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d, ḋ gear deflection and deflection rate
d1, d2, d3, d4, d5 lag damper geometry constants
D, Ḋ, D̈ horizontal distance, velocity, and deceleration to target point
D̈peak peak deceleration used in the approach trajectory calculation
Dp blade sectional drag force
e blade hinge offset
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′
y, ê
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x̂I , ŷI , ẑI earth-fixed inertial coordinate system
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ABSTRACT

This work presents a comprehensive first principles physics-based simulation capability

for helicopter ship landing, denoted as “HeliUM2-umich.” The simulation incorporates

key components of the ship-helicopter dynamic interface including: 1) a high fidelity flight

dynamics model with coupled rotor-fuselage-landing gear dynamics, 2) an aerodynamic

model for the complex Wind Over Deck (WOD) that results from wind interacting with

the superstructure of a moving ship, 3) a ground effect model that captures aerodynamics

in proximity of the deck, 4) a ship deck motion model for a given sea condition, and 5)

a Linear-Quadatric Regulator (LQR) based Flight Control System (FCS) to stabilize the

vehicle dynamics and maintain a desired approach trajectory.

Initial portion of the work was focused on developing a WOD model and integrating it

into the flight dynamics code in order to examine the influence of WOD on the UH-60A

helicopter response during approach and landing flight segments. The WOD velocities

were generated using unsteady Detached Eddy Simulation of flow over a full-scale Simple

Frigate Shape Version 2 ship. The flight trajectory consisted of steady level flight followed

by descent along a straight inclined trajectory to a specified hover position. Subsequently,

the main rotor collective is gradually decreased to enable vertical descent and landing. Gain

scheduling was used to track the approach trajectory. The effect of the WOD on vehicle

response was examined for two cases: WOD affecting the rotor only, and WOD affecting

the entire helicopter including the fuselage, empennage and tail rotor. The controller was

shown to be effective in maintaining the desired approach and landing trajectory. However,

additional control effort was needed in the presence of WOD. High frequency oscillations

were noted in the CG position coordinates and attitude angles due to WOD. Oblique WOD
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conditions required greater control effort than the headwind case. A larger effort was also

required when WOD affected the entire helicopter as compared to the rotor alone. The

combined influence of WOD and ground effect during approach and landing was also ex-

amined. The ground effect, which was modeled using a simple scaling factor, caused a

decrease of approximately 11.3% in power consumption.

Next, a finite-state ground effect model was implemented to study the influence of static

deck inclination and deck motion on helicopter dynamics. Rotor performance predictions

showed good agreement with results from literature for hover over a level and stationary

ground plane. Hover and landing simulations were performed with the deck inclined at

constant roll and pitch angles, as well as with the deck excited in isolated roll, pitch and

heave motions. For hover over a deck with constant roll inclination, an increase in the

lateral inflow coefficient and the longitudinal cyclic control input was noted. Deck heaving

motion produced an additional 7.5% change in power requirements relative to static ground

effect, thus highlighting the importance of modeling dynamic ground effect. Simulations

were also performed to examine the combined influence of WOD and deck motion. The

representative ship motion data was extracted from the Systematic Characterization of the

Naval Environment (SCONE) database. The controller was capable of maintaining a stable

landing on level, inclined and moving decks in the presence of WOD and ground effect.
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CHAPTER 1

Introduction, Background, and Objectives

Due to several unique aspects of the naval environment, illustrated in Fig. 1.1, shipboard

landing of a helicopter is a challenging task for pilots. Pilots have to track a moving ship

Ground effect

due to moving 

deck 

Ship airwake due

to wind at sea and 

ship velocity 

Sea conditions

excite ship deck 

Figure 1.1: Illustration of a typical helicopter ship landing environment.

deck excited by sea conditions, as well as ensure vehicle stability in the presence of un-

steady airwake from the ship structure, which interacts with the main rotor airwake. The

ambient wind interacting with the ship structure, combined with the ship velocity, is re-
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ferred to as “wind-over-deck” (WOD). The WOD introduces unsteady aerodynamic loads

on the helicopter affecting take-off, landing, and hover over the ship deck. Furthermore,

when operating close to the deck, the surface acts as an impermeable boundary condition

(BC) producing a ground effect that causes helicopter downwash to turn back towards the

vehicle modifying rotor thrust. Such conditions result in deteriorated handling qualities

and increased pilot workload. It is thus important to design accurate launch and recovery

envelopes, or Ship-Helicopter Operating Limits (SHOLs), to maximize safety. A typical

SHOL is illustrated in Fig. 1.2, where the limits of wind strength and direction, relative to

the deck, are indicated on a polar chart. The highlighted region indicates combinations of

wind speed and direction in which the helicopter can safely operate. The SHOL diagram

Figure 1.2: A typical SHOL diagram; winds from the portside are called “red” winds while
starboard winds are called “green” winds [1]; region within the thick line is safe to operate.

for a given helicopter-ship combination is established during First of Class Flight Trials

(FOCFTs) which involve test pilots carrying out numerous launch and recovery tasks for

winds of different strength and direction at sea. However, the flight tests are expensive, and

often incomplete since it is difficult to obtain a full range of wind conditions [2]. Simula-

2



tions provide a cost-effective alternative. For the ship landing problem, a comprehensive

first principles physics-based simulation capability that includes all relevant components is

needed. Required components include:

1. a high fidelity rotorcraft flight dynamic model that accounts for coupled rotor-fuselage-

landing gear dynamics, combined with a rotor model based on flexible blades with

coupled flap-lag-torsional dynamics;

2. an aerodynamic model for the WOD;

3. a ground effect model to capture the influence of the moving deck on the rotor; and

4. a robust flight control system (FCS) to maintain the desired position and attitude of

the helicopter in the presence of WOD and ground effect.

Such a simulation capability has the potential to augment flight test programs by pro-

viding a priori understanding of the ship-helicopter dynamic interface (DI) for specified

ship and helicopter configurations. The capability with some additional improvements can

also be integrated into flight simulator environments to train pilots.

Numerous studies have been performed to characterize the ship-helicopter dynamic in-

terface as described in Ref. 3. However, they have several shortcomings. Firstly, helicopter

rotor models were based on rigid blade assumption. It is important to model blade flexibil-

ity in order to accurately capture the effects of WOD, ground effect and disturbances such

as atmospheric gusts in the vehicle response. Secondly, numerous studies employ low fi-

delity airwake models. Airwake due to WOD is a critical component of the ship-helicopter

DI and accurate modeling involves capturing flow features that have time stamps ranging

fromO(10s) to several orders of magnitude smaller, as illustrated in Fig. 1.3. Thirdly, most

studies ignored landing gear dynamics and were limited to simulating hover over the deck

instead of an actual touchdown. Undesired and dangerous effects such as dynamic rollover

[4] can result when the landing gears make contact with the ship deck. Finally, none of the

studies accounted for ground effect.
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Figure 1.3: Flow topology behind a simplified ship geometry [5].

The objective of this study is the development of a comprehensive simulation capabil-

ity that accounts for all the components mentioned previously. Section 1.1 reviews litera-

ture devoted to modeling ship airwake and the coupled helicopter-ship DI. Various control

strategies employed to simulate pilot activity during helicopter launch and recovery op-

erations are reviewed in Section 1.2. Section 1.3 contains a literature review of landing

gear modeling, and Section 1.4 covers literature on ground effect modeling. The objectives

of this dissertation are presented in Sections 1.5. Section 1.6 presents an outline of this

dissertation.

1.1 Review of Helicopter-Ship Dynamic Interface Model-

ing

During the past two decades, several studies have addressed the modeling and simulation

of the helicopter-ship DI [1, 2, 6–13]. Early efforts on the topic surfaced during the Advi-

sory Group for Aerospace Research and Development (AGARD) Flight Mechanics Panel

Symposium in 1991 [6]. The AGARD program was a joint initiative by member nations of

the North Atlantic Treaty Organization (NATO) aimed at furthering science and technology

related to aerospace. The symposium in 1991 focused on the deployment of fixed-winged
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aircraft, Vertical Short Take-Off and Landing (VSTOL) aircraft, and helicopters near or on

board ships. The papers examined the ship environment in terms of wind and deck motion

[14], guidance and control methods [15], as well as flight tests and simulation techniques

[16]. It was noted in Ref. 14 that typical ship superstructures are not aerodynamically effi-

cient and generate recirculation zones with steep velocity gradients from the sharp edges of

the superstructure, which are not readily predicted using time-averaged computational fluid

dynamics (CFD) techniques. The author advocated for integration of aerodynamics in the

ship design process. Ship airwake can be obtained from full-scale tests, wind tunnel testing,

and CFD as described in Ref. 17. Airwake obtained from full-scale tests of flow over the

deck of HMAS Darwin, an FFG-7 class frigate, was compared against wind tunnel results

in Ref. 16. While the mean vertical velocities showed good agreement, significant differ-

ences were observed in the horizontal and lateral velocities due to atmospheric turbulence,

which was not replicated in the wind tunnel tests. An inverse power model was fitted onto

the spectral density of the airwake data in a subsequent study [18] to obtain a turbulence

model that could be integrated into a flight simulation code. The model showed promise

but required further examination. In Ref. 19, ship deck motion was shown to greatly im-

pact on-deck stability of the vehicle. The use of restraining devices was recommended to

increase the on-deck operating limits of the vehicle. A comprehensive discussion of the

different challenges associated with helicopter ship landing was presented in Ref. 20.

Further research on the topic was performed under the Joint Shipboard Helicopter In-

tegration Process (JSHIP) program [7, 8, 21, 22]. It was shown in Ref. 7 that steady-state

CFD calculations do not accurately predict the time-average of the turbulent flowfield in

the ship airwake. Furthermore, turbulence modeling adds too much dissipation to Reynold-

Averaged Navier-Stokes (RANS) based CFD calculations. Time-accurate Large Eddy Sim-

ulation (LES) emerged as the preferred approach for simulating the ship airwake, albeit at

a significant computational cost. For WOD speeds ranging from 15 to 30 knots, it was also

found that flow over a Landing Helicopter Assault (LHA) class ship can be assumed to be
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incompressible and independent of Reynolds number [7]. As a consequence, the flowfield

obtained for a given velocity can be scaled to any other velocity, without having to repeat

the simulation. As part of the JSHIP program, the Dynamic Interface Modeling and Simu-

lation System (DIMSS) was developed so as to define a process for expanding WOD flight

envelopes for any ship-helicopter combination [21]. The DIMMS tool was integrated into

the NASA Ames Vertical Motion Simulator and pilot workload was assessed for a UH-60

helicopter operating near an LHA class ship. Flight tests were performed to validate the

predictions [8, 22].

A substantial amount of research work on the helicopter-ship DI has been carried

out by the Flight Science and Technology research group at the University of Liverpool

[1, 2, 11, 23, 24]. The main tool used is the HELIFLIGHT-R reconfigurable flight simulator

shown in Fig. 1.4 [2]. The importance of visual aids in shipboard operations was demon-

Figure 1.4: External (left) and internal (right) view of HELIFLIGHT-R simulator [2].

strated in Ref. 23, where a test pilot’s ability to perform a landing task using different visual
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aid models was assessed. Higher fidelity visual aid models made the pilot feel confident

in their ability to land at night, when vision was degraded. The effect of WOD on pilot

workload using the simulator integrated with a CFD based ship airwake and experiment

based fuselage loading models was examined in Ref. 11. For the headwind case, a minor

difference in pilot workload was noted when fuselage loading was included. For oblique

winds however, pilot workload increased significantly. More recently, time-accurate CFD

simulations using Detached Eddy Simulation (DES) based turbulence modeling were used

to construct airwake models on three different ship structures, shown in Fig. 1.5 [1]. Note

Figure 1.5: Ship geometries used in airwake generation: a) Simple Frigate Shape Version
2 (SFS2), b) Type 23 frigate, and c) Wave class auxiliary oiler [1].

that the Simple Frigate Shape Version 2 (SFS2) ship shown in Fig. 1.5a was conceived

and extensively studied under the Tripartite Technical Cooperation Program (TTCP) [25],

which sought to create a simple ship to be used as basis for comparison by different re-

search groups. The DES method used in Ref. 1 provided a good compromise between the

computationally expensive LES and lower-fidelity unsteady RANS solution, and had also

been validated using wind tunnel and full-scale experimental data in a prior study [24].

Therefore, in this study, a model for WOD is obtained using DES. The airwake models

in Ref. 1 were incorporated in a FLIGHTLAB [26] based simulator which was operated

by an experienced test pilot to determine operating limits. Deck motion due to sea state

was modeled. The airwake had a significant impact on pilot workload, with oblique WOD

conditions requiring the greatest effort relative to the headwind case.

In Ref. 9, wind tunnel measurements of time-averaged rotor thrust coefficient for a

rotor operating in ship airwake were presented. A 10-15% decrease in available thrust
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was measured on a rotor placed 9-15 m above the deck in the presence of an airwake.

A GENHEL model of UH-60A Blackhawk helicopter was combined with time-accurate

CFD solutions of a LHA class ship airwake in Ref. 10. However, the rotor model was

based on a simple rigid blade rotor. Pilot workload increased substantially with WOD

effects, especially during the hover segment of the trajectory [10]. Approach and landing

simulations were performed in Ref. 27 using FLIGHTLAB. Deck motion and landing gear

dynamics were included, however an empirical stochastic airwake model was employed.

The airwake in these studies [1, 10, 11] is obtained offline and accounts only for the effect

of ship airwake on the helicopter, implying a one-way coupling. A complete coupled CFD

based WOD simulation with helicopter flight dynamics in real-time was attempted in Ref.

12. However, this study was preliminary and far from real-time. Furthermore, it was

based on the GENHEL model with rigid rotor blades, which is deemed inadequate for

the problem. A similar attempt for fully coupled-simulations was made in Ref. 13. The

solution was far from real-time and deck motion was ignored.

In Ref. 28, a Proper Orthogonal Decomposition (POD) based Reduced Order Model

(ROM) was generated to approximate the dynamics of the flow over an SFS2 ship geometry.

The goal of the study was to develop an airwake model that is not limited by computer

memory, as is generally the case when CFD data is imported in the form of table look-up

in rotorcraft simulations. The ROM predictions showed good agreement with CFD data.

1.2 Review of Trajectory Tracking Control Strategies

Helicopters are inherently unstable, and require an FCS for stable operation. In Ref. 10,

a simplified optimal control model of a human pilot was used to simulate pilot control

activity for a prescribed trajectory. The model was based on a linear-quadratic regulator

(LQR) and developed such that tracking performance could be readily tuned based on a

desired crossover frequency in each control axis. Dynamic inversion control was used to
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carry out autonomous approach and landing simulations on a moving deck in Ref. 27. The

controller was tested in FLIGHTLAB [26] based simulations. Although the controller was

effective in tracking straight and oblique approach trajectories, it produced unnecessary

displacements while tracking a heaving deck in the landing phase. It was also noted that

for the controller to perform effectively, the trajectory path had to be smooth and not overly

aggressive. A gain-scheduled LQR controller was used in Ref. 29 in an optimization

framework to obtain an approach trajectory that minimized brownout. Two optimal paths

were identified. In the first optimum, the vehicle approached the landing spot at a small

flight path angle, effectively keeping the cloud of dust in its trail; in the second, the vehicle

followed a steep trajectory, keeping the wake vortices above ground. A Model Predictive

Path Integral (MPPI) method based on an implicit stochastic optimal control framework

was recently examined in Ref. 30. The method was shown to be viable for real-time

applications as it provided optimal control at a fraction of the computation cost associated

with explicit optimal control techniques. Control strategies to mitigate the effects of ship

airwake on pilot workload have also been developed [31, 32]. It was recommended in Ref.

20 that such control augmentation system be designed based on the handling requirements

set forth in the Aeronautical Design Standard (ADS)-33 [33].

1.3 Review of Helicopter Landing Gear Modeling

Landing gear modeling generally focuses on two parts: (1) a shock absorbing oleo strut

and (2) a rubber tire that provides surface traction and transfers the loads between the

deck and aircraft. The strut consists of an air spring and oil damper. Vertical motion

of the strut pushes oil into an air-filled chamber through an orifice, producing spring and

damping resistances [34]. Two landing gear models were presented in Ref. 35. In the

first model, the strut was represented by a nonlinear spring damper system and the tire

by a linear undamped spring. Both were assumed to be massless and produced reaction
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forces in the vertical direction only. In the second model, the strut was represented by

a two stage nonlinear spring damper system which produced stiffer restoring forces once

gear deflection exceeded a prescribed threshold. The study was rudimentary and modeled

the helicopter as a large mass connected to one strut and tire. A subsequent study [36]

considered three landing gears, each based on a three-dimensional nonlinear spring-damper

system, illustrated in Fig. 1.6. The planar stiffness coefficients used in the model were

Figure 1.6: Massless 3D landing gear model [36].

based on actual tire properties provided in Ref. 37. The landing gears successfully brought

the vehicle to rest in drop test simulations performed on inclined and sinusoidal rolling

decks. However, the study ignored rotor aerodynamics. A model that accounts for the

inertial effects due to strut deflection, shown in Fig. 1.7, was introduced in Refs. 38 and

39. When the ground reaction force exceeded the preload setting of the strut, the unsprung

mass experienced an acceleration, generating a restoring force in the strut. In other cases,

the tire reaction force was transferred directly onto the airframe with zero strut deflection.

More sophisticated tire models have been developed to study on-deck maneuvers [40, 41].

These are however beyond the scope of this dissertation.
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Figure 1.7: Landing gear model with an unsprung mass [38, 39].

1.4 Review of Ground Effect Modeling

The influence of a level ground on rotor performance has been extensively studied through

experiments [42–49], shown in Fig. 1.8, with power reductions as high as 30-60% noted

during hover close to ground. More recently, the influence of an inclined or a moving

ground plane on rotor performance was examined through flight tests and laboratory-scale

experiments [50, 51]. Rotor performance was found to be sensitive to disc loading, in

addition to the hub height above the ground plane and the thrust/power setting. For low

disc loadings, inclined ground resulted in lower power consumption, when compared to

a level ground. For high disc loadings, ground inclination caused rotor power to exceed

out-of-ground-effect (OGE) power requirements, a trend not observed in previous conven-

tional ground effect studies. Experiments in Ref. 51 showed that sinusoidal pitching of

the ground plane generated sinusoidal fluctuations in the hub pitching moment, and a sinu-

soidal heaving ground motion resulted in variations as high as 20% in rotor thrust.
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Figure 1.8: Experimental data showing the influence of ground effect on power require-
ments for constant thrust; adapted from Fig. 4 of Ref. 49.

Ground effect is traditionally modeled using a simple empirical correction factor kG,

which is a function of rotor height from the ground zh, and rotor thrust or power [48]. The

factor is readily amenable to incorporation in flight dynamic models, but is not accurate for

zh/R < 0.5, where R is the rotor radius. Accurate ground effect modeling can be achieved

using CFD [52, 53] or free-wake models [54, 55], but these tend to be computationally

expensive. In Ref. 56, ground effect was modeled using dynamic inflow models and an

image rotor to satisfy the impermeable surface BC as illustrated in Fig. 1.9. The primary

Figure 1.9: Illustration of the image rotor model.
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advantage of using an image rotor method is its simplicity and the fact that the BC is

satisfied at any given instant of time. However, for hover, the two rotors are placed in

each other’s wake, which cannot be modeled using the usual state-space dynamic inflow

models. Furthermore, superposition of pressures from the actual and image rotors is based

on an implicit assumption that the two rotors share a common free stream direction, which

is not accurate. Also, the image rotor method cannot be used to model inclined and dynamic

surfaces. To overcome these shortcomings, a new approach based on a ground source rotor

was developed in Refs. [57, 58]. The ground is represented by a source distribution that

produces pressure equal and opposite to that exerted by the main rotor on the ground as

shown in Fig. 1.10. The model combines the He-Peters dynamic inflow model [59] with

an additional set of ordinary differential equations (ODE’s) that represent the influence of

ground on the rotor inflow velocity, and accounts for inclined, partial, and dynamic ground

planes. This model has never been applied to the helicopter ship landing problem.

Figure 1.10: Illustration of ground source [58].

1.5 Objectives of this Dissertation

The literature review provided in the previous sections indicates the need for a compre-

hensive first principles based simulation capability for helicopter approach and landing on

a ship deck in the presence of WOD and ground effect. Developing such a capability is

the overall objective of this thesis. An extensively modified version of the HeliUM2 flight
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dynamics simulation code [60], referred to as the “HeliUM2-umich” code, is used. The

specific objectives are to:

1. Document improvements made to the HeliUM2 flight dynamic simulation code to

account for WOD effects on the helicopter components (main rotor, fuselage, em-

pennage and tail rotor), and the inclusion of a ground effect model, a landing gear

model, and a flight control system.

2. Develop a time-accurate DES based WOD model, and integrate it into the flight

dynamic simulation.

3. Develop an FCS capable of stabilizing helicopter dynamics and maintaining a pre-

scribed approach and landing trajectory.

4. Describe the inclusion of a dynamic finite-state ground effect model into the simula-

tion code.

5. Describe the integration of Systematic Characterization Of the Naval Environment

(SCONE) data for simulating ship deck motion into HeliUM2-umich.

6. Simulate complete approach and landing to examine the influence of WOD on heli-

copter response for two cases: WOD affecting the rotor only, and WOD affecting the

entire helicopter.

7. Determine the influence of dynamic ground effect on rotor performance in the pres-

ence of level, inclined, and moving decks.

8. Determine the combined influence of WOD and ground effect on helicopter response

during approach and landing on a moving deck.
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1.6 Dissertation Outline

The thesis is organized as follows: Chapter 2 contains an overview of the baseline HeliUM2

flight dynamics model; Chapter 3 provides details on the approach and landing trajectory

considered in this study, together with a description of the controller design; Chapter 4 de-

scribes the WOD model and its integration into the flight dynamic simulation; landing gear

and ground effect models are described in Chapter 5; Chapter 6 describes the incorporation

of the SCONE data; Chapter 7 presents all the simulation results; and Chapter 8 contains

conclusions and recommendations for future research.
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CHAPTER 2

Flight Dynamics Model (HeliUM2)

A detailed description of the HeliUM2 flight dynamics model is provided for complete-

ness, and background on the integration of components that were incorporated as part of

this study. The HeliUM2 flight dynamics code [60, 61], developed and maintained at the

University of Maryland, is a replacement for the GENHEL flight simulation capability [62]

with improvements such as flexible blade model [63] and the Maryland Free Wake model

[64]. The capability has been used to examine the dynamic response of a UH-60A heli-

copter, which has articulated rotor blades, as well as a BO-105 helicopter with hingeless

blades in steady turns, climb and descent. Vehicle response predictions have been validated

against flight test data [60]. HeliUM2 has also been used for dynamic analysis of the XV-15

tilt rotor aircraft, coaxial rotors, and helicopters towing submerged bodies [60].

The equations of motion representing helicopter dynamics are formulated as a set of

nonlinear first order ODEs in implicit form, given by

f(ẋ, x,u; t) = 0, (2.1)

where x is the state vector and u the control input vector. The implicit formulation, used in

this study, allows for a solution to be obtained without explicit algebraic manipulations.
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The state vector x is given by

x = {xF , xI , xNR}T , (2.2)

where xF contains fuselage rigid body states, xI contains main and tail rotor inflow states,

and xNR contains generalized coordinates representing the main rotor blade motion.

The control input vector consists of main rotor collective, cyclic, and tail rotor collective

inputs and is given by

u = {θ0, θ1c, θ1s, θ0t}T . (2.3)

The various coordinate systems used in the model are described next, followed by a

list of assumptions made. The formulation of the main rotor equations of motions and

fuselage rigid body equations, as well as empennage and tail rotor equations is described

subsequently. This is followed by a description of the final equations of motion and the

DASSL solver [65], used in time-marching. Finally, trim and linearization procedures are

described.

2.1 Coordinate Systems

The different coordinate systems and transformations between them are described next.

2.1.1 Earth-fixed coordinate system

The earth-fixed or gravity coordinate system has its origin at the waterline directly below

the center of gravity (CG) of the helicopter at t = 0 s, with the ẑI axis aligned parallel

to the direction of gravity. The x̂I and ŷI axes are usually taken pointing North and East,

respectively. The coordinate system is illustrated in Fig. 2.1.
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2.1.2 Helicopter body-fixed coordinate system

The helicopter body-fixed frame, shown in Fig. 2.1, is obtained from the earth-fixed frame

using three translations to shift the origin to the CG, followed by three Euler rotations

ψf , θf , φf , which represent the yaw, pitch and roll angular attitudes, respectively, of the

CG. The rotation matrix from gravity to helicopter axes [TBI ] is given by

[TBI ] =


1 0 0

0 cosφf sinφf

0 − sinφf cosφf




cos θf 0 − sin θf

0 1 0

sin θf 0 cos θf




1 0 0

0 cosφf sinφf

0 − sinφf cosφf

 . (2.4)

Therefore, 
îhel

ĵhel

k̂hel

 = [TBI ]


îI

ĵI

k̂I

 . (2.5)

Figure 2.1: Earth-fixed and helicopter body-fixed coordinate systems.
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2.1.3 Wind coordinate system

The wind coordinate system has its center at the CG and its orientation is determined by the

freestream air flow. The x̂W axis points forward, aligned with the freestream velocity. The

ŷW and ẑW axes are perpendicular x̂W and point to starboard and downwards, respectively.

