the Provost’s Office in the form of a request

for proposal from major units. The College of Engineering responded by identifying

via department input potential “gateway” courses where students who frequently ap-

pear to struggle may benefit from offerings of small sections (i.e., enrollments fewer

than 20 students). The ME department identified their sophomore engineering sci-

ence courses (including ME240) as those gateway courses, and began offering small

sections for these courses intermittently starting in the Fall 2016 semester (i.e., the

same semester this current study began). The distributions for Pre- and Post-scores

for ESE and CSSE with respect to section type are illustrated in Fig. 10.11.

(a) (b)

Figure 10.11: Split violin plots by section type of the Pre- and Post-score distribu-
tions (grey and gold, respectively) for (a) ESE and (b) CSSE.
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The regression results are illustrated in Fig. 10.12. No significant differences in

ESE or CSSE were detected.

(a) (b)

Figure 10.12: Results of the regression analyses by section type for (a) ESE and (b)
CSSE. The black line denotes the baseline case that there was no change over the
course of the semester. The other two lines distinguish section type.

Conclusions

The results from this second study into the impacts of the active learning IMU in-

tervention on self-efficacy are mixed. Significant coefficients indicated ESE decreased

with increasing levels of the intervention (increasing levels of engagement with the

iNewton IMU technology). The significant interactions indicated that students who

entered with higher levels of ESE at the start of the semester were less affected.

However, students who participated in the Student Projects had a greater increase

in CSSE by the end of the semester as compared to the students in all other inter-

vention levels. It is interesting that the active learning IMU intervention appears to

have opposing effects on the two types of self-efficacy included in this study. Given

how many other factors could be contributing to ESE, it is possible that something

else (i.e., experiences in another course) is interacting with their experiences during

the active learning IMU intervention in ME240. Future work should consider this

interaction as well as how students perceive different types of self-efficacy.
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10.2.3 Study 3: Active Learning IMU Intervention and Intention to Per-

sist

Study Background and Objective

The third study leverages the first study’s findings to investigate the effects of

the active learning IMU intervention on students’ intentions to persist. Included in

this investigation is a comparison with a Control group (Level 0) who did not engage

with any implementations of the intervention. The introduction of active learning is

expected to positively impact students’ intention to persist by providing them with

an engaging, authentic activity to practice their ME240 skills.

Methods

As with prior studies, regression analyses are used to investigate the effects of the

active learning IMU intervention. Using the same variables in Table 10.4, the final

regression model used for Intention to Persist (PER) is

Post ∼ 1+Intervention∗(Pre+Gender+Ethnicity)+SectionType+Major (10.3)

where “1” is a potentially significant intercept and the asterisk indicates interac-

tions between predictor variables are included in the model. It is assumed that

each students’ response is independent of other students’ responses. Normality and

heteroscedasticity assumptions are confirmed for the residuals for the models.

Results and Discussion

Table 10.7 contains the full results from the regression analysis conducted for

Intention to Persist (PER). The model was significant (F (23, 966) = 14.8, p < 0.001),

indicating that it is a significantly better fit than an intercept-only (average-only)

model. The model accounts for 24% of the variation in PER Post-scores (R2 = 0.24).

In the table, CI:LB and CI:UB denote the lower and upper bounds of the confidence

intervals for the estimated coefficients. The variables in the parentheses are the

baseline (comparison) categories. For interpretation, all PER items were on a 5-

point Likert scale that were normalized to 1. A value of 0 corresponds to low PER,

0.5 corresponds to neutral PER, and 1 corresponds to high PER.
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Table 10.7: Summary of PER multiple linear regression results.

