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Abstract 
 
The complex nervous system is built upon a vastly heterogeneous population of neurons. 

In order to decipher how the nervous system operates, it is critical to understand all aspects of 

neuronal properties such as morphology, lineage, electrophysiology and molecular identity, etc. 

Canonical neuronal subtype classification is often based on features reflected in one of these 

attributes. However, canonically defined neuronal subtypes normally compose of individuals that 

are heterogeneous in other attributes. It is therefore important to study the same neuron based on 

a collective cohort of properties. In this thesis study, I studied the lineage composition, 

morphology patterning and molecular heterogeneity of the serotonergic neurons in the fruit fly 

Drosophila melanogaster. I developed a series of novel transgenic tools, collectively called 

Bitbow, which are capable of generating up to tens of thousands of unique fluorescent barcodes 

to unambiguously label hundreds of lineages or individual neurons in the same brain. My results 

indicated that most of the serotonergic neurons arises from distinct lineages. Combining with 

Expansion Microscopy and multispectral neuronal tracing, a morphological map of serotonergic 

neurons in the ventral nerve cord was reconstructed from a single Bitbow fly. Using scRNAseq 

techniques, I found profound molecular heterogeneity of serotonergic neurons, characterized by 

their differentially expressed genes of GPCRs, ion channels, neurotransmitters, transcription 

factors and so on. My thesis has provided new methodologies to better define neuronal subtypes 

with multiple modalities, and accumulated knowledge to allow more precise investigations and 

manipulations of Drosophila serotonergic neurons in future studies.
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Chapter 1. Introduction 

1.1 Neuronal subtypes: heterogeneous functional units that build up the nervous system 

Nervous systems, simple or complex across the span of the evolutionary tree, rely on 

precise development and wiring of vastly diverse types of neurons. As fundamental functional 

units in the system, neurons contain common structural features, such as axons, dendrites, somas 

and synapsis, and common functional features, such as action potentials, gated ion flux, and 

excitatory and inhibitory connections. Together these basic features ensure proper processing and 

transmitting of information flows across the nervous system. However, neurons are vastly 

different in the extent and combinations of how they adopt these features to perform desired 

functions, resulting in numerous neuronal subtypes. In order to obtain knowledge regarding how 

the nervous system is operating as an integral entity, it is critical to understand the diversity in 

neuronal subtypes. 

Neurons can be defined through categorical observations in their morphology, lineage, 

molecular identity, connectivity, electrophysiological properties and so on (Fig 1.1, Kepecs & 

Fishell, 2014). Since the time when neuron doctrine was established by the studies of Cajal, 

Golgi and many others in various species (Golgi, 1885; y Cajal, 1888), a solid body of work has 

been created on the basic morphological description of neurons. These morphological 

descriptions are direct and indictive. How do major neurites branch from the soma? How dense 

are the axonal and dendritic projections? Which specific brain regions do the projection arbors 

cover? Does the neuron have long-distance projections or local projections? These questions 

form a set of critical categorical survey that builds the foundation to determine neuronal 
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subtypes. It is also important to understand from which group of neural stem cells that certain 

neurons are born, i.e. neurons’ lineage identities. In mice, excitatory and inhibitory interneurons 

have been found to be derived from distinct parts of the developing neocortex (Tan & Shi, 2013), 

and disruptions in progenitor cells lead to changes in cell type composition (Sultan & Shi, 2018), 

damaging normal functions in the nervous system. Molecular identity also played a strong role in 

defining neuron types. With proper probing at both the transcription and translation levels 

(Bhattacherjee et al., 2019; Greig, Woodworth, Galazo, Padmanabhan, & Macklis, 2013; 

Molyneaux, Arlotta, Menezes, & Macklis, 2007), neurons can be consistently categorized based 

on their molecular profiles, which also pave the way of tracking and manipulating specific 

subtypes transgenically (Jenett et al., 2012; Taniguchi et al., 2011). Finally, electrophysiological 

properties of neurons brings in critical knowledge of how each type of neuron is potentially 

exerting its role to participate in a function circuitry (Fuzik et al., 2016; Knoblich, Huang, Zeng, 

& Li, 2019). 

 
Fig 1.1 Neuronal subtypes can be defined by categorical observations of neuron properties 
Neuronal diversities in lineage, morphology, connectivity, molecular identity and electrophysiological properties contribute to the 
heterogeneity in the nervous system, leading to profound functional diversity. (Modified from Kepecs & Fishell, 2014) 
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Currently, the foundation of our knowledge regarding the heterogeneity in neuronal 

subtypes is built upon parallel information collected independently in each of these categories. 

However, it is becoming more and more evident that functional/behavioral responses from 

single-categorically defined neurons in an experiment can be very heterogeneous (Cembrowski 

& Spruston, 2019). This suggests that there are more differences among the cells in each defined 

group of neurons. To more accurately address these differences, one approach is to find new 

markers within each category to gain finer definition. This approach is greatly limited by the 

profiling depth and throughput of available methodologies. Alternatively, if features across 

multiple categories can be associated together, i.e. generating cross-modality definitions, the 

subtypes could be more precisely defined utilizing all information collected by existing and 

novel neurotechnologies. With more accurate subtype definitions, new knowledge and 

methodology can be obtained to deepen our understanding about how these diverse types of 

neurons contribute to a uniform and complex entity.  

1.2 The Drosophila nervous system consists of precisely developed and organized neuron 

subtypes 

The central nervous system (CNS) of fruit fly Drosophila melanogaster is an excellent 

model for understanding neuronal diversity and the potential regulation mechanisms underlying 

the neuronal diversity. Consisting of 10,000 - 12,000 neurons in larval stages, and ~150,000 

neurons in adult  (Ohyama et al., 2015), the fly CNS contains vastly different types of neurons to 

build complex circuits and perform various neurological functions. All neurons are precisely 

generated through two waves of neurogenesis. The first wave happens in the embryonic stage 

when a relatively small set of neurons are produced and organized to support activities in the 

larva stage. After a short period of stem cell quiescence, the second wave of neurogenesis 
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persists throughout the larval stage to produce ~90% neurons responsible for the adult CNS 

(Homem & Knoblich, 2012). A diverse population of neurons are generated during these two 

waves from a rather small pool of neural stem cells, the neuroblasts (NB). There is estimated to 

be ~200 NBs in the central brain (K. Ito & Hotta, 1992), ~1000 in the two optic lobes (Hofbauer 

& Campos-Ortega, 1990) and ~800 in the ventral nerve cord (Birkholz, Rickert, Berger, Urbach, 

& Technau, 2013). NBs in the fly brain are defined in two distinct types based on their 

proliferation schemes. Type I NBs uses a relatively simple scheme, where the stem cell goes 

through a limited number of asymmetric divisions to each time generate a progeny named 

ganglion mother cell (GMC) and self-renew to maintain its stem cell property. Each GMC 

divides symmetrically once further to generate two neurons (or one neuron and one glia, or two 

glia). Because most of the NBs in the nervous system are Type I, this scheme produces the 

majority of neurons in the brain. Type II NBs uses an extra step in the process, where in each 

asymmetric division, instead of generating a GMC, the NB produces an intermediate neural 

progenitor (INP) and self-renew; each INP can produce multiple GMCs in their lifetime, and 

GMCs are still going through one symmetric division to produce two daughter cells. Although 

there are only 16 Type II NBs in the CNS, this developmental strategy produces a lot more 

neurons within the same lineage. Together with the Type I NBs, the two strategies ensure the 

generation of a large population of progeny and lay the foundation of neuronal heterogeneity in 

the CNS. 

Although NBs undertake stereotypic proliferation strategies, they are all uniquely 

regulated and specified to produce diverse progenies. This is achieved through combinatorial 

molecular mechanisms with spatial, temporal and hemi-lineage specifications (Fig 1.2).  
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As early as 5 hours after-egg-lay (AEL), NBs in the embryos start to be patterned with 

spatially defined molecule combinations, mostly transcription factors, and these spatial factors 

play vital roles in defining NB identity. NBs in both central brain and VNC are influenced by 

spatial factors. In VNC, segment polarity genes such as engrailed (en) and gooseberry (gsb) 

determine anterior and posterior compartments, respectively, within each neuromere (Torsten 

Bossing, Udolph, Doe, & Technau, 1996). Dorsal/ventral patterning genes such as Msh, Ind, and 

Vnd exert their function through “stripes” of expression domains running across neuromeres 

from anterior to posterior (Urbach & Technau, 2003; Urbach, Volland, Seibert, & Technau, 

2006). These two sets of orthogonal molecular signals create a meshed spatial determination 

pattern. Additional “patches” of spatial factors, such as huckebein (hkb) and Dachshund (dac), 

are expressed in unique patterns across various segments. Together these spatial factor 

combinations make it possible to stereotypically determine NBs located at specific positions in 

the developing brain.  

However, spatial determination alone is not sufficient to heterogeneously determine 

hundreds of thousands of neurons in the Drosophila CNS. Temporal and hemi-lineage 

specifications are critical to further diversify the population within each lineage. Hemi-lineage 

determination is a straightforward and effective strategy to assign different identities for neurons 

of the same lineage. In the last step of neurogenesis, GMCs produce two daughter cells with 

similar morphological traits but contrasting molecular determinants. Most notable is the Notch 

signaling components, where one of the two daughter cells contains numb, the inhibitor of 

Notch, hence being “Notch-off”, and the other does not hence being “Notch-on” (Frise, 

Knoblich, Younger-Shepherd, Jan, & Jan, 1996; Skeath & Doe, 1998; Spana, Kopczynski, 

Goodman, & Doe, 1995). This binary mechanism effectively groups all progeny in the same 
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lineage into two sets, the Notch-off hemi-lineage and the Notch-on hemi-lineage (Bardin, Le 

Borgne, & Schweisguth, 2004). Neurons of the same hemi-lineage exert similar developmental 

and terminal properties, such as sharing the same neurite tract, forming similar projection 

domains, etc., and the two hemi-lineages from the same NB clearly have differentially projecting 

neurons although all the cell bodies are tightly clustered with each other (Harris, Pfeiffer, Rubin, 

& Truman, 2015; Truman, Moats, Altman, Marin, & Williams, 2010).  

 

 
Fig 1.2 Combinatorial molecular specifications permit diverse neuron subtype generation in developing Drosophila 
Ventral Nerve Cord (VNC) 
Neurogenesis in Drosophila VNC is precisely regulated by specific combinatorial molecular factors patterned in spatial-, 
temporal- and hemi-lineage-dependent manners. Shaded boxes in different colors represent different molecule combinations. NB, 
neuroblast. GMC, ganglion mother cell. N, neuron. A-P, Anterior-Posterior axis. M-L, Medial-Lateral axis. 
 

As the third and most dynamic patterning influence, temporal factors have been found to 

play vital roles in generating diverse neuronal types across the CNS, such as in VNC lineages, 

central brain type II lineages as well as optic lobe lineages (Bayraktar & Doe, 2013; Isshiki, 

Pearson, Holbrook, & Doe, 2001; X. Li et al., 2013; Pearson & Doe, 2003; Suzuki, Kaido, 
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Takayama, & Sato, 2013). Cascades of transcription factors, such as Hb > Kr > Pdm > Caster in 

VNC NBs (Isshiki et al., 2001), D > Grh > Ey in Type II NBs (Bayraktar & Doe, 2013) and 

Hth > Klu > Ey > Slp > D > Tll in optic lobe NBs (X. Li et al., 2013), have made it possible to 

add an additional layer of specification to diversify the possible progeny outcomes from a single 

lineage. Transitions and overlapping between adjacent temporal factors further strengthen the 

power of temporal patterning to allow more developmental states of NBs, hence more neuronal 

types. Disruptions or delay of normal temporal transition in NBs lead to substantial changes of 

neuron subtype composition within a lineage, resulting in missing certain types and/or 

overpopulating of others (Brody & Odenwald, 2000; Isshiki et al., 2001; Pearson & Doe, 2003). 

Together, spatial, temporal and hemi-lineage determinations build up a multiplex and stereotypic 

intrinsic developmental program to lay the foundation of the neuron diversity in the Drosophila 

CNS.  

Equally important but less understood are the extrinsic regulations in neuron shaping and 

wiring, which gives proper morphology and connectivity to neurons to exert proper functions in 

a circuit. Understand how different neurons look and wire together is critical to reveal the 

complexity of neuronal subtypes. 