The body-fixed frame is related to the wind axes by the fuselage angle of attack αf and

fuselage sideslip angle βf as shown in Fig. 2.2. The transformation between the two

frames is given by

[TWB] =


cosαf 0 sinαf

0 1 0

− sinαf 0 cosαf




cos βf sin βf 0

− sin βf cos βf 0

0 0 1

 , (2.6)

and thus, 
îW

ĵW

k̂W

 = [TWB]


îhel

ĵhel

k̂hel

 . (2.7)

In this study, aerodynamic coefficients of fuselage are defined relative to the wind co-

ordinate system and obtained using table look-up.

2.1.4 Shaft coordinate system

The rotor shaft is tilted slightly relative to the ẑhel body axis. The purpose of the shaft tilt

angle is to minimize drag in forward flight. The shaft coordinate system has its origin at the

hub with the ẑsh pointing downward along the shaft, the x̂sh axis pointing forward, and the

ŷsh pointing starboard. The shaft tilt is defined by the longitudinal and lateral tilt angles αx

and αy, respectively, illustrated in Fig. 2.3. The transformation matrix between the shaft
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Figure 2.2: Illustration of fuselage sideslip angle, angle of attack, and wind acess.

frame and the body-fixed frame is given by

[TShB] =


cosαx 0 − sinαx

0 1 0

sinαx 0 cosαx




1 0 0

0 cosαy sinαy

0 − sinαy cosαy

 , (2.8)

implying, 
îsh

ĵsh

k̂sh

 = [TShB]


îhel

ĵhel

k̂hel

 . (2.9)

2.1.5 Nonrotating hub coordinate system

The nonrotating hub system has its origin at the hub and is obtained by rotating the shaft

coordinate system by 180◦ about the positive ŷsh axis, as illustrated in Fig. 2.4. The
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(a) (b)

Figure 2.3: Illustration of a) lateral and b) longitudinal shaft tilt angles, exaggerated for
clarity.

transformation between the two frames is given by

[THNRSh] =


−1 0 0

0 1 0

0 0 −1

 . (2.10)

Therefore, 
îHNR

ĵHNR

k̂HNR

 = [THNRSh]


îsh

ĵsh

k̂sh

 . (2.11)

2.1.6 Rotating hub coordinate system

The hub rotating system has its origin at the hub, with the ẑHR axis parallel to the ẑHNR axis.

The x̂HR axis is coincident with the elastic axis of the undeformed blade, and is located at

an azimuth angle ψ, measured from the aft of the rotor disk and positive counterclockwise

when the disk is viewed from the top, as illustrated in Fig. 2.5. The ŷHR axis is a chordwise
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Figure 2.4: Relationship between shaft frame and nonrotating hub coordinate system.

axis positive towards the leading edge. The transformation between the nonrotating and

rotating hub frames is given by

[THRHNR
] =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 . (2.12)

Thus, 
îHR

ĵHR

k̂HR

 = [THRHNR
]


îHNR

ĵHNR

k̂HNR

 . (2.13)

2.1.7 Undeformed, preconed blade coordinate system

The undeformed, preconed blade coordinate system is a rotating system that accounts for

the blade precone angle βp. The origin of the frame is at the blade root. The êx unit vector

is aligned along the blade span and positive outwards, the êy vector is oriented in the blade

chordwise direction, and the êz vector is perpendicular to the the undeformed elastic axis
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Figure 2.5: Relationship between nonrotating and rotating hub frames; adapted from Fig.
2.3 of Ref. 66.

and positive upwards. The relationship between the hub rotating frame and the undeformed,

preconed frame is depicted in Fig. 2.6. The transformation matrix between the frames is

given by

[TPHR ] =


cos βp 0 sin βp

0 1 0

− sin βp 0 cos βp

 . (2.14)

Thus, 
êx

êy

êz

 = [TPHR ]


îHR

ĵHR

k̂HR

 . (2.15)

2.1.8 Deformed blade coordinate system

The deformed blade coordinate system is a rotating frame unique to each point on the

deformed elastic axis as illustrated in Fig. 2.6. The corresponding unit vectors are ê′x, ê
′
y

and ê′z, where ê′x is tangent to the deformed elastic axis, ê′y is aligned with the blade chord

and positive towards the leading edge, and ê′z is normal to the ê′x-ê′y plane and positive
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Figure 2.6: Relationship between rotating hub frame, undeformed, preconed frame and
deformed preconed frames.

upward. The transformation from undeformed to deformed blade coordinates is given by

[TDP ] =


S11 S12 S13

S21 S22 S23

S31 S32 S33

 , (2.16)

where,

S11 = cos θy cos θz,

S12 = cos θy sin θz,

S13 = − sin θy,

S21 = sin θx sin θy cos θz − cos θx sin θz,

S22 = cos θx cos θz + sin θx sin θy sin θz, (2.17)

S23 = sin θx cos θy,

S31 = cos θx sin θy cos θz + sin θx sin θz,
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S32 = − (sin θx cos θz − cos θx sin θy sin θz) ,

S33 = cos θx cos θy,

and where,

θx = φp,

sin θy = − wp,x√
1 + 2up,x + u2

p,x + v2
p,x + w2

p,x

,

cos θy =

√
1 + 2up,x + u2

p,x + v2
p,x√

1 + 2up,x + u2
p,x + v2

p,x + w2
p,x

,

sin θz =
vp,x√

1 + 2up,x + u2
p,x + v2

p,x + w2
p,x

,

cos θz =
1 + up,x√

1 + 2up,x + u2
p,x + v2

p,x + w2
p,x

.

(2.18)

The blades in HeliUM2 are assumed to undergo small strains and moderate deflections,

implying finite rotations. Thus the expressions in Eq. (2.18) simplify to [67]

θx = φp,

sin θy = −wp,x,

cos θy = 1,

sin θz = vp,x,

cos θz = 1.

(2.19)

The deformed and undeformed blade coordinate systems are related as follows


ê′x

ê′y

ê′z

 = [TDP ]


êx

êy

êz

 . (2.20)
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2.1.9 Blade sectional aerodynamic coordinate system

The blade sectional aerodynamic coordinate system is a local coordinate system with its

origin on the deformed elastic axis. The airflow velocity components at the blade section

are represented using this coordinate system. Its unit vectors are eT , eP and eR, defined

such that eT points aft towards the trailing edge, eR is tangent to the elastic axis and points

towards the blade tip, and eP is normal to the eT -eR plane and positive up.

The total blade sectional velocity in the undeformed, preconed coordinate system is

given as

VT = Vxêx + Vyêy + Vz êz. (2.21)

For aerodynamic calculations, VT in Eq. (2.21) is transformed to the blade sectional

aerodynamics coordinate system yielding

VA = UT êT + UP êP + URêR. (2.22)

The transformation is achieved using the following matrix

[TAP ] =


sin vp,x − cos vp,x 0

sinwp,x cos vp,x sinwp,x sin vp,x − coswp,x

coswp,x cos vp,x coswp,x sin vp,x sinwp,x

 , (2.23)

where wp,x and vp,x are the local flap and lag slopes of the blade elastic axis relative to the

undeformed, preconed blade coordinate system, respectively.

The relationship between the undeformed, preconed coordinate system and the blade
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sectional aerodynamics coordinate system is given as


êT

êP

êR

 = [TAP ]


êx

êy

êz

 . (2.24)

2.2 Main Assumptions

The main assumptions used in the formulation of the mathematical model are summarized

next.

2.2.1 Aerodynamic assumptions

1. Aerodynamic coefficients of the main rotor blade sections are provided in the form

of look-up tables derived from wind tunnel tests. Lift, drag and moment coefficients

are tabulated as a function of angle of attack, for Mach numbers ranging from 0.3 to

1.0 in 0.1 increments. The aerodynamic coefficients vary linearly between angle of

attack and Mach number data points.

2. Effects of dynamic stall are not included. Static stall is modeled through table look-

up of lift, drag and moment coefficients.

3. A two-dimensional quasi-steady aerodynamics model is used to calculate the main

rotor aerodynamics loads. The main rotor inflow is modeled by the He-Peters dy-

namic inflow model [59]. Tip losses due to 3D effects are approximated by assuming

the outboard 3% of the blade to be ineffective aerodynamically.

4. Aerodynamic forces and moments on the blade section are based on airflow velocity

at the elastic axis of the blade.

5. The influence of rotor downwash on fuselage and empennage is not modeled.
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6. Fuselage and empennage aerodynamics are derived from wind tunnel tests performed

without the main rotor. Aerodynamic coefficients are tabulated as functions of angle

of attack and sideslip. Stall, compressibility, and unsteady aerodynamic effects are

neglected for the fuselage and empennage.

2.2.2 Inertial and structural assumptions

1. The airframe is a rigid body with a constant mass and the x̂hel-ẑhel plane is a plane

of symmetry.

2. The undeformed blade is straight with no sweep, droop or torque offsets.

3. Flap, lag and pitch hinges when present are coincident.

4. Blade cross sections are symmetric with respect to the major principal axes.

5. The blade cross sectional area centroid and elastic axis are coincident, thus the ten-

sion center is also coincident with the elastic axis. However, cross sectional centers

of gravity, aerodynamic centers, and elastic axes need not be coincident.

6. Blade chord, built-in twist, stiffness and mass properties, and cross-sectional offsets

are defined at discrete spanwise stations, and vary linearly in between.

7. It is assumed that the blades are linearly elastic.

8. All blades have identical mass, stiffness, and geometric properties.

9. Euler-Bernoulli beam theory is used, and thus plane cross sections remain plane and

perpendicular to the elastic axis after deforming. Effects of shear deformation are

ignored.

10. The blade undergoes small strains and moderate deflections, implying finite rotations.
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11. The main rotor operates at a constant angular speed Ω. Engine and engine control

system dynamics are not modeled.

12. The blade pitch control system is infinitely stiff. Freeplay in the control linkages is

ignored. The swashplate and tail rotor collective controls are attached rigidly to pilot

controls.

2.2.3 UH-60A helicopter modeling assumptions

1. The blade is assumed to be rigid in flap, lag and torsion inboard of the flap and lag

hinges.

2. The pitch angle of the horizontal stabilizer is fixed for a given flight condition, and

control logic for automatic positioning of the stabilizer is not modeled.

2.3 Main Rotor Model

Each rotor blade is modeled as an isotropic Euler-Bernoulli beam undergoing small strains

and moderate deflections with coupled nonlinear flap-lag-torsional dynamics. The blade

can have both rigid and flexible degrees of freedom (DOFs). The flexible DOFs are dis-

cretized using finite elements (FEs). The flap and lag bending DOFs are modeled using

cubic Hermite interpolation, and the torsional DOF is based on quadratic Hermite interpo-

lation. The beam elements are assumed to be inextensional, thus eliminating the axial DOF.

Each element has 11 DOFs: flap, lag bending displacements and slopes at each end, and

torsional deflection at each end and midpoint of the element. The FE DOFs are reduced

using a modal transformation. The global aerodynamic, inertial, structural and tensile load

vectors FA, FI , FS and FT , respectively, are calculated using Gaussian quadrature. For

articulated rotors, the effect of lag dampers is modeled as moments acting at the hinge lo-

cation, represented by the damping load vector FD. The final rotor equations of motion are
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obtained by combining the various load vectors.

2.3.1 Main rotor aerodynamic loads

The aerodynamic load formulation begins with the position vector Rp of a point Pb on the

elastic axis of the blade

Rp = RCG + RH + RB, (2.25)

where RCG is the position vector of the vehicle CG with respect to the inertial frame, RH

is the position vector of the hub relative to the body-fixed frame, and RB is the position

vector of the point on the elastic axis of the blade, relative to the rotating hub frame. The

position vector RH is given by

RH = xH îhel + yH ĵhel + zH k̂hel, (2.26)

where xH , yH and zH are the components of the position vector from the CG to the hub.

The position vector RB, is given by

RB = êiHR + (xp0 + up)êx + vpêy + wpêz, (2.27)

where e is the hinge offset from the axis of rotation, îHR is a unit vector of the hub rotating

system and êx, êy and êz are unit vectors of the undeformed, preconed frame. The elastic

portion of the blade starts at the hinge, and inboard from this point the blade is assumed

rigid. The term xp0 is the distance from the hinge location to the point Pb on the elastic axis

of the undeformed section and up, vp and wp are the elastic deflections of the point from

the undeformed blade coordinate system. Equation (2.27) is expressed in the undeformed,

preconed coordinate system using the transformation in Eq. (2.14) as

RB = (e cos βp + xp0 + up)êx + vpêy + (wp − sin βp)êz, (2.28)
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where βp is the blade precone angle.

The absolute velocity VP of the point Pb is given by:

Vp =
dRP

dt
=
dRCG

dt
+
dRH

dt
+
dRB

dt
. (2.29)

where

dRCG

dt
= ûihel + v̂jhel + wk̂hel, (2.30)

dRH

dt
=

∂RH

∂t
+ ω ×RH , (2.31)

dRB

dt
=

∂RB

∂t
+ ω ×RB, (2.32)

and where u, v and w represent the CG velocity components in the body-fixed frame, and

ω is the angular velocity vector of the CG given by

ω = p̂ihel + q̂jhel + rk̂hel, (2.33)

with p, q and r representing the roll, pitch and yaw rates, respectively.

The term ∂RH/∂t in Eq. (2.31) is zero since the hub is rigidly connected to the fuse-

lage. The ∂RB/∂t term in Eq. (2.32) is the velocity vector of the blade point as seen by an

observer moving with the body-fixed axes, and is given by

∂RB

∂t
=

(
∂RB

∂t

)
R

+ Ω×RB (2.34)

where
(
∂RB

∂t

)
R

is the velocity vector of the point relative to the hub rotating frame and Ω

is the angular velocity vector of the main rotor

Ω = Ωk̂sh, (2.35)
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where Ω is the rotor speed.

The absolute velocity of the point on the elastic axis of the blade in Eq. (2.29) therefore

becomes

Vp =
dRCG

dt
+

(
dRB

dt

)
R

+ Ω× RB + ω × [RH + RB]. (2.36)

The total velocity VT at the blade section is obtained by subtracting the inflow velocity

VI

VT = Vp − VI . (2.37)

The inflow velocity VI is subtracted because it represents the velocity of flow with respect

to the blade, as opposed to the velocity of blade point. The absolute velocity Vp in Eq.

(2.36) is expressed in the undeformed, preconed coordinate system as

Vp = V11êx + V12êy + V13êz, (2.38)

where V11, V12 and V13 represent the components of the velocity vector of the point Pb on

the blade elastic axis. The inflow velocity VI is similarly expressed in the undeformed

preconed coordinate system as

VI = λxêx + λyêy + λzêz (2.39)

with λx = λy = 0 in this study. Using Eqs. (2.38) and (2.39), the total velocity VT in Eq.

(2.37) is given by

VT = V11êx + V12êy + (V13 − λz)êz. (2.40)

The velocity vector VT represents the total velocity of the blade section as it moves

through air. For aerodynamic calculations however, the velocity of air at the blade point is
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needed. The expression for VT in Eq. (2.40) is thus negated

VTF = − [V11êx + V12êy + (V13 − λz)êz] , (2.41)

= Vxêx + Vyêy + Vzêz, (2.42)

and transformed to the blade sectional aerodynamics coordinate system using Eq. (2.23),

yielding

VA = UT êT + UP êP + URêR, (2.43)

where VA is the resultant velocity of the airflow at the 1/4-chord location, UT is positive for

flow from the leading edge to the trailing edge, UP is positive upwards, and UR is positive

radially outwards.

Following a legacy convention from GENHEL [62], a flight simulation program that

HeliUM2 is replacing, the flow yaw angle γI and angle of attack αY at the blade section

are determined as

cos(γI) =
|UT |√
U2
T + U2

R

, (2.44)

tan(αY ) =
(UT tan(θG) + UP ) cos(γI)

UT − UP tan(θG) cos2(γI)
, (2.45)

where θG is the total blade section geometric pitch given by

θG = θ0 + θ1c cos(ψ + ∆sp) + θ1s sin(ψ + ∆sp) + θTW + φp, (2.46)

and where θ0 is the blade collective pitch angle, θ1c and θ1s are the lateral and longitudinal

cyclic pitch components, respectively, ψ is the blade azimuth angle, ∆sp is the swash plate

phase angle, θTW is the built-in twist at the blade section, and φp is the elastic twist at the

blade section. The swash plate phase angle is an azimuth offset used to correct the phase

response of articulated rotor blades with offset hinges [39].
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A two-dimensional quasi-steady aerodynamic model is used to compute the aerody-

namic loads at the blade point. Lift, drag, and moment coefficients are obtained from table

look-up [39] as a function of local Mach number Ma and corrected angle of attack αT ,

which is computed using αY in Eq. (2.45) as

αT = αY cos(γI). (2.47)

Thus,

CL = CL(Ma, αT ), (2.48)

CD = CD(Ma, αT ), (2.49)

CM = CM(Ma, αT ). (2.50)

The sectional lift force is given by [68]

Lp = LQ +
1

2
aρ(bR)2Vp0α̇ (2.51)

where a is the lift curve slope, ρ is the air density, b is the nondimensional half-chord length,

R is the blade radius, and α̇ is the time rate of change of the total blade section pitch angle

θG from Eq. (2.46). The velocity magnitude of the incoming flow Vp0 is calculated as

Vp0 =
√
U2
T + U2

P + U2
R, (2.52)

and the quasi-steady lift LQ is given by

LQ = aρbRV 2
p0

[
α +

ḣ

Vp0
+

α̇

Vp0
(bR− xA)

]
(2.53)

where xA is the cross sectional aerodynamic center offset from the elastic axis, c is the blade
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chord, and ḣ is the plunge rate of the point on the blade elastic axis. The term α +
ḣ

Vp0
represents the angle of attack αT used to obtain the lift coefficient CL in Eq. (2.48). Thus,

the HeliUM2 implementation of the quasi-steady lift equation is [61]

LQ = aρbRV 2
p0

[
αT +

α̇

Vp0
(bR− xA)

]
= ρbRV 2

p0

[
αTa+

aα̇

Vp0
(bR− xA)

]
= ρbRV 2

p0

[
CL +

aα̇

Vp0
(bR− xA)

]
=

1

2
ρcV 2

p0

[
CL +

aα̇

Vp0

( c
2
− xA

)]
, (2.54)

where CL = αTa, and c/2 = bR.

The blade sectional moment about the elastic axis is given by

Mp =
1

2
CMρV

2
p0c

2 + LQxA −
1

2
aρVp0α̇(bR− xA)(bR)2 (2.55)

The first component represents the steady pitching moment resulting due to CM from table

look-up, the second is due to the quasi-steady lift in Eq. (2.53), and the third represents

the non-circulatory pitch damping contribution. Note that the Theodorsen’s lift deficiency

functionC(k) = 1 in Eqs. (2.51) and (2.55) [68], and apparent mass terms are not included.

The blade sectional drag force is given by

Dp =
1

2
CDρV

2
p0c (2.56)

where CD is obtained from table look-up.

The aerodynamic lift Lp and drag Dp forces in Eqs. (2.51) and (2.56), respectively,

are transformed to the local blade sectional aerodynamics coordinate system following a
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GENHEL convention as follows:

fT =
1

Vp0
[DpUT − LpUP cos γI ] , (2.57)

fP =
1

Vp0

[
Lp

UT
cos γI

+DpUP

]
, (2.58)

fR =
1

Vp0

[
DpUR − Lp

UP cos γIUR
UT

]
, (2.59)

where fT , fP and fR represent the tangential, perpendicular, and radial aerodynamic loads

per unit span, along the eT , eP and eR unit vectors, respectively. Similarly, the aerodynamic

moment in the blade sectional aerodynamics frame is given by

Mp =
1

2
CMρV

2
p0c

2 + fP
LQ
L
xA cos θG + fT

LQ
L
xA sin θG −

1

8
aρVp0c

2α̇
( c

2
− xA

)
.

(2.60)

The distributed aerodynamic loads are obtained by converting the force components fP ,

fT and fR to the undeformed preconed blade coordinate system using the inverse of matrix

[TAP ], shown in Eq. (2.23). The resulting distributed aerodynamic forces are given by

pA = (fP cos ζ sin β − fT sin ζ − fR cos ζ cos β) êx

+ (fP sin ζ sin β + fT cos ζ − fR sin ζ cos β) êy

+ (−fP cos β − fR sin β) êz

= pAxêx + pAyêy + pAzêz, (2.61)

and the distributed aerodynamic moments by

qA = (−Mp cos ζ cos β)êx − (Mp sin ζ cos β)êy − (Mp sin β)êz

= qAxêx + qAyêy + qAzêz. (2.62)
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2.3.2 Main rotor inertia loads

The distributed inertial forces and moments are given by

pI = −
∫
Ab

ρb(aP + gk̂I)dAb

= pIxêx + pIyêy + pIzêz, (2.63)

qI = −
∫
Ab

ρb

[
(yp0ê

′
x + zp0ê

′
y)× (aP + gk̂I)

]
dAb

= qIxêx + qIyêy + qIzêz (2.64)

where ρb is the mass density of the blade, yp0 and zp0 are coordinates of a generic mass

point on the cross section Ab, and gk̂I is the contribution due to gravity with k̂I being the

z-component of the inertial coordinate system described in Section 2.1.1. Note that the

contribution due to gravity is usually ignored.

The inertia loads in Eqs. (2.63) and (2.64) depend on the absolute acceleration of the

current blade point, aP which is calculated by taking time derivatives of the position vector

RB of the point Pb, given by

RB = êiHR + (xp0 + up)êx + vpêy + wpêz+yp0ê
′
y + zp0ê

′
z, (2.65)

where the underlined terms represent the distance of the point from the elastic axis.

The position vector RB in Eq. (2.65) is expresssed in the undeformed preconed coor-

dinate system using the transformation matrices in Eqs. (2.14) and (2.16)

RB =
[
(e cos βp + up) + x0+S21yp0 + S31zp0

]
êx +[

vp+S22yp0 + S32zp0

]
êy +

[
wp − sin βP+S23yp0 + S33zp0

]
êz. (2.66)

The absolute velocity of the blade point Vp is that same as that in Eq. (2.29), with the

exception of the RB vector which is defined in Eq. (2.66). The acceleration of the blade
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point aP is thus given by

aP =
d2RCG

dt2
+
∂2RB

∂t2
+ 2ω × ∂RB

∂t
+ ω̇ × (RB + RH) +

ω × [ω × (RB + RH)],
(2.67)

where
d2RCG

dt2
= u̇̂ihel + v̇̂jhel + ẇk̂hel, (2.68)

and

∂2RB

∂t2
=

(
∂2RB

∂t2

)
R

+ Ω̇×RB + 2Ω×
(
∂RB

∂t

)
R

+ Ω× (Ω×RB) . (2.69)

2.3.3 Main rotor structural loads

Each rotor blade is modeled as an isotropic Euler-Bernoulli beam undergoing small strains

and moderate deflections with coupled nonlinear flap-lag-torsional dynamics. The strain

components for a point on the blade section are given by

εxx =
1

2
(Gx · Gx − 1) , (2.70)

εyy =
1

2
(Gy · Gy − 1) , (2.71)

εzz =
1

2
(Gz · Gz − 1) , (2.72)

εxy =
1

2
(Gx · Gy) = 0, (2.73)

εxz =
1

2
(Gx · Gz) = 0, (2.74)

εyz =
1

2
(Gy · Gz) = 0, (2.75)

where the vectors Gx, Gy and Gz represent spatial derivatives of the position vector of a

generic point on the deformed blade RB in Eq. (2.65). The shear stresses εxy, εxz, and εyz

in Eqs. (2.73) to (2.75) are zero due to the Euler-Bernoulli assumption. The expressions

38



for Gx, Gy and Gz, assuming a rigid cross section, are given by

Gx =
∂RB

∂x
= (1 + up,x)êx + vp,xêy + wp,xêz +

yp0(−κyê′x + τ ê′z) + zp0(−κzê′x + τ ê′y), (2.76)

Gy =
∂RB

∂y
= ê′y, (2.77)

Gz =
∂RB

∂z
= ê′z, (2.78)

where κy and κz are the blade curvatures and τ is the elastic twist of the deformed blade

section. These, in turn, are given by

κy = −ê′x · ê′y,x = −(S11S21,x + S12S22,x + S13S23,x), (2.79)

κz = −ê′x · ê′z,x = −(S11S31,x + S12S32,x + S13S33,x), (2.80)

τ = −ê′y · ê′y,x = −(S21S21,x + S22S22,x + S23S23,x), (2.81)

where the Sij operators are given in Eq. (2.16).