Variable Coefficient (β) CI:LB CI:UB t-value p-value

(Intercept) 0.35 0.20 0.49 4.7 < 0.001‡

Pre 0.63 0.47 0.78 7.9 < 0.001‡

Intervention (Level 0)

Level 1 0.14 -0.03 0.30 1.6 0.12

Level 2 0.18 0.01 0.36 2.0 0.04∗

Level 3 0.22 0.05 0.39 2.5 0.01∗

Gender (Male)

Female -4e-3 -0.05 0.04 -0.2 0.85

Ethnicity (White)

Asian -0.03 -0.07 3e-3 -1.8 0.07 •

URM 1e-3 -0.05 0.05 0.1 0.97

Major (ME)

AERO 5e-3 -0.01 0.02 0.6 0.53

NAME 0.01 -0.02 0.04 0.9 0.36

Elective -3e-3 -0.03 0.02 -0.2 0.83

Section Type (Large)

Small 4e-3 -0.02 0.03 0.3 0.76

Interactions

Level 1*Pre -0.12 -0.31 0.06 -1.3 0.19

Level 2*Pre -0.19 -0.38 5e-4 -2.0 0.05 •

Level 3*Pre -0.22 -0.41 -0.03 -2.3 0.02∗

Level 1*Female 0.01 -0.04 0.06 0.4 0.71

Level 2*Female 0.02 -0.03 0.08 0.9 0.38

Level 3*Female 0.02 -0.04 0.07 0.6 0.52

Level 1*Asian 0.01 -0.03 0.05 0.5 0.63

Level 2*Asian 0.03 -0.02 0.07 1.1 0.28

Level 3*Asian 1e-3 -0.05 0.05 0.1 0.96

Level 1*URM -0.02 -0.08 0.05 -0.5 0.63

Level 2*URM -0.01 -0.07 0.05 -0.3 0.73

Level 3*URM -0.04 -0.11 0.02 -1.4 0.17

Significant α = •0.1, ∗0.05, †0.01, and ‡0.001.
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The significant intercept and Pre-score coefficient describe on average how stu-

dents’ PER changed over a semester regardless of intervention level or specific stu-

dent demographics. The intercept means a student who had very low (0) PER at

the beginning of the semester had at least moderately low (0.35) PER at the end of

the semester. The significant Pre-score coefficient means students gained on average

63% of their Pre-score PER by the end of the semester. Figure 10.13 illustrates how

these two predictor variables relative to the baseline case in which there is no change

in PER over the course of the semester. The majority of joint distribution is con-

centrated in the upper right corner of the plots, indicating a significant proportion

(nearly half) of students in this study entered and exited ME240 with high PER.

Figure 10.13: The background is a heat map of the joint distribution of Pre- and
Post-scores (black areas are void of data). The solid white line denotes the baseline
case when the Pre- and Post-scores are equal (no change in Intention to Persist). The
dashed line illustrates the significant intercept (0.35) and the dotted line illustrates
the significant intercept and the significant slope (βPre = 0.63) relating Pre- and
Post-scores.
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On average, it appears students’ PER remained very high (1) or improved over

the course of the semester. Discussions of the results for the remaining predictor

variables in Table 10.7 follow next. While each discussion pertains to a subset of

predictor variables, the results presented are with respect to controlling for variations

due to the other variables.

Intervention Level

Figure 10.14 contains split violin plots illustrating the Pre- (grey) and Post-score

(gold) distributions for PER for each intervention level. The black boxes at the

middle of each violin are box plots for each distribution with the black horizontal

lines indicating the median, which for most of the distributions is at the top of the

violin. With the exception of the Pre-score distribution for Level 0, the medians are

the top edge of the violins indicating that more than half of the students reported

high PER. All of the distributions also appear to be bimodal with the majority

Figure 10.14: Split violin plots of the Pre- and Post-score distributions (grey and
gold, respectively) for each of the intervention levels: Level 0 (Control), Level 1
(Demonstrations), Level 2 (Prescribed Experiments), and Level 3 (Student Projects).

of students reporting either very high or moderately high PER, likely due to the
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fact that the PER items were on a 5-point Likert scale. However, the Post-score

distributions (gold) for the Level 0 (Control) is noticeably different as compared to

the other three levels, indicating there could be a significant difference in PER by

intervention.