Drosophila CNS neurons have common morphological features with diversely flexible 

neurite organization. Most of CNS neurons are unipolar; somas (cell bodies) of these neurons 

contain single primary neurites. Branching off from the primary neurite, elaborative arbors form 

compartments of afferent and efferent natures. This basic morphological organization leads to 

clustering of somas at the peripheral of CNS which forms the cortex, and the clustering of arbors 

which forms the neuropil compartments (Larsen et al., 2009). Because of this morphological 

compartmentalization of somas and arbors, it is difficult to precisely describe neuron types solely 
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based on their soma location or arbor location. Somas of different types of neurons might be 

clustered tightly together (Lai, Awasaki, Ito, & Lee, 2008), and arbors at the same neuropil  

might be originated from various types of neurons (Fischbach, -F. Fischbach, & Dittrich, 1989; 

Hanesch, Fischbach, & Heisenberg, 1989). Accurate and complete reconstructions of neuronal 

morphology are essential to define neuronal subtypes. 

Once neuron morphologies can be accurately described, well-guided hypothesis can be 

derived regarding their functional relevance. For one aspect, because the neuropil compartments 

are well characterized in the Drosophila brain (Kei Ito et al., 2014), and some of them are found 

to associate with specific neurological functions, e.g. mushroom body to memory (Pascual & 

Préat, 2001), antenna lobe to sensory decoding (Fishilevich & Vosshall, 2005), central complex 

to locomotion (Strauss, 2002), etc., morphological information regarding where the studied 

neuron targets its arbor onto will be predictive of its functional relevance. In another aspect, even 

if neurons are targeting the same neuropil, their functional differences can be proposed based on 

their morphological differences. For example in the adult optic lobe (Fischbach et al., 1989), 

some medulla neurons extend their neurites perpendicularly through multiple medulla layers 

(such as intrinsic columnar medulla neurons, Mi neurons), while some other ones whose neurite 

stay mainly in one layer but tangentially cover the entire span of medulla (such as tangential 

medulla neurons, Mt neurons). Both Mi and Mt neurons are innervating the Medulla only, but 

because of their morphological differences, they have drastically different functional predictions, 

where Mi neurons are thought to be responsible for relaying and processing visual information 

passing down in each visual column, while Mt neurons are hypothesized to be responsible for 

integration of information across columns. In summary, morphological descriptions of neuronal 

subtypes are important and highly indicative of neuronal functions. 
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1.3 Genetic approaches that enable identification of neuronal subtypes in Drosophila 

Besides its amenable size of neuron population and circuitry-behavior complexity, 

Drosophila is an attractive research model also due to its large arsenal of available genetic tools. 

This makes thorough investigations approachable. This is an ongoing effort by the contributions 

from many generations of scientists, trailblazing from simple, direct prototypes to more and 

more advanced, complex systems that have been combinatorically built upon previous successes.  

To obtain systematic knowledge of neuron types in the Drosophila nervous system, 

whether through a morphological, developmental or circuitry perspective, or the combinations of 

them, it is crucial to be able to consistently identify and target neuron types of interest. Before 

the prevalent use of fluorescent proteins, chemical staining (Blest, 1961; Holmes, 1943; y Cajal, 

1910) and dye injections (T. Bossing & Technau, 1994) were the major methodologies to 

differentially label and track neurons. These methods provided high quality detail of neurons but 

were greatly limited by their technical complexity and throughput. More importantly, it is non-

trivial to correlate morphologically determined neurons with their molecular features.  

Fluorescent proteins, such as GFP, which are genetically encodable and optically 

observable, have revolutionized the paradigm of all branches of neuroscience. In Drosophila, the 

strength of fluorescent-protein-based investigation further stands out with the armory of 

powerful and delicate genetic designs. 

Borrowing from a yeast transcription system, the Gal4-UAS transgenics permits specific 

labeling of molecularly defined population with great flexibility. This two-component system 

uses a driver-effector scheme, where the transcription activator Gal4 is under the control of a 

specific enhancer element to be the driver line, and effectors such as a fluorescent protein is 
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downstream of the UAS to be the reporter line. Because of the specific interactions between Gal4 

and UAS, the driver-reporter pair will ensure faithful labeling of only the neurons targeted by the 

enhancer element in the driver. This allows great flexibility in studying neuronal types, 

especially with the tremendous resource of Gal4 transgenic library (Jenett et al., 2012) and 

reporter lines (Pfeiffer et al., 2010).  

In many cases, further specification of a group of neurons within a determined population 

is necessary, especially when the group of interest cannot be simply defined by known enhancer 

elements, or the neuron population is too large to be optically resolved reliably. Genetic tools 

with stochastic characteristics, such as Flp-out (Evans et al., 2009; K. Ito, Awano, Suzuki, 

Hiromi, & Yamamoto, 1997) and MARCM (Lee & Luo, 1999) are able to fulfill these needs. As 

the core molecular machinery, recombinase flippase (Flp) can recognize specific DNA sequences 

named flippase recognition target (FRT), and either invert or remove sequences flanked by a pair 

of FRTs depending on the relative orientation of the two FRTs. Because the amount of flippase 

in cells can be externally controlled with transgenic lines such as heat-shock-promoter-driven 

flippase (hsFlp), the level of recombination can be flexibly regulated based on experimental 

needs. Flip-out and MARCM make it possible to label a subset of neurons within a defined 

group, and in some extreme cases, a single neuron (Lee & Luo, 1999). 

As knowledge and tools advance, there is greater and greater need to not only follow on 

single or sparse neuronal targets, but to investigate neurons within their whole native circuitry, in 

a dense but resolvable manner. This is one of the initial rationales of multicolor labeling systems, 

such as Brainbow (Hadjieconomou et al., 2011; Hampel et al., 2011; Livet et al., 2007) and 

Multi-color Flip-out (MCFO) (Nern, Pfeiffer, & Rubin, 2015). Through careful genetic designs 

combining Gal4-UAS, Flp-FRT (or other recombinase systems such as Cre-Lox) systems and a 
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set of spectrally, antigenically distinguishable fluorescent proteins, multicolor labeling systems 

have achieved differential labeling of large groups of neurons that are previously unresolvable. 

Neurons of interest are still selectively targeted with specific genetic control such as enhancer-

Gal4 drivers, and multicolor labeling combinations are randomly assigned to individual neurons 

within the targeted population, which make them distinguishable from each other. This has 

enabled critical advantages in both morphological and developmental studies. Detailed 

morphological information regarding cell body position, projection pattern, neurite density and 

so on can be learned efficiently in a population manner, plus knowledge about potential 

interactions among the members within the population. When tracing down the developmental 

processes by assigning multicolor labeling in a lineage-related manner, progeny of the same 

lineage can inherit the same label, which enables lineage tracing of these progeny to reveal their 

developmental dynamics and final contribution to the nervous system.  

The multicolor genetic systems are powerful in resolving morphological and 

developmental characteristics of neuronal subtype with high throughput, however, existing tools 

are still limited by the pool size of available labels, balance of labeling assignment and flexibility 

in tuning labeling density and time point. These imperfections can be fixed with better genetic 

designs and inclusion of new recombination tools. In Chapter 2 of this thesis study, I present the 

design and evaluation of a new generation of multicolor genetic system, which aims to deliver up 

to tens of thousands of unique labels in the Drosophila nervous system with a concise and 

effective strategy. I also demonstrate its flexible application and tunable labeling density with a 

carefully designed initiation method. This novel genetic tool will allow more reliable and 

systematic analyses on lineage and morphological identities of neuronal subtypes. 
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1.4 Single-cell RNA sequencing permits molecular investigation of neuronal subtypes 

In addition to morphological and developmental features, neuronal subtypes can be 

defined by their molecular identities. This is a critical categorical dimension as it provides 

important insights of what certain groups of neurons might do to fulfill specific neuronal 

functions and how they might accomplish it. These pieces of information have become more 

readily accessible with recent advances in single cell RNA sequencing (scRNAseq). 

In succession to bulk RNA sequencing methods (Cloonan et al., 2008; Wang, Gerstein, & 

Snyder, 2009) which reveal transcriptomic information in a mixed population of cells, scRNAseq 

aims to precisely attribute these transcriptomes to each individual cells in the population (Klein 

et al., 2015; Macosko et al., 2015; Pollen et al., 2014; Tang et al., 2009). This makes scRNAseq 

perfectly suitable in resolving intrinsic heterogeneity at the RNA level among a group of neurons 

of interest. This permits effective validation of existing knowledge of known neuron subtypes, 

and allows findings of novel subtypes in a known population or across the whole nervous 

system. In the nervous system of human (Darmanis, Sloan, & Zhang, 2015), mouse (Lacar et al., 

2016; Zeisel et al., 2015), zebrafish (Pandey, Shekhar, Regev, & Schier, 2018; Raj et al., 2018), 

and fruit fly (Croset, Treiber, & Waddell, 2018; Davie et al., 2018), scRNAseq has propelled 

findings in defining, correlating neuronal subtypes, and observing changes in them when 

development progresses or physiological/pathological alteration occurs in the systems. New 

knowledge acquired with scRNAseq has brought in exciting opportunities in understanding 

biological and pathological dynamics with unprecedented detail in high-throughput. However, 

because positional identity is lost as the cells are dissociated from the system to go through 

scRNAseq, the molecular identity assignment of each subtype needs thorough post-validation on 

a different animal, or by selected capture of well predefined cell populations before passing them 
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into the scRNAseq pipeline. In Chapter 4 of this thesis study, scRNAseq is applied on a selected 

group of Drosophila CNS neurons. The depth and throughput of transcriptome profiling on this 

neuronal group has revealed intriguing subtype findings, and demonstrated a powerful and 

reliable paradigm to thoroughly reveal molecular identities for accurate neuronal subtype 

definitions. 

1.5 Serotonergic neurons in the Drosophila nervous system 

Serotonin (or 5-hydroxytryptamine, 5-HT) is an important monoamine neurotransmitter 

participating in various important neurological functions in nervous systems across multiple 

species (Gaspar, Cases, & Maroteaux, 2003; Lillesaar, Tannhäuser, Stigloher, Kremmer, & 

Bally-Cuif, 2007; Sodhi & Sanders-Bush, 2004). In the Drosophila nervous system, there is a 

relatively small subset of neurons that produce serotonin (Lundell & Hirsh, 1994; Vallés & 

White, 1988), and they have been observed to play critical roles in maintaining and regulating 

important nervous system functions, such as feeding, courtship, aggression, learning and 

memory (Becnel, Johnson, Luo, Nässel, & Nichols, 2011; Gasque, Conway, Huang, Rao, & 

Vosshall, 2013; Johnson, Becnel, & Nichols, 2011; Liu et al., 2011; Sitaraman et al., 2008; 

Yuan, Joiner, & Sehgal, 2006).  

Serotonergic neurons go through neurogenesis in early embryonic stages, and commit to 

their fate by 16-18 hours after-egg-lay (AEL) to be able to produce 5-HT (Vallés & White, 

1988). Most if not all of these neurons persist through developmental stages from embryo, larva, 

pupa and eventually into adult. There are around 80 serotonergic neurons in the larva CNS, and 

100 in the adult CNS (Vallés & White, 1988)(Huser et al., 2012). These neurons are 

stereotypically clustered to form distinctive neuronal patterns (Fig 1.3). In larva brains, they are 

symmetrically distributed as clusters located throughout the ventral nerve cord (VNC) which 
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includes 4 subesophageal (SE0~SE3), 3 thoracic (T1~T3), and 8 abdominal (A1~A8) segments, 

usually two to three neurons in each hemi-segment, and located in 4 groups in the central brain - 

SP1, SP2, IP and LP, often three to four neurons per cluster. In adult brains, the serotonergic 

neuronal patterns reorganized drastically after going through metamorphosis with addition and 

loss of neurons in the population. Dispersed more broadly in the central brain, adult serotonergic 

neurons formed 6 anterior clusters (ADMP, ALP, AMP, LP, SEL and SEM), and 4 posterior 

clusters (PMPd, PMPm, PMPv, PLP). Fewer cells populate the adult VNC which shrinks greatly 

from its significant larval form to three thoracic segments (pro- (PR), meso- (MS) and meta- 

(MT) thoracic) and one condensed abdominal segment (AB), and around one to two cells per 

thoracic hemisegment and ten cells per abdominal segment can be observed. (Niens et al., 2017)  

 
Fig 1.3 Distribution and nomenclature of serotonergic neurons in Drosophila CNS 
Larval (left panel) and adult (right panel) serotonergic neuron cell body positions are illustrated. See text for more details about 
neuron nomenclatures. 
 