The stress-strain relationship for the linearly elastic and isotropic blade is given by



σxx

σyy

σzz

σxy

σxz

σyz



=



E 0 0 0 0 0

0 E 0 0 0 0

0 0 E 0 0 0

0 0 0 2Gs 0 0

0 0 0 0 2Gs 0

0 0 0 0 0 2Gs





εxx

εyy

εzz

εxy

εxz

εyz



(2.82)

where E is Young’s Modulus, Gs is the shear modulus of the material, and the strains

are given in Eqs. (2.70) to (2.75). Following the Euler-Bernoulli hypothesis, flap and lag

bending do not contribute to the shear stresses σxy and σxz in Eq. (2.82). However, small

contributions due to torsion are present [67].
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The stress-force relationship is given by

Fss = Tpê
′
x + Fsyê

′
y + Fszê

′
z =

∫ ∫
Ab

t dAb, (2.83)

Mss = Mxê
′
x +Myê

′
y +Mzê

′
z =

∫ ∫
Ab

d× t dAb, (2.84)

where

d = yp0ê
′
y + zp0êz, (2.85)

t = σxxê
′
x + σxyê

′
y + σxzê

′
y. (2.86)

Equations (2.83) and (2.84) are used to establish force and moment equilibrium expres-

sions for a slender rod [67], from which the structural moment Mss at the blade point is

obtained

Mss = MT êx +MF êy +MLêz, (2.87)

where MT ,MF and ML represent torsional, flap, and lag structural operators, respectively,

and are given by

MT (vp, wp, φp) = Mt1 −Mt0, (2.88)

MF (vp, wp, φp) = Mf2 −Mf1, (2.89)

ML(vp, wp, φp) = Ml2 −Ml1, (2.90)

with

Mt1 = GJ (φp,x + vp,xxwp,x) , (2.91)

Mt0 = −1

2
(EI2 − EI3) sin 2θG

(
v2
p,xx − w2

p,xx

)
+

(EI2 − EI3) cos 2θG (vp,xx + 2φpwp,xx) , (2.92)

Mf2 = (EI2 − EI3) sin 2θG (vp,xx + 2φpwp,xx) + (EI2 − EI3) cos 2θGφpvp,xx +
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(
EI2 sin2 θG + EI3 cos2 θG

)
wp,xx, (2.93)

Mf1 = GJφp,xvp,xx, (2.94)

Ml2 =
(
EI2 cos2 θG + EI3 sin2 θG

)
vp,xx + (EI2 − EI3) sin 2θG (wp,xx + 2φpvp,xx)

+ (EI2 − EI3) cos 2θGφpw,pxx, (2.95)

Ml1 = GJφp,xwp,xx. (2.96)

The quantities EI2, EI3 and GJ represent flap bending, lag bending and torsional stiff-

nesses, respectively. The subscripts 0, 1, and 2 indicate the number of times the structural

moment operators in Eqs. (2.91) to (2.96) have to be integrated by parts. Note that Eqs.

(2.91) to (2.96) were derived using an ordering scheme [67].

2.3.4 Main rotor tensile loads

Similar to the components of the stuctural moment in Eq. (2.87), the tension-induced loads

are based on the equations of equilibrium of a deformed rod [67], and are given by

pT = TpS12êy + TpS13êz, (2.97)

where Tp is the tension along the êx unit vector, and S12 and S13 are elements of the transfor-

mation matrix from the undeformed preconed frame to the deformed preconed frame given

in Eq. (2.16). Since the blades are assumed to be inextensional, axial dynamics along êx

are not considered. Note that the components of pT in Eq. (2.97) have to integrated by

parts once to yield the actual tensile forces [67].

2.3.5 Main rotor lag damper loads

A lag damper model based on the actual lag damper of a UH-60A helicopter [39] is em-

ployed in this study. Loads generated by the lag damper are dependent on the rate of
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change of the relative position of the damper’s pick-up, which refers to the location where

the damper connects with the blade. For a flexible blade, an effective flap and lag angle is

defined, based on the location of the lag damper pick-up

δflap =
wLD
xLD

, (2.98)

δlag =
vLD
xLD

, (2.99)

where xLD is the span location of the lag damper pick-up and wLD and vLD are the elastic

deflections at the lag damper pick-up.

The moments about the blade flapping and lagging hinges are given by:

MLDβ = − FLD
|rLD|

(rLDzd3 + rLDxd5 sin θLD) , (2.100)

MLDζ = − FLD
|rLD|

[d5 cos θLD (rLDx cos δflap − rLDz sin δflap) +

rLDy (d3 cos δflap + d5 sin θLD sin δflap)], (2.101)

where FLD represents the axial damping force, which is a nonlinear function of the rate of

change of extension or contraction of the lag damper [39], and is given by

FLD = FLD (|ṙLD|) . (2.102)

The position vector of the lag damper pick-up, relative to the shaft coordinate system

described in Section 2.1.4, is given as

rLD =


rLDx

rLDy

rLDz

 , (2.103)
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where

rLDx = d1 sin δflap + d2 cos (δlag + δ0) cos δflap + d3 + d4 sin (δlag + δ0) cos δflap,

rLDy = −d5 cos θLD − d2 sin (δlag + δ0) + d4 cos (δlag + δ0) ,

rLDz = d1 cos δflap − d5 sin θLD − d2 sin δflap cos (δlag + δ0)

−d4 sin δflap sin (δlag + δ0) , (2.104)

and where δ0, d1, d2, d3, d4 and d5 are lag damper geometry constants, and δflap and δlag

are the effective flap and lag angles of the blade from Eqs. (2.98) and (2.99), respectively.

The lag damper pitch angle, θLD is given by

θLD = θ0 + θ1c cosψ + θ1s sinψ + θGLD, (2.105)

where θ0, θ1c and θ1s are control input angles and θGLD is an additional lag damper geom-

etry constant.

The effect of the lag damper is considered to be the application of a pure moment at the

root of the blade where the hinge is loacted. The moment MD generated by the damper is

given by

MD = MDxêx +MDyêy +MDzêz, (2.106)

where the individual components are obtained after transforming the expressions in Eqs.

(2.100) and (2.101) from the shaft coordinate system to the undeformed, preconed coordi-

nate system.

2.3.6 Finite element discretization

Blade flexible DOFs are discretized using FEs. The blade loads described in the previous

sections are nonlinear partial differential equations (PDEs). A finite element procedure
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based on the Galerkin method of weighted residuals [69] is implemented to transform the

equations to ODEs, which are subsequently coupled with the rest of the flight dynamic

model. The Galerkin FE method allows for the spatial discretization of the governing

PDEs directly, without resorting to energy based approaches which can require a signifi-

cant amount of algebraic manipulations [69]. The method is combined with the HeliUM2

implicit formulation to obtain the governing nonlinear blade equations of motion.

2.3.6.1 Beam finite element model

Each blade is divided into Ne finite elements, each with 11 degrees of freedom: flap and

lag bending displacements and slopes at each end of the element, and torsional deflection

at the two ends and midpoint of the element, represented symbolically as

yi =


yv

yw

yφ

 , (2.107)

where

yv = {vp0, vp0,x, vp1, vp1,x}T , (2.108)

yw = {wp0, wp0,x, wp1, wp1,x}T , (2.109)

yφ = {φp0, φp 1
2
, φp1}T , (2.110)

with vp, wp and φp representing the lag, flap and torsional deflections at the nodes, respec-

tively, “, x” terms representing slopes of the deflections, and “0”, “1/2” and “1” repre-

senting the start tip, midpoint and end tip of the element, respectively. Axial DOF is not

modeled.

The deflections and slopes at any spanwise location xe within the element are computed
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using Hermite interpolation polynomials, given, for flap and lag bending, by

Hv(xe) = Hw(xe) =



1− 3η2
x + 2η3

x

ηx(1− 2ηx + η2
x)l

3η2
x − 2η3

x

ηx(−ηx + η2
x)l



T

, (2.111)

and for torsion by

Hφ(xe) =


1− 3ηx + 2η2

x

4ηx − 4η2
x

−ηx + 2η2
x



T

, (2.112)

where l is the length of the element, and ηx = xe/l.

The deflections at location xe are calculated as

vp(xe) = Hv(xe)yv(t) (2.113)

wp(xe) = Hw(xe)yw(t) (2.114)

φp(xe) = Hφ(xe)yφ(t) (2.115)

where yv, yw and yφ are the nodal lag, flap and torsional deflection and slope vectors from

Eq. (2.107). Spatial and temporal derivatives of the deflections at xe are readily obtained

using Eqs. (2.113) to (2.115), which employ separation of variables.

Using the Hermite polynomials, the nodal inertia load vector associated with the ith

element is calculated as

pIi =

∫ li

0


pIyHv (xe)

pIzHw (xe)

qIxHφ (xe)

 dx (2.116)

where pIy, pIz and qIx are components of the distributed inertial loads pI and qI defined

in Eqs. (2.63) and (2.64) in Section 2.3.2. The nodal aerodynamic, structural, tensile and
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damping load vectors, pAi, pSi, pTi, and pDi , respectively, are obtained in a similar manner.

Note that the integrations are performed using Gaussian weighted summation [70] in the

HeliUM2 code.

2.3.6.2 Assembly of global load vectors

The global aerodynamic, inertial, structural, tensile, and damping nodal load vectors FA,

FI , FS , FT and FD, respectively, are obtained using the conventional FE assembly proce-

dure [70], described next.

A blade with Ne = 4 FEs is shown in Fig. 2.7. There are Ndof = 5Nst + Ne = 29

DOFs in the blade, with elements 1-2, 2-3, and 3-4 sharing the {vp1, vp1,x, wp1, wp1,x, φp1},

{vp2, vp2,x, wp2, wp2,x, φp2}, and {vp3, vp3,x, wp3, wp3,x, φp3} DOFs, respectively. The DOFs

are assembled in a global vector yn as

yn =


vn

wn

φn

 , (2.117)

where

vn = {vp0, vp0,x, vp1, v1,x, . . . , vpNe , vpNe,x}T , (2.118)

wn = {wp0, wp0,x, wp1, wp1,x, . . . , wpNe , wpNe,x}T , (2.119)

φn = {φp0, φp 1
2
, φp1, . . . , φpNe}T . (2.120)

The global load vectors are expressed in a similar form to the DOFs in Eq. (2.117). For
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Figure 2.7: DOFs of blade with four FEs; adapted from Fig. 1.15 of [61].

example, the global aerodynamic load vector is given by

FA =


FAv

FAw

FAφ

 , (2.121)

where FAv , FAw and FAφ contain the aerodynamic loads corresponding to vn, wn and φn,

respectively.
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2.3.7 Rotating blade mode shapes

The blade mode shapes and corresponding natural frequencies are calculated using the

rotating blade in vacuo. The blade governing equations in this case are given by

[K] yn = ω2
n [M ] yn, (2.122)

where [M ] is the blade mass matrix, [K] is the blade stiffness matrix and yn is the vector

of nodal displacements from Eq. (2.117). The [M ] and [K] in Eq. (2.122) are calculated

using finite difference approximation.

The mass matrix is obtained using the global inertial load vector FI, which is rep-

resented symbolically as FI(ÿn, ẏn,yn), where ẏn and ÿn are, respectively, the first and

second time derivatives of the global vector of DOFs yn given in Eq. (2.117). Taking

advantage of the implicit formulation employed in HeliUM2, the ith column of the mass

matrix is calculated as

Mi =
FI(ÿi,0,0)− FI(0,0,0)

δpert
, (2.123)

where ÿi = δpert ei, δpert is the perturbation size, and ei is a unit vector with the only

nonzero element in the ith row. The complete mass matrix is obtained by successively

perturbing each element of the nodal acceleration vector.

The stiffness matrix is obtained using the structural, inertial and tension load vectors FS ,

FI , and FT , respectively. The ith column of the stiffness matrix is obtained by perturbing

the ith component of the nodal vector yn as follows

Ki =
FI(0,0,yi)− FI(0,0,0)

δpert
+

FS(0,0,yi)− FS(0,0,0)

δpert

+
FT(0,0,yi)− FT(0,0,0)

δpert
. (2.124)

The blade mode shapes are calculated by solving the eigen problem given in Eq. (2.3.7).
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All eigenvectors contain a combination of flap, lag and torsion. This is due to the elastic

coupling. In this study however, each mode will be referred as a flap, lag or torsion mode,

depending on which one is dominant at the blade tip.

2.3.8 Modal coordinate transformation

The vector yn in Eq. (2.117) contains Ndof = 5Nst + Ne DOFs. A modal transformation

is employed to reduce the number of DOFs. The vector is projected onto a modal space as

follows:

yn = [V ]q, (2.125)

where [V ] is the modal coordinate transformation matrix whose columns contain the rotat-

ing mode shapes of the blade, and q is the vector of generalized coordinates in modal space.

Note that [V ] has dimensions Ndof × Nm, where Nm is the number of modes retained for

the transformation, with Nm � Ndof . The vector of generalized coordinates q becomes

the unknown of the problem. The number of unknowns effectively reduces form Ndof to

Nm for each blade.

2.3.9 Main rotor equations of motion

The final rotor equations of motion are obtained by combining the global vectors FA, FI ,

FS , FT and FD. The vectors are first transformed into modal load vectors using the same

modal coordinate transformation used to reduce the number of degrees of freedom [61]

FAm = [V ]T FA, (2.126)

FIm = [V ]T FI, (2.127)

FSm = [V ]T FS, (2.128)

FTm = [V ]T FT, (2.129)

FDm = [V ]T FD. (2.130)
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The transformed load vectors are subsequently summed, yielding the ODEs represent-

ing blade dynamics [61]

FA + FI + FS + FT + FD = 0. (2.131)

The total number of equations is obtained by multiplying the number of blades Nb by the

number of mode shapes in the modal transformation Nm.

2.4 Fuselage Equations of Motion

The fuselage has 6 rigid body DOFs, where fuselage rotations are represented by Euler

angles. The mathematical model represents the six force and moment equations of equilib-

rium, expressed in the body-fixed frame described in Section 2.1.2,

X = mu̇+m(qw − rv) +mg sin θf ,

Y = mv̇ +m(ru− pw) +mg cos θf sinφf ,

Z = mẇ +m(pv − qu)−mg cos θf cosφf ,

L = Ixxṗ− Ixy q̇ − Ixz ṙ − Iyz(q2 − r2)− Ixzpq + Ixypr − (Iyy − Izz)qr,

M = Iyy q̇ − Ixyṗ− Iyz ṙ − Ixz(r2 − p2)− Ixyqr + Iyzpq − (Izz − Ixx)pr,

N = Izz ṙ − Ixzṗ− Iyz q̇ − Ixy(p2 − q2)− Iyzpr + Ixzqr − (Ixx − Iyy)pq,

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)

combined with the appropriate kinematic relations

φ̇f = p+ q tan θf sinφf + r tan θf cosφf ,

θ̇f = q cosφf − r sinφf ,

ψ̇f = r
cosφf
cos θf

+ q
sinφf
cos θf

.

(2.138)

(2.139)

(2.140)
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The force and moment components on the left hand side of Eqs. (2.132) to (2.137) are

the externally applied loads at the CG, while the right hand side represents inertial forces

and moments due to the rigid body motion of the fuselage in response to the applied loads.

The applied forces and moments are the sum of contributions from the main rotor, tail

rotor, fuselage and empennage and are given by

X = XMR +XTR +XF +XV +XH , (2.141)

Y = YMR + YTR + YF + YV + YH , (2.142)

Z = ZMR + ZTR + ZF + ZV + ZH , (2.143)

L = LMR + LTR + LF + LV + LH , (2.144)

M = MMR +MTR +MF +MV +MH , (2.145)

N = NMR +NTR +NF +NV +NH , (2.146)

where the subscript MR denotes the main rotor, TR the tail rotor, F the fuselage, H the

horizontal tail, and V the vertical tail loads.

The following subsections describe the components of the external forces and moments

that appear in Eqs. (2.141) through (2.146).

2.4.1 Main rotor loads

The contributions from the main rotor to the fuselage loads consists of the sum of the

distributed aerodynamic and inertial loads, integrated along the span of the blade. The

integrated loads are formulated in the undeformed, preconed coordinate system described

in Section 2.1.7. These forces and moments are given by

FR =

∫ 1

e

(pA + pI)dx0, (2.147)

MR =

∫ 1

e

(qA + qI)dx0 +

∫ 1

e

RC × (pA + pI)dx0 + MD, (2.148)
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where pA, pI, qA, qI and MD are defined by Eqs. (2.61), (2.63), (2.62), (2.64) and (2.106),

respectively, and e is the hinge offset. The position vector RC contains the position coor-

dinates of the deflected elastic axis from the offset hinge, and is given by

RC = xp0êx + upê
′
x + vpê

′
y + wpê

′
z. (2.149)

The main rotor loads are transformed to equivalent loads at the CG in the body-fixed

frame. For a single rotor blade, the forces are [61]

FMR =


XMR

YMR

ZMR


= [TShB]−1[THNRSh]

−1[THRHNR
]−1[TPHR ]−1 ×


∫ 1

e
(pAx + pIx)dx0∫ 1

e
(pAy + pIy)dx0∫ 1

e
(pAz + pIz)dx0

 , (2.150)

where the transformation matrices [TShB], [THNRSh], [THRHNR
], and [TPHR ] are defined in

Eqs. (2.8), (2.10), (2.12), and (2.14), respectively.

For an articulated rotor configuration, flap and lag moments due to distributed aerody-

namic and inertia loads are not transferred through the hinge. The moment vector at the

CG for a single blade is given by [61]

MMR =


LMR

MMR

NMR


= [TShB]−1[THNRSh]

−1[THRHNR
]−1[TPHR ]−1


MDx

MDy∫ 1
0 (qAz + qIz)dx0 +MDz


+ [TShB]−1[THNRSh]

−1[THRHNR
]−1[TPHR ]−1 {Re × FR} (2.151)

+ RH × FMR.
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The first term in Eq. (2.151) represents the contribution from the distributed moments at

the various blade sections. The second term introduces contributions due to the hinge offset

from the hub. The position vector from the hub to the hinge Re is given by

Re = êiHNR . (2.152)

The final term in Eq. (2.151) transforms the forces at the hub into moments at the CG using

the position vector of the hub relative to the CG, RH , defined in Eq. (2.26).

2.4.2 Fuselage aerodynamic loads

Aerodynamic loads on the fuselage are based on empirical coefficients obtained from table

look-up [39]. The coefficients are specific to the UH-60A helicopter and are assumed to act

at a specified point referred to as the “aerodynamic center” (AC). The freestream velocities

at the AC are given by

VF = VCG, (2.153)

where VCG is the velocity vector of the CG with components u, v, w along the body-fixed

frame. Note that main rotor downwash is not accounted for in Eq. (2.153). Furthermore,

the offset between the CG and AC is assumed to be small and thus, angular rate velocities

due to the offset are not included.

The dynamic pressure at the AC is given by

qF =
1

2
ρ(u2 + v2 + w2), (2.154)

where ρ is the air density.

The components of the velocity vector VF in Eq. (2.153) are used to determine the
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fuselage angle of attack αf and sideslip angle βf as follows:

αf = tan−1 w

|u|
, (2.155)

βf = tan−1 v√
v2 + w2

. (2.156)

Nonlinear aerodynamic coefficients, defined in the wind coordinate system described in

Section 2.1.3, are obtained from table look-up as a function of αf and βf .

The fuselage aerodynamic loads in the wind axes system are given by [61]

FwF = −qFCDf îW − qFCY f ĵW − qFCLf k̂W, (2.157)

MwF = qFCRf îW − qFCMf ĵW + qFCNf k̂W, (2.158)

where the lift, drag and lateral force coefficients CLf , CDf , and CY f , respectively, have

units of ft2, while the rolling, pitching and yawing moment coefficients CRf , CMf , and

CNf , respectively, have units of ft3 [39].

The forces and moments due to the fuselage aerodynamics, when resolved at the CG,

are given by

FF =


XF

YF

ZF

 = [TWB]−1FwF = [TWB]−1


−qFCDf

−qFCY f

−qFCLf

 , (2.159)

and

MF =


LF

MF

NF

 = [TWB]−1MwF + xFAC × FF , (2.160)

where [TWB] is the transformation matrix from the body-fixed frame to the wind frame

given in Eq. (2.6), and xFAC is the position vector of the fuselage AC relative to the CG.
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2.4.3 Empennage aerodynamic loads

The empennage consists of horizontal and vertical tail surfaces. The aerodynamic load

formulation is based on empirical aerodynamic coefficients obtained from table look-up

[39]. The coefficients are specific to the UH-60A helicopter and were determined from

wind tunnel tests of isolated tail surfaces. The load formulation requires the velocities at

the centers of pressure (COPs) of the surfaces

VH = KHVCG + ω × xH , (2.161)

VV = KV VCG + ω × xV , (2.162)

where KH and KV are empirical factors that define the extent of dynamic pressure losses

at the horizontal and vertical tails, respectively, xH and xV are the positions vectors of the

COPs, and ω is the vector of CG angular rates with components p, q, r. Note that sidewash

and downwash contributions from the main rotor and fuselage are not included in Eqs.

(2.161) and (2.162).

The dynamic pressure at the horizontal and vertical tail surfaces are

qH =
1

2
ρ(u2

H + v2
H + w2

H), (2.163)

qV =
1

2
ρ(u2

V + v2
V + w2

V ), (2.164)

where uH , vH , wH and uV , vV , wV are the components of the velocity vectors VH and VV

defined in Eqs. (2.161) and (2.162), respectively.

The velocities in Eqs. (2.161) and (2.162) are used to determine the angles of attack

and sideslip of the tail surfaces as follows:

αH = tan−1 wH
|uH |

+ θ0H , (2.165)

βH = tan−1 vH√
v2
H + w2

H

, (2.166)
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αV = tan−1 wV
|uV |

, (2.167)

βV = tan−1 vV√
v2
V + w2

V

+ θ0V , , (2.168)

where θ0H and θ0V are the initial angles of incidence of the horizontal and vertical tail

surfaces, respectively. The angles in Eqs. (2.165) to (2.168) are, in turn, used to obtain the

nondimensional lift and drag coefficients of the tail surfaces from table look-up.

The aerodynamic loads at the tail surfaces are obtained using the dynamic pressure

expressions in Eqs. (2.163) and (2.164) and the coefficients from table look-up [61],

FwH = −qHCDHSH îH − qHCLHSH k̂H , (2.169)

FwV = −qVCDV SV îV − qVCLV SV k̂V , (2.170)

where SH and SV are the surface areas of horizontal and vertical tail, respectively.

The forces in Eqs. (2.169) and (2.170) are defined in local wind coordinate systems and

need to be transformed to the body fixed frame. The transformation from the horizontal tail

wind coordinate system, with unit vectors (̂iH , ĵH , k̂H), to the body-fixed frame is given by

[THB] =


cos (αH − θ0H) cos βH cos (αH − θ0H) sin βH − sin (αH − θ0H)

sin βH − cos βH 0

sin (αH − θ0H) cos βH sin (αH − θ0H) sin βH cos (αH − θ0H)

 ,

(2.171)

such that 
îhel

ĵhel

k̂hel

 = [THB]−1


îH

ĵH

k̂H

 . (2.172)

Similarly, the transformation from the vertical tail wind coordinate system to the body-fixed
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frame is given by

[TV B] =


cos(αV − θ0V ) cos βV cos(αV − θ0V ) sin βV − sin(αV − θ0V )

sin βV − cos βV 0

sin(αV − θ0V ) cos βV sin(αV − θ0V ) sin βV cos(αV − θ0V )

 , (2.173)

and thus, 
îhel

ĵhel

k̂hel

 = [TV B]−1


îV

ĵV

k̂V

 . (2.174)

The aerodynamic forces and moments at the CG due to the horizontal tail are thus given

by

FH =


XH

YH

ZH

 = [THB]−1 FwH , (2.175)

MH =


LH

MH

NH

 = xH × FH , (2.176)

and those due to the vertical tail by

FV =


XV

YV

ZV

 = [TV B]−1 FwV , (2.177)

MV =


LV

MV

NV

 = xV × FV . (2.178)
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2.4.4 Tail rotor loads

The tail rotor loads are determined using a simplified model where the blades are rigid,

rectangular and linearly twisted from root to tip. The velocity vector at the tail rotor is

given by

VTR = VCG + ω × xTR, (2.179)

where xTR is the position vector of the tail rotor hub center relative to the CG. The ve-

locities in Eq. (2.179) are transformed from the body-fixed frame to the local tail rotor

coordinate system using two rotations, one about the x̂hel axis by the tail rotor cant angle

ΓTR, and the second about the new ẑ axis by the tail rotor yaw angle ΛTR. The resulting

coordinate transformation is given by

[TTB] =


cos ΛTR − sin ΓTR sin ΛTR cos ΓTR sin ΛTR

0 cos ΓTR sin ΓTR

− sin ΛTR − sin ΓTR cos ΛTR cos ΓTR cos ΛTR

 , (2.180)

and thus, the velocity components of VTR in Eq. (2.179) are obtained in the local tail rotor

coordinate system as 
utl

vtl

wtl

 = [TTB]


uTR

vTR

wTR

 . (2.181)

The nondimensional tail rotor thrust is expressed as [61]

TTR =
2ρπR2

t vItvt (ΩtRt)
2Kblk

m0(ΩR)2
, (2.182)

whereRt is the tail rotor radius, Ωt is the angular velocity of the tail rotor, m0 is a reference

mass per unit length, andKblk is an empirical blockage factor that accounts for the presence

of the vertical tail. The inflow velocity vIt is determined using the Pitt-Peters dynamic
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inflow model [71], with the sine and cosine components of the inflow assumed to be zero.

The nondimensional air velocity magnitude at the tail rotor hub center vt is obtained using

the velocity components from Eq. (2.181) as follows:

vt =

√
u2
tl + v2

tl + (wtl − vItΩtRt)2

ΩtRt

. (2.183)

The nondimensional tail rotor torque is given by

QTR =
CQtρπR

2
t (ΩtRt)

2Rt

m0(ΩR)2R
, (2.184)

where the torque coefficient CQt is a function of the tail rotor blade solidity, advance ratio,

tip loss factor, lock number, lift curve slope, and twist angle.