As evidenced by the qualitatively different distributions in Fig. 10.14, there are

significant differences in PER by intervention level, particularly for Level 2 (Pre-

scribed Experiments) and Level 3 (Student Projects). Figure 10.15 illustrates these

differences by intervention level via the multiple regression results.

Figure 10.15: The black line denotes the baseline case when the Pre- and Post-scores
are equal (no change in PER). The other lines represent the multiple regression
results for each intervention level while controlling for variations in the other pre-
dictor variables: Level 0 (Control), Level 1 (Demonstrations), Level 2 (Prescribed
Experiments), and Level 3 (Student Projects).

From Fig. 10.15, it appears that students entering ME240 with low levels of PER

saw more significant gains as their engagement with the IMU technology increased.

This result is meaningful and supported by the literature. For example, Graham
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et al. [306] identified early research experiences and active learning in introductory

classrooms in their Persistence Framework as two successful approaches in inspiring

STEM students to persist in their respective majors. Given that the Student Projects

implementation of the active learning IMU intervention is akin to a research expe-

rience, it is reasonable that the largest increases for students entering ME240 with

lower levels of PER arise in Level 3. Additionally, Dweck [464] specifically noted

the importance of high self-efficacy for persistence. The previous study revealed the

Student Projects implementation of the active learning IMU intervention yielded a

significant increase in Course-Specific Self-Efficacy. Thus, it makes sense that this

implementation would also yield the greatest gains in PER.

Gender

The Pre- and Post-score distributions by gender in Fig. 10.16 are qualitatively

different with the female students’ distribution presenting as bimodal.

Figure 10.16: Split violin plots by gender of the Pre- and Post-score distributions
(grey and gold, respectively) for PER.
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Figure 10.17 illustrates the multiple regression results for PER by gender. Despite the

qualitative differences in the distributions, the overall differences are not significant

(consistent with the findings reported by Navarro et al. [465]), nor are the interactions

between intervention level and gender. The appearance of the distributions in Fig.

10.16 is likely the result of the differing sample sizes with the male students (N=797)

outnumbering the female students (N=227) approximately 4:1.

Figure 10.17: Results of the regression analyses by gender for PER. The black line
denotes the baseline case that there was no change over the course of the semester.
The other two lines distinguish gender.

Ethnicity

Figure 10.18 illustrates the Pre- and Post-score distributions by ethnicity. The

differences the distributions’ shape can be partially explained by the sample sizes

of White students (N = 657) as compared to Asian (N = 203) and URM (N =

130) students. The Asian students’ distributions appear more bimodal indicating a

slightly lower PER on average. The regression results are illustrated in Fig. 10.19.
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Figure 10.18: Split violin plots by ethnicity of the Pre- and Post-score distributions
(grey and gold, respectively) for PER.

Figure 10.19: Results of the regression analyses by ethnicity for PER. The black line
denotes the baseline case that there was no change over the course of a semester.
The other three lines distinguish ethnicity.
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Though the shape of the distributions appears qualitatively different, the regres-

sion results indicate these differences are largely not statistically significant, which

is also consistent with the findings reported by Navarro et al. [465]. However, Asian

students report marginally lower PER (β = −0.03, p = 0.07) as compared to White

students. This decrease in PER could be related to the fact that Asian students

consistently reported having lower Course-Specific Self-Efficacy (CSSE) at the end

of the semester as compared to White students.

Major

The differences present in the Pre- and Post-score distributions for PER by major

in Fig. 10.20 are not statistically significant according to the regression analysis, the

results of which are illustrated in Fig. 10.21. Qualitatively, it appears students

taking ME240 as a technical elective generally report lower PER and experience the

largest (and positive) difference in PER over the course of a semester.

Figure 10.20: Split violin plots by major of the Pre- and Post-score distributions
(grey and gold, respectively) for PER.
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Figure 10.21: Results of the regression analyses by major for PER. The black line
denotes the baseline case that there was no change over the course of the semester.
The other four lines distinguish major.