Several critical questions about the Drosophila serotonergic system remains unresolved. 

Previous studies have set a strong base of morphological knowledge of larva and adult 

serotonergic neurons (Huser et al., 2012), however because of the density and complexity, 

detailed morphological properties of these neurons are only partially revealed so far (Chen & 

Condron, 2008). Further, although serotonergic neurons appear to be closely clustered in each 
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neuromeres from anterior to posterior, and a recent study suggests that neurons using the same 

fast-acting neurotransmitter are most likely to be developed from the same lineage (Lacin et al., 

2019), it is still unknown whether similar lineage mechanism also applies to the serotonergic 

neurons. Finally, because of the multifaceted neurofunctional performance of the serotonergic 

neurons, it is unclear if all the serotonergic neurons are molecularly identical but simply 

participating in different circuitries, or the serotonergic neurons are substantially diverse 

however still sharing the same neuromodulation machinery by using serotonin. These 

unanswered questions are corresponding to the information in three essential subtyping 

categories, i.e. morphology, lineage and molecular identity. Careful investigations with advanced 

neurotechnologies are needed to answer these questions and obtain a more complete and 

systematic view of serotonergic neurons in Drosophila. In Chapter 3 of this thesis study, the 

newly developed multicolor genetic system is applied on the serotonergic neurons. Systematic 

morphological and lineage analyses have provided new insights of the subtype heterogeneity 

among the Drosophila serotonergic neurons. 
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Chapter 2. Bitbow: a Digital Format Brainbow Enables Spectral-spatial Barcoding for 
Lineage and Anatomical Tracing 

2.1 Introduction 

Central to the fundamental tasks in neuroscience, understanding how neurons look and 

where they come from, i.e. their morphological and lineage properties, has profound importance 

in revealing neuron’s functional relevance in the nervous system. Morphology reflects the circuit 

structure by defining physical boundaries of receptive and projective fields, and lineage explains 

determination and specification of neurogenesis outcomes. To effectively elucidate the 

heterogeneity of neurons characterized by these two dimensions, proper tools are necessary to 

enable unambiguous targeting and analysis on any given type of neurons. 

Tremendous efforts have been made in the past century to fulfil the fundamental request 

in tool development, evolving from methodologies that can cope with one or a few neurons at a 

time, such as sparse application of silver stain (Golgi’s method) (Ramon y Cajal, 1911; y Cajal, 

1910) or other chemical dyes (Honig & Hume, 1986, 1989) and mosaic genetic labeling  

(Dymecki & Kim, 2007; Lee & Luo, 1999; Luan, Peabody, Vinson, & White, 2006; Muzumdar, 

Luo, & Zong, 2007; Pfeiffer et al., 2010), to multispectral labeling technologies (Brainbow) that 

can differentiate large populations of neurons in the same tissue (Livet et al., 2007). Brainbow 

and Brainbow-like tools developed in recent years are capable to label neurons in distinct colors 

by expressing random ratios of different fluorophores upon genome recombination (Richier & 

Salecker, 2015). The recombinase-based “molecular switches”, such as Cre/Lox (Livet et al., 

2007), Flp/FRT (Cai, Cohen, Luo, Lichtman, & Sanes, 2013), and PhiC31/att (Kanca, Caussinus, 
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Denes, Percival-Smith, & Affolter, 2014) are used to control the specificity of labeled cell types 

and timing of color generation. Reagents, including mice, fruit flies, zebrafish, and viruses are 

now broadly available for studying the neurogenesis process and tracing the neuronal 

morphology. While enlightening the possibility of discerning individual cells by color in a 

complex system, current genetic designs are often limited to generating up to tens of reliably 

distinguishable colors. This makes it particularly challenging to interpret morphology or lineage 

tracing results because there is a high probability of labeling multiple cells or lineages with the 

same color.  

Here in this chapter I present the design and evaluation of Bitbow, a set of transgenic 

tools that can generate up to tens of thousands of unique barcodes through a concise and 

powerful design. This improvement will allow unambiguous labeling of a much larger number of 

neurons in the nervous system. Additional genetic strategies in Bitbow also permit broad and 

tunable coverage of targeted cells, providing flexibility in studying complex neuron populations. 

2.2 Results 

Bitbow: the digital genetic design 

We reasoned that permitting independent recombination of each FP would allow fully 

occupying the whole color space, therefore, generating the most dynamic colors from a single 

transgenic cassette. To do so, we utilized a pair of inverted FRT sites flanking a reversely 

positioned FP (Fig 2.1). This default “Off” state guaranteed a non-fluorescent expression without 

Flp activity. Flp recombination could flip the FP between the inverted FRT sites, resulting in 

either an “On” or “Off” state of the FP, similar to the digital “1” or “0” information that is stored 

in one bit of computer memory, respectively. Such combination scheme exponentially increases 

color coding capacity when increasing the number of bits (FPs) in the same transgenic animal, 
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e.g. 3 FPs generate 23=8 Bitbow barcodes, and 5 FPs generate 25=32 Bitbow barcodes. We 

decided to utilize known incompatible FRT sites FRTF3, FRT5T2, FRT545 (Cai et al., 2013), and 

three spectrally separable FPs, mTFP1, mCitrine and tdTomato to ensure independent events for 

each Bitbow bit. Further, each Bitbow bit is downstream of a UAS sequence, so the expression 

could be controlled by established enhancer-Gal4 drivers (Fig 2.1). 

We first generated the 3FP-Bitbow transgene with validation in the cell culture, and a 

transgenic fly confirmed by its performance with a driver fly line containing flippase regulated 

by a heat-shock promoter (hsFlp) and a pan-neuronal Gal4 driver (elav-Gal4) (Fig 2.2). Bitbow 

labeling was successfully generated in the whole nervous system of the progeny flies from the 

cross between 3FP-Bitbow flies and driver flies. 7 Bitbow barcodes (8 total barcodes minus the 

case when all three FPs are “off”) were observed, and the three bits appeared to be balanced in 

all observed Bitbow barcodes (Fig 2.2). Success of the 3FP-Bitbow proved the practicality of our 

digital genetic design in Bitbow. 

Bitbow: utilize proper FPs and new FRTs to enable five bits 

We moved to further improve Bitbow’s labeling capacity to 5 bits, aiming for generating 

25-1=31 unique Bitbow barcodes. In order to achieve this goal, we first selected five FPs for the 

design. We chose five FPs to be used in Bitbow: mAmetrine, mTFP1, mNeonGreen, mKusabira-

Orange2, tdKatushaka2 (Ai, Hazelwood, Davidson, & Campbell, 2008; Ai, Henderson, 

Remington, & Campbell, 2006; Sakaue-Sawano et al., 2008; Shaner et al., 2013; Shcherbo et al., 

2009). These FPs were chosen with the consideration of their brightness, photo-stability, 

antigenicity, and spectral separation (Fig 2.3). Next, in order to ensure independent 

recombination for each bit, we screened more FRTs that are incompatible with the three 

incompatible FRTs available. We found that FRTF13, FRTF14 and FRTF15 showed satisfying 
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incompatibility (Fig 2.4), and we determined to use FRTF13 and FRTF14 together with FRTF3, 

FRT5T2, FRT545 in our final design, since FRTF 15 has lower recombination efficiency than the 

others (data not shown). Finally, in consideration of using Bitbow in the nervous system where it 

is crucial to reveal neuronal structure details for morphological studies, we decided to target 

Bitbow FPs onto cell membrane with Myristoylation signal from dSrc64B (1-10aa, (Struhl & 

Adachi, 1998)). We named this transgenic design mBitbow1.0, in which the “m” indicates the 

membrane targeting signal (Fig 2.5). 

By crossing mBibow1.0 to the hsFlp;;elav-Gal4 driver, we successfully confirmed its 

performance in both larval and adult CNS (Fig 2.6). All 31 Bitbow barcodes was observed, and 

the five bits had overall balanced appearance except slightly higher observation of the 

mNeonGreen bit with FRT545 pair. This could be due to intrinsic reactivity differences among the 

FRT sites. Bitbow was able to resolve densely wired neurons, such as the ones in the optic lobe, 

with differentiating Bitbow barcodes and reveal clear details such as patches formed by the 

neurite terminus (Fig 2.6). Additionally, by controlling the time point of flippase activation 

through heat shock, Bitbow labeling could be initiated in neurons or in neuroblasts. In the latter 

case, because the Bitbow barcode could be inherited by all progeny generated by the same 

neuroblast, the entire lineage would be uniquely marked out by the same Bitbow barcode. In 

larval CNS where the progeny stayed close to the neuroblast, it was clear that each lineage was 

labeled by the same Bitbow barcode (Fig 2.6), highlighting the fidelity and practicality of Bitbow 

when applying to lineage tracing. 

Bitbow: subcellular localizations to further expand barcoding capacity 

Although the 31 unique Bitbow barcodes generated by mBitbow1.0 would be sufficient 

for many applications, especially in revealing neuronal morphological details, it was not 
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adequate for studies such as whole Drosophila central brain lineage tracing, where the number of 

targeting entities (such as >200 lineages in the central brain) outnumbered the labeling capacity. 

In those cases, repeated Bitbow barcodes (i.e. “barcoding collisions”) would occur, and if 

adjacent lineages were labeled by the repeated Bitbow barcodes, they would be erroneously 

regarded as one lineage. Therefore, more Bitbow barcodes were needed to resolve this challenge. 

How many more Bitbow bits would be needed? We set to estimate it with statistical 

simulations by randomly accessing barcoding pools of different sizes, such as of 25, 210, 215 

unique barcodes, and quantify how frequently repeated barcodes were seen, i.e. the barcode 

collision rate (Fig 2.7). It was evident that the three levels of labeling capacity produced different 

speed of collision rate increase as well as different saturation points, which was the point where 

certain number of entities were labeled while barcode collision happened in 100% of the 

simulations; the 25 pool has the fastest collision rate growth and lowest saturation point, and the 

215 pool had the slowest growth and highest saturation point. When considering the case of 

labeling ~200 neural lineages in the Drosophila central brain, the larger barcode pool clearly had 

the best performance, where the 215 pool exerted <0.2% collision rate, and the 25 or 210 pools had 

collision rates close to 100% or >10% (Fig 2.7).  

How could we improve Bitbow so it would be possible to generate up to 215 Bitbow 

barcodes? A straightforward strategy would be to expand the number of bits in Bitbow, i.e. 

adding in more FPs in each transgenic line, and this increase would be exponential. However, 

due to difficulties in imaging multiple FPs in the limited visible spectrum, it would be 

challenging to fit more than 5FPs together. An alternative strategy would be adding in more 

Bitbow bits with the same 5FP set but with different subcellular localizations (Fig 2.8). With 

sufficient separation between the localizations, each bit could still work independently and 



21 
 

faithfully, even in the extreme cases where the same FPs are expressed in different subcellular 

localizations.  

We chose to target three subcellular locations: cell membrane, nucleus and the Golgi 

apparatus, for their best spatial separation and structural integrity inside cells. In addition to the 

myristoylation signal peptide from Drosophila Src64B, full length human Histone H2B (Shaner 

et al., 2013), and N-terminus of mouse Mannosidase II alpha 1 (Ye et al., 2007) were used to 

fuse with FPs and target them to cell membrane, nucleus or Golgi, respectively (Fig 2.8). Making 

each FP at each subcellular localization as a single “bit”, we would be able to get a labeling 

system with 15-bit capacity (Fig 2.8). Three localization tags were tested to be effective in 

cultured Drosophila cells (data not shown), and individual Bitbow transgenic flies were 

established accordingly. We named the two new transgenics as nBitbow1.0 and gBitbow1.0, 

representing their nucleus- and Golgi-targeting designs. We also generated fly lines that combine 

multiple Bitbow transgenes together, either through meiotic recombination on the same 

chromosome, or combination of 2nd and 3rd chromosome transgenes. We named these lines 

reflecting their transgene content accordingly, such as mnBitbow1.0, mngBitbow1.0. 