The thrust and torque loads in the local tail rotor coordinate system are

Ft = −TTRĵt, (2.185)

Mt = −QTRĵt. (2.186)

The tail rotor loads, when resolved at the CG, are

FTR =


XTR

YTR

ZTR

 = [TTB]−1 Ft, (2.187)

MTR =


LTR

MTR

NTR

 = [TTB]−1 Mt + xTR × FTR. (2.188)
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2.5 Final Equations

The final equations are formulated as a set of nonlinear first-order differential equations,

given by

f(ẋ, x,u; t) = 0. (2.189)

The formulation is implicit and thus, no ordering scheme or explicit algebraic manipulation

is required.

For an articulated four-bladed helicopter model with Nm DOFs, the main rotor state

vector is given by

xR = {q1
1R
, q1

2R
, q1

3R
, q1

4R
, q̇1

1R
, q̇1

2R
, q̇1

3R
, q̇1

4R
, . . . , qNm1R

, qNm2R
, qNm3R

, qNm4R
,

q̇Nm1R
, q̇Nm2R

, q̇Nm3R
, q̇Nm4R

}T .
(2.190)

The states in Eq. (2.190) represent blade DOFs in a rotating coordinate frame. A multi-

blade coordinate transformation [72] is used to transform the rotating states to a nonrotating

frame. The resulting rotor states are given by

xNR = {q1
0, q

1
1c, q

1
1s, q

1
2, q̇

1
0, q̇

1
1c, q̇

1
1s, q̇

1
2, . . . , q

Nm
1 , qNm1c , q

Nm
1s , q

Nm
2 ,

q̇Nm1 , q̇Nm1c , q̇
Nm
1s , q̇

Nm
2 }T ,

(2.191)

where qj0, q
j
1c, q

j
1s, and qj2 represent, respectively, the collective, cosine, sine and differential

portions of the jth generalized coordinates.

Assuming a 3-state dynamic inflow model for the main rotor, the final state vector for

the helicopter model is given by

x = {xF , xI , xNR}T , (2.192)
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where the fuselage rigid body and inflow states, respectively, are given by

xF = {x, y, z, u, v, w, p, q, r, φf , θf , ψf}T ,

xI = {λ0, λ1c, λ1s, λt}T .

(2.193)

(2.194)

The control input vector consists of main rotor collective, cyclic, and tail rotor collective

inputs and is given by

u = {θ0, θ1c, θ1s, θ0t}T . (2.195)

HeliUM2 uses the DASSL differential-algebraic equation (DAE) solver [65]. Tradi-

tional ODE solvers require acceleration terms to be on one side of the equations. The

algebraic manipulations involved to obtain such a structure are cumbersome, requiring

simplifying approximations. This issue is avoided using DAE solvers. A DAE system

is expressed as

f(ẋ, x, x̂; t) = 0,

g(x, x̂; t) = 0,
(2.196)

where g represents a system of algebraic equations, and x̂ represent algebraic variables that

do not have a time-dependent counterpart [65]. Comparing Eqs. (2.189) and (2.196), a

system of ODEs forms a special case of the DAE system in which no algebraic equations

g are present. Given initial conditions for x, ẋ and u, the DASSL solver iteratively updates

x, and ẋ until they converge and the residual in Eq. (2.189) approaches zero.

2.6 Helicopter Trim Analysis

The trim state is computed for a specified flight condition, defined by the weight coefficient

CW , vehicle speed V , flight path angle γ, and turn rate ψ̇f . Since only straight flight is

considered in this work, ψ̇f = 0. The trim problem is formulated as a coupled system
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of nonlinear algebraic equations, which enforce force and moment equilibrium about the

body axes, kinematic conditions, and steady state inflow equations.

2.6.1 Trim unknowns

The vector of trim variables is split into three parts [61]

Θ = {ΘB,ΘR,ΘI}T , (2.197)

where ΘB,ΘR and ΘI contain, respectively, trim unknowns associated with the entire

helicopter, main rotor, and the inflow.

The trim variables associated with the entire helicopter ΘB are given by

ΘB = {θ0, θ1c, θ1s, θt, αf , βf , φf , θf , λt}T , (2.198)

where θf is the fuselage pitch angle, φf is the fuselage roll angle, and λt is a constant tail

rotor inflow and is included in the ΘB partition for convenience.

The angles of attack αf and sideslip βf , together with the vehicle speed V are used to

calculate the velocities u, v, and w along the body axes

u = V cosαf cos βf ,

v = V sin βf ,

w = V sinαf cos βf .

(2.199)

(2.200)

(2.201)

The angular velocities p, q, r are zero at trim since ψ̇f = 0.

The blade motion is assumed to be periodic in trim and thus, is approximated by a

truncated Fourier series. The Fourier expansion coefficients of the generalized coordinates
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given in Eq. (2.190) form the main rotor trim unknowns ΘR

qk(ψ) ≈ qkapp(ψ) = ζk0 +

Nh∑
j=1

(
ζkjc cos jψ + ζkjs sin jψ

)
, (2.202)

where ζk0 is the constant expansion coefficient of the kth mode, ζkjc and ζkjs are the coeffi-

cients of the jth harmonic cosine and sine for the kth mode, Nh is the number of harmonics

included in the expansion for each mode, and Nm is the number of modes retained for the

modal coordinate transformation described in Section 2.3.8. The vector of main rotor trim

unknowns ΘR is thus given by

ΘR = {ζ1
0 , ζ

1
1c, ζ

1
1s, ζ

1
2c, ζ

1
2s, . . . ζ

1
Nhc

, ζ1
Nhs

, . . . , ζNm0 , ζNm1c , ζNm1s , ζNm2c ,

ζNm2s , . . . , ζNmNhc, ζ
Nm
Nhs
}T .

(2.203)

The main rotor blades are assumed to be identical and therefore, only one blade is taken

into account in trim analysis.

The ΘI partition contains the values of the dynamic inflow coefficients representing

main rotor inflow

ΘI = {λ0, λ1s, λ1c}T , (2.204)

where a 3-state dynamic inflow model is assumed.

2.6.2 Trim equations

The trim equations for steady maneuvering flight represent a system of nonlinear algebraic

equations

F(Θ) = 0, (2.205)
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which can be divided into body, main rotor and inflow parts as

F(Θ) = {FΘB,FΘR,FΘI}T . (2.206)

The vector FΘB represents a set of nine algebraic equations, which enforce the condi-

tions described next.

1. Force and moment equilibrium

Force and moment equilibrium is enforced by requiring that the translational and ro-

tational accelerations of the aircraft be zero when averaged over one rotor revolution.

For instance, ∫ 2π

0

u̇ dψ = 0, (2.207)

and similarly for v̇, ẇ, ṗ, q̇, and ṙ.

2. Turn coordination equation

The turn coordination condition requires the Y component of the forces acting on

the CG, shown in Eq. (2.133), be zero when averaged over one rotor revolution [73].

That is,

∫ 2π

0

[
sinφf −

ψ̇V

g
(cosαf cosφf + sinαf tan θf ) cos βf

]
dψ = 0. (2.208)

Since ψ̇ = 0 in this study, Eq. (2.208) becomes

∫ 2π

0

sinφf dψ = 0. (2.209)

This equation is valid for an advance ratio µ > 0.1, where the lateral force and

yaw moment from the vertical tail enforces the condition that the average roll angle

be zero [61]. For µ < 0.1, the turn coordination is replaced by an equation which
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enforces a zero average sideslip angle [61]

∫ 2π

0

βf dψ = 0. (2.210)

3. Relationship between angle of attack and Euler pitch angle

The flight path angle γ, angle of attack αf , sideslilp angle βf , roll angle φf and pitch

angle θf need to satisfy the following equation [73]:

∫ 2π

0

[cosαf cos βf sin θf − (sin βf sinφf + sinαf cos βf cosφf ) cos θf

− sin γ] dψ = 0. (2.211)

4. Tail rotor inflow

The tail rotor equation enforces the condition that the tail rotor inflow be constant

when averaged over one rotor revolution

∫ 2π

0

ν̇t dψ = 0. (2.212)

For trim analysis, the main rotor equations of motion, from Eq. (2.131) in Section 2.3.9,

are formulated such that acceleration terms appear on the left hand side as follows [61]:

q̈ = fq(q̇,q), (2.213)

where q are the blade generalized displacements, and q̇ and q̈ the first and second time

derivatives, respectively.

The truncated Fourier series in Eq. (2.202) is used to approximate the first and second
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time derivatives of the generalized coordinates as follows:

q̇k(ψ) ≈ q̇kapp(ψ) = Ω

Nh∑
j=1

(
−ζkjc sin jψ + ζkjs cos jψ

)
, (2.214)

q̈k(ψ) ≈ q̈kapp(ψ) = −Ω2

Nh∑
j=1

(
ζkjc cos jψ + ζkjs sin jψ

)
. (2.215)

A nonzero residual vector is obtained if the vector of approximate solutions qapp is

substituted into Eq. (2.213),

ε(ψ) = q̈app − fq(q̇app,qapp). (2.216)

Following Galerkin’s method, the Fourier coefficients ζk0 , ζkjc and ζkjs are chosen such that

the following equations are satisfied [74]

∫ 2π

0

εk(ψ) dψ = 0, (2.217)∫ 2π

0

εk(ψ) cos jψ, dψ = 0; j = 1, . . . , Nh (2.218)∫ 2π

0

εk(ψ) sin jψ dψ = 0; j = 1, . . . , Nh. (2.219)

The resulting set of algebraic equations make up the FΘR partition of the vector of trim

equations given in Eq. (2.206).

The FΘI partition of the vector of trim equations, given in Eq. (2.206), consists of a

set of equations that ensure the derivative of each dynamic inflow coefficient is zero when

averaged over one rotor revolution. That is,

∫ 2π

0

λ̇0 dψ = 0, (2.220)∫ 2π

0

λ̇1s dψ = 0, (2.221)
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∫ 2π

0

λ̇1c dψ = 0. (2.222)

2.7 Linearization

The equations of motion are linearized about a trim state using a Taylor series expansion

of Eq. (2.189)

f(ẋ, x,u; t) ≈ f(ẋeq, xeq,ueq; t) +
∂f
∂ẋ

∆ẋ +
∂f
∂x

∆x +
∂f
∂u

∆u = 0, (2.223)

where ∆ẋ = ẋ− ẋeq, ∆x = x−xeq and ∆u = u−ueq, and all the derivatives are computed

using finite difference approximations.

Since f(ẋeq, xeq,ueq; t) = 0, Eq. (2.223) becomes

E(t)∆ẋ + F(t)∆x + G(t)∆u = 0, (2.224)

where

E(t) =
∂f
∂ẋ
, F(t) =

∂f
∂x
, G(t) =

∂f
∂u
. (2.225)

Solving Eq. (2.224) for ∆ẋ yields

∆ẋ = ALTP (t)∆x + BLTP (t)∆u, (2.226)

where

ALTP (t) = −E(t)−1F(t), BLTP (t) = −E(t)−1G(t). (2.227)

Equation (2.226) represents a linearized time-periodic (LTP) system where the matrices

A(t) and B(t) are periodic with respect to t. In order to obtain a linear time-invariant (LTI)

system, needed to construct the FCS, the matrices are averaged over one rotor revolution
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as follows:

A0 =
1

2π

∫ 2π

0

ALTP (t) dψ, (2.228)

B0 =
1

2π

∫ 2π

0

BLTP (t) dψ. (2.229)

The final LTI approximation of the system at a trim state is therefore given as

∆ẋ = A0∆x + B0∆u. (2.230)
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CHAPTER 3

Approach Trajectory and its Control

Several capabilities were added to the HeliUM2 flight dynamic code described in Chapter

2. The modified code is referred to as “HeliUM2-umich” and includes provision for a flight

control system (FCS), wind over deck (WOD), landing gear, ground effect, and the SCONE

ship motion data. These components are described in the next four chapters. The present

chapter describes the approach and landing trajectory considered in this dissertation, as

well as the FCS. The trajectory is fixed and established a priori during simulations.

3.1 Approach Trajectory

The helicopter approach trajectory consists of three segments shown in Fig. 3.1: a) steady

level flight, b) descent to a hover position, and c) hover over the ship deck. In this study,

segments (a), (b), and (c) are simulated for 20 s, 76 s, and 10 s, respectively. The steady

level flight speed is denoted as V0 and the altitude as z0.

3.1.1 Velocity profile during descent

In the descent phase of the approach, the vehicle is assumed to follow a straight trajectory

with a constant flight path angle γ shown in Fig. 3.1. The descent begins at an altitude z0,

with velocity V0, and ends in hover at an altitude zf over a specified location on the ship

deck. Table 3.1 provides the values used based on Refs. [10], [12] and [75]. The altitudes
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Figure 3.1: Side view (left), and top view (right) illustrations of the approach and landing
trajectory, figure not to scale.

are relative to sea level and velocities are relative to a stationary ship. Note that the ship

deck is assumed to be 15 ft. above sea level as a result of the ship configuration used.

Table 3.1: Approach trajectory parameters

Parameter Value

z0 300 ft.

V0 60 kts.

zf 30 ft.

Vf 0 kts.

γ 6◦

xd 2570 ft.

x0 4830 ft.

zdeck 15 ft.

The analytical model developed by Heffley [76] is used to determine the velocity pro-

file of the vehicle during the descent phase. Heffley’s model provides a guidance law that

is based on a human pilot’s perception of the visual field during a deceleration maneuver

from forward flight to hover, and has been validated against flight data [76]. During such

a maneuver, peak deceleration occurs when the helicopter is at a horizontal distance of
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approximately 300 ft. from the target hover position. From there on, the helicopter ap-

proaches the deck at slow speeds. Heffley’s model has been used previously in several

studies [29, 77–79]. The horizontal velocity is given by

Ḋ =
−ktD

1 +D/At
, (3.1)

where D is the horizontal distance from the target, kt is a proportionality constant, and

At is the effective size of the region in the pilot’s visual field. The deceleration profile is

obtained by differentiating Eq. (3.1) with respect to time

D̈ =
dḊ

dt
=

d

dt

(
−ktD

1 +D/At

)
=

(1 +D/At)(−kt)Ḋ − (−ktD)(1/At)Ḋ

(1 +D/At)2

=
−kt − ktD/At + ktD/At

(1 +D/At)2
Ḋ

=
−kt

(1 +D/At)2
Ḋ

=
k2
tD

(1 +D/At)
3 . (3.2)

This model is convenient to use since only two parameters, namely the effective size At

and the proportionality constant kt, are needed to define the velocity profile.

To determineAt, an analytical expression for the ratio of the squared horizontal velocity

Ḋ2 to the horizontal deceleration D̈ is needed [76]. This is obtained using Eqs. (3.1) and

(3.2) as follows:

Ḋ2

D̈
=

(
−ktD

1 +D/At

)
k2
tD

(1 +D/At)
3

=

k2
tD

2

(1 +D/At)
2

k2
tD

(1 +D/At)
3

= D

(
1 +

D

At

)
. (3.3)
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An empirical expression for the ratio is provided in Ref. 80 as

Ḋ2

D̈
= c1D

n1 , (3.4)

where c1 = 0.23 ft.−0.36 and n1 = 1.36 are empirical constants. Note that the units for

the empirical constant c1 were not specified in Refs. [76] and [80] and are given here for

dimensional consistency.

The effective size At is determined by matching the Ḋ2/D̈ ratio values from Eqs. (3.3)

and (3.4) over a desired distance D. In this study, the matching was performed using a

MATHEMATICA [81] script. Using D = xd from Table 3.1 , and an initial value of

At = 600 ft., the value used in Ref. [76], an iterative method was used to obtain a final

value of At = 661.72 ft.

The value for kt is determined by substituting the final value for At and the values

D = xd, and Ḋ0 = V0 cos γ from Table 3.1 into Eq. (3.1)

kt =
−Ḋ0(1 + xd/At)

xd
, (3.5)

which yields kt = 0.19/s. Note that this approach differs from the one suggested in Ref.

[76] where a theoretical peak deceleration D̈peak is used to compute kt as follows:

kt =

√
27D̈peak

4At
. (3.6)

The method used in this study directly relates the horizontal velocity Ḋ in Eq. (3.1) to the

initial vehicle speed V0. The resulting velocity and deceleration profiles are shown in Figs.

3.2a and 3.2b.
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Figure 3.2: Helicopter (a) speed and (b) deceleration profiles during descent to hover posi-
tion.

3.2 Controller Design

A Linear-Quadratic Regulator (LQR) based Flight Control System is used to stablize the

inherently unstable UH-60A helicopter model. The FCS generates control inputs at each

time step based on the control law

u = KLQR(xdes − xact) (3.7)

where xdes and xact are the desired and actual state values, respectively. The LQR formula-

tion is described next.

3.2.1 LQR formulation

The gain matrix KLQR is determined by minimizing a cost function

J(u) =

∫ tf

t0

(xTe Qxe + uTRu) dt, (3.8)
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where the Q matrix penalizes magnitude of errors in the system states, xe = xdes − xact,

and the R matrix penalizes magnitude of the control inputs.

In this study, R is chosen to be a 4 × 4 identity matrix, and Q a diagonal matrix of

size NF ×NF corresponding to the NF rigid body DOFs shown in the xF vector from Eq.

(2.193), rewritten here for convenience

xF = {x, y, z, u, v, w, p, q, r, φf , θf , ψf}T . (3.9)

The diagonal elements of the Q matrix are determined by trial and error. As an initial guess,

it was assumed that 0.1 ft. and 0.1 ft/s were acceptable errors for states with units of length

and length/time in Eq. (3.9), respectively. The corresponding Qi weight was given by

Qi =

(
1

0.1

)2

, (3.10)

such that when xe,i = 0.1, x2
e,iQi from Eq. (3.8) equals unity, and when xe,i > 0.1, the value

of x2
e,iQi, and thus that of J(u), is greater than one. For the angular and angular rate states

in Eq. (3.9), errors of magnitude 0.01 rad and 0.01 rad/s were assumed to be acceptable.

The Q weights were tuned to minimize errors between the actual and desired state values

throughout the approach segment of trajectory described in Section 3.1. With the initial

weights, the converged yaw angle had an error of approximately 54◦. After tuning, the yaw

angle error was less than 10◦. The final Q and R matrices were found to be

Q = diag(1 3 2 1 3 2 100 100 2500 100 100 2500), (3.11)

R = diag(1 1 1 1). (3.12)

In this study, the gain matrix KLQR is determined using the standard LQR formulation

implemented in MATLAB, where an LTI approximation of the helicopter dynamics model,
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shown in Eq. (2.230), is used.

3.2.2 Trajectory tracking

The controller is used to track the desired approach profile described in Section 3.1. As

mentioned earlier, the approach trajectory is divided into three segments: a) steady level

flight, b) descent to a hover position, and c) hover over the ship deck. Gain scheduling is

used to update the KLQR matrix during the transition from segment (a), where γ = 0◦, to

segment (b), where γ = 6◦, and also to track the trajectory during segment (b). During the

transition from steady level flight to descent, the controller gains are updated with respect

to γ in 1◦ increments. The process is described next:

1. Linearized models corresponding to trim at V0 and γ = {0◦, 1◦, 2◦, 3◦, 4◦, 5◦, 6◦} are

constructed. The changing approach angle creates a progressive loss in altitude that

needs to be taken into account when generating the linear models. From Fig. 3.1, the

loss is determined as follows:

zloss = V0 sin(γ)∆t. (3.13)

2. The KLQR matrix corresponding to each linearized system is computed.

3. At every time step, KLQR for the current γ is determined by interpolation.

The controller gains for descent segment (b) are updated with respect to V in 2 knot decre-

ments from V0 to Vf . The gain scheduling methodology is similar to that used in Ref.

[29].

3.2.3 Landing

Landing is performed by gradually reducing the main rotor collective input to a value that

produces zero thrust, similar to the approach used in Ref. [4]. This results in a gradual
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axial descent of the helicopter on to the deck. In this phase, since the collective is manually

decreased, the FCS uses only the main rotor cyclic and tail rotor collective inputs to ensure

stability.
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CHAPTER 4

Wind Over Deck

Wind over deck is a critical component of the ship landing problem. The aerodynamics

involved are complex and include energetic flow features with widely varying time scales.

A time-accurate model is therefore necessary. This chapter describes the WOD model used

and its integration into the flight dynamic simulation.

4.1 Description of CFD Method

Airwake due to WOD is obtained from DES of flow over a full-scale Simple Frigate Shape

V2 (SFS2) ship model, depicted in Fig. 4.1. The DES was selected because it provides

a good compromise between the computationally expensive Large Eddy Simulation, and

the lower-fidelity unsteady RANS solution. The CFD simulation is performed using a

commercial finite-volume solver FLUENT [82], executed in the pressure-based mode. A

second-order spatial discretization and a second-order implicit time-integration scheme are

used.

A RANS simulation with the k−ω turbulence model [83] is first carried out to provide

the initial conditions for the subsequent unsteady DES [84]. The RANS equations are

obtained by averaging the Navier-Stokes equations with respect to time. The process yields

a set of equations that can be decomposed into two parts: a mean part and a fluctuating part.

The fluctuating part of the equations, known as the “Reynolds stress”, introduces additional

unknowns, requiring further modeling before the equations can be solved. This is known
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(a)

(b)

Figure 4.1: SFS2 ship geometry—(a) 3D view and (b) top, side and rear views with dimen-
sions.

as the “closure problem”. With the standard k−ω turbulence model, the Reynolds stresses

are related to velocity gradients of the flow through a proportionality constant νt, known

as the “eddy viscosity”, which in turn is a function of turbulent kinetic energy k and the

specific rate of dissipation of the turbulent kinetic energy ω [83]

νt =
ρk

ω
, (4.1)

where ρ is the density of the flow. Values for k and ω in Eq. (4.1) are obtained by solving

two PDEs. The simulation is carried out for 15 s with a time step of 0.01 s. Note that dom-

inant features in the ship airwake have time scales larger than 0.2 s [28]. Upon completion

of the simulation, the solution method is changed from RANS to DES.
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The DES formulation augments the RANS model by allowing for medium to large-

scale turbulent structures to be resolved using LES in regions of high grid resolution. The

LES solution is obtained using a low-pass filter that removes turbulence of the smallest

length scales. The modification in DES relates the turbulent length scale LT to the local

grid size ∆h, such that LES is used when LT > ∆h and RANS is used when LT ≤ ∆h.

The shear stress transport (SST) k − ω turbulence model is employed for closure since it

provides accurate predictions of the onset and amount of flow separation under adverse

pressure gradients [85]. The dissipation of the turbulent kinetic energy k is governed by a

term which includes a parameter fβ∗ . In the standard model, fβ∗ = 1, but in the SST model

[24],

fβ∗ = max
(

LT
CDES∆h

)
, (4.2)

where CDES = 0.61 is a constant in the DES model. When fβ∗ > 1, there is an increase

in the dissipation of k, which in turn causes a decrease in the eddy viscosity νt given in Eq.

(4.1).

After the switch from RANS to DES, the first 2000 steps allow for transition from

steady to time-accurate simulation. The subsequent 120 seconds of simulation data is stored

in tabular form and used for the ship airwake simulation in “HeliUM2-umich”. Twenty-five

iterations are performed per time step. A similar approach was used and validated in Ref.

24.

4.2 Mesh and Boundary Conditions

A hexahedral mesh is used with a near-body cell resolution of (2.25, 1, 2) ft., relative to

the ship frame. The mesh coarsens 40 times in each direction towards the outer boundary.

Taking the height of double-level structure above the deck, which is 40 ft., as the charac-

teristic length Lc, the farfield covers a computational domain of (75, 50, 18.5)Lc. The final

mesh, shown in Fig. 4.2, has 1.95 million cells. The near-body mesh is shown in Fig. 4.3.
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Figure 4.2: Illustration of CFD domain with SFS2 ship outline.

A velocity inlet BC is used due to the incompressible nature of the flow (Ma ≈ 0.05).

A pressure outlet BC is used to ensure the flowfield pressure remains unchanged in the

farfield. The bottom surface is specified as a translational moving wall with the same veloc-

ities used in the inlet BC. The specification of the portside and starboard surfaces depends

on the flow being simulated. Currently, three simulations are performed. These include a

headwind case and two sideslip cases βWOD = {−30◦, 30◦}T , where βWOD is considered

to be positive for winds which come from the starboard side as shown in Fig. 4.4. For the

headwind case, a symmetry BC is specified for both portside and starboard surfaces of the

Figure 4.3: Near-body mesh and domain of interest for WOD.
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Figure 4.4: Definition of positive sideslip angle βWOD.

domain. For the βWOD = −30◦ case, the portside surface BC is set to velocity inlet and the

starboard BC to pressure outlet. For the βWOD = 30◦ case, a pressure outlet BC is specified

for the portside surface and a velocity inlet BC for the starboard surface. A symmetry BC

is imposed for the top surface and the ship is modeled as a wall with a no-slip BC.