The differences in the distributions in Fig. 10.20 are likely not significant as a

result of the large variation and unequal sample sizes. For example, 669 students

reported majoring in ME whereas only 58 students fell into the Elective group. Unlike

Asian students, who reported lower levels of Course-Specific Self-Efficacy (CSSE)

and PER, the students in the NAME department did not report lower levels of PER

despite reporting lower CSSE. One reason for this could be the estimated coefficient

for Asian students (β = −0.17, p = 0.02) was more than twice that of NAME

students (β = −0.07, p = 0.02). Thus, given the marginally significant decrease in

PER for Asian students (β = −0.03, p = 0.07), it is reasonable that any differences

between NAME and ME students are not statistically significant.

Section Type

Finally, the qualitative differences in distributions by section type in Fig. 10.20

are revealed by the regression analysis illustrated in Fig. 10.21 to be nonsignificant.
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Figure 10.22: Split violin plots by section type of the Pre- and Post-score distribu-
tions (grey and gold, respectively) for PER.

Figure 10.23: Results of the regression analyses by section type for PER. The black
line denotes the baseline case that there was no change over the course of the semester.
The other two lines distinguish section type.
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Conclusions

Differences in Intention to Persist (PER) were largely the result of the three

implementations of the active learning IMU interventions. The largest increases in

PER, particularly for students with lower levels of PER at the start of the semester,

arose with the greatest engagement with the iNewton IMU technology. Specifically,

Level 2 (Prescribed Experiments) and Level 3 (Student Projects) were associated

with statistically significant increases. Giving students the opportunity to apply

ME240 concepts to a dynamic system of their choice appears to have improved

PER, especially for students starting the semester with lower levels of PER who are

arguably at the greatest risk of not persisting.

10.2.4 Study 4: Active Learning IMU Intervention and Student Affect

Study Background and Objective

The fourth and final study also leverages the findings from Study 1 to investigate

differences in Student Affect (SA) between the three implementations of the active

learning IMU intervention. This study is intended to provide additional insights

into the students’ experiences with the implementations of the intervention that

involved the iNewton IMU technology, namely: 1) Demonstrations, 2) Prescribed

Experiments, and 3) Student Projects. Since students historically respond positively

towards hands-on experimentation (see, for example, O’Donovan et al. [80] or Self

and Widmann [450]), the objective of this final study is to determine if students on

average feel positively towards the active learning IMU intervention investigated in

this work as well as to determine if there are any differences among the levels.

Methods

Students participated in one of the three intervention levels and were asked to

report their Student Affect (SA) at the end of the semester. On a 7-point Likert scale,

students reported the degree to which they agreed with the following statements from

Table 10.1 (with corresponding item numbers):

13. The experiments improved my learning experience. (LEARN)
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14. The experiments increased my interest in the subject matter. (INTEREST)

15. The experiments were engaging. (ENGAGE)

16. The experiments increased my confidence in running my own experiments.

(CONFIDENCE)

Their answers were subsequently averaged and normalized to 1 such that a value of

0 corresponds to low SA (students strongly disagreed with all of the above items),

a value of 0.5 corresponds to neutral SA, and a value of 1 corresponds to high SA

(students strongly agreed with all of the above items).

The first objective is to determine if on average students feel positively towards

the level of the intervention they experienced. A simple one-sample t-test comparing

the mean SA to a hypothetical neutral SA mean is conducted for each intervention

level. The second objective is to determine what (if any) differences exist across

the intervention levels in SA, for which a one-way Analysis of Variance (ANOVA)

with planned contrasts is conducted. The ANOVA is an omnibus test conducted to

determine if at least one intervention level is significantly different from the others

with respect to SA.

Assuming the ANOVA results are significant, the post hoc analyses conducted are

planned contrasts, which are a priori comparisons of intervention level means that

are expected to be different. For instance, Self and Widmann [450] reported that

students in their study did not have a preference for demonstrations over hands-on

experiments (or vice versa). Thus, the first planned contrast compares the average

SA for Demonstrations and Prescribed Experiments. Assuming these two levels are

not different from one another, the second planned contrast compares the combined

average SA for Demonstrations and Prescribed Experiments against the average SA

for Student Projects. Normality and homogeneity of variance are confirmed for the

results.