Multi-subcellular-localization Bitbow worked effectively. Using the driver line 

hsFlp;;elav-Gal4 and conducting heat shock at 1st instar larva stage (Fig 2.9), we were able to 

label neuroblasts that were ready to enter the second wave of neurogenesis. Neuroblasts with 

recombined Bitbow labeling passed the barcode onto their progeny, and all cells in the same 

lineage were labeled by the same Bitbow barcode. Bitbow labeled lineages were readily evident 

in the 3rd instar brains, with one of the three subcellular localizations (Fig 2.9), or the 

combination of them (Fig 2.10). In mnBitbow1.0 and mngBitbow1.0 labeled brains, we had 

observed diverse Bitbow barcodes consisting of one to three localizations, and unambiguous 
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barcoding calling was practical due to the sufficient spatial separation of three subcellular 

structures as well as spectral separation of the five FPs. We observed 80 barcodes from 

mnBitbow1.0 labeled brains (4 brains, 286 clusters quantified), and 153 barcodes from 

mngBitbow1.0 labeled brains (2 brains, 247 clusters quantified) (Fig 2.11). Among these 

barcodes, 38 of the 80 mnBitbow1.0 barcodes and 111 of the 153 mngBitbow1.0 barcodes were 

observed to be unique across all quantified brain samples (Fig 2.11). In each brain, we found on 

average 30% of the clusters were labeled by a unique mnBitbow1.0 barcode, and 57% by a 

unique mngBitbow1.0 barcode (Fig 2.11). Using observed statistics of the barcodes in 

mngBitbow labeled third instar brains, we derived the possibility of occurrence of all 32767 

mngBitbow barcodes, and composed lists of barcodes including top 32000 or 32700 ones with 

the least possibility of occurrence. With this underlying discrete probability distribution function, 

we applied Monte Carlo simulation to aim to label up to 104 lineages with top 32000 or top 

32700 or all 32767 mngBitbow barcodes, as well as with two existing genetic tools, MARCM 

(Lee & Luo, 1999) and Brainbow 1.1 (Livet et al., 2007) (Fig 2.12). We discovered the need of 

animal numbers along the increasing targeting lineages grew much slower in Bitbow groups, 

comparing to MARCM or Brainbow 1.1. In typical cases where ~100 lineages needed to be 

labeled, less than 10 animals were needed for Bitbow (32767 or 32700 barcodes) to ensure full 

coverage of all lineages, whereas hundreds of animals were needed when using MARCM or 

Brainbow 1.1 (Fig 2.12). In summary, Bitbow transgenics with multi-subcellular-localization 

designs were capable to generate large number of unique barcodes to allow effective 

unambiguous lineage analyses.  

Bitbow: novel genetic design to allow self-initiation and broader coverage 
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Bitbow 1.0 transgenes achieved desirable barcoding capacity for neuronal tracing and 

lineage tracing with flexible control of initiation time by hsFlp. However, the amount of flippase 

activity provided by this exogenous method was limited. Multiple heat shocks were often needed 

to ensure sufficient Bitbow coverage among all cells (Fig 2.13). This was compatible with 

experiments where the timing of heat shocks was not critical, but unfavorable when precise 

labeling initiation is needed. Alternatively, if a higher level of flippase activity was provided by 

longer heat shocks (such as 60-min rather than 30-min heat shocks), the animals were challenged 

by stronger stress, and the survival rate was lower (data not shown). Further, the requirement of 

hsFlp based driver lines for Bitbow1.0 brought in a relatively complicated experimental scheme, 

where a hsFlp + enhancer-Gal4 line needed to be generated, animal collection as well as heat 

shock needed to be properly conducted and the flies needed to be reared at lower temperature to 

avoid undesired labeling triggered by ambient temperature. We reasoned that we could overcome 

these difficulties by extending the Bitbow1.0 design with sufficient amount of endogenously 

supplied flippase. 

Bitbow 2.0 transgenes were created following this principle of design. Specifically, a 

self-excising flippase module was put together with the mBitbow1.0, consisting of the flippase 

cDNA flanked by a pair of FRT sites in the same direction, driven by the promoter of Drosophila 

neuronal Synaptobrevin (nSyb). This design permitted a strong burst of neuronal-specific 

expression of flippase which would react with Bitbow modules to generate barcodes randomly 

and eventually excise out the flippase cDNA to prevent excessive activities. To ensure sufficient 

amount of flippase could be produced before the coding sequence was excised out, we chose 

FRTF13 or FRTF15 as the flanking FRTs which have weaker reactivity among the incompatible 
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FRTs screened previously in our study, and we named the corresponding transgenes as 

mBitbow2.0 and mBitbow2.1, respectively (Fig 2.14). 

Labeling coverage was greatly improved by the Bitbow2.0 design. Comparing to 

mBitbow1.0 when labeling the larval serotonergic neurons, it is evident that mBitbow2.0 

achieved much better labeling coverage (Fig 2.15), with a largely simplified experimental setup 

where only a one-step Gal4 cross was needed. We further improved the labeling coverage by 

supplying more endogenous flippase. This was achieved either through the use of two copies of 

mBitbow2.0, or the use of mBitbow2.1 which has the weaker FRT pair (FRTF15), or two copies 

of mBitbow2.1. Better coverage was observed when more flippase was included in the system 

where as high as a 93.83% coverage can be achieved, evaluated by the proportion of serotonergic 

was labeled by using different Bitbow reporters or an UAS-TagBFP reporter that labeled all the 

cells (Fig 2.15). Aside from the high labeling coverage, Bitbow 2.0 also inherited the high 

coding capacity from the Bitbow1.0 series, evident by the diverse membrane color combinations 

(Fig 2.16). Also, Bitbow2.0 transgenes were flexibly applicable to label different neuron subsets 

with ease (Fig 2.16).  
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Fig 2.1 Genetic design of the 3FP-Bitbow  

(a) Design of the 3FP-Bitbow. Each bit is organized as UAS-FRT-inv(xFP)-FRT-pA from 5’ to 3’. Upon flippase 
recombination, the inverted FP is capable being switched between ON or OFF state. All bits are under regulation of 
Gal4-UAS sysem. 

(b) All seven possible combinations of Bitbow barcodes generated by the 3FP-Bitbow. 
 
 
 
 
 

 
 
Fig 2.2 3FP-Bitbow performance confirmed in Drosophila S2 cell culture and third instar larva brain.  

(a) clockwise: mCitrine, mTFP1, tdTomato. 
(b) third instar larva brain labeled by hsFlp;;elav-Gal4 crossed to 3FP-Bitbow, with a heat shock during the first instar 

larva stage. Scasle bar, 100um. 
(c) Quantification of the percentage of cells containing tdTomato (R), mCitrine (G) or mTFP1 (B) expression. 

  



26 
 

 
 
 
Fig 2.3 Spectral profiles of five fluorescent proteins in Bitbow. 
(top) Excitation spectra of the five FPs, with wavelength indicator of five common laser lines. 
(bottom) Emission spectra of the five FPs. 
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Fig 2.4 Additional FRT sites are selected to ensure no cross-bit recombination would occur between the known and new 
FRT sites 

(a) FRTF14 is screened with the three known incompatible FRT sites. A dual FP reporter construct is co-transfected into 
HEK293T cells with or without a pCMV-Flp construct; no mTFP expression was detected in either cases, indicating 
FRTF14 being incompatible with the other FRT sites. The transfection of a control plasmid in which the mCherry is 
removed has shown clear mTFP expressions, indicating that mTFP signal would come up, should the F14 be 
compatible with the other three FRT sites. 

(b-d) FRTF15 and FRTF13 are screened in similar genetic setups, and have shown to be incompatible with all known 
incompatible FRT sites, and between them. 
(e)    A control transfection of Flpbow (Cai, et al., 2013) with or without pCMV-Flp construct in the same batch of 

experiment, indicating a functional Flp construct. 
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Fig 2.5 Genetic design of mBitbow 1.0 
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Fig 2.6 mBitbow 1.0 performance confirmed in adult and larval brains 

(a) Experimental setups to generate heat shock induced Bitbow labeling 
(b) Adult brain labeled by hsFlp;;elav-Gal4 and mBitbow1.0. Dashed white box, region of (c). Scale bar, 50um. 
(c) Maximum projection of dashed squre region in (b). Bitbow barcodes were breakdown of five selected somas and 

terminals. Scale bar, 10um 
(d) Larval brain labeled by hsFlp;;elav-Gal4 x mBitbow1.0. Insert, enlarged image of the dash box region. Asterisk 

indicates a neuroblast. Scale bar, 50um. 
(e) Quantification of activation coverage by each Bitbow module. N=787 clusters, 6 brains. Error bars are SD. 
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Fig 2.7 Randomized simulation to estimate barcode collision rates when labeling various amount of lineages with different 
amount of Bitbow barcodes  
Solid plots: theoretical barcode collisions of 25 (1-localization), 210 (2-localization), and 215 (3-localization) barcodes were 
calculated with a closed-form solution. Dashed plots: Monte-Carlo simulations based on real barcode occurrence frequency 
observed in mngBitbow labeled 3rd instar brains, with all (32767), less frequent 32700 or less frequent 32000 barcodes included 
in the simulations. Dotted vertical line: 200 lineages, which is the amount of lineages estimated in the Drosophila central brain. 
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Fig 2.8 Bitbow targeting to multiple sub-cellular spatial localizations generates up to 15-bit labeling capacity 

(a) Bitbow1.0 transgenes are designed to targeting to membrane, nucleus or Golgi-apparatus. 
(b) Bitbow barcode is organized in sequential 15-bit format, with each bit representing a FP at a specific subcellular 

location. 
(c) Amount of unique barcodes that could be generated by 1-, 2- or 3- localization Bitbow. 
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Fig 2.9 Performance of Bitbow targeting to the three sub-cellular spatial localizations were confirmed in third instar larva 
brains 

(a) Experimental setup of the crosses and heat shock plan. 
(b) mBitbow1.0 expression in the 3rd instar larval brain. Red box, an enlarged region displaying multiple labeled lineages. 
(c) nBitbow1.0 expression in the 3rd instar larval brain. 
(d) gBitbow1.0 expression in the 3rd instar larval brain. 
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Fig 2.10 Three-localization containing mngBitbow1.0 was capable of labeling lineages in the third instar brain with 
diverse Bitbow barcodes 

(a) A 3rd instar brain labeld by mngBitbow1.0 and hsFlp;;elav-Gal4. Scale bar, 50um. 
(b) Two z-slices corresponding to the dashed-box area marked in (b). Scale bar, 10um. 
(c) 3 clusters marked in (c) are analyzed by 3-localization Bitbow barcodes. Asterisks indicate neuroblasts of each cluster. 

The arrowhead indicates a cell labeled by a distinct Bitbow barcode located in between two adjacent clusters.  
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Fig 2.11 Quantification of mnBitbow (2-Loc) and mngBitbow (3-Loc) barcodes observed in third instar larva brains. 

(a) Proportion of cells labeled by unique (1), duplicated (2), or multirepeat (≥3) barcodes (2-Localization or 3-
Localization) in each brain sample. Mean and SD are shown. 