4.3 Comparison with Literature

Initial tests to validate the DES approach were performed using the SFS1 ship, a predeces-

sor to the SFS2 ship, shown by the shaded region in Fig. 4.5 [11]. Following the methodol-

Figure 4.5: The SFS1 and SFS2 ship geometries—dimensions are in feet [11].

ogy from Ref. 86, a rectangular domain that is 14.3 Lc units long, 7.5 Lc units wide and 3.5

Lc units high was used, where Lc was taken to be the ship length. The upstream boundary

was placed 3.9 ship lengths ahead of the bow [86]. A hybrid structured/unstructured mesh

was employed. Cells close to the ship structure were modeled using hexahedral blocks,

which transitioned into tetrahedral blocks further away from the ship as illustrated in Fig.
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4.6. The final mesh had 1.1 million cells. A headwind with a speed of 197 ft/s was consid-

Figure 4.6: The SFS1 mesh.

ered [87]. Velocity magnitude contours over the ship are shown in Fig. 4.7. Separation due

to the sharp edges of the structure are apparent. The nondimensional horizontal velocity

distribution across slice A from Fig. 4.7 is shown in Fig. 4.8a, for z = 25 ft. Results from

Ref. 88, which showed good agreement of flow distribution with water tunnel tests, are

also plotted in the figure. The horizontal velocity distribution obtained using DES closely

matches that from Ref. 88. The streamwise velocity distribution shows similar agreement

in Fig. 4.8b. These results give confidence in the DES methodology employed in this study.

Figure 4.7: Contours of velocity magnitude over ship for a headwind at 197 ft/s.
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Figure 4.8: Horizontal WOD velocity distribution over ship for a headwind at 197 ft/s.

4.4 Integration of WOD Model into Flight Dynamics Code

The WOD solution is mapped onto a uniformly distributed grid, shown as the red colored

domain in Fig. 4.3. This domain is 360 ft. long, 315 ft. wide, and 80 ft. high, and is

selected based on work presented in Refs. 1 and 10 . The result of the mapping is a dataset

containing the coordinates of the grid points and the corresponding WOD velocities as a
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function of time. The WOD tables are loaded into the computer memory at the beginning

of the simulation, and the WOD velocities at the helicopter components are calculated via

linear interpolation at each time step during the time-marching simulation.

4.4.1 Coordinate transformation

To access the WOD model, the position coordinates of the helicopter components need to

be expressed relative to the ship frame shown in Fig. 4.1a. The ship frame is obtained from

the helicopter body-fixed coordinate system, described in Section 2.1.2, using three trans-

lations to shift the origin from the helicopter CG to the bottom of the ship bow, followed

by a 180◦ rotation about the positive ŷhel axis. Thus,


îS

ĵS

k̂S

 = [TSB]


îhel

ĵhel

k̂hel

 , (4.3)

where

[TSB] =


−1 0 0

0 1 0

0 0 −1

 , (4.4)

and îS, ĵS , and k̂S are unit vectors of the ship frame. Since the trajectory considered in this

work is known beforehand (see Chapter 3), the initial values for the translational offsets

between the CG and origin of the ship frame are given by

xoff = x0 + xdeck, (4.5)

yoff = 0, (4.6)

zoff = z0, (4.7)
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where x0 = 4830 ft. and z0 = 300 ft. from Table 3.1, and xdeck represents the horizontal

position of the center of the ship deck, which is 410 ft. in this study as evident from Fig.

4.1b. During time-marching, the offsets are updated by taking the distance traveled by the

vehicle into account as follows


xoff

yoff

zoff

 =


x0 + xdeck

0

z0

+ [TBH ]


x

y

z

 , (4.8)

where x, y, and z are the horizontal, lateral, and vertical displacements of the CG from Eq.

(2.193), respectively.

Position coordinates of the fuselage, empennage and tail rotor COPs, relative to the

body-fixed frame, are given by the vectors xFAC , xH , xV and xTR, respectively. For the

main rotor blades, a rigid blade assumption is used to reduce computational cost when

retrieving WOD velocities. The HeliUM2 code is setup such that the deformations at the

various blade span locations are determined individually inside a nested loop, requiring

a total of Nb × Ne × NG calls to the WOD model to obtain the corresponding airwake

velocities, whereNG represents the number of Gauss points in each element. With the rigid

blade assumption, all blade point positions are stored in a vector and the WOD model is

invoked only once, significantly reducing cost. The blade tip deflection is used to establish

an “equivalent” flapping angle βtip for the rigid blade

βtip =
wtip
R− e

+ βp, (4.9)

illustrated in Fig. 4.9.

The position vector xp of a blade point along the span of the rigid blade is expressed in
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Figure 4.9: Straight blade approximation used to obtain WOD velocities for main rotor
blades.

the body-fixed frame as

xphel = [TShB]−1[THNRSh]
−1[THRHNR

]−1[TFHR ]−1 xp, (4.10)

where the transformation matrices [TShB], [THNRSh], and [THRHNR
] are defined in Eqs. (2.8),

(2.10), and (2.12), respectively, and [TFHR ] represents the transformation matrix from the

hub rotating frame to the straight blade axes, and is given by

[TFHR ] =


cos βtip 0 sin βtip

0 1 0

− sin βtip 0 cos βtip

 . (4.11)

Thus, 
êxtip

êytip

êztip

 = [TFHR ]


îHR

ĵHR

k̂HR

 . (4.12)
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4.4.2 Calculation and integration of WOD velocities

The position coordinates of the various blade sections and helicopter components are ex-

pressed in the ship coordinate system using the relation given in Eq. (4.3). The correspond-

ing WOD velocities at these coordinates are obtained from the preloaded WOD velocity ta-

bles using linear interpolation. The resulting velocities are transformed to the component’s

local coordinate system.

The WOD velocity is incorporated into the total velocity at the individual blade sections

in a manner similar to the inflow velocity in Eq. (2.37)

VT = VCG +

(
dRB

dt

)
R

+ Ω× RB + ω × [RH + RB]− VI − VWOD. (4.13)

Note that although a rigid blade assumption is used to access the WOD model, the resulting

WOD velocities are taken into account in the flexible blade model. The actual WOD veloc-

ities at the blade sections may thus differ slightly from the WOD velocities used. The WOD

is included in the fuselage, empennage and tail rotor models by a similar modification of

the velocities at the respective COPs. For the fuselage, Eq. (2.153) becomes

VF = VCG − VWOD. (4.14)

For the tail surfaces, Eqs. (2.161) and (2.162) become

VH = KHVCG + ω × xH − VWOD, (4.15)

VV = KV VCG + ω × xV − VWOD, (4.16)

respectively, and for the tail rotor, Eq. (2.179) becomes

VTR = VCG + ω × xTR − VWOD. (4.17)
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Using the approach described above, the HeliUM2 code is modified such that the heli-

copter experiences WOD velocities as it enters the domain of interest, shown in Fig. 4.3.

Integration of the WOD model into the HEliUM2 time-marching routine is depicted in

Fig. 4.10. The helicopter is trimmed at a given flight condition using the propulsive trim

procedure described in Section 2.6. The trim solution is used as an initial condition for

time-marching. At each time step, the FCS is engaged to maintain the flight condition.

Gain scheduling is employed for changing flight conditions. Values for the current state

vector x, state derivative vector ẋ, and control input vector u are fed to the DASSL solver

which then iterates to achieve convergence and advance the simulation by one time step.

Only one-way coupling between the flight mechanics code and WOD components is con-

sidered. Thus, the downwash from the helicopter is assumed to have no influence on the

ship airwake.

Initial Flight 
Conditions Trim Equations Trim Solution

Extract states, 
state derivatives, 

and control inputs

FCS
(Gain Scheduling)

Trim Guess

Helicopter position 
relative to ship

1. Start simulation

Residuals

2. Trim process 3. Pre-process

Tentative 
Solution

Residuals

Rotor

Fuselage

Tail Rotor

Equations of Motion

Empennage

Current Flight 
Conditions

Airwake velocities, 
coordinate 

transformation

Position coordinates of 
blade sections, 
fuselage and 

empennage COP’s, and 
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WOD Model

Current time

4. Time marching loop

DAE solver internal time loop

WOD integration

Figure 4.10: Flowchart depicting integration of WOD model into HeliUM2.
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CHAPTER 5

Landing Gear and Ground Effect Modeling

It is important to account for landing dynamics and the influence of ground effect on he-

licopter response in the ship landing problem. This chapter describes the spring-damper

based landing gear model employed in this study, as well as the two ground effect models

considered.

5.1 Landing Gear Model

A standard UH-60A configuration with two main gears and one tail gear, shown in Fig. 5.1,

is used in the simulations. The two main gears are referred to as the ‘right’ and ‘left’ gears

when the helicopter is viewed from the rear. The dimensions in Fig. 5.1 are representative

of the full-scale UH-60A helicopter [38]. Each gear is modeled as a massless spring-

Figure 5.1: Landing gear geometry.

damper system in vertical direction, shown in Fig. 5.2. The vertical reaction force is given
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Figure 5.2: Landing gear model.

by

Fgz = Kd+Gḋ. (5.1)

The gear deflection d is calculated as

d = zdeck − zg, (5.2)

where zg is the height of the gear contact point, and zdeck is the height of the point directly

below the gear on the ship deck as shown in Fig. 5.3. Both heights are relative to the inertial

deck frame shown in the figure. Note that the deck axes are parallel to the ship axes shown

in Fig. 4.1a. The height zdeck in Eq. (5.2) also depends on ship deck motion as shown in

Fig. 5.3, and is determined as follows:

zdeck = zstat + zdyn + zang, (5.3)
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Figure 5.3: Illustration of heights used to determine gear deflection.

where zstat = 15 ft. represents the height of the ship deck when it is level and stationary,

zdyn represents heave displacement, zang is the height contribution due to deck roll and pitch

attitudes. Note that yaw attitude does not produce a height contribution, and is therefore

not included. The different height contributions are illustrated in Fig. 5.4.

To determine zang, an order of rotation where the deck is allowed to roll and then pitch

is assumed. The transformation for case is given by


x′ang

y′ang

z′ang

 =


cos δdeck 0 − sin δdeck

0 1 0

sin δdeck 0 cos δdeck




1 0 0

0 cos Γdeck sin Γdeck

0 − sin Γdeck cos Γdeck



xang

yang

zang

 ,

(5.4)
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(a) Static deck height and heave displacement
contributions to zdeck.

(b) Height contribution due to deck pitch atti-
tude.

(c) Height contribution due to deck roll attitude.

Figure 5.4: Illustration of the different height contributions to zdeck.

or,


x′ang

y′ang

z′ang

 =


cos δdeck sin δdeck sin Γdeck − sin δdeck cos Γdeck

0 cos Γdeck sin Γdeck

sin δdeck − cos δdeck sin Γdeck cos δdeck cos Γdeck



xang

yang

zang

 , (5.5)

where Γdeck is the roll angle about the positive x̂d axis, δdeck is the pitch angle about the
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intermediate ŷd axis, and

xang = rgx, (5.6)

yang = rgy, (5.7)

where rgx and rgy are the horizontal and lateral position coordinates of the gear from the

target landing location, respectively, relative to the inertial deck frame. Since z′ang = 0, the

third row of the transformation in Eq. (5.5) yields

z′ang = xang(sin δdeck)− yang(cos δdeck sin Γdeck) + zang(cos δdeck cos Γdeck) = 0. (5.8)

The height contribution due to deck rotation zang is thus given by

zang =
rgy cos δdeck sin Γdeck − rgx sin δdeck

cos δdeck cos Γdeck
. (5.9)

The deflection rate is given by

ḋ = żdeck − żg. (5.10)

For simplicity, it is assumed that żdeck = 0 for all ship conditions. Assuming that the

landing gear is rigidly connected to the fuselage, żg represents the vertical component of

the velocity at the gear contact point, given by

Vg = VCG + Ω× rg

=


u

v

w

+


p

q

r

×

rx

ry

rz

 =


u+ qrz − rry

v − prz + rrx

w + pry − qrx

 , (5.11)
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where rg is the position vector of the gear relative to the CG with components rx, ry, and

rz. The gear deflection rate ḋ is thus given as

ḋ = w + pry − qrx. (5.12)

When the gear is not in contact with the deck (that is, d from Eq. (5.2) is negative), the

reaction force Fgz in Eq. (5.1) is set to zero.

Gear reaction forces in the plane of the deck are due to surface friction and are given by

Fgx = µxFN ,

Fgy = µyFN ,

(5.13)

(5.14)

where µx and µy are the friction coefficients, and FN is the normal reaction force from the

deck, set equal to Fgz in this study. The values for the stiffness and damping constants in

Eq. (5.1) were determined by modifying those given in Ref. 38. The final values are given

in Table 5.1, together with the surface friction coefficients. The friction coefficients given

in Ref. 38 were reduced by 30% to account for surface wetness [89].

Table 5.1: Landing gear parameters

K (lbf/ft) G (lbf-s/ft) µx µy

Main gears 2.54 × 104 3.42 × 103 0.42 0.42

Tail gear 6.06 × 104 1.05 × 103 0.042 0.42

The gear reaction forces and the resulting moments contribute to the fuselage external

loads in Eqs. (2.132) to (2.137)

FLG =


XLG

YLG

ZLG

 =


Fgx

Fgy

Fgz

 , (5.15)
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MLG =


LLG

MLG

NLG

 = rg × FLG. (5.16)

5.2 Ground Effect Model

During helicopter shipboard operations, the deck represents an impermeable surface that

causes the helicopter downwash to turn back towards the vehicle thus modifying the rotor

thrust, as shown in Fig. 5.5. For accurate and realistic modeling of helicopter dynamics

Figure 5.5: Illustration of ground effect.

during ship landing, the ground effect must be taken into account. Two different ground

effect models, a simple correction factor model and a dynamic inflow based finite-state

model used, are used in this study.

5.2.1 Simple ground effect model

The Cheeseman and Bennett model [44, 48] was used first. It is based on the image rotor

concept, illustrated in Fig. 1.9, to satisfy the impermeable surface BC. The model provides

a scaling factor that accounts for the increased thrust due to ground effect during hover at
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constant power, [
TIGE
TOGE

]
P=const

=
1

1−
(
R

4zh

)2 =
1

kG
. (5.17)

From momentum theory, CP = CTλ. Thus, the influence of ground effect also corre-

sponds to a reduction in rotor power at constant thrust

[
POGE
PIGE

]
T=const

=

[
λOGE
λIGE

]
=

[
TIGE
TOGE

]
P=const

=
1

kG
. (5.18)

The ground effect is used to modify the local inflow at the individual rotor blade sta-

tions by multiplying the inflow velocity vector VI in Eq. (2.37) by the scaling factor kG.

However, this model is not accurate for zh/R < 0.5 [48]. Furthermore, it is a static model

and does not account for ground motion. Therefore, a more sophisticated model based on

dynamic inflow was implemented as described next.

5.2.2 Finite-state ground effect model

The finite-state ground effect model developed in Ref. 58 is based on the He-Peters dy-

namic inflow model [59]. The model can be used for partial, inclined and dynamic ground

planes. Furthermore, since it is based on a dynamic inflow model formulated in state-space

form, the model can be readily integrated into the flight simulation. A description of the

He-Peters dynamic inflow model [59] is provided first, followed by a description of the

finite-state ground effect model and its implementation.

5.2.2.1 Review of He-Peters dynamic inflow model

The He-Peters dynamic inflow model is based on the following assumptions:

• Flow is inviscid, and thus governed by Euler equations with an acceleration potential

(or a pressure potential) ΦR.
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• Pressure distribution over the rotor disc is continuous but has a discontinuity across

the disc.

• Flow is incompressible and as such, density is constant and continuity is satisfied.

• The rotor disc is considered to be a flat orientable disc.

Based on these assumptions the dynamic inflow model is derived from a linearized conser-

vation of momentum equation

∂qv
∂t̄

+ V∞.(∇qv) = −∇ΦR, (5.19)

where qv is the vector containing perturbations in the flow velocity vector, and V∞ is the

freestream velocity. Taking advantage of the superposition principle of linear equations,

Eq. (5.19) is divided into unsteady and convective parts as follows:

∂qv
∂t̄

= −∇Φ
(t)
R ,

V∞.(∇qv) = ∇Φ
(c)
R ,

(5.20)

(5.21)

where∇Φ
(t)
R and ∇Φ

(c)
R represent the unsteady and convective parts of∇ΦR, respectively.

The vertical component of qv is conventionally referred to as the ‘induced’ or ‘inflow’

velocity, and the horizontal, lateral components are generally neglected. From Eq. (5.21),

an expression for the inflow velocity w is obtained by integrating along a non-dimensional

streamline coordinate ξ

wR = − 1

V∞

∫ ∞
0

∂Φ
(c)
R

∂zR
dξ. (5.22)

Note that ξ is positive upstream while freestream flows downwards [90], as illustrated in

Fig. 5.6, hence the negative sign in Eq. (5.22). The freestream velocity vector V∞ also

becomes a scalar quantity along the streamline coordinate.

An expression for the rate of change of the induced velocity ẇ is obtained from Eq.
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Figure 5.6: Rotor coordinate system and freestream coordinate.

(5.20)

ẇR =
∂wR
∂t̄

= −∂Φ
(t)
R

∂zR
. (5.23)

The actions of integration and differentiation in Eqs. (5.22) and (5.23) are then repre-

sented as linear transformations that yield w and ẇ when applied on Φ
(c)
R and Φ

(t)
R , respec-

tively. That is,

wR = LI [Φ
(c)
R ],

ẇR = EI [Φ
(t)
R ].

(5.24)

(5.25)

The formulation further assumes that the L and E transformations are invertible, such

that the following relations hold

L−1
I [wR] = Φ

(c)
R ,

E−1
I [ẇR] = Φ

(t)
R .

(5.26)

(5.27)

The expressions in Eqs. (5.26) and (5.27) allow for the momentum equations in Eq. (5.19)

to be rewritten as

E−1
I [ẇR] + L−1

I [wR] = Φ
(c)
R + Φ

(t)
R = ΦR. (5.28)

A pressure potential satisfying the momentum equations in Eq. (5.28) is obtained by
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solving the Laplace’s equation

∇2Φ
(t)
R = 0,

∇2Φ
(c)
R = 0,

∇2ΦR = ∇2Φ
(t)
R +∇2Φ

(c)
R = 0,

(5.29)

(5.30)

(5.31)

for two boundary conditions [90]: a) ΦR becomes zero at infinity and b) ΦR becomes zero

at the edge of the rotor. Using an ellipsoidal coordinate system with origin at the rotor disk

center, solutions to the Laplace’s equation in rotorcraft applications are conveniently given

by the associated Legendre functions as follows [90, 91]

ΦR(νR, ηR, ψR, t̄) =
∞∑
m=0

∞∑
n=m+1,m+3,..

Pm
n (νR)Qm

n (iηR)[Cm
n (t̄) cos(mψR)

+Dm
n (t̄) sin(mψR)], (5.32)

where Pm
n (νR) and Qm

n (iηR) are associated Legendre functions of the first and second

kinds, respectively. Sets of these functions with n = m+1,m+3,m+5, ... satisfy the two

boundary conditions and are suitable for representing the pressure gap between the upper

and lower surfaces of the disc. An illustration of the elliptical coordinate system is given

in Fig. 5.7. The entire 3-D space can be covered once if the coordinates are restricted as

follows

−1 ≤ νR ≤ +1, (5.33)

0 ≤ ηR ≤ ∞, (5.34)

0 ≤ ψR ≤ 2π. (5.35)

On the rotor disc, ηR = 0 and νR =
√

1− r̄2, where r̄ is a nondimensional radial coordi-

nate. Also, νR is positive above the rotor disk and negative below the rotor disk. The rotor
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lift can thus be expressed as

LR(r̄, ψR, t̄) = ΦR(νR < 0, ηR = 0, ψR, t̄)− ΦR(νR > 0, ηR = 0, ψR, t̄)

=
∞∑
m=0

∞∑
n=m+1,m+3,..

P̄m
n (νR)[τmcn (t̄) cos(mψR) + τmsn (t̄) sin(mψR)],

(5.36)

where

P̄m
n (νR) = (−1)m

(
Pm
n (νR)

ρmn

)
,

ρmn =

√
1

2n+ 1

(n+m)!

(n−m)!
,

τmcn = (−1)m+12Qm
n (i0)ρmn C

m
n ,

τmsn = (−1)m+12Qm
n (i0)ρmnD

m
n ,

(5.37)

(5.38)

(5.39)

(5.40)

with P̄m
n (νR) representing the normalized associated Legendre function of the first kind.

For consistency with the lift function defined in Eq. (5.36), the pressure potential given

in Eq. (5.32) is normalized to yield

ΦR(νR, ηR, ψR, t̄) = −1
2

∞∑
m=0

∞∑
n=m+1,m+3,..

P̄m
n (νR)Q̄m

n (iηR)[τmcn (t̄) cos(mψR)

+τmsn (t̄) sin(mψR)], (5.41)

where Q̄m
n = Qm

n (iηR)/Qm
n (i0).

The induced flow distribution at the rotor disk is expressed by

wR(r̄, ψR, t̄) =
∞∑
r=0

∞∑
j=r+1,r+3,..

φrj(r̄)[α
rc
j (t̄) cos(rψR) + αrsj (t̄) sin(rψR)], (5.42)

where φmn = P̄m
n (νR)/νR represent a complete set of orthogonal functions, and are simple
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Figure 5.7: An illustration of the elliptic coordinate system around the rotor disk [58].

radial polynomials given by

φmn (r̄) =
√

(2n+ 1)Hm
n

n−1∑
q=m,m+2,...

r̄2(−1)(q−m)/2 (n+ q)!!

(q −m)!!(q +m)!!(n− q − 1)!!
,

(5.43)

with

Hm
n ≡

(n+m− 1)!!(n−m− 1)!!

(n+m)!!(n−m)!!
. (5.44)

A relation between the unknown coefficients αrcj (t̄) and αrsj (t̄) in Eq. (5.42) and the lift

coefficients τmcn (t̄) and τmsn (t̄) in Eq. (5.41) is established using Eq. (5.28). The process

yields a set of first-order ODEs

[MDI ]{α̇}+ 2Vm[LDI ]
−1{α} = {τ}, (5.45)

where [MDI ] is the apparent mass matrix, Vm is the mass flow parameter, and [LDI ] is

referred to as the gain matrix. Closed form expressions for the [MDI ] and [LDI ] in Eq.
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(5.45) have been derived in Ref. 92. The vector τ in Eq. (5.45) contains the pressure

coefficients given in Eq. (5.36), which can be expressed as [93]

τ 0c
n =

1

2π

Nb∑
k=1

[∫ 1

0

Lcirc(r̄, t̄)

ρΩ2R3
φ0
ndr̄

]
,

τmcn =
1

π

Nb∑
k=1

[∫ 1

0

Lcirc(r̄, t̄)

ρΩ2R3
φmn dr̄

]
cos(mψk),

τmsn =
1

π

Nb∑
k=1

[∫ 1

0

Lcirc(r̄, t̄)

ρΩ2R3
φmn dr̄

]
sin(mψk),

(5.46)

(5.47)

(5.48)

where Lcirc represents the blade sectional circulatory lift. In this study, Lcirc is determined

by transforming the distributed aerodynamic loads pA in Eq. (2.61) from the undeformed,

preconed coordinate frame to the rotating hub frame using the transformation from Eq.

(2.14), and retaining only the resulting vertical component. Thus,

Lcirc = pA(1) sin βp + pA(3) cos βp, (5.49)

where pA(1) and pA(3) represent the distributed aerodynamic load components along the

ex and ez directions of the undeformed, preconed coordinate frame, respectively.

5.2.2.2 Ground effect model for static case

The ground plane is modeled as a distributed plane of source terms as shown in Fig. 1.10.

The effect of the source plane is modeled as an additional pressure distribution ΦG in the

flowfield satisfying the boundary condition

ΦG(z = zh) = ΦR(z = zh), (5.50)
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where ΦR represents the pressure from main rotor. Thus, ΦG is expressed as

ΦG(νG, ηG, ψG, t̄) = −1

2

∞∑
l=0

∞∑
k=l,l+2,..

P̄ l
k(νG)Q̄l

k(ıηG)[σlck (t) cos(lψG) + σlsk (t) sin(lψG)],

(5.51)

where the Legendre functions P̄ l
k(νG) and Q̄l

k(ıηG) are expressed in a different ellipsoidal

coordinate system (ν̂G, η̂G, ψ̂G) with its origin at the center of the rotor wake footprint on

the ground plane. Note that in contrast to the (n + m) = odd terms used in Eq. (5.41) to

represent the main rotor pressure discontinuity, (k+l) = even terms are used to represent the

source distribution. Transformation between the rotor and the ground ellipsoidal coordinate

systems

(νG, ηG, ψG) = F (νR, ηR, ψR), (5.52)

is dependent on the flight condition and parameters such as the height of the rotor above

the ground zh, pitch inclination angle of the ground plane δ, roll inclination angle of the

ground plane Γ, angle of attack of the rotor tip path plane αTPP , angle Ψ between the rotor

and ground x axes, and the rotor wake skew angle χ. An illustration of the two coordinate

systems in a hovering flight is given in Fig. 5.8.