Results and Discussion

Table 10.8 contains the results from the t-tests comparing the means of each

intervention level’s SA to a neutral SA (0.5). For all three intervention levels, the
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results indicate that the null hypothesis that the intervention level SA mean is equal

to 0.5 is rejected. Given the means, students generally had positive SA for all three

intervention levels. It also appears that the SA for the Student Projects may be

higher than the SA for Demonstrations or Prescribed Experiments.

Table 10.8: Summary of the one-sample t-tests. The Means and
Standard Error (SE) for each intervention level is also reported.

Intervention Level N Mean SE t-value p-value

Demonstrations 348 0.63 0.02 6.0 < 0.001

Prescribed Experiments 306 0.62 0.01 8.6 < 0.001

Student Projects 223 0.69 0.02 12.5 < 0.001

The results of the ANOVA (F (2, 633) = 5.9, p < 0.01) suggests at least one

intervention level is different from the others. As expected given the similar means for

Demonstrations and Prescribed Experiments in Table 10.8, the first planned contrast

(t(633) = 0.6, p = 0.56) confirms that students do not prefer Demonstrations over

Prescribed Experiments (or vice versa). This finding supports the results reported

by Self and Widmann [450]. Additionally, the second planned contrast (t(633) =

3.0, p < 0.01) confirms that students generally prefer Student Projects to either

Demonstrations or Prescribed Experiments.

In addition to the aggregated means, it is also worth considering each of the

individual items constituting the SA construct. These results can potentially clarify

why students seem to prefer Student Projects to the other two implementations of the

intervention. Figure 10.24 illustrates the means for each item by intervention level.

The error bars are two times the standard error, thus representing the 95% confidence

intervals for the item’s mean. Confidence intervals that do not overlap indicate a

statistically significant difference between the two means. All three intervention levels

scored highest and most consistently on Item # 13 (“The experiments improved

my learning experience”). Demonstrations and Student Projects scored about the

same as each other and slightly higher than Prescribed Experiments on Item #14

(“The experiments increased my interest in the subject matter”) and Item #15
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Figure 10.24: Student Affect by item number by intervention level: 1) Demonstra-
tions, 2) Prescribed Experiments, and 3) Student Projects.

(“The experiments were engaging”). The greatest difference between the three levels

originated with Item #16 (“The experiments increased my confidence in running my

own experiments”).

Conclusions

In general, the students who participated in the various intervention levels all re-

ported statistically significantly positive SA. Students did not seem to prefer Demon-

strations over Prescribed Experiments or vice versa. However, the Student Projects

version of the active learning IMU intervention yielded significantly higher SA than

the other two levels, largely due to the item relating to the students’ perceived con-

fidence in conducting their own experiments.
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10.3 Summary and Conclusions

This chapter investigated the validity and reliability of a modified version of the

LAESE instrument and assessed the impacts of the active learning IMU interventions

on self-efficacy (engineering and course-specific), intention to persist, and student

affect. The first study confirmed the validity of the four constructs (i.e., they are

distinguishably different from one another) via a confirmatory factor analysis, and

it confirmed the reliability of the constructs via Cronbach’s alpha. The modified

version of the LAESE instrument was used in the remaining three studies with major

conclusions summarized as follows.

The second study considered the effects of the intervention on Engineering Self-

Efficacy (ESE) and Course-Specific Self-Efficacy (CSSE) with mixed results. De-

creases in ESE over the term were associated with increasing levels of the intervention

(i.e., increasing levels of cognitive engagement). However, the significant interaction

between ESE Pre-score and intervention level indicated that students who entered

ME240 with high ESE were largely unaffected by the intervention. For CSSE, there

was a statistically significant increase for students who engaged with the Student

Projects version (Level 3) of the intervention. Future work should consider how ex-

periences with the iNewton IMU technology interact with experiences outside of the

class. Other noteworthy results for CSSE included differences by ethnicity (including

a significant interaction with Pre-score), a significant interaction between Pre-score

and gender, and a significant difference between ME and NAME students.