(b) Histogram of mnBitbow (2-Localization) and mngBitbow1.0 (3-Localization) barcodes that are in labeled neuronal 
clusters 2 brains, respectively. Horizontal axis, individual Bitbow barcodes. Vertical axis, observation counts of each 
particular barcode in all brain samples. Shaded regions indicate barcodes that been observed 1, 2, or ≥3 times. 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2.12 Monte-Carlo simulation of number of experimental animals needed to unambiguously resolve various number of 
barcoded lineages with different genetic approaches 
Number of animals needed (y-axis) to achieve full coverage of given number of lineage barcoding (x-axis) with different barcode 
pool are estimated by Monte Carlo simulations. Solid lines, mean of simulations; shaded area, standard deviation of simulations. 
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Fig 2.13 Multiple heat shocks were needed to increase labeling coverage with mBitbow1.0 
Adult brains of the mBitbow1.0 and hsFlp;;elav-Gal4 cross, with 1, 2 or 3 heat shocks before they are dissected. Half of the brain 
and one of the optic lobes are displayed. 
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Fig 2.14 Genetic design of Bitbow2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2.15 Bitbow2 designs achieved improved labeling coverage  
(a-b) Larval serotonergic neurons are labeled by mBitbow1.0 and mBitbow2.0. Experimental setups are shown above the images, 
respectively. Cell bodies of labeled serotonergic neurons are marked in the abstract illustration in the bottom left corners. Scale 
bars, 100um. 
(c) Quantification of proportion of neurons being labeled by Bitbow2 constructs. Horizontal lines inside the violin plots indicate 
means of the groups. 
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Fig 2.16 Bitbow2 was able to flexibility label groups of neurons with diverse Bitbow colors in high coverage 

(a) Larva neurons are labeled by elav-Gal4 and mBitbow2.1. Scale bar, 100um. Insert scale bar, 10um. 
(b) Adult neurons are labeled by R67A06-Gal4 and 2x mBitbow2.1. Scale bar, 50um. Insert scale bars, 10um. 
(c) Larva neurons are labeled by R53C10-Gal4 and 2x mBitbow2.1. Scale bar, 100um 
(d) Adult neurons are labeled by R65C03-Gal4 and 2x mBitbow2.1. Scale bar, 100um 
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Table 2.1 List of Bitbow transgenic flies created in this study 
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2.3 Discussion 

Bitbow has demonstrated its capability in delivering unambiguous barcoding for 

anatomical and lineage studies. Bitbow1 series are a company of transgenes fully utilizing 

spectral and spatial dimensions to maximize possible barcoding outcomes from a single copy of 

transgene. With temporal controls that are governed by external manipulations, such as heat 

shock induced activations, desired density in morphology tracing and desired initiation time in 

lineage dating can be tuned without interfering with barcoding outcomes. Bitbow2 series has 

inherited advantages from Bitbow1, and extended it by a self-initiation/self-termination 

mechanism, which overcomes the need of external input for Bitbow initiation. 

There are still several aspects of Bitbow design that can be further improved in the future 

development. First, Bitbow will be greatly benefited from a more balanced set of FRT sites. 

Currently, the five FRTs exert different levels of reactivity reflected by their relative occurrence 

in labeled neurons, as it is evident that FRT545 is more active than the others, and FRTF14 and 

FRTF13 being less active. This uneven reactivity has caused some barcodes to appear more 

frequent than the others, and eventually caused higher barcode collision rate in the system than 

the theoretical estimation, in which case all barcodes are equally probable (Fig 2.7). If more 

incompatible FRT sites with better reactivity could be found, a more balanced set of FRTs can be 

selected and the performance of Bitbow could be improved using the new set. Second, more bits 

and more identifiable levels in each bit are always welcomed. Although concurrent imaging of 

five FPs in the range of visible spectrum is already getting challenging, it is still worth 

consideration to expand the number of bits by introducing Far-red fluorophores, or dark 

fluorophores who can be distinguished antigenically for multiple rounds of detections. Because 

Bitbow barcoding capacity grows exponentially, each additional bit will double the available 
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barcodes, which will greatly suppress barcode collision rate and reduce the number of animals 

needed for the same experimental coverage. If more than 2 levels expression of each bit can be 

reliably called, this will transform the base of Bitbow barcode capacity from 2 to 3 or more. This 

approach will allow more information collected from every bit, and significantly improve 

Bitbow labeling without introducing more bits. Consistent multi-level signal processing could be 

achieved with the advancement in imaging and post-imaging processing methods. Finally, the 

Bitbow2 design can extend to specifically label other cell types in the nervous system, or cell 

types in other systems, by changing the neuronal-specific promoter nSyb to other appropriate 

promoter/enhancer components. However, it is worth emphasizing that one important criterion 

for such modifications to be successful is to ensure the desired promoter/enhancer element will 

not have any significant function in germline cells. Otherwise, the designed transgene will be 

prematurely recombined in the germline, and no longer functional in desired cell populations.  

Even without the aforementioned possible improvements, Bitbow is capable in many 

other experimental tasks in its current format. Since a set of bright, stable and spectrally 

resolvable fluorescent proteins are carefully selected in the design, Bitbow can be effective in 

prolonged multicolor live imaging. We and collaborators have preliminarily demonstrated 

(Veiling, Li, Veiling, et al, 2019, in revision) the performance of nBitbow1.0 in live tracking 

embryonic neurons during early developments. Also, Bitbow can empower neuron subtype 

studies in combination with molecular profiling at transcriptional and translational levels. Since 

Bitbow can bring in unambiguous neuron morphology labeling in given set of neurons, staining 

or tracking of endogenous RNA/protein targets in combination with Bitbow will greatly 

accelerate the discovery of novel neuronal subtypes. 
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2.4 Materials and Methods 

Fly husbandry. Flies were reared at 25c on standard CT food. Following fly lines were 

acquired from Bloomington Drosophila Stock Center (BDSC): w;;elav-Gal4 (#8760), w;TRH-

Gal4; (#38388), w;;R53C10-Gal4 (#38873), w;;R67A06-Gal4 (#39397). Heat-shock promoter 

driven flippase line hsFlp112;Sp/CyO;TM2,Ubx/TM6B,Tb was gifted by Dr. Bing Ye lab 

(University of Michigan). Driver lines was created by combining the hsFlp transgene with Gal4 

transgenes, yielding hsFlp;;elav-Ga4 and hsFlp;TRH-Gal4;. 

Dissection and mounting. Drosophila 3rd instar and adult brains were dissected in PBS 

at room temperature (RT) within 30min before proceeding to fixation. Dissected brains were 

fixed in 4% PFA (Sigma #158127, diluted in PBS) at RT with gentle nutation for 20min, 

followed by three quick PBST (PBS+1% Triton X-100) washes, then PBS washes for 15min x 3. 

Brains then either proceeded to direct mounting (for native fluorescence imaging) or immuno-

stainings. Vectashield (Vector Laboratories, H-1000) were used as the mounting medium. 

Molecular Cloning and Fly Transgenics. cDNAs encoding the following FPs were 

used: mAmetrine, mTFP, mNeonGreen, mKusabira-Orange2, and tdKatushka2. Drosophila 

myristoylation signal peptide of dSrc64B (1-10aa, dMyr), Human histone 2B protein (full length, 

hH2B) or Mouse Mannosidase II alpha 1 (1-112aa, mManII) was fused in frame to the N-

terminus of individual FPs (dMyr-FP, hH2B-FP, mMannII-FP), to achieve targeted labeling at 

cell membrane, nucleus or Golgi apparatus.  

Individual incompatible FRT sequence pairs (FRTF3, FRTF14, FRT545, FRTF13, or FRT5T2) 

were then placed in the opposing direction on both ends of the dMyr-FP / hH2B-FP / mMannII-

FP sequence (Cai et al., 2013; McLeod, Craft, & Broach, 1986; Schlake & Bode, 1994; Turan, 

Kuehle, Schambach, Baum, & Bode, 2010; Volkert & Broach, 1986). Afterwards, each of the 
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five FRT flanked FP cassettes were assembled with an upstream activation sequence (UAS) and 

a p10 poly-adenylation sequence (p10pA) (Pfeiffer, Truman, & Rubin, 2012), upstream and 

downstream, respectively into a pJFRC-MUH backbone vector (Addgene #26213) by standard 

cloning methods. The Bitbow1.0 plasmids were finally created by constructing five individual 

modules together through Gibson assembly (Gibson et al., 2009). 

For Bitbow 2 plasmids, the nSyb-promoter-driving self-excisable flippase module is 

constructed by flanking FlpINT (Cai lab, modified based on (Davis, Morton, Carroll, & 

Jorgensen, 2008)) with FRTF14 pairs or FRTF15 pairs in the same direction, and then introduced 

downstream of a Drosophila n-Synaptobrevin promoter (Addgene #46107). The module is then 

added to mBitbow1.0 plasmid through Gibson Assembly to generate mBitbow2.0 or 

mBitbow2.1. 

The final Bitbow plasmids were integrated into Drosophila melanogaster genome 

docking site attP40, attP2 or VK00027 through the ΦC31 integrase-mediated transgenesis 

systems (Bateman, Lee, & -ting Wu, 2006; Bischof, Maeda, Hediger, Karch, & Basler, 2007; 

Groth, Fish, Nusse, & Calos, 2004; Markstein, Pitsouli, Villalta, Celniker, & Perrimon, 2008; 

Venken, He, Hoskins, & Bellen, 2006). The targeted genome insertion was carried out by 

BestGene Inc (Chino Hills, CA). All generated fly lines are listed in Table 2.1. 

Confocal Microscopy and Linear Unmixing. Confocal images were acquired with 

Zeiss LSM780 with 20x 1.0 NA water immersion objective or 40x 1.3 NA oil immersion 

objective. The 32-channel GaAsP array detector was used to allow multi-track detection of five 

fluorophores. For detailed setups of spectral ranges see (Fig 2.3).  

Spectral Unmixing plug-in (by Joachim Walter) in Fiji was used to perform linear 

unmixing on Bitbow images. Reference unmixing matrix was measured by imaging cultured 
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mouse N2A cells expressing mAmetrine, mTFP, mNeonGreen, mKO2 or tdKatushka2, with the 

exact same multi-track setup intended for Bitbow brains. Customized scripts were used to 

automate the unmixing process as well as creating composite image stacks from unmixed 

channels.   

Statistics. All descriptive quantifications were reported by mean with standard deviation. 

Theoretical barcode collision rate for 25 (1-localization), 210 (2-localization), and 215 (3-

localization) barcodes were calculated with a closed-form solution: 

𝑁 = 𝑛 − 𝑏 ∗ (1 − (1 −
1
𝑏)

*) 

Where N denotes the number of collisions, n is the number of lineages to be labeled, and b is the 

number of barcodes available. Monte-Carlo simulation was done to estimate the number of 

animals needed to ensure full coverage of given number of lineages, with different barcoding 

capacities. 
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Chapter 3. Anatomical and Lineage Investigation of Drosophila Larval Serotonergic 
Neurons by Bitbow 

3.1 Introduction 

As two of the most fundamental modalities in defining neuronal subtypes, morphology 

and lineage identities are prevalently used to derive the most basic descriptions of neuron groups. 

The accuracy of subtype definitions are improving quickly as methodologies in each category 

become more powerful. Fluorescence based sparse labeling, such as MARCM (Lee & Luo, 

1999; Yu, Chen, Shi, Huang, & Lee, 2009), Flp-out based methods (Evans et al., 2009; K. Ito et 

al., 1997), has made it possible to produce high-resolution morphology reconstructions of 

individual neurons; permanent tracing systems conducted by transgenic or viral deliveries has 

provided valuable information on lineage identities of specific neurons. Currently, there is no 

effective system to ensure anatomical and lineage analysis across many neurons in the same 

brain, which is crucial in revealing whole-system organization, and enabling analysis on animal-

to-animal plasticity or global changes under physiological/pathological conditions in the future. 

In the last chapter, Bitbow has shown its power in generating large amount of unique 

fluorescent barcodes that are suitable for anatomical or lineage analysis. Here we focus on a 

small but important group of neurons in the Drosophila central nervous system - the serotonergic 

neurons (Kasture, Hummel, Sucic, & Freissmuth, 2018; Vallés & White, 1988), and aim to 

explore the intrinsic heterogeneities among these neurons in terms of their anatomical and 

lineage properties, which are indicators and driving forces for their functional diversity. 
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3.2 Results 

Bitbow and expansion microscopy permits high resolution visualization and tracing 

of serotonergic neurons 

With previous success of applying Bitbow2 transgenes on serotonergic neurons, we 

determined to study morphological properties of these neurons in the same brain. We could 

clearly observe serotonergic neuron clusters in central brain, and bilaterally distributed 

serotonergic pairs in the ventral nerve cord in diverse Bitbow colors. However, although 

mBibow2.1 ensured high labeling coverage and diverse labeling colors, many morphological 

details, especially those regarding neurite terminals were not obtainable as it was restricted by 

the diffraction limit of light microscopy. It was critical to use other methods with better optical 

resolution to realize the full performance of Bitbow. 