The Cartesian coordinates are related to the elliptic coordinates as follows:

xR = −
√

1− ν2
R

√
1 + η2

R cosψR,

yR =
√

1− ν2
R

√
1 + η2

R sinψR,

zR = −νRηR,

(5.53)
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(a) Hovering above a horizon-
tal ground plane

(b) Hovering above an inclined ground plane

Figure 5.8: Coordinate systems for a hovering flight in ground effect.

or

νR = − 1√
2

sign(zR)

√
(1− S) +

√
(1− S)2 + 4z2

R,

ηR =
1√
2

√
(S − 1) +

√
(1− S)2 + 4z2

R,

ψR = arctan

(
−yR
xR

)
,

(5.54)

where S = x2
R + y2

R + z2
R. Transformation from rotor to ground Cartesian coordinate

systems is given as

 xG

yG

zG

 =

 1 0 0

0 cos Γ sin Γ

0 − sin Γ cos Γ

 cos δ 0 − sin δ

0 1 0

sin δ 0 cos δ

 cos Ψ − sin Ψ 0

sin Ψ cos Ψ 0

0 0 1

×
 cosαTPP 0 − sinαTPP

0 1 0

sinαTPP 0 cosαTPP

 xR

yR

zR

−
 ∆x

0

∆z

 , (5.55)
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where
∆z =

zh
1− tan (αTPP + χ) tan δ

,

∆x = −∆z tan (αTPP + χ),

χ = arctan

(
π2µ

4λ

)
.

The transformation function F in Eq. (5.52) is derived using Eqs. (5.53), (5.54), and (5.55)

for a given flight condition. Note that the roll inclination of the ground plane Γ was not

included in Ref. 58.

Since the source-like pressure distribution of the ground does not alter the mass flow

but only redirects it, the main rotor and ground pressure distributions can share a common

freestream. The total pressure distribution is then the superposition of the two

Φ = ΦR + ΦG. (5.56)

By applying the pressure boundary condition on the ground surface

ΦG|ηG=0 = ΦR|ηG=0, (5.57)

the ground pressure coefficients can be related to the rotor pressure coefficients in a matrix

form as

{σ} = [BG]{τ}, (5.58)

where the expressions for the elements of matrix BG are given by [58]:

(B0m
kn )cc = 1

2π

∫ 2π

0

∫ 1

0
P̄ 0
k (νG)[P̄m

n (νR)Q̄m
n (ıηR) cos(mψR)]ηG=0 dηGdψG

(B0m
kn )cs = 1

2π

∫ 2π

0

∫ 1

0
P̄ 0
k (νG)[P̄m

n (νR)Q̄m
n (ıηR) sin(mψR)]ηG=0 dηGdψG

for l = 0. (5.59)
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and

(Blm
kn )cc = 1

π

∫ 2π

0

∫ 1

0
P̄ l
k(νG) cos(lψG)[P̄m

n (νR)Q̄m
n (ıηR) cos(mψR)]ηG=0 dηGdψG

(Blm
kn )cs = 1

π

∫ 2π

0

∫ 1

0
P̄ l
k(νG) cos(lψG)[P̄m

n (νR)Q̄m
n (ıηR) sin(mψR)]ηG=0 dηGdψG

(Blm
kn )sc = 1

π

∫ 2π

0

∫ 1

0
P̄ l
k(νG) sin(lψG)[P̄m

n (νR)Q̄m
n (ıηR) cos(mψR)]ηG=0 dηGdψG

(Blm
kn )ss = 1

π

∫ 2π

0

∫ 1

0
P̄ l
k(νG) sin(lψG)[P̄m

n (νR)Q̄m
n (ıηR) sin(mψR)]ηG=0 dηGdψG

for l > 0. (5.60)

Recurrence relations used to derive the normalized associated Legendre functions P̄ and

Q̄ are provided in Appendix A. Note that Eq. (5.57) is applied only within rotor wake

footprint because most of the momentum is located inside this area [58]. The effect of

ground effect on the induced flow at the rotor disk is an upward velocity, thus, the in-

ground-effect induced velocity is given by

wIGE = − 1

V∞

∫ ∞
0

∂Φ
(c)
R

∂zR
dξ − 1

V∞

∫ ∞
0

∂ΦG

∂zG
dξ. (5.61)

or

wIGE = wR − wG, (5.62)

where w is the induced velocity without any ground effect as given in Eq. (5.42), and

wG =
1

V∞

∫ ∞
0

∂ΦG

∂zG
dξ, (5.63)

is the induced velocity due to ground effect. Similar to Eq. (5.42), the ground induced

velocity is expressed as

wG(r̄, ψR, t̄) =
∞∑
r=0

∞∑
j=r+1,r+3,..

φrj(r̄)[β
rc
j (t̄) cos(rψR) + βrsj (t̄) sin(rψR)]. (5.64)
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Substituting Eq. (5.64) and Eq. (5.51) into Eq. (5.63) yields a matrix equation

{β} =
1

2Vm
[AG]{σ} (5.65)

where the mass flow parameter Vm is the same as that used for the main rotor in Eq. (5.45),

and the expressions for the elements of matrix AG are given as [58]:

(A0l
jk)

cc =
1

2π

∫ 2π

0

∫ 1

0

P̄ 0
j (νR)[P̄ l

k(νG)Q̄l
k(ıηG) cos (lψG)]η=0 dνRdψR

(A0l
jk)

cs =
1

2π

∫ 2π

0

∫ 1

0

P̄ 0
j (νR)[P̄ l

k(νG)Q̄l
k(ıηG) sin (lψG)]η=0 dνRdψR

for r = 0

(5.66)

and

(Arljk)
cc =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) cos (rψR)[P̄ l

k(νG)Q̄l
k(ıηG) cos (lψG)]η=0 dνRdψR

(Arljk)
cs =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) cos (rψR)[P̄ l

k(νG)Q̄l
k(ıηG) sin (lψG)]η=0 dνRdψR

(Arljk)
sc =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) sin (rψR)[P̄ l

k(νG)Q̄l
k(ıηG) cos (lψG)]η=0 dνRdψR

(Arljk)
ss =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) sin (rψR)[P̄ l

k(νG)Q̄l
k(ıηG) sin (lψG)]η=0 dνRdψR

for r > 0

(5.67)

Combining Eqs. (5.65) and (5.58) yields

{β} =
1

2Vm
[GG]{τ}, (5.68)

where the ground influence coefficient matrix GG is defined as

 (Grm
jn )cc (Grm

jn )cs

(Grm
jn )sc (Grm

jn )ss

 =

 (Arljk)
cc (Arljk)

cs

(Arljk)
sc (Arljk)

ss


 (Blm

kn )cc (Blm
kn )cs

(Blm
kn )sc (Blm

kn )ss

 (5.69)
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or simply

[GG] = [AG][BG], (5.70)

where
r, l,m = 0, 1, 2, . . . ,

j = r + 1, r + 3, . . . ,

k = l, l + 2, l + 4, . . . ,

n = m+ 1,m+ 3, . . . .

The effective inflow distribution at the rotor disk can be written as

wIGE(r̄, ψR, t̄) =
∞∑
r=0

∞∑
j=r+1,r+3,..

φrj(r̄)
[
(αrcj (t̄))IGE cos(rψR) + (αrsj (t̄))IGE sin(rψR)

]
,

(5.71)

where the in-ground-effect inflow coefficients are determined by

αIGE = α− β, (5.72)

and where α and β are determined from Eqs. (5.45) and (5.68), respectively. Note that

the in-gound-effect dynamic inflow model is expressed as a set of ODEs that can be easily

integrated into a flight simulation program.

5.2.2.3 Ground effect model for dynamic case

In the case of a dynamic ground, an additional pressure perturbation is used to capture

the effect of ground plane motion on rotor inflow. The ground pressure perturbation is

expressed as

ΦG = ΦS
G + ΦD

G (5.73)

where ΦS
G represents the static ground effect, and ΦD

G represents the effect due to ground

motion. If gz is the normal component of the ground plane velocity, the wake footprint can
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be imagined to be a fan turning with an induced velocity equal to gz. Based on this analogy,

the pressure perturbation due to ground motion must have a discontinuity across the ground

plane, denoted as ∆ΦD
G , and expanded as

∆ΦD
G = Vm

∞∑
p=0

∞∑
i=p+1,p+3,..

P̄ p
i (νG)[γpci (t) cos(pψG) + γpsi (t) sin(pψG)]. (5.74)

The “ground fan” is assumed to share a common mass flow parameter Vm with the heli-

copter rotor, thus, the pressure perturbation

∆ΦD
G = Vmgz. (5.75)

Using Eqs. (5.74) and (5.75), the ground velocity coefficients are given as [58]

γ0c
i =

1

2π

∫ 2π

0

∫ 1

0

P̄ 0
i (νG)gz(νG, ψG)dνGdψG, for p = 0, (5.76)

and

γpci =
1

π

∫ 2π

0

∫ 1

0

P̄ p
i (νG)gz(νG, ψG) cos(pψG) dνGdψG, (5.77)

γpsi =
1

π

∫ 2π

0

∫ 1

0

P̄ p
i (νG)gz(νG, ψG) sin(pψG) dνGdψG, for p > 0. (5.78)

The ground velocity of a rigid ground plane is generally given by

gz = gz0 + gzc ˆ̄r cosψG + gzs ˆ̄r sinψG, (5.79)

where gz0 is the ground heave velocity, gzc is the ground pitching velocity, gzs is the ground

rolling velocity, and ˆ̄r is a nondimensional radial coordinate on the ground wake footprint.

With the expression of gz given in Eq. (5.79), the ground velocity coefficients in Eqs. (5.76)
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to (5.78) become

γ0c
i = gz0

∫ 1

0

P̄ 0
i (νG)dνG, (5.80)

γ1c
i = gzc

∫ 1

0

√
1− ν2

GP̄
1
i (νG)dνG, (5.81)

γ1s
i = gzs

∫ 1

0

√
1− ν2

GP̄
1
i (νG)dνG, for p = 0 (5.82)

and

γpci = γpsi = 0 for p > 0. (5.83)

The induced velocity due to ground at the rotor disk is similarly written as a superposi-

tion of two parts

wG = wSG + wDG (5.84)

where the static ground effect wSG is given by

wSG =
1

V∞

∫ ∞
0

∂ΦS
G

∂zG
dξ, (5.85)

and the dynamic ground effect wDG by

wDG =
1

V∞

∫ ∞
0

∂ΦD
G

∂zG
dξ. (5.86)

The static ground effect was accounted for in Eq. (5.68). A similar derivation is performed

for the dynamic ground effect. The dynamic ground interference velocity is expressed as

wDG (r̄, ψR, t̄) =
∞∑
r=0

∞∑
j=r+1,r+3,..

φrj(r̄)[(β
rc
j (t̄))D cos(rψR) + (βrsj (t̄))D sin(rψR)]. (5.87)

Substituting Eqs. (5.74) and (5.87) into Eq. (5.86), and applying the orthogonal property of
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P̄ r
j (ν), yields  βrcj

βrsj


D

=
1

2

 (Crp
ji )cc (Crp

ji )cs

(Crp
ji )sc (Crp

ji )ss


 γpci

γpsi

 , (5.88)

or

{β}D =
1

2
[CG]{γ}, (5.89)

where

r, p = 0, 1, 2, . . . , j = r + 1, r + 3, . . . , i = p+ 1, p+ 3, . . . ,

and

(C0p
ji )cc =

1

2π

∫ 2π

0

∫ 1

0

P̄ 0
j (νR)[P̄ p

i (νG)Q̄p
i (ıηG) cos (pψG)]η=0 dνRdψR,

(C0p
ji )cs =

1

2π

∫ 2π

0

∫ 1

0

P̄ 0
j (νR)[P̄ p

i (νG)Q̄p
i (ıηG) sin (pψG)]η=0 dνRdψR,

for r = 0,

(Crp
ji )cc =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) cos (rψR)[P̄ p

i (νG)Q̄p
i (ıηG) cos (pψG)]η=0 dνRdψR,

(Crp
ji )cs =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) cos (rψR)[P̄ p

i (νG)Q̄p
i (ıηG) sin (pψG)]η=0 dνRdψR,

(Crp
ji )sc =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) sin (rψR)[P̄ p

i (νG)Q̄p
i (ıηG) cos (pψG)]η=0 dνRdψR,

(Crp
ji )ss =

1

π

∫ 2π

0

∫ 1

0

P̄ r
j (νR) sin (rψR)[P̄ p

i (νG)Q̄p
i (ıηG) sin (pψG)]η=0 dνRdψR,

for r > 0.

(5.90)

Equations (5.89), combined with Eq. (5.68), form a complete model of the effect of dy-

namic ground on the rotor disk. General forms of the AG, BG, GG and CG matrices are

given in Appendix B.
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5.2.2.4 Implementation

The β and τ vectors in Eq. (5.68) are both unknown and interdependent. The pressure co-

efficients in τ depend on the blade sectional aerodynamic loads as evident from Eqs. (5.46)

to (5.49). The sectional aerodynamic loads in turn account for the effective inflow wIGE

as evident in Eq. (2.37). However, wIGE is dependent on the pressure coefficients in τ as

indicated by Eqs. (5.64) and (5.68). Therefore, an iterative Newton-Raphson procedure is

used to compute the effective inflow velocity.

Due to the interdependency between β and τ , Eq. (5.68) can be expressed as

β = f(β), (5.91)

or

e(β) = β − f(β) = 0. (5.92)

Starting with an initial guess β0 and assuming e(β0) 6= 0, a value for the vector βk that

satisfies the condition in Eq. (5.92) is obtained using a Taylor series expansion of Eq. (5.92)

about βk−1 = β0,

e(β) ≈ e(βk−1) +
∂e(β)

∂β

∣∣∣∣
β=βk−1

[
βk − βk−1

]
= 0. (5.93)

Solving for βk yields

βk = βk−1 −T−1e(βk−1), (5.94)

where the Jacobian matrix

T =
∂e(β)

∂β

∣∣∣∣
β=βk−1

, (5.95)

and is determined by finite differencing. If theβk coefficients from Eq. (5.94) do not satisfy

the condition in Eq. (5.92), βk−1 is set equal to βk and the coefficients are recomputed
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using Eq. (5.94). The process is repeated until convergence is achieved. Note that an

iterative procedure is not needed to compute the dynamic ground coefficients βD from Eq.

(5.89). Also, the βD coefficients become constant after touchdown.

In the case of hovering above a horizontal ground plane, shown in Fig. 5.8a, the rela-

tionship between the rotor and ground coordinate systems is given by


xG

yG

zG

 =


xR

yR

zR − zh
R

 . (5.96)

Combining Eq. (5.96) with Eqs. (5.53) and (5.54) results in a transformation between the

rotor and the ground ellipsoidal coordinate systems

(νR, ηR, ψR) = F (νG, ηG = 0, ψG), (5.97)

which is used in Eqs. (5.59) and (5.60) to evaluate elements of the B matrix. Similarly, the

inverse transformation can also be obtained

(νG, ηG, ψG) = F−1(νR, ηR = 0, ψR), (5.98)

which is used in Eqs. (5.66) and (5.67) to evaluate elements of the A matrix.

In the case of hovering above an inclined ground plane, shown in Fig. 5.8b, the rotor
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and ground coordinate systems are related as


xG

yG

zG

 =


1 0 0

0 cos Γ sin Γ

0 − sin Γ cos Γ




cos δ 0 − sin δ

0 1 0

sin δ 0 cos δ




cos Ψ − sin Ψ 0

sin Ψ cos Ψ 0

0 0 1




xR

yR

zR − zh
R

 .

(5.99)

Transformations between the rotor and ground ellipsoidal coordinate systems are similar to

Eqs. (5.97) and (5.98).
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CHAPTER 6

Ship Motion

The ship is assumed to be rigid, and its motion is based on a database developed by the US

Navy Office of Naval Research and the Naval Surface Warfare Center under the Systematic

Characterization of the Naval Environment (SCONE) program [94]. A description of the

SCONE database is provided in Section 6.1, followed by a description of its integration

into the flight simulation code in Section 6.2.

6.1 Description of SCONE Data

The current SCONE database is generated for the David Taylor Model Basin (DTMB) 5415

ship hull configuration which is representative of a DDG-51 type ship. Details on the ship

dimensions, along with relevant nautical terminology, are provided in Appendix C. The

Large Amplitude Motions Program (LAMP) simulation code [95], which models the ship

dynamic response to wave excitation in a range of sea conditions, was used to generate the

data. The deck was excited with dominant motion in either roll or heave. For each DOF,

three different excitation amplitudes were employed, characterized as “low”, “moderate”,

and “high”. This characterization is different from the numbering system traditionally used

to represent sea state, which is the degree of turbulence at the free surface of a large body of

water at a given time and location, and is measured on a scale of 0 to 9 according to average

wave height. Thirty-minute time histories of the three translational and three rotational

DOFs—surge, sway, heave, roll, pitch and yaw—together with their first and second time
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derivatives, are recorded at a sampling rate of 20 Hz. Each of the six deck motion cases

was simulated using five different randomly generated wave disturbances, yielding a total

of 30 datasets, as illustrated in Fig. 6.1.

Ship excitation 

Roll attitude Heave rate 

‘low’ 
amplitude

‘moderate’ 
amplitude

‘high’ 
amplitude

‘low’ 
amplitude

‘moderate’ 
amplitude

‘high’ 
amplitude

Five different 
wave forms

Five different 
wave forms

Five different 
wave forms

Five different 
wave forms

Five different 
wave forms

Five different 
wave forms

Figure 6.1: Flowchart illustrating decomposition of SCONE data.

To assess the differences in the five datasets, time histories and frequency spectra of

the roll angle, pitch angle, heave displacement, heave velocity and heave acceleration for

the five “high” amplitude roll dominant simulations were examined. The five sets differed

mainly in the high frequency distribution, as shown in Fig. 6.2. A frequency spectra of the

DOFs from one of the given sets reveals a peak in the roll, pitch and heave motion frequency

distributions at approximately 0.1 Hz, 0.1 Hz, and 0.15 Hz, respectively, as shown in Fig.

6.3.

The mean, minimum, and maximum values of the ship roll attitude φD, pitch attitude

θD, heave displacement zD, heave rate VzD, and heave acceleration AzD corresponding to

“low”, “moderate” and “high” roll amplitude simulations are shown in Table 6.1. Roll

angle is positive starboard, pitch angle is positive when the bow goes up, and heave motion

is positive downward from the waterline. The coordinate system used is illustrated in Fig

6.4. Note that the mean heave displacement represents the average vertical position of

the center of the ship deck during the simulation. Deck motion quantities corresponding

to “low”, “moderate” and “high” heave amplitude simulations are compared in Table 6.2.
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Figure 6.2: Frequency spectrum of roll angle φD for “high” amplitude roll dominant sim-
ulations.
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Figure 6.3: Frequency spectrum of roll angle φD, pitch angle θD, and heave displacement
zD for a “high” amplitude roll dominant simulation.

From Tables 6.1 and 6.2, amplitudes of the ship DOFs are significantly greater in the “high”

amplitude tests compared to the “low” amplitude tests. Time histories of the ship DOFs for

“low” and “high” heave amplitude tests are shown in Fig. 6.5.
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Figure 6.4: Coordinate system used in SCONE data.

Table 6.1: Ship motion parameters for roll excitation

Low Moderate High

mean min max mean min max mean min max

φD (deg) 0.07 -5.5 5.4 0.1 -14.9 16.7 -0.15 -26.9 23.7

θD (deg) -0.15 -0.79 0.70 -0.15 -1.7 1.39 -0.03 -3.24 2.59

zD (ft.) -16.2 -19.0 -13.0 -16.2 -23.7 -8.98 -14.8 -27.3 0.24

VzD (ft/s) 0.00 -1.30 1.10 0.00 -5.93 4.37 0.00 -11.0 10.6

AzD (g) 0.00 -0.03 0.03 0.00 -0.14 0.13 0.00 -0.56 0.76

Table 6.2: Ship motion parameters for heave excitation

Low Moderate High

mean min max mean min max mean min max

φD (deg) 0.06 -3.88 3.44 0.01 -4.12 3.56 -0.15 -15.1 12.6

θD (deg) -0.01 -1.50 1.36 -0.11 -3.35 3.68 0.05 -4.35 5.77

zD (ft.) -16.4 -22.5 -10.1 -16.1 -25.3 -3.51 -14.7 -30.3 1.93

VzD (ft/s) 0.00 -5.25 4.96 0.00 -10.8 11.7 0.00 -15.6 14.7

AzD (g) 0.00 -0.14 0.13 0.00 -0.40 0.32 0.00 -0.56 0.46

6.2 Combination of SCONE and Flight Dynamics Model

Each table in the SCONE database is 11 MB in size. The simulations in this study are per-

formed using a computer with a memory capacity of 48 GB, and thus any one of the thirty

available tables can be directly loaded into computer memory for helicopter ship landing
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Figure 6.5: Roll angle φD, pitch angle θD, heave displacement zD, heave velocity VzD
and heave accelerationAzD time histories for (a) “low” and (b) “high” heave excitation.

simulations. It was shown in the previous section that only a slight variance in the time

histories and frequency spectra of ship DOFs was noted between the five tests associated

with the “high” roll amplitude simulations. Therefore, any one of the five data sets can

be used. It was also evident that the “low” amplitude excitation results in a relatively be-

nign ship motion of approximately ±5◦ in roll attitude, and ±3ft. in heave displacement,

whereas the “high” amplitude case produces large ship motion of approximately ±15◦ in

roll attitude, and ±15 ft. in heave displacement. Therefore, for the helicopter ship land-
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ing problem, the “moderate” amplitude case, which produces intermediate ship motion of

approximately ±4◦ in roll attitude, and ±9 ft. in heave displacement, is chosen.

Data set #2 of the chosen case is loaded into computer memory at the beginning of

the simulation. Ship motion data is then extracted for two minutes, from t = 1250 s to

t = 1370 s since ship response is fully developed in this window. In this study, only the

roll attitude φD, pitch attitude θD, and heave displacement zD are considered. The time

histories used are shown in Fig. 6.6. Note that the initial heave displacement zD0 = −16

ft., which represents the deck height at t = 0 s, was subtracted from zD in Fig. 6.6.
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Figure 6.6: Time histories of roll angle φD, pitch angle θD, and heave displacement zD
used in simulations.

Ship motion is included in the landing gear model through the calculation of zdeck from

Eq. (5.3). The contribution due to heave displacement zdyn is determined as follows:

zdyn = −∆zD = −(zD − zD0), (6.1)
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where the leading negative sign converts the displacement from the SCONE data coordinate

frame, shown in Fig. 6.4, to the inertial deck frame. The roll and pitch angles, Γdeck and

δdeck, respectively, used to determine zang in Eq. (5.9), are related to φD and θD as follows:

Γdeck = −φD, (6.2)

δdeck = θD. (6.3)

In the ground effect model, ∆zD from Eq. (6.1) is used to update the height of the rotor

hub center from ground zh, and the ground inclination angles Γ and δ are related to φD and

θD as follows:

Γ = φD, (6.4)

δ = θD. (6.5)

The ground heaving, pitching, and rolling velocities gz0, gzc, and gzc, respectively, from Eq.

(5.79) are determined using finite differencing with respect to time. Ship dynamics do not

influence WOD velocities in this study.
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CHAPTER 7

Results and Discussion

Approach and landing simulations were performed for a 4-bladed UH-60A helicopter con-

figuration using the modified flight dynamics code, HeliUM2-umich. Relevant vehicle and

rotor parameters are provided in Table 7.1. Note that the UH-60A helicopter has a 20°

cant angle [39], shown in Fig. 7.1, that causes the tail rotor to generate a vertical thrust

component that contributes to lift. Inflow velocity was determined from a 3-state He-Peters

dynamics inflow model [59]. Each main rotor blade was modeled using four FEs, each

with 8 Gaussian points. The number of FE DOFs was reduced using a modal coordinate

transformation based on five rotating modes: rigid flap, rigid lag, and the first flexible flap,

lag and torsional modes, plotted in Fig. 7.2. The corresponding natural frequencies are

given in Table 7.1.

Figure 7.1: UH-60A cant angle.

122



Table 7.1: HeliUM2-umich setup parameters

Main Rotor Data
Main rotor speed 258 RPM (27 rad/s)

Individual blade weight 116.5 kg (256.9 lbs.)

Blade radius 8.18 m (26.83 ft.)

Hinge offset 0.381 m (1.25 ft.)

Airfoil section SC 1095

Blade chord (constant) 0.527 m (1.73 ft)

Blade precone, βp 0◦

lock number, γR 5.11

Rigid lag frequency 0.268 /rev

Rigid flap frequency 1.035 /rev

1st flap frequency 2.823 /rev

1st torsion frequency 4.632 /rev

1st lag frequency 12.408 /rev

Helicopter Data
Longitudinal shaft tilt angle αx 0◦

Lateral shaft tilt angleαy 0◦

Swash plate phase ∆sp −9.7◦

Fuselage weight 7779.1 kg (17150 lbs.)

Number of tail rotor blades 4

Tail rotor blade radius Rt 1.68 m (5.5 ft.)

Tail rotor speed Ωt 1190 RPM (124.6 rad/s)

Taill rotor cant angle ΓTR 20◦

Simulation Data
Time marching step size 0.0032 s (5 azimuthal deg.)

Trim Type Propulsive

7.1 Results for Approach Segment

Simulations for the approach segment, shown in Fig. 3.1, were conducted to determine

the effect of WOD on the helicopter dynamic response. Actual landing on a stationary

deck from a hover position was also simulated, so as to understand the combined effects of

landing gear, ground effect, and WOD.
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Figure 7.2: Rotating mode shapes used in modal coordinate transformation.