The third study revealed that differences in Intention to Persist (PER) were

largely associated with the active learning IMU intervention. The largest increases

in PER, particularly for students with lower levels of PER at the start of the semester

were associated with the Student Projects (Level 3) (i.e., the greatest engagement

with the iNewton IMU technology). Specifically, Prescribed Experiments and Stu-

dent Projects were associated with statistically significant increases in PER with the

gains for Student Projects being greater than those for Prescribed Experiments. A

marginal decrease in PER for Asian students was also detected.

The final study confirmed that students generally have a positive Student Af-
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fect (SA) towards all of the interventions. There was no difference in SA between

Demonstrations and Prescribed Experiments, but the SA for Student Projects were

significantly higher.
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CHAPTER 11

Part II: Summary, Contributions, and Conclusions

Summary and Contributions

Starting with Chapter 7, Part II of this dissertation provides ample evidence of

the positive cognitive and non-cognitive impacts of active learning across disciplines

drawing from the field of education research. In this research, active learning is sys-

tematically studied in a large undergraduate engineering dynamics course (ME240)

in the form of an IMU intervention known as iNewton. It is hypothesized that the

IMU intervention will elicit positive student responses in 1) conceptual understand-

ing, 2) self-efficacy, and 3) intention to persist. These hypotheses are well-grounded

in a theoretical foundation derived from the field of education research as reviewed

in Chapter 7. The study design to test these hypotheses is outlined in Chapter 8,

which provides detailed descriptions of the class setting, a pilot study, participant

demographics, and each of the three levels of the active learning IMU intervention

level (Demonstrations, Prescribed Experiments, and Student Projects).

Chapter 9 reports on the cognitive effects of the active learning IMU intervention

via conceptual understanding as measured by the Dynamics Concept Inventory (DCI)

[41, 42] in three studies. The first evaluates the authenticity of student performance

on the DCI when administered in the low-stakes setting deployed in this research.

The second investigates the reliability and validity of the DCI as an instrument

for measuring conceptual understanding. The third assesses the impact of the three

IMU intervention levels on conceptual understanding (as measured by the DCI). The
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major contributions from these three studies are as follows. The first study confirms

that conceptual understanding measured in a high-stakes setting (i.e., a midterm

examination) is moderately correlated and predictive of conceptual understanding

measured in a low-stakes setting (i.e., DCI scores from a voluntary survey) [394].

However, the regression models confirming the predictive relationship only explain

a fraction (13%) of the variation in DCI performance. One reason is that the DCI

covers many more concepts than what is covered in the high-stakes evaluation (a

midterm examination). Another reason and contribution, revealed in the second

study, is that 4 of the 29 items on the DCI were determined to be unreliable and

thus subsequently removed from the statistical analysis conducted in the third study.

Importantly, further investigation into the validity and reliability of the DCI revealed

it may not have the ability to differentiate levels of conceptual understanding on a

fine grain level. Future research should include revisions to the DCI to provide a

more sensitive instrument to measure changes in conceptual understanding. The

regression results in the third study reveal the active learning IMU intervention (all

levels) had limited impact on student conceptual understanding, at least as measured

by the DCI. However, significant differences in conceptual understanding by major

and section size are also observed. Specifically, students taking ME240 as a technical

elective tend to underperform on the DCI compared to those taking ME240 as a

required course. Additionally, students enrolled in the small section offerings (fewer

than 20 students) significantly outperform their peers enrolled in the large sections

(60-120 students), which is consistent with other investigations into the effects of

class size.