Protein-retention Expansion Microscopy (ProExM) (Tillberg et al., 2016) is a great tool 

to achieve super-resolution by physically expand the samples in an isotropic manner while 

maintaining cellular contents in their relative positions. Since ProExM worked by retaining all 

proteins in the tissue, we reasoned that the membrane-targeted Bitbow2.0 FPs should be 

compatible with the ExM protocol. We modified the ExM protocol with suggestions from a 

previous ExM application in Drosophila (Cahoon et al., 2017) to maximize the signal quality 

(Fig 3.1), and successfully acquired images of expanded brains (Fig 3.2) with conventional 

confocal microscopy. Drastically improved image resolution permitted clear visualization of 

previously unresolvable neuronal densities (Fig 3.2). Further, with the high-resolution Bitbow 

image stack, it became possible to generate faithful neuronal tracing with nTracer (Roossien et 

al., 2019), a Fiji plug-in developed in our lab that is specialized in user-guided tracing on multi-

channel datasets. 
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Through careful tracing of serotonergic neurons in the abdominal segments of fly CNS, 

we were able to generate high-resolution neuronal reconstructions of these neurons in the same 

brain (Fig 3.3). All abdominal serotonergic neurons are unipolar, with a single primary neurite 

extruding from the cell body and quickly branching into more and thinner neurite branches, 

covering one to one and half segments with extensive arborizations. Collectively these 

arborization cover segments along the anterior-posterior axis, and mainly at the ventral half of 

the neuropile (Fig 3.4), which indicates the function of serotonergic neurons in participating and 

modulating sensory circuits. Except for the single neuron in the A8/9 segment whose soma is 

positioned posteriorly and projects anteriorly into the neuropile, all abdominal serotonergic 

neurons send their primary neurite to the contralateral side through the major horizontal neural 

tract in each segment. 

Bitbow is able to resolve lineage relationships between 5HT neuron pairs 

Since the majority of larval neurons are born in the second wave of neurogenesis and 

very little migration occurs in this process, it is very possible that the two serotonergic neurons in 

each hemisegment, whose somas are located very close to each other, are likely to be generated 

from the same lineage. However, since VNC NBs are tightly packed in each hemisegment during 

the development, it is equally possible that the two serotonergic neurons actually come from two 

different lineages which happen to be right adjacent to each other. It would be impractical to 

explore this lineage relationship with previous genetic tools, but with Bitbow, especially 

mngBibow1.0 which could generate up to 32767 unique barcodes, it would be possible to 

systematically investigate the lineage identities of serotonergic neurons. 

We decided to use the driver line hsFlp;TRH-Gal4; which would drive expression in all 

serotonergic neurons, together with mngBitbow1.0 to reveal the lineage identities of serotonergic 
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neurons (Fig 3.5). Heat shock was conducted during the embryonic neurogenesis period (3-4 

hours after egg-lay) to ensure Bitbow initiation in the progenitors of serotonergic neurons. 

Because of the genetic inheritance of Bitbow barcodes from progenitors to neurons and the low 

collision rate of the mngBitbow1.0 system, we expected to observe the same Bitbow barcodes in 

later developmental stages only if the serotonergic neurons are coming from the same lineage. 

Contrast to the expectation that both neurons in each hemi-segment came from the same 

progenitors, we observed neurons in the same segments across the larval brain (Subesophageal - 

SE, Thorax - T, Abdominal - A) always being labeled by different Bitbow barcodes (Fig 3.5). In 

summary, Bitbow lineage tracing indicated that the majority of serotonergic neuron pairs in each 

hemi-segment of the larval CNS came from different lineage origins.  
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Fig 3.1 Experimental procedures of applying ExM on Bitbow labeled brains 
 
 

 
Fig 3.2 A third instar brain with mBitbow2.1 labeled serotonergic neurons was successfully processed with ExM 

(a) Serotonergic neurons labeled by TRH-Gal4 driven 2x Bitbow2.1. Scale bar, 100um. 
(b) ExM processed brain of TRH-Gal4 x 2x Bitbow2.1. The image is displayed in the same physical scale as in (b). Scale 

bar, 100um. 
(c) Enlarged display of marked region in (b). Scale bar, 10um. 
(d) Enlarged display of marked region in (c). Scale bar, 35um. 
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Fig 3.3 Overview of traced and reconstructed abdominal serotonergic neurons 

(a) Abdominal VNC portion of the expanded Bitbow serotonergic neurons. Anterior-posterior axis is shown to the bottom 
right. Scale bar, 100um 

(b) Rendered 3D display of traced serotonergic neurons in the abdominal VNC. 
(c-f) Four traced neurons, two in segment A7 and two in segment A5 are individually displayed. 

  



50 
 

 

 
Fig 3.4 Neuropiles of abdominal serotonergic neuron dominantly covered the ventral half of VNC 

(a) Side view of traced serotonergic neurons. White dashed arrows indicate the plane which (b) is corresponding to, 
containing neurons from segment A5. Relative coordination is shown at bottom right, A - anterior, P - Posterior, D - 
Dorsal, V – Ventral. 

(b) Anterior view of four A5 neurons. Relative coordination is shown at bottom right. 
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Fig 3.5 lineage tracing of serotonergic neurons with 3-Localization Bitbow1.0 
(a) Clusters of serotonergic neurons in the 3rd instar brain. 
(b) Schematics of experimental setup. 
(c) A 3rd instar brain with serotonergic neurons labeled by mngBitbow. Scale bars, 100um.  
(d) Zoom-in view of the central brain area in (c). Cell cluster identities are estimated based on relative cell body location. 
(e) Pairs of serotonergic neurons in the same hemi-segments from (c). Scale bars, 10um. 
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3.3 Discussion 

A large body of work has illustrated the importance of serotonergic neurons in various 

critical neuronal functions in flies and other animals (Gaspar et al., 2003; Lillesaar et al., 2007; 

Sodhi & Sanders-Bush, 2004). While all commonly producing the slow-acting neuromodulator, 

serotonin, serotonergic neurons are intrinsically heterogeneous as they participate in many 

aspects of brain functions in a non-collective manner. It is intriguing if we can understand the 

cellular and circuitry mechanisms relevant to the diverse functions of these neurons. Understand 

the exact meaning of diversity of each individual serotonergic neuron would lay the foundation 

of discovering the correlative and causative relationships to their brain functions.  

With more and more systematic anatomical and lineage information in hand, we will be 

able to precisely categorize these neurons. Individual anatomical features will disclose potential 

circuits participated by individual neurons from known relationships between given neuropile to 

given function, and collectively anatomical features of all serotonergic neurons could elucidate 

their convergence and divergence in shared neural tracts, hence possible collaborative or parallel 

roles. Lineage identities of this diverse group of neurons could help to explain the determination 

of final neuronal types, and allow future lineage tracing and comparisons which could establish 

the mechanism of neuron subtype generation with emphasis on critical patterning steps. Bitbow 

has made systematic studies on these two aspects effective. By studying more animals to 

generate a common pattern, we will have a much deeper understanding about this critical group 

of neurons. It is also foreseeable when combining the knowledge in these two modalities with 

others, such as molecular properties, the serotonergic neuron subtypes can be thoroughly and 

accurately defined, to allow further studies of their specialized function in normal and disease 

conditions, and also translatable in other comparable species' nervous systems. 
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3.4 Materials and Methods 

Fly husbandry. Flies were reared at 25c on standard CT food. Details of the acquired 

and created fly lines see Chapter 2 Methods. 

Dissection and mounting. Drosophila 3rd instar and adult brains were dissected in PBS 

at room temperature (RT) within 30min before proceeding to fixation. Dissected brains were 

fixed in 4% PFA (Sigma #158127, diluted in PBS) at RT with gentle nutation for 20min, 

followed by three quick PBST (PBS+1% Triton X-100) washes, then PBS washes for 15min x 3. 

Brains then either proceeded to direct mounting (for native fluorescence imaging) or immuno-

stainings. Vectashield (Vector Laboratories, H-1000) were used as the mounting medium. 

Expansion Microscopy (ExM). ExM brain samples were generated following the 

ProExM protocol (Tillberg et al. 2016) with modifications. Antibody-stained Bitbow samples 

were treated in NHS-ester (Sigma, A8060) at RT for 1 overnight, followed by PBS washes for 

15min x 3. Samples were then incubated in ExM monomer solution (Acrylate, Acrylamide, Bis-

acrylamide) at 4c for 1 overnight. Samples were transferred to fresh ExM monomer solution with 

gel initiators (APS, TEMED, 4-HT) at 4c for 15min, and then quickly mounted on a sample 

chamber made with 200um adaptors (Sun lab) on a glass slide, sealed with a 22x30 coverslip on 

top (Fisher, 12-544). The slide was transferred to a humidity box, and incubated at 37c for 2 

hours to polymerize the gel. The gels were trimmed carefully with a razor to allow as little of 

excessive space around the brains as possible. Trimmed gel pieces were transferred to an EP tube 

and digested with Proteinase K (NEB, P8107) at 37c for 1 hour. Three quick PBST washes and 

PBS washes for 15min x 3 were done, before the brains were put into the second round of 

antibody staining, following the same IHC protocol as above. After the second-round staining, 
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the gels were slowly expanded to the final size by changing the submerging solution from PBS to 

pure diH2O, and ready for imaging. 

Confocal Microscopy. Confocal images were acquired with Zeiss LSM780 with 20x 1.0 

NA water immersion objective or 40x 1.3 NA oil immersion objective. The 32-channel GaAsP 

array detector was used to allow multi-track detection of five fluorophores.  

Tracing and reconstruction. Image stacks of mBitbow labeled brains were loaded into 

Fiji plugin nTracer (Roossien et al., 2019), and serotonergic neuron morphologies were 

constructed with user-guided semi-automatic tracing. 3D-skeleton image stacks were generated 

within the built-in nTracer function, and were opened in Vaa3D (Peng, Ruan, Long, Simpson, & 

Myers, 2010) for 3D reconstruction and display. 
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Chapter 4. Molecular Subtype Investigation of Drosophila Larval Serotonergic Neurons by 
Single-cell RNA Sequencing 

4.1 Introduction 

Single cell RNA sequencing (scRNAseq) brings new opportunity in revealing 

transcriptomic information in large number of cells with high throughput. Comparing to other 

candidate-based RNA probing methods, such as quantitative PCR or microarray chip, scRNAseq 

is advantageous as an open-ended discovery method; comparing to pooled RNA sequencing, 

scRNAseq makes it possible to reveal molecular identity of individual cells in heterogeneous cell 

populations. These advantages make scRNAseq perfectly suitable for resolving transcriptomic 

subtypes in the complex nervous system. 

There has been efforts in applying scRNAseq to the nervous system in various species, 

including flies (Davie et al., 2018; Klein et al., 2015; Li et al., 2017; Macosko et al., 2015). 

These studies have proven the power of scRNAseq in revealing large scale differences among 

different subsets of neurons within the nervous system, or global changes as development 

progresses or physiological/pathological conditions incur. With these demonstrations of the 

technology, we reasoned that it would also be very suitable for investigations in finding 

molecular subtypes among the serotonergic neurons, which contribute to many kinds of 

neurobehavioral functions in flies. We determine to adapt current protocols to make it possible to 

specifically select this relatively small group of neurons, and process them through the 

scRNAseq pipeline based on the 10X Chromium platform. We aim to validate our dataset with 

known knowledge about the serotonergic neurons, make new discoveries of subtypes that could 
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be defined by specific gene set. This will pave the way for precise characterization and 

manipulation of these serotonergic neuron subtypes in future studies. 

4.2 Results 

Targeted collection of larval serotonergic neurons for scRNAseq 

Serotonergic neurons were labeled in the progeny larvae from crosses of transgenic lines 

TRH-Gal4 (Alekseyenko, Lee, & Kravitz, 2010) and UAS-H2B-2xNeonGreen (Cai lab, this 

study). Specificity of the labeling was confirmed by cell body positions through imaging (Fig 

4.1).  A total of 53 late 3rd instar larval brains were dissected in 1 hour and quickly proceeded to 

brain dissociation. The dissociation was effective based on imaging quantification of the cell 

population (Table 4.1), where 3960, or 93.4% of the NG+ cells were retained (53x80 = 4240 

total NG+ cells as 100% in estimation). The cells were then selected by FACS, where 1360 NG+ 

cells (32.08% of estimated total) were collected. After a quick wash and gentle pellet down, a 

final 1140 of NG+ cells (26.89% of estimated total) were collected and proceeded to 10X 

Chromium pipeline to generate the single cell RNA library. The library was sequenced on the 

NovaSeq 6000 platform. From the Cell Ranger report with preliminary filtering, 308 cells 

(7.26% of estimated total) were present in the dataset with >1.9 million mean reads per cell and 

3660 mean genes detected per cell. Based on an estimation of 80 total serotonergic neurons in 

the larval nervous system, and an assumption that our cell selection method was unbiased, our 

data represented a 3.85x coverage of targeted larval serotonergic neurons. This scRNAseq 

experimental pipeline is the first of the kind to successfully process a rare neuronal population in 

the Drosophila nervous system.  