7.1.1 Influence of WOD during approach

Results for the flight segments shown in Fig. 3.1, are considered next. The first set of

simulations were performed with the WOD affecting the rotor alone. Subsequently, the

influence of WOD on the entire helicopter, including fuselage, empennage and tail rotor,

was considered. The vehicle target position was set to (410, 0, 30) ft., which corresponds

to a hovering station at a height of 15 ft. from the center of ship deck plane, shown in Fig.

4.1. The approach is initiated at an altitude of 312.3 ft., a value higher than the z0 value

given in Table 3.1, so as to account for the loss in altitude during transition from level flight

to descent. The helicopter speed during the level flight part of the approach is 60 knots, or

µ = 0.14.
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7.1.1.1 WOD effects on rotor alone

The WOD was first assumed to act on the rotor alone. The WOD is a 30-knot wind at three

sideslip angles of 0◦, 30◦ and −30◦, where the sideslip angle is considered to be positive

when wind comes from the starboard side, as shown in Fig. 4.4. Each simulation lasted

approximately one hour on a 12 core Intel Xeon E5-2609 v3 processor at 1.90 GHz clock-

speed.

Time histories of the helicopter position coordinates are shown in Fig. 7.3. The level

flight, hover and descent phases of the approach are identified by vertical dashed lines in the

plots. The solid vertical line indicates the time when the rotor hub enters the WOD domain.

The desired trajectories are denoted as ‘ideal’ in the figure. The controller is effective in

maintaining the trajectory profile in presence of WOD. A slight drift, approximately 1.5

ft., in the final lateral position is noted both with and without WOD. Helicopter attitude

angle responses are shown in Fig. 7.4. The WOD influence is evident from the high

frequency oscillations, starting at t = 50.5 s, when the rotor hub enters the WOD domain.

Initial offsets from the desired angular attitude values are noted in the descent phase in Fig.

7.4. The roll and pitch angular attitudes converge to the desired values as the simulation

progresses, but the offsets in the yaw angle persist until the end of the simulation.

Time histories of the control inputs generated by the FCS are shown in Fig. 7.5. The

high frequency oscillations in lateral cyclic θ1c show that greater control effort is required

when WOD is present. The 0◦ and −30◦ conditions require greater lateral control than

the 30◦ case. The WOD also induces a larger longitudinal cyclic θ1s input, with the 30◦

case displaying the largest effort. The θ0 time history in Fig. 7.5 shows that, compared

to the case when WOD is absent, a larger collective input is required for the 0◦ and −30◦

conditions. The case of 30◦ requires the smallest collective changes. Tail rotor collective

input time histories follow a trend similar to θ0. It is noteworthy that the control inputs

for the 30◦ and −30◦ cases are not symmetric. This is due to the asymmetry in vehicle

dynamics. The lack of symmetry implies that vehicle response should be examined for
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Figure 7.3: Horizontal x, lateral y, and vertical z positions of helicopter CG during ap-
proach to a stationary deck, WOD included in main rotor model.

both portside and starboard WOD conditions when establishing SHOLs. The −30◦ WOD

condition appears to be the most demanding in terms of control effort, based on the control

input time histories in Fig. 7.5. The additional control effort required in the oblique WOD

condition can be attributed to the “cliff-edge” effect [10], whereby winds at an angle induce

stronger shear layers that are shed from the edges of the ship structure. The associated

WOD velocity components experienced by the vehicle are thus higher, as shown in Fig. 7.6,

where magnitudes of the WOD velocities are much higher in the case of ±30◦ compared

to 0◦.
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Figure 7.4: Roll φf , pitch θf , and yaw ψf angles of fuselage during approach to a stationary
deck, WOD included in main rotor model.

7.1.1.2 WOD effects on the entire vehicle

The WOD effect was applied on the entire vehicle consisting of the fuselage, empennage

and tail rotor combined with the main rotor. Helicopter approach was simulated with a 30

knot starboard wind at −30◦, which represents the worst case scenario. Figure 7.7 shows

that including WOD effects on the entire helicopter results in larger deviations and oscil-

lations in the helicopter attitude angles. The angles change by up to 4◦ when WOD is

included in the additional components. Time histories of the control inputs are plotted in

Fig. 7.8. When WOD is included on the entire helicopter, the tail rotor collective input

changes by approximately 4◦, while the main rotor control inputs do not display a sig-
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Figure 7.5: Control inputs generated by FCS during the approach to a stationary deck,
WOD included in main rotor model.

nificant change. Overall, taking the WOD effects on all the components is important for

accurate simulation of the helicopter ship landing dynamics.

7.1.2 Combined WOD and ground effect during hover and landing

Simulation results for hover and landing with ground effect included on the main rotor

are presented next. The ground effect is modeled using the scaling factor kG, described

in Section 5.2.1. The effect of WOD is included on all the helicopter components. Only
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the case of βWOD = −30◦ is considered. Time histories for the CG position coordinates

are shown in Fig. 7.9. The response of the baseline case without WOD and ground effect

is included for comparison. The vehicle remains stationary after t = 12 s, indicating

successful landing. Slight drifts of approximately 1.5 ft. from the target value of 410 ft.

are evident in the horizontal position for the baseline case. The WOD induces oscillations

and offsets in the position coordinates during hover and descent to deck. Adding ground

effect causes additional changes in the position coordinates relative to the baseline case.

Due to the vehicle weight, the influence of WOD and ground effect on the vertical position

is minimal after landing. Figure 7.10 shows the vehicle roll, pitch and yaw responses
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Figure 7.7: Roll φf , pitch θf , and yaw ψf angles of fuselage during approach to a stationary
deck, WOD included on entire helicopter.

during the hover and landing phases. The WOD induces higher frequency oscillations in

CG attitudes, particularly in the roll angle during the hover phase, implying that the WOD

can cause the vehicle to spin and roll over during touchdown. Ground effect also induces

changes in attitudes during the hover phase. These changes dissipate and the attitudes

converge to WOD-only values after landing.

Gear deflections during and after touchdown are shown in Fig. 7.11. Initial transients

exist during contact but diminish as simulation progresses. After landing, right, left, and

tail gear deflections are 0.3 ft., 0.27 ft., and 0.05 ft., respectively. The right gear deflection

is slightly greater than the left due to a small positive roll angle, shown in Fig. 7.10, after
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Figure 7.8: Control inputs generated by FCS during approach to a stationary deck, WOD
included on entire helicopter.

the vehicle lands. Inclusion of ground effect results in a slight decrease in the final gear

deflections. For the cases simulated, the tail gear makes contact first, followed by the main

gears 0.1s later. This is a result of the positive pitch angle at t = 10 s in Fig. 7.10.

Figure 7.12 shows the control input time histories during hover and landing. In the

hover phase, ground effect causes the main rotor collective input to decrease by 8.1%, from

8.6◦ to 7.9◦, relative to the WOD-only case. Ground effect results in a decrease in rotor

inflow. As the controller attempts to maintain the main rotor thrust, the collective input
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phases with simple ground effect model and WOD included on the entire helicopter, sta-
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is decreased to keep the angle of attack constant. Ground effect induces minimal changes

in the cyclic inputs. During the landing phase, θ0 is gradually decreased until touchdown

is achieved. After touchdown, the collective input is set to 1◦, which corresponds to zero

thrust due to the built-in blade twist. The tail rotor collective input follows a similar trend

as θ0. The WOD induces high frequency oscillations in the control inputs during the hover
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Figure 7.11: Right, left and tail gear deflections during hover and landing phases with
simple ground effect model and WOD included on the entire helicopter, stationary deck.
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Figure 7.12: Control inputs generated by FCS during hover and landing phases with simple
ground effect model and WOD included on the entire helicopter, stationary deck.

The main rotor and tail rotor lift forces, and the combined vertical landing gear reaction
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forces are plotted in Fig. 7.13. The tail rotor lift is due to the 20◦ cant angle, shown in

Fig. 7.1. The vertical forces are constant during the hover phase. During the landing

phase, the main rotor thrust decreases progressively. Upon touchdown, a sudden decrease

in the main rotor thrust is evident. At the same time, the total vertical gear reaction force

increases, indicating the transfer of the vehicle weight onto the landing gears. The lift from

the tail rotor decreases to approximately 83 lbs. after landing. This is because the tail rotor

collective is reduced as less torque is generated by the main rotor once the vehicle weight

is transferred onto the gears. Oscillations due to WOD are noticeable in the main and tail

rotor lift time histories. The power required during the hover and landing phases are shown

in Fig. 7.14. Ground effect results in a 11.3% decrease in power requirement, from 1768

Hp to 1569 Hp, at the onset of the landing phase. Note that the oscillations in the power

time histories are due to vehicle dynamics.
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during hover and landing phases with simple ground effect model and WOD included on
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7.1.3 Approach and landing simulation with combined WOD and

ground effects

Simulations were performed for combined approach and landing, including all the seg-

ments in Fig. 3.1, together with a landing flight segment. Note that the approach simula-

tions in Section 7.1.1 did not take into account the ground effect. Here, both the WOD and

ground effect were included. The ground effect is modeled using the kG factor. Only the

−30◦ WOD condition is considered, and its effect is included on the entire helicopter. The

vehicle response is shown in Figs. 7.15 and 7.16. The solid vertical line indicates the time

at which the helicopter enters the WOD domain. The time at which the rotor hub enters the

region directly above the deck is shown using the dotted vertical line at t = 63 s. Note that

the vertical position coordinate of the helicopter at t = 63 s is 33ft., which corresponds to

zh/R = 0.85. The ground effect begins to influence the response as soon as the hub enters

the region above the deck, as shown by the CG roll, pitch, and yaw responses are plotted in

Fig. 7.15. Similar to the isolated landing simulation shown in Fig. 7.10, the ground effect

produces an offset in the state responses, relative to the WOD-only case. Similar trends are

noticed in control input time histories plotted in Fig. 7.16. The gain-scheduled controller

135



is capable of stabilizing and tracking the helicopter reference trajectory through the various

phases of the trajectory.

10 20 30 40 50 60 70 80 90 100 110

-3

-2

-1

0

φ
f, 

d
e
g

10 20 30 40 50 60 70 80 90 100 110

0

5

10

θ
f, 

d
e
g

10 20 30 40 50 60 70 80 90 100 110

Time, s

-15

-10

-5

0

5

ψ
f, 

d
e
g

no WOD, no GE with WOD, no GE with WOD, with GE

Level 

Flight
Descent to hover position Hover Landing

Figure 7.15: Roll φf , pitch θf , and yaw ψf angles of fuselage during approach and landing
phases with simple ground effect model and WOD included on entire helicopter, stationary
deck.

7.2 Ground Effect from Inclined and Moving Decks

Simulations, for hover and landing flight segments, were performed to examine the influ-

ence of inclined and dynamic ground planes on helicopter response using the finite-state

ground effect model, described in Section 5.2.2. Rotor performance results obtained using

the model are first compared with results from literature by considering hover simulations
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Figure 7.16: Control inputs generated by FCS during approach and landing phases with
simple ground effect model and WOD included on entire helicopter, stationary deck.

at various heights above a stationary and level ground plane. Subsequently, the influence

of static deck inclination on helicopter response is examined for various deck roll and pitch

angles. Next, simulations are performed with the deck excited in isolated sinusoidal mo-

tion in roll, pitch and heave DOFs. Finally, the combined influence of WOD and dynamic

ground effect during hover and landing is examined for a deck excited in combined roll,

pitch and heave DOFs using SCONE data.
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7.2.1 Comparison with results from literature

Hover simulations were performed for the helicopter in ground effect at various heights

above a stationary and level ground plane using both the Cheeseman and Bennett model

and the finite-state ground effect model. The ratio of power in-gound-effect to power out-

of-ground-effect for the various heights considered is compared with experimental results

in Fig. 7.17. Both models show good agreement with the experiments for heights greater

than 1R. For heights less than 0.5R, the Cheeseman and Bennett model prediction is

inaccurate and quickly approaches zero. The power ratio obtained using the finite-state

model remains stable and shows reasonable agreement with experiments for heights less

than 0.5R.

Figure 7.17: Rotor power reduction due to static and level ground effect as a function of
height.

7.2.2 Effect of deck inclination

Ground effect due to static deck inclination is considered next. Hover simulation results

are presented first, followed by results for landing on the inclined deck.

138



7.2.2.1 Hover

Hover simulations were performed at zh = 0.5R, with the helicopter x̂hel axis aligned

parallel to the deck x̂d axis, as illustrated in Fig. 7.18. The CG was located 8.7 ft. above

the center of the deck. Four deck inclination angles were considered for Γdeck and δdeck:

0◦, 10◦, 20◦, and 30◦.

Figure 7.18: Hover configuration during static deck inclination simulations.

Time histories of the effective inflow coefficients αIGE for static deck roll are shown

in Fig. 7.19. Since a 3-state He-Peters dynamic inflow model is employed, there are three

inflow coefficients αIGE0 , αIGEc , and αIGEs corresponding to the average, fore-and-aft and

lateral components of inflow, respectively. The baseline case, with no ground effect, is

included for comparison. A decrease in the average and lateral components of inflow αIGE0

and αIGEs , respectively, is noted with increasing roll angle. The 30◦ case produces the

greatest change. The coefficients for the 10◦ condition remain close to the 0◦ values. The

inflow coefficient αIGEc does not vary with deck roll angle.

Control input time histories are shown in Fig. 7.20. The ground effect from the rolled

deck produces offsets in the control inputs, relative to the 0◦ case. The 30◦ case results in

the greatest offsets of approximately 0.5◦ in the longitudinal cyclic and tail rotor collective
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Figure 7.19: Time histories of effective inflow coefficients during hover over a deck in-
clined at a static roll angle.

inputs, and approximately 0.3◦ in the main rotor collective input. The longitudinal cyclic

θ1s is used to control the lateral disturbance in inflow due to static deck roll. This is an

interesting finding given that θ1s is normally used to control the longitudinal dynamics of

the helicopter. Ground influence on the lateral cyclic input θ1c is minimal.

The power required to sustain the hover flight segment for the various deck roll cases

is plotted in Fig. 7.21. The 10◦ case results in approximately the same power requirements

as the level deck case, while the 30◦ condition produces a decrease of approximately 5.3%

in power requirement, from 1520 Hp to 1440 Hp. Note that the ground effect from the

rolled deck causes a rise in the vertical CG position, as shown in Fig. 7.22. This is due to

a corresponding increase thrust produced, shown in Fig. 7.23.

Time histories of the effective inflow coefficients during hover over a deck inclined at

constant pitch angles are plotted in Fig. 7.24. This time, a change in the average and cosine

components of the inflow is noted, while the sine component αIGEs remains constant. Deck
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Figure 7.20: Control inputs generated by FCS during hover over a deck inclined at a static
roll angle.
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hover over a deck inclined at a static roll angle.
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Figure 7.23: Rotor thrust during hover over a deck inclined at a static roll angle.

pitch attitude thus produces a ground effect that affects the longitudinal inflow distribution.

The control input time histories are shown in Fig. 7.25. The ground effect due to deck

pitch attitude causes a slight increase in the lateral cyclic control input θ1c, with the 30◦
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Figure 7.24: Time histories of effective inflow coefficients during hover over a deck in-
clined at a static pitch angle.

case producing the greatest change of approximately 0.3◦, relative to the 0◦ case. Similar

offsets are noted in the main and tail rotor collective inputs. The θ1s input remains relatively

unchanged. A 5.3% decrease in power requirement is again noted for the 30◦ condition in

Fig. 7.26.

7.2.2.2 Landing

Landing simulations were performed to examine the influence of static deck inclination on

landing gear dynamics. After a 10s hover flight segment, based on the configuration de-

picted in Fig. 7.18, the main rotor collective was progressively reduced to achieve landing.

Results are presented for two cases: a) a deck inclined at a constant roll angle of 10◦, and

b) a deck inclined at a constant pitch angle of 8◦, illustrated in Fig. 7.27. These angles were

found to be the positive limits at which the controller is able to perform a stable landing.

The negative limits were −9◦ for roll attitude, and −8◦ for pitch attitude.
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Figure 7.25: Control inputs generated by FCS during hover over a deck inclined at a static
pitch angle.
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Figure 7.26: Time histories of power required during hover over a deck inclined at a static
pitch angle.
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(a)
(b)

Figure 7.27: Illustration of landing on a deck inclined at a constant (a) roll angle, and (b)
pitch angle.

Time histories of the CG roll, pitch and yaw attitudes for a deck inclined at a constant

roll angle of 10◦ are shown in Fig. 7.28. The CG roll angle converges to approximately

−10◦ after landing, thus matching the deck roll angle. The φf angle is negative because

it is defined relative to the helicopter body-fixed frame, which has its positive x̂hel axis

in a direction opposite to the positive x̂d axis, relative to which the 10◦ deck roll angle is

defined. The pitch angle converges to −2.8◦ after landing, and the yaw angle to −14.2◦.

The vertical position coordinates of the three gears and the corresponding points below

them on the deck are shown in Fig. 7.29. The gear positions become constant after t = 12.2

s, indicating successful landing on the rolled deck. Due to the constant deck roll angle, the

point on the deck below the right gear is higher than the deck point under the left gear. The

change noted in the deck point under the tail gear between t = 10.0 s and t = 12.2 s is

due to the change in yaw attitude, shown in Fig. 7.28. Gear deflections are plotted in Fig.

7.30. The tail gear makes contact with the deck first at t = 12.00 s, followed by the right

gear at t = 12.04 s, and the left gear at t = 12.23 s. After landing, right, left, and tail gear

deflections are 0.28 ft., 0.29 ft., and 0.05 ft., respectively. Ground effect causes a slight

change of approximately 0.01 ft. in the left gear deflection.

Time histories of the control inputs generated by the FCS are shown in Fig. 7.31. The

ground effect from the rolled deck causes the main rotor collective to decrease by 8.3%
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Figure 7.28: Roll, pitch and yaw attitudes during hover and landing flight segments with
the deck inclined at a constant roll angle of 10◦.

at the onset of the landing phase, which is close to the 8.6% change noted in the main

rotor collective with a level ground plane in Fig. 7.12. The influence of constant 10◦ deck

roll angle is thus not significant. The lateral cyclic θ1c changes by approximately 5◦ after

landing to counteract the helicopter rolling moment caused by the deck roll angle. The

longitudinal cyclic converges to approximately −0.4◦ after landing.

Results for the deck inclined at a constant pitch angle of 8◦ are discussed next. The CG

angular attitudes during the hover and landing flight segments are shown in Fig. 7.32. High

frequency oscillations with a magnitude of approximately 0.5◦ are noted in the roll angle in

the landing phase. The pitch angle converges to approximately 7.2◦ after landing, closely

matching the constant deck pitch angle. The yaw angle converges close to −18◦.

The vertical position coordinates of the three gears are shown in Fig. 7.33. The deck

point below the tail gear is at a height of 11.7 ft. during hover, while the points under the

main gears are 15.8 ft. high due to the constant deck pitch angle. The vehicle successfully
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Figure 7.29: Vertical gear positions during hover and landing flight segments with the deck
inclined at a constant roll angle of 10◦.

lands at t = 12.3 s, as indicated in the figure. The main gears make contact first at t = 12.0

s, followed by the tail gear at t = 12.3 s.

The control inputs generated by the FCS during the hover and landing flight segments

are shown in Fig. 7.34. The high frequency oscillations evident in the lateral cyclic af-

ter landing indicates that greater control is required to keep the vehicle stationary on the

pitched deck. The longitudinal cyclic θ1s converges to approximately −7.3◦ after landing

to counteract the pitching moment due to the constant deck pitch angle. The change in θ0 in

response to the ground effect from the pitched deck is close to that noted with a level deck,

shown in Fig. 7.12. The tail rotor collective converges to approximately 12◦ after landing.

7.2.3 Influence of isolated ground motion

Hover and landing simulations were performed with the deck undergoing isolated sinu-

soidal motion in roll, pitch and heave DOFs to examine the influence of dynamic ground
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Figure 7.30: Vertical gear positions during hover and landing flight segments with the deck
inclined at a constant roll angle of 10◦.
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Figure 7.31: Control input time histories during hover and landing flight segments with the
deck inclined at a constant roll angle of 10◦.
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Figure 7.32: Roll, pitch and yaw attitudes during hover and landing flight segments with
the deck inclined at a constant pitch angle of 8◦.

effect.

7.2.3.1 Hover

Hover simulations, for roll motion alone, were performed with the rotor at a height of 0.5R,

following the configuration depicted in Fig. 7.18. The deck was excited with a sinusoidal

angular motion at 0.1 Hz, which represents the dominant frequency in SCONE ship motion

data. Thus,

Γdeck(t) = Γdeck sin
(π

5
t
)
, (7.1)

and

Γ̇deck(t) = −Γdeck
π

5
cos
(π

5
t
)
, (7.2)

Four amplitudes were considered for Γdeck: 0◦, 10◦, 20◦, and 30◦.

Time histories of the effective inflow coefficients αIGE for deck rolling motion, are
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Figure 7.33: Vertical gear positions during hover and landing flight segments with the deck
inclined at a constant pitch angle of 8◦.
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Figure 7.34: Control input time histories during hover and landing flight segments with the
deck inclined at a constant pitch angle of 8◦.
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shown in Fig. 7.35. Harmonic oscillations are evident in the coefficients. The oscillations

in the sine component of the inflow αIGEs occur at a frequency 0.1 Hz, matching the deck

excitation frequency. The response has a phase lead of approximately 22◦. From Fig. 7.35,

deck rolling motion produces fluctuations at twice the excitation frequency in αIGE0 . This is

because of the hover configuration employed, where the influence of deck roll on average

rotor inflow is the same for both positive and negative values of Γdeck. The amplitudes

corresponding to the 30◦ condition are the largest. The influence of deck rolling motion on

the αIGEc coefficient is minimal.
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Figure 7.35: Time histories of effective inflow coefficients during hover over a deck excited
by roll motion alone.

The control inputs generated by the FCS during hover over a rolling deck are shown

in Fig. 7.36. The oscillations in the longitudinal cyclic θ1s occur at a frequency of 0.1

Hz while the remaining inputs have a frequency of 0.2 Hz. The 30◦ deck rolling mo-

tion changes the longitudinal cyclic by close to 1◦. The influence on the lateral cyclic is

relatively small, while the main and tail rotor collective inputs change by 0.3◦ and 7◦, re-
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Figure 7.36: Control inputs generated by FCS during hover over a deck excited by roll
motion alone.

spectively. Note that the control inputs generated with the deck rolling at 10◦ remain close

to the level deck counterparts. The frequency spectra of the control inputs are plotted in

Fig. 7.37. The dominant frequency in the lateral cyclic, and main and tail rotor collective

inputs is 0.2 Hz, which is twice the excitation frequency. Note that less dominant motion

at 0.1 Hz is noted in θ1c. The dominant frequency in the longitudinal cyclic θ1s response is

0.1 Hz, with less dominant motion at 0.2 Hz. For the 30◦ deck roll condition, an additional

frequency peak at 0.3 Hz is noted in Fig. 7.37. Thus, a larger amplitude deck excitation

produces a control response with frequencies that are integer multiples of the excitation

frequency.

The power required to sustain the hover flight segment over a rolling deck is plotted
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Figure 7.37: Frequency spectra of control inputs during hover over a deck excited by roll
motion alone.

in Fig. 7.38. The 10◦ and 20◦ roll conditions result in approximately the same power re-

quirements as the level deck case, while the 30◦ condition causes changes of approximately

7.2% in power requirement. Slight displacements (<0.2ft.) are noted in the CG position

coordinates, shown in Fig. 7.39. The change in the vertical displacement is due to the

corresponding change in the rotor thrust, plotted in Fig. 7.40.

Results for hover over a deck excited in pitching motion alone are described next. The

deck was excited by the following motion:

δdeck(t) = δdeck sin
(π

5
t
)
, (7.3)

and thus,

δ̇deck(t) = −δdeck
π

5
cos
(π

5
t
)
. (7.4)

Hover simulations were performed at zh = 0.5R following the previous configuration. The

amplitudes considered for δdeck were: 0◦, 10◦, 20◦, and 30◦.
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Figure 7.38: Time histories of power required during hover over a deck excited by roll
motion alone.
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Figure 7.39: Time histories of CG position coordinates relative to the deck frame during
hover over a deck excited by roll motion alone.

Time histories of the effective inflow coefficients are plotted in Fig. 7.41. Harmonic

oscillations are evident in the average and fore-and-aft coefficients αIGE0 and αIGEc of the

effective inflow. The oscillations in the αIGEc component have a frequency of 0.1 Hz,

while those in the αIGE0 component have a frequency of 0.2 Hz. There is a phase lag of
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Figure 7.40: Rotor thrust during hover over a deck excited by roll motion alone.

approximately 14◦, relative to the excitation, in the αIGEc coefficient. The dynamic ground

effect from the pitching deck has minimal impact on the sine component αIGEs .

The control input time histories generated during the hover flight segment are shown in

Fig. 7.42. The oscillations in the lateral cyclic have a frequency of 0.1 Hz. The 30◦ con-

5 10 15 20

0.028

0.03

0.032

0.034

α
0IG

E

5 10 15 20

-2

0

2

α
cIG

E

×10-3

5 10 15 20

Time, s

0

2

4

α
sIG

E

×10-4

no GE 0 deg 10 deg 20 deg 30 deg

Figure 7.41: Time histories of effective inflow coefficients during hover over a deck excited
by pitch motion alone.
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dition produces changes of approximately 0.5◦ in the lateral cyclic, 0.3◦ in the main rotor

collective, and 0.7◦ in the tail rotor collective, relative to the static, level deck condition.