Chapter 10 begins with a study concerning the validity and reliability of the modi-

fied version of the Longitudinal Assessment of Engineering Self-Efficacy (LAESE) [46,

362] instrument designed to measure self-efficacy (engineering and course-specific),

intention to persist, and student affect. This first study confirms the elements from

various instruments are validly and reliably combined to simultaneously measure

the four constructs constituting the instrument developed to measure these non-

cognitive effects. Notably, this instrument is general enough for other researchers

to use in their own contexts. A second study examines the effects of the active

255



learning IMU intervention on Engineering Self-Efficacy (ESE) and Course-Specific

Self-Efficacy (CSSE) and exhibits mixed results. Decreases in ESE are associated

with increasing levels of the intervention (i.e., increasing levels of cognitive engage-

ment). However, the significant interaction between ESE Pre-score and intervention

level indicates that students who enter ME240 with high ESE are also relatively

unaffected by the intervention, which could be evidence of students who have devel-

oped resilient self-efficacy. For CSSE, there is a statistically significant increase for

students who engaged with the Student Projects version (Level 3) of the interven-

tion. Other significant results include differences in CSSE by ethnicity (including a

significant interaction with Pre-score), the interaction between Pre-score and gender,

and the difference between ME and NAME students. Given the differences in the

results for Course-Specific Self-Efficacy and Engineering Self-Efficacy, future work

should consider how experiences outside of the course interact with those related to

the intervention. A third study reveals differences in Intention to Persist (PER) are

significantly associated with the active learning IMU intervention. The largest in-

creases in PER, particularly for students with lower PER at the start of the semester,

relate to greatest engagement with the IMU technology. Specifically, Prescribed Ex-

periments and Student Projects are associated with statistically significant increases

in PER with the gains associated with Student Projects being the largest. A final

(fourth) study confirms that students have a positive Student Affect (SA) towards

the interventions. While there is no significant difference in SA between Demonstra-

tions and Prescribed Experiments, there is a significant increase in SA associated

with Student Projects.

Conclusions

This work systematically introduces and evaluates the effects of a very modest ac-

tive learning IMU intervention within a traditionally taught (lecture only) engineer-

ing dynamics class. The implementation of the intervention takes into consideration

two of the most commonly cited reasons for why faculty do not adopt active learning

instructional methods, namely: 1) time (both in and out of the classroom) and 2) fea-

sibility of implementing active learning in large classrooms. All levels of the interven-
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tion occupy a modest fraction of the course (just two experiments) that students pri-

marily engage with outside of the classroom. While Demonstrations and Prescribed

Experiments require very little effort from the instructors, Student Projects necessi-

tate more time outside of class to provide feedback. This time spent outside of class

could be potentially offset in future iterations with peer review, which has the added

benefit of an authentic educational opportunity to apply skills learned in the class as

well. Furthermore, documentation for the experiments and findings to date are ac-

cessible to any instructors interested in implementing any version of the intervention

in their engineering dynamics courses (https://inewton.engin.umich.edu/). In

addition, this study design is somewhat unusual in that the levels of the intervention

map onto three different levels of cognitive engagement outlined by Chi and Wylie

[39]. Aside from the study conducted by Chi and Wylie that considers all four modes

of engagement in the ICAP framework, the authors noted only two other studies con-

ducted by Coleman et al. [466] and Gobert and Clement [467] that consider three

modes of engagement in their study design (the same three considered in this work).

Overall, the active learning IMU intervention was successfully integrated into

this large engineering dynamics course without significant in-class time commitment,

with modest out-of-class time commitment, and with thorough documentation for

faculty. While potential increases in conceptual understanding may not follow until

higher doses are implemented as noted by Hake [258], the results for Course-Specific

Self-Efficacy and Intention to Persist demonstrate the power of including even very

modest levels of active learning into the curriculum. Further, the overarching idea of

incorporating relatively inexpensive sensors into undergraduate courses to facilitate

supplemental learning opportunities outside of the classroom can easily be extended

to other courses. While the results for self-efficacy, intention to persist, and student

affect may be transferable to other sophomore level courses, they may not transfer

as strongly for upper level courses. For example, students are unlikely to switch

majors their last year of their undergraduate career, meaning students’ intention

to persist in their major would likely remain relatively unaffected. However, this

metric could be restructured to measure intention to persist in the profession after

graduation. Finally, this work serves as evidence of the measurable improvements in
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the undergraduate educational experience with a very minimal intervention. For fac-

ulty starting to adopt active learning instructional innovations into their classrooms,

these interventions serve as a concrete starting point that have been shown to yield

significant gains.
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APPENDIX A