The scRNAseq dataset contained high-quality reads from serotonergic neurons 
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After demultiplexing and mapping, 299 cells passed through with at least 1000 genes 

detected per cell. The number of genes (nGene) and number of deduplicated reads (nUMI) 

presented clear single peak distribution (Fig 4.2), with means of 3991 and 71812, respectively. 

Mitochondrial read counts appeared to be low among all cells, also with a unimodal distribution 

and a mean at 3.5% in each cell (Fig 4.2), which is a sign of gentle and proper cell dissociation. 

When graph-based cell clustering was conducted using top 50 dimensions from Principal 

Component Analysis (PCA), followed by 2D visualization with Uniform Manifold 

Approximation and Projection (UMAP), it was clear that there is no nGene or nUMI bias in any 

cell clusters (Fig 4.3), indicating a fair collection and representation of all serotonergic neuron in 

the system. Overall, this dataset reflected a batch of sequencing prep with high quality, where the 

sequencing power was evenly distributed in the population with minimum cell damage. 

Collected cells were indeed serotonergic neurons with high purity. Cells in the population 

universally expressed basic neuronal markers such as n-Synaptobrevin (nSyb) and embryonic 

lethal abnormal vision (elav), and were clearly lacking markers of neural progenitor cells (dpn) 

or glia (repo) (Fig 4.4). Genes associated with serotonin production were readily confirmed in 

this dataset. Canonical genes such as Tryptophan hydroxylase (Trh), Dopa decarboxylase (Ddc), 

Serotonin transporter (SerT) and Vesicular monoamine transporter (Vmat) was universally 

expressed across all cells with no significant bias (Fig 4.5).  

Serotonergic neurons possess differential adoption of neurotransmitters and 

neuromodulators 

One of the unsettled questions about the serotonergic neurons has been whether these 

neurons could also produce accompanying fast-acting neurotransmitters to serotonin, which is a 

slow-acting neurotransmitter and thought to mainly perform as a modulator. We examined key 
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components of the three fast-acting neurotransmitter production pathways (VGlut, ChAT, Gad1 

for glutamate, acetylcholine, GABA, respectively), and found most of the serotonergic neurons 

did not contain transcripts of these genes (Fig 4.6). However, there were small but distinctive 

clusters of cells contained exclusively one of the three genes. This line of evidence indicated that 

although the majority of the serotonergic neurons were unlikely to concurrently use the fast-

acting neurotransmitters with serotonin, there were small subset of serotonergic neurons that 

were capable to generate one of three neurotransmitters. 

On the receiving end, we aimed to reveal the potential differences of the serotonergic 

neurons in responding to the fast-acting neurotransmitters. We found that glutamate-gated 

chloride channel (GluClalpha) was broadly expressed across the population, and on the contrary, 

other ionotropic glutamate receptors (GluRIA, GluRIB, GluRIIE, NMDAR1, NMDAR2) were 

less prevalent, while the metabotropic glutamate receptor (mGluR) only expressed in a small 

subset of the neurons (Fig 4.7). We also found that subunits of nicotinic acetylcholine receptors 

(nAChRalpha1-7, nAChRbeta1-2) and muscarinic acetylcholine receptor A (mAChR-A) were 

broadly expressed among the serotonergic neurons, but mAChR-B had relatively low expression 

in only a small subset of neurons (Fig 4.8). GABA receptors also had very distinct expression 

patterns among the serotonergic neurons. Among the three ionotropic GABA receptors, Rdl had 

the broadest coverage and relatively high expression, Lcch3 had broad but much weaker 

expression, and Grd expression was only seen in a few cells with much lower expression. The 

three metabotropic GABA receptors also showed strong differences in expression coverage and 

level, where GABA-B-R1 being the broadest and strong, GABA-B-R2 being broad and weaker, 

and GABA-B-R3 being only in a few cells with weak expressions (Fig 4.9). Taken together, 

serotonergic neurons were equipped with necessary receptors to receive the three fast-acting 
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neurotransmitter signals, and the differential distribution of these receptors hint potential intrinsic 

differences among the serotonergic neurons to respond to these input signals, which could serve 

as strong molecular categorical evidence for accurate subtyping. 

We also set to probe whether serotonergic neurons had the potential to receive dopamine 

or octopamine signal input. By surveying all four dopamine receptors (Dop1R1, Dop1R2, 

Dop2R, DopEcR) and five of the six octopamine receptors (Oamb, Oct-TyrR, Octbeta1R, 

Octbeta2R, Octbeta3R) in the dataset, we discovered in general there was broad expression of 

these receptors, with the exceptions of Dop1R2, Oct-TyrR and Octbeta1R in which case they 

appeared to be strongly expressed but in a small subset of the neurons (Fig 4.10).  

Finally, we also examined the expression of serotonin receptors among the serotonergic 

neurons, which could implicate their possible strategies in reuptake and feedback regulation. Of 

the 5 types of serotonergic receptors, we discovered that 5HT1A and 5HT1B had the broadest 

and highest expression among all serotonergic neurons; 5HT2A and 5HT2B had much lower 

expression and only in a few cells; 5HT7 had high expression restricted to a small subset of 

neurons (Fig 4.11). Since 5HT1A and 5HT2B were coupled with G protein Gi/Go associating 

with inhibitory cellular mechanisms, and 5HT2A, 5HT2B were coupled with Gq, 5HT7 was 

coupled with Gs associating with stimulative functions, the discovered expression pattern 

indicated a general feedback inhibitory mechanism in serotonergic neurons to prevent excessive 

production of serotonin, while in a small subset of neurons there could be feedforward 

mechanism to allow strong burst of serotonin expressions specifically. 

Serotonergic neurons can be well clustered with GINNAT genes  

Although graph-based clustering using all genes surveyed in the sequencing could group 

the serotonergic neurons into six clusters, the separation between each cluster was not optimal. 
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Clusters revealed on UMAP space were largely mixed with each other with no apparent 

boundary, indicating a lack of differentiating ability with current gene set (Fig 4.3). We reasoned 

that a smaller but more biological specific set of genes regarding GPCRs, IonChannels, 

Neuropeptides, NeurotransmitterSecretion, AxonGuidance, TFs (“GINNAT” set) could be 

helpful to provide stronger discerning powers for the clustering mechanism. A total of 1244 

GINNAT genes was found in our dataset, and they were used to generate PCA dimensions and 

go throught the same graph-based clustering methods. We found the new clustering yielded 

much better separated subgroups. (Fig 4.12) 

Looking closer at the six clusters proposed by the new clustering pipeline, we have found 

strong differentiating makers to represent each group. Three of the six clusters, #3, #4, and #5 as 

marked in the dataset, contained the cleanest separation with a set of marker genes with strong 

differential expression. Cluster #3 can be well described by transcription factors bi (T-box 

family), Fer2 (bHLH family), gcm2, zld (zinc finger family) and an undefined CG43689, which 

was predicted to contain zinc finger transcription factor features. Cluster #4 can be described by 

transcription factors slp1, slp2 (fork head box family), Vsx1, Vsx2 (Paired-like homeobox 

family), sim (bHLH family). Cluster #5 can be described by transcription factors disco, disco-r 

(C2H2 zinc finger family), Ets21C (ETS family), Dr (NK-like homeobox family) and a 

neuropeptide sNPF (homolog of mammalian neuropeptide Y, NPY). These maker genes all 

appeared high coverage, high expression among the defined neurons but essentially absent in all 

the other neurons (Table 4.2). The other three cluster of neurons, #0, #1 and #2 also contained 

sets of differential genes with good statistical power (all adjusted p values less than 1x10-5), 

however these maker genes still possessed non-exclusive expressions outside of the designated 
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clusters, making their differentiation power limited, and making the three clusters appeared more 

close to each other on the UMAP display (Fig 4.12). 

Finally, to confirm the new clustering produced with the selected genes was consistent 

with our previous nearest-neighbor estimation based on all genes, we examined the expression 

patterns of all the marker genes on the full-gene-set UMAP display (Fig 4.13). We found genes 

for all six clusters of neurons, even the less differentiating genes, could specifically label subsets 

of neurons that clustered together. This strongly suggested that the intrinsic common 

characteristics of serotonergic neuron subsets were well maintained with our GINNAT gene sets, 

and the marker genes revealed above could serve as powerful markers or indicators for future 

validation and manipulations.   
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Fig 4.1 Larval serotonergic neurons labeled by nucleus-localized mNeonGreen 
3rd instar larva brain from the cross between TRH-Gal4 and UAS-H2B-2xmNeonGreen. Brain is anterior-posterior organized 
from top-left to bottom-right. 
 
 
 
 
 
 

 
Fig 4.2 Basic statistics of sequenced cells 
Violin plots with scattered dot displaying number of genes, number of de-duplicated reads (UMIs) and mitochondrial 
content of all cells that are passed filtering step.  
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Fig 4.3 Dimensionality reduced visualization shows 6 cell clusters based on their similarity in mRNA levels of all genes, 
and distribution of nGene & nUMI among the cells 
 
 
 
 
 
 
 
 

 
Fig 4.4 Expression of neuron (nSyb and elav), neuroblast (dpn) and glia (repo) marker genes  
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Fig 4.5 Expression of Serotonin synthesis- (Trh and Ddc) and transport-related (SerT and Vmat) genes 
 
 
 
 
 
 

 
Fig 4.6 Expression of genes related to fast-acting neurotransmitters glutamate (VGlut), acetylcholine (ChAT) 
and GABA (Gad1) production 
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Fig 4.7 Expression of glutamate receptor genes 
 
 
 
 
 

 
Fig 4.8 Expression of acetylcholine receptor genes 
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Fig 4.9 Expression of GABA receptor genes 
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Fig 4.10 Expression of dopamine and octopamine receptor genes 
 
 

 
Fig 4.11 Expression of serotonin receptor genes 
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Fig 4.12 Dimensionality reduced visualization of single cell clusters defined by the "GINNAT" gene set 
(left) Dimension reduced visualization of all cells with five detected cell clusters. 
(right) Heatmap display of top-5 marker genes in each cluster. Horizontal axis, individual cells grouped by clusters; Vertical axis, 
marker genes. Expression levels are natural-log transformed and color coded.  
 
 
 
 
 
 
 

  
Fig 4.13 Expression of "GINNAT" marker genes mapped on the full-gene-set derived dimension-reduction 
display 
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Table 4.1 Cell counts after each step in dissociation and sorting 

 
 
 
 
 
 
Table 4.2 Marker genes for clusters resolved by dimension reduction based on the GINNAT gene set 
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4.3 Discussion 

The fast advances in single cell RNA sequencing technology have made deep 

transcriptomic profiling of large amount of cells practical. Transcriptomic information provides a 

valuable exploratory entry point for mechanistic studies in any given type of cells, since this is a 

direct snapshot of molecular machineries within a population of cells, which is highly predictive 

of cellular functions at given biological conditions. Present success of scRNAseq application in 

systems such as peripheral blood mononuclear cells (Zheng et al., 2017), cancer tissues (Guo et 

al., 2018), early developing embryonic stem cells (Tang et al., 2010) and so on have provided 

valuable insights of how these dynamic systems might function in great detail. As the cell 

processing throughput and the sequencing quality advance in scRNAseq, it is time for the field to 

move onto more complicated applications, such as in highly heterogeneous tissues e.g. the whole 

nervous system (Croset et al., 2018; Davie et al., 2018), highly dynamic processes e.g. the 

developmental program in human epiblast and the later stages (Tang et al., 2010, 2009; Yan et 

al., 2013; Zhou et al., 2019). Through robust sequencing protocols and effective bioinformatics 

analysis, these challenging goals are becoming reachable. 