The oscillations in the θ1c, θ0 and θ0t time histories occur at twice the excitation frequency.

The trend noted in the lateral cyclic θ1c points to the existence of multiple dominant fre-

quencies. From the frequency spectra of θ1c, plotted in Fig. 7.43, these frequencies are

identified to be 0.1 Hz, 0.2 Hz and 0.3 Hz, with 0.1 Hz being most dominant.

Figure 7.42: Control inputs generated by FCS during hover over a deck excited by pitch
motion alone.

Time histories of power required during hover for the various deck pitching conditions

are shown in Fig. 7.44. In the 30◦ pitching condition, changes of approximately 7.2% are

noted in the power requirements, relative to the 0◦ deck condition.

Results for the helicopter in hover over a heaving deck are presented next. Two sinu-
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Figure 7.43: Frequency spectra of control inputs during hover over a deck excited by pitch
motion alone.
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Figure 7.44: Time histories of power required during hover over a deck excited by pitch
motion alone.

soidal heave displacements with an amplitude of 5 ft. were considered,

zdyn(t) = zdyn sin
( π

10
t
)
, (7.5)

zdyn(t) = zdyn sin

(
3π

10
t

)
, (7.6)
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where the first case corresponds to an excitation frequency of 0.05 Hz, and the second to

0.15 Hz. Note that the dominant frequency in SCONE heave motion is 0.15 Hz, as noted in

Chapter 6. The hover configuration employed is similar to that depicted in Fig. 7.18, with

the only difference being the starting height of the CG, which was set to 12.7 ft., to allow

for enough clearance between the landing gears and heaving deck. The ground velocities

corresponding to the heave displacement in Eqs. (7.5) and (7.6) are given by

żdyn(t) =
d

dt

[
zdyn sin

( π
10
t
)]

= −zdyn
π

10
cos
( π

10
t
)
, (7.7)

żdyn(t) =
d

dt

[
zdyn sin

(
3π

10
t

)]
= −zdyn

3π

10
cos

(
3π

10
t

)
, (7.8)

respectively. Note that the ground velocity in the 0.15 Hz heave excitation condition is three

times higher than the ground velocity corresponding to the 0.05 Hz excitation condition.

Time histories of the effective inflow coefficients are shown in Fig. 7.45. Deck heaving

motion affects the average component of inflow the most, with the 0.15 Hz excitation con-

dition producing the greatest fluctuations. The changes in the cosine and sine components

of the effective inflow are small, O(10−4). The control input time histories are plotted in

Fig. 7.46. High amplitude harmonic oscillations are evident in the figure. The 0.05 Hz and

0.15 Hz deck heaving motions produce changes of approximately 0.3◦ in the main rotor

collective input, relative to the no-ground-effect case. Deck heaving motion also causes

the tail rotor and cyclic inputs to change by 0.6◦ and 0.1◦, respectively, relative to the no-

ground-effect values. The frequency spectra of the control inputs are plotted in Fig. 7.47.

For the 0.05 Hz excitation condition, the responses have a matching dominant frequency

of 0.05 Hz. For the 0.15 Hz excitation condition however, two peaks are noted: one at 0.15

Hz, and the other at 0.3 Hz, indicating that a higher frequency deck excitation also produces

a control response with frequencies that are integer multiples of the excitation frequency.

The power required to maintain the hover flight segment in the presence of a heaving

ground plane is shown in Fig. 7.48. Offsets of approximately 7.5% are noted in the power
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Figure 7.45: Time histories of effective inflow coefficients during hover over a deck excited
by heave motion alone.

required for the 0.15 Hz excitation condition, relative to the level ground case. This corre-

sponds to a 17% change when ground effect is not included. Thus, accounting for dynamic

ground effect during shipboard operations is important.

7.2.3.2 Landing

The influence of deck motion on helicopter dynamics during landing is considered next.

Results are presented for a deck undergoing isolated sinusoidal motion in roll, pitch and

heave displacement, given by

Γdeck(t) = 12◦ sin
(π

5
t
)
,

δdeck(t) = 8◦ sin
(π

5
t
)
,

and zdeck(t) = 5 ft. sin

(
3π

10
t

)
,

(7.9)

(7.10)

(7.11)
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Figure 7.46: Control inputs generated by FCS during hover over a deck excited by heave
motion alone.

respectively. The landing flight segment was preceded by a 10s hover flight segment based

on the configuration depicted in Fig. 7.18. The initial rotor heights used were 0.5R, 0.6R

and 0.8R for isolated roll, pitch, and heave motion, respectively. These heights were chosen

to allow for enough clearance between the landing gears and the deck during the hover flight

segment.

The CG roll, pitch and yaw angular attitudes are plotted in Fig. 7.49 for the deck excited

in roll motion alone. After landing, the CG roll angle oscillates harmonically between -12◦

and 11.8◦, matching the deck rolling attitude. Harmonic oscillations are present in the pitch

and yaw time histories as well, indicating that the friction based gear reaction forces are not

sufficient to keep the vehicle stationary after landing, and that restraining devices should
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Figure 7.47: Frequency spectra of control inputs during hover over a deck excited by heave
motion alone.
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Figure 7.48: Time histories of power required during hover over a deck excited by heave
motion alone.

be used. Ground effect is minimal after the vehicle lands.

The vertical positions of the gears are shown in Fig. 7.50. The gear vertical positions

match the deck point positions after t = 12.1 s, indicating successful landing. The peaks

in the right and tail gear positions at t = 22.4 s in Fig. 7.50 correspond to the peak in

yaw angle in Fig. 7.49. Large yaw angle results in greater displacement of the gears

161



10 20 30

Time, s

-10

-5

0

5

10

φ
f, 

d
e
g

no GE

with GE

10 20 30

Time, s

-2

0

2

4

θ
f, 

d
e
g

10 20 30

Time, s

-20

-15

-10

-5

0

ψ
, 
d

e
g

Hover

LandingHover LandingHover

Landing

Figure 7.49: Roll, pitch and yaw attitudes during hover and landing flight segments with
the deck excited by roll motion alone.

from ship centerline, which in turn enhances the effect of the deck roll angle on the gear

positions. Gear deflections during landing are shown in Fig. 7.51. After landing, the main

gear deflections vary between 0.15 ft. and 0.45 ft., while those of the tail gear are bounded

between 0.035 and 0.086 ft. Upward motion of the deck produces compression in the

spring-damper system used to model the gears. Similarly, downward motion results in a

relaxation of the system. Hence, the sinusoidal response.

Control input time histories are shown in Fig. 7.52. The influence of ground effect

is evident during the hover phase. Large fluctuations of approximately 18◦ are noted in

the lateral cyclic input after the helicopter lands. The longitudinal cyclic and tail rotor

collective inputs change by close to 14◦ after landing. Although the controller is effective

in keeping the helicopter on the deck, continuously increasing displacements are noted in

the CG horizontal and vertical positions in Fig. 7.53.

Results for the deck undergoing pitching motion alone, described by Eq. (7.10), are
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Figure 7.50: Vertical gear positions during hover and landing flight segments with the deck
excited by roll motion alone.

considered next. Angular attitudes of the CG during the hover and landing flight segments

are shown in Fig. 7.54. After the vehicle lands, the pitch response varies between -8◦ and

7.2◦, matching the deck excitation. Smaller oscillations of approximately 4◦ are evident in

the roll angle. The yaw attitude in Fig. 7.54 displays less variation than that noted in the

deck rolling case, shown in Fig. 7.49.

The vertical positions of the gears are shown in Fig. 7.55. The deck point under the

tail gear experiences the largest displacements since it is located furthest away from deck

pitching axis, as illustrated in Fig. 5.1. The gear vertical positions match the deck point

positions after t = 12.1 s in Fig. 7.55. The main gears make contact first at t = 12.1 s,

followed by the tail gear at t = 12.4 s. Figure 7.56 shows the time histories of control

inputs generated by the FCS. Changes of approximately 3◦ are noted in the cyclic inputs

in the landing phase. The influence of ground motion diminishes after landing, and the

responses converge to the no-ground-effect values.
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Figure 7.51: Vertical gear positions during hover and landing flight segments with the deck
excited by roll motion alone.

Results for landing on a deck excited in heave, described by Eq. (7.11), are discussed

next. The vertical positions of the gears are shown in Fig. 7.57. The plots indicate success-

ful landing at t = 12.3 s. The tail gear makes contact first at t = 12.3 s, followed by the

main gears 0.06s later. Large deflections of approximately 0.55 ft. are noted in the main

gears in Fig. 7.58. The tail gear deflection remains relatively small, with a maximum value

of approximately 0.07 ft. Time histories of the control inputs are plotted in Fig. 7.59.

At a rotor height of 0.8R, dynamic ground effect from the heaving deck produces a small

change of approximately 6% in the main rotor collective input at the onset of the landing

phase. Variations of approximately 1◦ and 2◦ are noted in the lateral cyclic and longitudinal

cyclic inputs, respectively, after landing. The tail rotor input remains close to 11◦ in the

landing phase.
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Figure 7.52: Control input time histories during hover and landing flight segments with the
deck excited by roll motion alone.

7.2.4 Influence of combined SCONE motion

Hover and landing simulations were conducted with the deck excited in combined roll,

pitch and heave motion, using SCONE data corresponding to the “moderate” heave dis-

placement, shown in Fig. 6.6. The CG height during the hover phase was set to 31.7 ft.,

which is equivalent to zh = 0.8R. Hover and landing flight segments were simulated for

110s and 10s, respectively.

Significant variation in the time histories of power consumption is noted in Fig. 7.60.

Power fluctuations are evident in the figure. Changes of up to 14.1% are noted with dy-

namic ground effect during the hover phase, relative to case with no ground effect. Vertical

positions of the gears are plotted in Fig. 7.61. The tail gear makes contact first at t = 112.6

s, followed by the main gears 0.1s later.

Time histories of the control inputs generated by the FCS are shown in Fig. 7.62.

Ground effect from the moving deck produces slight oscillations of approximately 0.4◦ in
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Figure 7.53: Horizontal, lateral and vertical position coordinates of CG during hover and
landing flight segments with the deck excited by roll motion alone.

the main and tail rotor collective inputs. From the responses plotted in Figs. 7.60 to 7.62,

it can be concluded that the controller was able to reject disturbances from the “moderate”

heaving deck motion.

7.2.5 Combined motion and WOD

The combined influence of dynamic ground effect and WOD was examined by conducting

hover and landing simulations similar to those in the previous section. The βWOD = −30◦

WOD condition was considered, and its effect was included on the entire helicopter. The

position coordinates of the CG during the hover and landing approach are shown in Fig.

7.63. The baseline case with no WOD and ground effect is included for comparison. The

inclusion of WOD produces displacements of approximately 1.5 ft., 0.7 ft. and 1.5 ft. in the

horizontal, lateral and vertical positions coordinates, respectively, relative to the ground-

effect-only case. Note that the offset between the deck and CG position after the vehicle

166



10 20 30

Time, s

-2

-1

0

1

2

φ
f, 

d
e

g

no GE
with GE

10 20 30

Time, s

-5

0

5
θ

f, 
d

e
g

10 20 30

Time, s

-15

-10

-5

0

ψ
, 
d

e
g

Hover Landing Hover Landing

Hover Landing

Figure 7.54: Roll, pitch and yaw attitudes during hover and landing flight segments with
the deck excited by pitch motion alone.

lands at t = 112.1 s corresponds to the z offset of 5.9 ft. between the CG and landing gear

contact points, illustrated in Fig. 5.1. The control inputs generated by the FCS during the

hover flight segment are shown in Fig. 7.64. High frequency oscillations due to WOD are

noted in the control inputs. The inclusion of dynamic ground effect from the combined

deck motion induces offsets in the response, relative to the WOD-only case. The greatest

change of approximately 0.5◦ is noted in the main rotor collective input. For reference,

the WOD velocities at the hub center during the approach and landing flight segments are

shown in Fig. 7.65.
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Figure 7.55: Vertical gear positions during hover and landing flight segments with the deck
excited by pitch motion alone.
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Figure 7.57: Vertical gear positions during hover and landing flight segments with the deck
excited by heave motion alone.
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CHAPTER 8

Conclusions, Original Contributions, and

Recommendations for Future Research

A comprehensive simulation capability for helicopter ship landing, denoted as “HeliUM2-

umich”, was developed in this dissertation. The capability represents an enhancement over

the original HeliUM2 code with provision for a flight control system (FCS), wind-over-

deck (WOD), ground effect, and landing gears. A linear-quadratic regulator (LQR) based

FCS was used. The WOD was obtained using unsteady Detached Eddy Simulation (DES)

of flow over a stationary, full-scale Simple Frigate Shape Version 2 ship. Two main landing

gears, and one tail gear were included following the standard UH-60A helicopter config-

uration. Vertical gear reaction forces were based on linear spring-damper systems, while

planar reactions forces were due to friction. Two ground effect models were incorporated:

a simple model based on an inflow scaling factor which is valid only for level and station-

ary ground planes, and a finite-state model that accounts for inclined and moving ground

planes. Simulations of approach and landing on a stationary deck were performed in the

presence of WOD at various sideslip angles, and the simple ground effect model using

a UH-60A helicopter configuration. The difference in vehicle response when WOD is

included on the entire helicopter consisting of the fuselage, empennage, main rotor and

tail rotor, as opposed to the rotor alone, was also examined. Rotor performance predic-

tions, based on the ground effect models, during hover over a level plane were compared

against experimental results. The influence of deck inclination on vehicle dynamics dur-

176



ing hover and landing flight segments was examined. Hover and landing simulations were

also performed to study the influence of a deck undergoing isolated sinusoidal motion in

roll, pitch and heave degrees of freedom (DOFs). Vehicle response in-ground-effect with a

deck excited in combined roll, pitch and heave DOFs was investigated, using data from the

Systematic Characterization of the Naval Environment (SCONE) database, which is repre-

sentative of actual ship deck motion. The combined influence of WOD and deck motion

on helicopter dynamics was examined as well.

8.1 Conclusions

The main conclusions and contributions of this dissertation are summarized next:

1. The gain-scheduled controller is effective in stabilizing and tracking the helicopter

reference trajectory throughout the approach. Vehicle response shows that oblique

WOD conditions require the largest control effort when compared to the headwind

case, due to the cliff edge effect, in which winds from the edges of the ship structure

induce higher airwake velocities.

2. High frequency oscillations and drifts induced by WOD are evident in the helicopter

response during approach and landing, notably in the angular attitudes, which in turn

may induce undesirable effects such as dynamic roll over.

3. Time histories of helicopter control inputs for symmetric portside and starboard

WOD cases are not symmetric due to the asymmetry in vehicle dynamics. Thus, both

portside and starboard winds should be considered when establishing ship-helicopter

operating limits (SHOLs).

4. Greater control effort is required when WOD is included on the entire helicopter,

when compared to WOD acting on the rotor alone.
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5. The main rotor collective input requirement decreases by approximately 8.1% when

the simple ground effect model is included. This results in a decrease of approx-

imately 11.3% in power consumption, a known beneficial effect of operating near

ground. Ground effect is important and begins to influence the helicopter response

as soon as the rotor hub enters the region above the ship deck. However, the simple

model used is not accurate for zh < 0.5R.

6. The finite-state ground effect model shows good agreement with experimental results

from literature, even for zh/R < 0.5R.

7. A static roll inclination of the deck produces a disturbance that causes the controller

to adjust the longitudinal cyclic input in response. Similarly, a static pitch inclination

of the deck results in the FCS adjusting the lateral cyclic input. The ground effect

due to static deck inclination becomes significant for inclination angles close to 30◦.

8. During hover, if the planes of symmetry of the helicopter and ship deck are aligned,

the average component of inflow is independent of the sign of the roll angle. Thus,

when the deck is excited by rolling motion alone, the frequency of collective input

response is twice the excitation frequency. A similar response is obtained when the

deck is excited by pitching motion alone.

9. A harmonic motion of the deck with large amplitude or frequency produces a control

response with frequencies that are integer multiples of the excitation frequency.

10. Dynamic ground effect due to deck heaving motion causes an additional change of

approximately 7.5% in power requirements, when compared to static ground effect.

This is equivalent to a 17% change from the no-ground-effect condition. Thus, it is

important to account for dynamic ground effect in helicopter shipboard operations.

11. A realistic landing was achieved on level, inclined and moving decks in the presence

of WOD and ground effects using the three landing gear UH-60A configuration.

178



When considering landing on a level deck, the tail gear touches the deck first followed

by the two main gears. When the deck is inclined at a static pitch angle, the main

gears make contact before the tail gear. The friction reaction forces from the landing

gears are not sufficient to keep the vehicle stationary after landing on a moving deck

and thus, restraining devices should be employed.

8.2 Original Contributions Made in this Dissertation

1. Development of a comprehensive first principles, physics based, flight dynamics

model of a helicopter with flexible blades, stabilizing controller, and landing gear,

capable of actually landing on a moving deck. Such a comprehensive model is not

available in the literature.

2. A DES based WOD computational model and its seamless integration in the flight

dynamics model.

3. Simulation of a complete helicopter during approach and landing with DES based

WOD model.

4. Coupling of a simple static ground effect model with the flight dynamics model to

determine the importance of ground effect on landing for the first time.

5. Incorporation of a refined dynamic ground effect model in the flight dynamics model

and simulation of landing on a moving deck.

6. Landing simulations combining WOD, dynamic ground effect and SCONE based

deck dynamics with combined heave, pitch and roll.

179



8.3 Recommendations for Future Research

While this study represents a comprehensive investigation of helicopter-ship dynamic in-

terface (DI), additional research on the topic remains to be done.

This study only considered one-way coupling between the WOD and helicopter dy-

namics. Two-way coupling between the WOD and helicopter flight dynamics should be

conducted to determine the accuracy of one-way simulations.

While the gain-scheduled LQR based controller was effective in tracking the prescribed

approach trajectory, future research should examine more advanced control strategies such

as Model Predictive Control (MPC) that can produce a rich combination of landing ap-

proaches. Optimization studies can be valuable for generating approach trajectories that

minimize the disturbances due to WOD.

Ground effect due to static deck inclination and motion represents a new area of re-

search. Future research should be performed to further characterize this effect, which was

shown to be significant in this study.
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APPENDIX A

Associated Legendre Functions

Recurrence relationships used to derive Legendre functions of the first and second kind are

given here [93].

P̄m
n+1(ν) =

√
(2n+ 3)(2n+ 1)

(n+ 1)2 −m2

[
νP̄m

n (ν)−
√
n2 −m2

4n2 − 1
P̄m
n−1(ν)

]
, (A.1)

P̄m+1
n (ν) =

1√
1− ν2

[√
(2n+ 1)(n+m)

(2n− 1)(n+m+ 1)
P̄m
n+1(ν)− (n−m)√

(n+m+ 1)(n−m)
νP̄m

n (ν)

]
,

(A.2)

Q̄m
n+1(iη) = Q̄m

n−1(iη)− (2n+ 1)Km
n ηQ̄

m
n (iη), (A.3)

Q̄m+1
n (iη) =

1√
1 + η2

[Q̄m
n−1(iη)− (n−m)Km

n ηQ̄
m
n (iη)], (A.4)

where a recurrence relation for Km
n is given by

Km
n+1 =

1

Km
n

1

(n+ 1)2 −m2
=

n2 −m2

(n+ 1)2 −m2
Km
n−1. (A.5)

A few values of Km
n with low m + n combinations are shown in Table A.1.
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Table A.1: Values of Km
n

m
0 1 2 3 4

0 π/2
1 2/π π/4

n 2 π/8 4/3π 3π/16
3 8/9π 3π/32 16/15π 15π/96
4 9π/128 32/45π 15π/192 96/105π 105π/768

A.1 Closed-Form Representations

Closed form expressions for the associated Legendre functions of the first and second kind

used in this report are provided here.
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P̄ 2
3 (ν) =

√
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APPENDIX B

General Form of Ground Effect Matrices

The general form of the AG, BG, GG and CG matrices are given here. Using the fundamen-

tal and first harmonics (r,m, l = 0, 1), two radial distribution terms for the induced inflow

(j = r+ 1, r+ 3) and the rotor pressure perturbation (n = m+ 1,m+ 3), and three radial

distribution terms for the ground pressure perturbation (k = l, l + 2, l + 4), the general

forms of the AG, BG, and GG matrices from Eq (5.70) are given by

[AG] =



(A00
10)cc (A00

12)cc (A00
14)cc (A01

11)cc (A01
13)cc (A01

15)cc (A01
11)cs (A01

13)cs (A01
15)cs

(A00
30)cc (A00

32)cc (A00
34)cc (A01

31)cc (A01
33)cc (A01

35)cc (A01
31)cs (A01

33)cs (A01
35)cs

(A10
20)cc (A10

22)cc (A10
24)cc (A11

21)cc (A11
23)cc (A11

25)cc (A11
21)cs (A11

23)cs (A11
25)cs

(A10
40)cc (A10

42)cc (A10
44)cc (A11

41)cc (A11
43)cc (A11

45)cc (A11
41)cs (A11

43)cs (A11
45)cs

(A10
20)sc (A10

22)sc (A10
24)sc (A11

21)sc (A11
23)sc (A11

25)sc (A11
21)ss (A11

23)ss (A11
25)ss

(A10
40)sc (A10

42)sc (A10
44)sc (A11
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
,

(B.1)
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44)cs
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14)cs
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33)cc (B11
32)cc (B11

34)cc (B11
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34)cs
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53)cc (B11
52)cc (B11

54)cc (B11
52)cs (B11

54)cs

(B10
11)sc (B10

13)sc (B11
12)sc (B11

14)sc (B11
12)ss (B11

14)ss
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31)sc (B10

33)sc (B11
32)sc (B11

34)sc (B11
32)ss (B11

34)ss
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54)sc (B11
52)ss (B11

54)ss



, (B.2)

[GG] =


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11)cc (G00
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12)cc (G01
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12)cs (G01

14)cs
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31)cc (G00

33)cc (G01
32)cc (G01

34)cc (G01
32)cs (G01

34)cs
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23)cc (G11
22)cc (G11

24)cc (G11
22)cs (G11

24)cs
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41)cc (G10
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44)cc (G11
42)cs (G11

44)cs
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21)sc (G10

23)sc (G11
22)sc (G11

24)sc (G11
22)ss (G11

24)ss

(G10
41)sc (G10
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42)sc (G11

44)sc (G11
42)ss (G11

44)ss


. (B.3)

Using the fundamental and first harmonics (r, p = 0, 1), two radial distribution terms

for the dynamic induced inflow (j = r + 1, r + 3), and three radial distribution terms for

the dynamic ground pressure perturbation (i = p+ 1, p+ 3, p+ 5), a general form for the

CG matrix in Eq. (5.89) is given by
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[CG] =
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36 )cc (C01
32 )cs (C01

34 )cs (C01
36 )cs

(C10
21 )cc (C10

23 )cc (C10
25 )cc (C11
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46 )sc (C11
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46 )ss


.

(B.4)
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APPENDIX C

DDG-51 Ship Geometry

The SCONE database [94] contains motion data for a generic surface combatant ship sim-

ilar to a DDG-51 type destroyer, depicted in Fig. C.1. The principal dimensions of the

geometry used are given in Table C.1 [94]. Relevant geometry parameters are defined as

follows [96, 97]:

1. waterline (WL): the line where the ship hull meets the surface of water;

2. baseline (BL): a horizontal line along the length of the ship that passes through the

keel;

3. forward perpendicular (FP): a vertical line through the intersection of the foreside of

the bow with the waterline;

4. aft perpendicular (AP): a vertical line through the intersection of the the aft side of

the rudder post with the waterline;

5. beam: ship width;

6. draft or draught: the vertical distance between the waterline and the keel;

7. longitudinal plane: a plane that contains both forward and aft perpendiculars;

8. transverse plane: a plane along the width of the vessel connecting starboard and

portside edges of the ship;
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9. longitudinal center of gravity (LCG): a point in the longitudinal plane where total

weight acts;

10. vertical center of gravity (VCG): a point in the transverse plane where total weight

acts;

11. longitudinal center of buoyancy (LCB): a point in the longitudinal plane the buoyant

forces from water act;

12. transverse center of buoyancy (CB): a point in the transverse plane where the buoyant

forces from water act;

13. transverse metacentric height (GMT): the distance between the VCG and the meta-

centre, which is the point where the vertical line through the CB when the ship is

level intersects the vertical line through the CB when the ship has listed (rolled) by a

small angle.

Table C.1: SCONE ship geometry parameters [94]

Parameter Value

Length, overall 497.4 ft.

Length, waterline 464.1 ft.

Beam, maximum 69.6 ft.

Beam, waterline 62.6 ft.

Draft, initial 21.4 ft.

Draft, maximum 31.5 ft.

Displaced volume 3.23× 105 ft3

Longitudinal center of gravity 234.5 ft. from FP

Vertical center of gravity 4.43 ft above WL

25.9 ft. above BL

Metacentric height (tranvserve) 5.37 ft.
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Figure C.1: Illustration of the DDG-51 ship with different parts labeled.
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