Relationship Between Euler Angle Rates and

Angular Velocity

Let R be a direction cosine matrix relating some body-fixed frame of reference (B)

to some inertial frame of reference (I ). R can be defined as a series of three subsequent

Euler angle rotations (φ, θ, ψ) about body-fixed axis (X, Y, Z). The Euler direction

cosine matrices are defined as

Rx =

1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (A.1)

Ry =

 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (A.2)

Rz =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (A.3)
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Similarly, the Euler angle rates are defined in the inertial frame as

φ̇X̂ + θ̇Ŷ + ψ̇Ẑ =

φ̇θ̇
ψ̇

 (A.4)

Therefore, the direction cosine matrix, R can therefore be defined as

R = RxRyRz (A.5)

The derivative of the rotation matrix is defined per [468]

Ṙ = S(Iω)R (A.6)

where Iω is the angular velocity of frame B relative to frame I (resolved in frame I )

and the S(·) is the skew symmetric operator

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (A.7)

Using the chain rule on Eq. A.5 and the relationship in Eq. A.6 yields

Ṙ = ṘxRyRz +RxṘyRz +RxRyṘz

= S(φ̇X̂)RxRyRz +RxS(θ̇Ŷ )RyRz +RxRyS(ψ̇Ẑ)Rz

= S(φ̇X̂)R +RxS(θ̇Ŷ )RT
xR +RxRyS(ψ̇Ẑ)(RxRy)

TR

= S(φ̇X̂)R + S(θ̇RxŶ )R + S(ψ̇RxRyẐ)R

= S(φ̇X̂ + θ̇RxŶ + ψ̇RxRyẐ)R

(A.8)
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Equating Eqs. A.6 and A.6 yieldsωxωy
ωz

 =

1 0 sinθ

0 cosφ −sinφcosθ

0 sinφ cosφcosθ


φ̇θ̇
ψ̇

 (A.9)

or, similarly, φ̇θ̇
ψ̇

 =

1 sinφsinθ
cosθ

− cosφsinθ
cosθ

0 cosφ sinφ

0 − sinφ
cosθ

cosφ
cosθ


ωxωy
ωz

 (A.10)

assuming that the matrix transforming Euler angle rates to angular velocity is in-

vertible. The transformation matrix has singularities when θ = nπ where n =

0,±1,±2, ... (i.e., when cosθ = 0).
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APPENDIX B

DCI Concept List

Below is a list of the 14 important and/or commonly misunderstood concepts

identified in the DCI [42, 385].

1. Different points on a rigid body have different velocities and accelerations,

which vary continuously.

2. If the net external force on a body is not zero, then the mass center must have

an acceleration and it must be in the same direction as the force.

3. Angular velocities and angular accelerations are properties of the body as a

whole and can vary with time.

4. Rigid bodies have both translational and rotational kinetic energy.

5. The angular momentum of a rigid body involves translational and rotational

components and requires using some point as a reference.

6. Points on an object that is rolling without slip have velocities and accelerations

that depend on the rolling without slip condition.

7. In general, the total mechanical energy is not conserved during an impact.
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8. An object can have (a) nonzero acceleration and zero velocity or (b) nonzero

velocity and no acceleration.

9. The inertia of a body affects its acceleration.

10. The direction of the friction force on a rolling body is not related in a fixed

way to the direction of rolling.

11. A particle has acceleration when it is moving with a relative velocity on a

rotating object.

12. An object moving in a curved path always has a normal component of acceler-

ation.

13. The direction of the friction force between two objects depends on their relative

velocity or their tendency for relative motion.

14. Newton’s third law dictates that the interaction forces between two objects

must be equal and opposite.
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