However, there are still several difficulties that could not be easily surmounted solely by 

the advancement in sequencing power or analysis algorithms. For one, it is not always trivial to 

maximize the sequencing power only on selected group of cells, especially when facing more 

and more heterogeneous systems. ScRNAseq is very effective when the targeted cell populations 

are easy to obtain, and/or methods of selective separation exists, e.g. well defined surface 

markers of circulating blood cells. Otherwise, the sequencing pipeline would be troubled by 

inadequate cells collected for sequencing, or too much sequencing power wasted on unwanted 

cells. Effective selection method that is compatible with scRNAseq is critical in solving this 
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challenge. In this chapter, I presented a transgenic solution in the model system Drosophila fruit 

fly, in which a strong nucleus-localized fluorescent marker was used to enable the selection of a 

rare neuron population in the nervous system (80 serotonergic neurons out of estimated 10,000 

total CNS neurons). Considering the size of Drosophila neurons, and the fact that these H2B-

mNG labeled cells were cleanly separable on a conventional FACS sorter, this work has 

indicated a practical approach transferable to mammalian systems, whose cells are larger and are 

able to contain stronger fluorescence.  

Also, current scRNAseq approaches are strongly challenged by the loss of 

positional/morphological information during cell dissociation. Not a critical issue for systems 

insensitive to cell distribution/morphology, but this is a big difficulty for others whose cell 

functional diversity are reflected in or depend on shape, structure, niche composition, etc. If 

reliable transgenic drivers, covering the whole or part of the desired cell population, are 

available, then strong reporters such as H2B-mNG could be practical to resolve and sequencing 

these cell populations one piece at a time. However, not all systems are as well-equipped to the 

level as the armory of Drosophila genetics tools, and simple specific drivers for targeted cell 

populations are not guaranteed. One possible direction that has not been covered by this thesis 

study is to target cell populations with correlatable markers that could connect cell morphologies 

and transcriptomes together. More specifically, if cell populations can be labeled with unique 

barcoding system such as Bitbow, and the pre-recorded barcoded cell morphology can be 

directly correlate to barcoded transcriptome, then the population composition can be accurately 

defined by the joint modalities.  

Regardless of the shortcomings of current scRNAseq methodologies, this serotonergic 

data set has brought in a great amount of information that awaits solid molecular validations. 
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With available tools targeting known and novel markers at RNA and protein levels, many 

unanswered questions such as the fast-acting neurotransmitter composition, 5-

HT/Dopamine/Octopamine receptor distributions, and master regulator/transcription factors in 

defining subtypes in the serotonergic system, can be addressed in future explorations. Further, 

with the discovered markers, new driver lines or combinatorial driver lines in collaboration with 

lines like TRH-SplitGal4 can be made for more precise subtype manipulation and investigations. 

 

4.4 Materials and Methods 

Fly husbandry. Flies were reared at 25c on standard CT food. TRH-Gal4 driver line was 

acquired from BDSC (#38388). The reporter line UAS-H2B-2xmNeonGreen was made by first 

constructing human H2B cDNA and 2 copies of mNeonGreen cDNA together in the same 

reading frame, downstream of the UAS sequences of the pJFRC-MUH backbone (Addgene, 

#26213); then the transgenic fly line was established by embryo injection and PhiC-31-mediated 

chromosome recombination into the attP2 site (BDSC #8622, injections carried out by BestGene 

Inc). Progeny of the cross were synchronized to one-day birth window by only allowing the 

parents staying in the same vial for 24 hours. On the fifth day after the cross, only wandering 

larvae were collected for the further experiment, in order to minimize developmental time 

differences between sequenced individuals. 

Dissection and dissociation. Third instar brains were dissected in 1x Rinaldini’s solution 

(Harzer, Berger, Conder, Schmauss, & Knoblich, 2013) at room temperature within 30min 

before proceeding to dissociation. During the dissection, tissues attached to the brain, such as the 

ring gland, imaginal discs and neuron fibers connecting to the mouth hook were all carefully 

removed to ensure dissociation and cell collection efficiency. All dissected brains were quickly 
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checked under an epifluorescence microscope to confirm strong and clear TRH neuron 

expression pattern before proceeding to dissociation. Brains were quickly washed twice with 

Rinaldini’s solution and briefly spun down (with ~500gcf) to the bottom of an EP tube. In 

Rinaldini’s solution with 2 mg/ml of Papain and 2 mg/ml of Collagenase I, the brains were 

incubated at 37c for 1 hour for dissociation. Gentle agitations were done by tapping the EP tube 

every 15min during the dissociation. 20uM of the protease inhibitor E-64 was added to stop the 

reaction. To fully dissociated cells from the brains, quick pipetting with a siliconized P200 tip 

was done for ~30 times and brains could be visually confirmed to be fully dissociated. 

Schneider’s medium with FBS at 9x volume of the cell suspension was added to fully stop the 

reaction, and to maintain cells at a nutritious condition while getting ready for cell sorting. 

Cell sorting and sequencing. Dissociated cells were loaded onto Sony SH800S cell 

sorter with a 100um-nozzle chip. Sequential gates on FSC/SSC to FSC/mNG were set up using a 

negative control sample which were cells coming from a dissociated non-fluorescent brain. The 

sorting was conducted at ~7000 events/s. Cell selection was set at “Purity” mode, in which case 

any negative droplets or positive droplets adjacent to any contaminant would be threw out to 

ensure stringent selection. It was estimated that the sorting efficiency was at ~55%, i.e. 55% of 

mNG-positive cells were eventually sent to collection channel. The sorted cells were collected in 

a 1.5ml EP tube with Schneider’s medium to maximize their survival rate.  Small portion of the 

sorted cell suspension was transferred into a well of 96-well plate to confirm their mNG 

fluorescence, cell morphology and estimate the cell concentration. Final cell concentration was 

adjusted following 10X Genomics’ guideline, and the 10X Chromium prep (v3 chemistry) was 

done by the University of Michigan Advanced Genomics Core, followed by sequencing on the 

Illumina NovaSeq 6000 platform.  
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Bioinformatics. Raw sequencing FASTQ files were mapped to the newest version fly 

genome (Drosophila_melanogaster.BDGP6.95) plus the cDNA sequence of mNeonGreen, and 

UMI counts were generated using Cell Ranger (with help from Dr. Jingqun Ma). The cell-UMI 

data object was then passed into Seurat (Butler, Hoffman, Smibert, Papalexi, & Satija, 2018) for 

downstream analysis. Based on the distribution of number of genes and number of UMIs in the 

sequenced cells (Fig 4.2), cut-offs at 400 genes and then 1000 UMIs were set to filter out cells 

with poorer quality. UMIs in each cell were log-normalized, and the dataset was scaled by a 

linear regression model. Principal component analysis (PCA) was done to reduce the 

dimensionality. 50 PCs from the PCA were then used to conduct graph-based shared-nearest-

neighbor (SNN) (Waltman & van Eck, 2013), and 2D visualization using t-distributed stochastic 

neighbor embedding (tSNE) (Laurens van der Maaten, 2008) or Uniform Manifold 

Approximation and Projection (UMAP) (McInnes, Healy, Saul, & Großberger, 2018). Markers 

of each cell cluster were selected with differential expression analysis based on the non-

parametric Wilcoxon rank sum test; parameters describing each marker genes were generated, 

including the percentage of cells where the marker is detected in the defined cluster (“pct.1”), the 

percentage of cells where the feature is detected outside of the defined cluster (“pct.2”), and the 

adjusted p-value, based on bonferroni correction using all features in the dataset (“p_val_adj”). 

To improve the performance of clustering and marker gene detection, the gene list of the 

GINNAT set containing 1446 genes of GPCRs, Ion Channels, Neuropeptides, Neurotransmitter-

Secretion molecules, Axon Guidance molecules, TFs was constructed from FlyBase Gene 

Groups, and used to generate a subset data including all cells with only these genes. Same 

pipeline of analysis was done to generate new cell clustering and the set of marker genes. 
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Chapter 5. Concluding Remarks 
This dissertation elaborated the importance of gaining deeper knowledge about 

heterogeneous neuronal subtypes within the nervous system (Chapter 1), described an effort of 

generating the Bitbow tools to perform morphology and lineage tracing in the Drosophila 

nervous system (Chapter 2), and presented a multimodality investigation on the Drosophila 

serotonergic neuron subtypes using Bitbow and scRNAseq technologies (Chapter 3, 4). 

Categorical study of system components is a critical step for all scientific endeavors. 

“What I cannot create, I do not understand.” - the famous quote by the theoretical physicist 

Richard Feynman highlighted the reductionist philosophy that is fundamental to all branches of 

science. Just like having a part list of all components in a complex electronic circuit, obtaining an 

atlas with detailed neuron subtype descriptions will advance the understanding of the entire 

nervous system. Such part list provides an important entry point for depicting how a “black box” 

work, where measurements can be confirmed, manipulations can be traced, and responses can be 

correlated. This allows scientists to effectively establish, test, accept or reject hypotheses to 

understand the brain functions.  

Neuroscience studies are propelled by advancements in tools. The boundary of our 

knowledge is always set at the furthest point where our last generation of methodologies could 

reach. Breakthroughs happen whenever the technologies have advanced to reach greater 

resolution or precision, explore new properties, or extend the measurements to a higher 

dimension or complexity. The neuron doctrine was established when the silver staining method 

was invented to make precise neuron anatomical characterizations possible (Glickstein, 2006). 
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Action potentials as the form of signal propagation was quantitatively characterized when 

voltage clamp was available (Hodgkin & Huxley, 1952a, 1952b, 1952c, 1952d; Hodgkin, 

Huxley, & Katz, 1952). Persisted lineage tracing was practical when creative transgenic designs 

and microscopy methods advanced to ensure higher spatial and temporal resolutions 

(Kretzschmar & Watt, 2012). In this dissertation study, Bitbow utilized a concise and expandable 

genetic design to make it suitable for generating a large number of color barcodes for 

morphological and lineage studies. Tunable genetic switches, either externally controllable by 

heat-induced transgenics, or internally programmed by neuronal specific promoters, guaranteed 

its flexibility with temporal and cell-population specificity. Carefully designed multispectral 

imaging setup and joint experimental pipeline with Expansion Microscopy ensured resolving the 

labeling information in spectral and spatial dimensions. It is foreseeable that Bitbow will 

strongly contribute to more and more advanced Drosophila neuronal subtype studies effectively. 

As the fluorescent proteins and genetic components used in Bitbow have been shown to be 

functional in mammalian systems (Livet et al., 2007; Cai et al., 2013), it is expected that the 

transgenic designs of Bitbow can be readily transferred in more complex organisms, such as 

zebrafish, mouse, etc.  

Multi-modality study of specific neuron groups is key to accelerate our understanding of 

the entire nervous system. Joint investigations in neuronal morphology, lineage, transcriptome, 

etc. and efforts in connecting these characteristics onto the exact same cell, have been the critical 

but nontrivial goal for generations of neuroscientists (Bates, Janssens, Jefferis, & Aerts, 2019). In 

this dissertation study, Drosophila larval serotonergic neurons were profiled by Bitbow and 

scRNAseq to resolve their morphological, lineage and molecular identities. Although the results 

collectively suggest the presence of subtypes among the serotonergic neurons, further 
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investigation in other modalities, such as electrophysiological and neural functional properties 

are needed to strengthen the findings. More importantly, methods to directly connect these 

measurements to the exact same neurons are still needed to gain the most comprehensive view of 

their properties. Bitbow has the potential to bridging such investigations. It delivers a large 

number of unambiguous labeling in complex neuron populations, which effectively assign 

unique neuron identifications. Combining Bitbow imaging with in situ RNA/protein detection or 

single-cell sequencing after cell dissociations, it is possible to conduct and faithfully multi-

modality measurement of the exact same neurons of interest. With the additional lineage and 

morphology (which indicating connectivity) information, we will be able to design more precise 

genetic interrogation that is development- and connection-specific. Starting from relatively 

simple subset of neurons as examples, this paradigm of multi-modality investigation is 

applicable to other invertebrate or vertebrate systems, and will eventually pave the way of 

deciphering functional relevance of neuronal subtypes in normal and disease conditions. 
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